(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-04-17
(45)【発行日】2023-04-25
(54)【発明の名称】光透過性導電フィルム、その製造方法、調光フィルム、および、調光部材
(51)【国際特許分類】
H01B 5/14 20060101AFI20230418BHJP
H01B 13/00 20060101ALI20230418BHJP
E06B 9/24 20060101ALI20230418BHJP
【FI】
H01B5/14 A
H01B13/00 503B
E06B9/24 C
(21)【出願番号】P 2019502028
(86)(22)【出願日】2018-11-07
(86)【国際出願番号】 JP2018041344
(87)【国際公開番号】W WO2019130841
(87)【国際公開日】2019-07-04
【審査請求日】2021-10-05
(31)【優先権主張番号】P 2017253838
(32)【優先日】2017-12-28
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000003964
【氏名又は名称】日東電工株式会社
(74)【代理人】
【識別番号】100103517
【氏名又は名称】岡本 寛之
(74)【代理人】
【識別番号】100149607
【氏名又は名称】宇田 新一
(72)【発明者】
【氏名】藤野 望
(72)【発明者】
【氏名】梨木 智剛
(72)【発明者】
【氏名】米澤 秀行
【審査官】北嶋 賢二
(56)【参考文献】
【文献】特開2015-146244(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01B 5/14
H01B 13/00
B32B 7/027
B32B 7/025
E06B 9/24
(57)【特許請求の範囲】
【請求項1】
第1方向と、前記第1方向と直交する第2方向とに延びる光透過性導電フィルムであって、
基材フィルムと、光透過性導電層とを備え、
前記光透過性導電フィルムを、20℃から160℃まで昇温した後20℃まで降温する熱機械分析工程を実施したときに、
前記第1方向における前記分析工程前後の寸法変化、および、前記第2方向における前記分析工程前後の寸法変化が、両方とも、膨張を示すことを特徴とする、光透過性導電フィルム。
【請求項2】
前記光透過性導電フィルムを、JIS C 2151に準じて、20℃から150℃まで昇温した後20℃まで降温する加熱工程を実施したときに、
前記第1方向における前記加熱工程前後の寸法変化、および、前記第2方向における前記加熱工程前後の寸法変化が、両方とも、収縮を示し、かつ、
前記第1方向における前記加熱工程前後の寸法変化率の絶対値、および、前記第2方向における前記加熱工程前後の寸法変化率の絶対値が、両方とも、0.35%未満であることを特徴とする、請求項1に記載の光透過性導電フィルム。
【請求項3】
前記基材フィルムは、大気環境下で加熱処理がなされたフィルムであることを特徴とする、請求項1または2に記載の光透過性導電フィルム。
【請求項4】
前記基材フィルムは、ポリエステル系フィルムであることを特徴とする、請求項1または2に記載の光透過性導電フィルム。
【請求項5】
第1の光透過性導電フィルムと、調光機能層と、第2の光透過性導電フィルムとを順に備え、
前記第1の光透過性導電フィルムおよび/または前記第2の光透過性導電フィルムは、請求項1~4のいずれか一項に記載の光透過性導電フィルムであることを特徴とする、調光フィルム。
【請求項6】
保護部材と、
前記保護部材に貼着される請求項5に記載の調光フィルムと
を備えることを特徴とする、調光部材。
【請求項7】
請求項1~4のいずれか一項に記載の光透過性導電フィルムを製造する方法であって、
基材フィルムを大気環境下で加熱する工程、および、
次いで、前記基材フィルムを5℃以下に冷却した状態で、前記基材フィルムに光透過性導電層を設ける工程
を備えることを特徴とする、光透過性導電フィルムの製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、光透過性導電フィルム、その製造方法、ならびに、それを備える調光フィルムおよび調光部材に関する。
【背景技術】
【0002】
近年、冷暖房負荷の低減や意匠性などから、スマートウインドウなどに代表される調光装置の需要が高まっている。調光装置は、建築物や乗物の窓ガラス、間仕切り、インテリアなどの種々の用途に用いられている。
【0003】
調光装置に用いられる調光フィルムとしては、例えば、特許文献1に、2つの透明導電性樹脂基材と、2つの透明導電性樹脂基材に挟持された調光層とを備えるフィルムが提案されている(例えば、特許文献1参照。)。
【0004】
特許文献1の調光フィルムは、電界の印加によって調光層を通過する光の吸収・散乱を調整することにより、調光を可能にしている。このような調光フィルムの透明導電性樹脂基材には、ポリエステルフィルムなどの支持基材に、インジウムスズ複合酸化物(ITO)からなる透明電極を積層させたフィルムが採用されている。
【先行技術文献】
【特許文献】
【0005】
【発明の概要】
【発明が解決しようとする課題】
【0006】
調光フィルムは、大型のガラス(例えば、1~10m2の窓ガラス)などに貼着して用いられることがある。具体的には、ガラスに、熱硬化性または熱溶融性の接着剤などを介して、そのガラスと略同一サイズの調光フィルムを配置し、加熱硬化または加熱溶融することにより、調光フィルムをガラスに貼着する。
【0007】
しかしながら、貼着後の調光フィルムは、加熱のため、加熱前の状態よりも収縮する不具合が生じる。その結果、ガラス(特に、周端部)に、調光フィルムが貼着されない箇所を生じる。この貼着されない箇所は、対象となるガラスの面積が大きくなるほど、顕著に目立つ。
【0008】
本発明は、対象物全面に貼着することができる光透過性導電フィルム、その製造方法、調光フィルム、および、調光部材を提供することにある。
【課題を解決するための手段】
【0009】
本発明[1]は、第1方向と、前記第1方向と直交する第2方向とに延びる光透過性導電フィルムであって、基材フィルムと、光透過性導電層とを備え、前記光透過性導電フィルムを、20℃から160℃まで昇温した後20℃まで降温する熱機械分析工程を実施したときに、前記第1方向における前記分析工程前後の寸法変化、および、前記第2方向における前記分析工程前後の寸法変化が、両方とも、膨張を示す、光透過性導電フィルムを含んでいる。
【0010】
本発明[2]は、前記光透過性導電フィルムを、JIS C 2151に準じて、20℃から150℃まで昇温した後20℃まで降温する加熱工程を実施したときに、前記第1方向における前記加熱工程前後の寸法変化、および、前記第2方向における前記加熱工程前後の寸法変化が、両方とも、収縮を示し、かつ、前記第1方向における前記加熱工程前後の寸法変化率の絶対値、および、前記第2方向における前記加熱工程前後の寸法変化率の絶対値が、両方とも、0.35%未満である、[1]に記載の光透過性導電フィルムを含んでいる。
【0011】
本発明[3]は、前記基材フィルムは、大気環境下で加熱処理がなされたフィルムである、[1]または[2]に記載の光透過性導電フィルムを含んでいる。
【0012】
本発明[4]は、前記基材フィルムは、ポリエステル系フィルムであることを特徴とする、[1]~[3]のいずれか一項に記載の光透過性導電フィルムを含んでいる。
【0013】
本発明[5]は、第1の光透過性導電フィルムと、調光機能層と、第2の光透過性導電フィルムとを順に備え、前記第1の光透過性導電フィルムおよび/または前記第2の光透過性導電フィルムは、[1]~[4]のいずれか一項に記載の光透過性導電フィルムである、調光フィルムを含んでいる。
【0014】
本発明[6]は、保護部材と、前記保護部材に貼着される[5]に記載の調光フィルムとを備える、調光部材を含んでいる。
【0015】
本発明[7]は、[1]~[4]のいずれか一項に記載の光透過性導電フィルムを製造する方法であって、基材フィルムを大気環境下で加熱する工程、および、次いで、前記基材フィルムを5℃以下に冷却した状態で、前記基材フィルムに光透過性導電層を設ける工程を備える、光透過性導電フィルムの製造方法を含んでいる。
【発明の効果】
【0016】
光透過性導電フィルムは、20℃-160℃-20℃の熱機械分析工程を実施したときに、第1方向における寸法変化、および、第2方向における寸法変化の両方が、膨張を示す。
【0017】
そのため、本発明の光透過性導電フィルムを、対象物に対して加熱によって貼着しても、光透過性導電フィルムは、加熱前の状態よりも膨張する。したがって、対象物の端部の表面が露出することを防止でき、対象物の全面に対して光透過性導電フィルムを貼着することができる。
【0018】
また、膨張によって対象物の端部からはみ出した光透過性導電フィルムの端部を切断することにより、対象物と同一サイズの光透過性導電フィルムを対象物に貼着することができる。また、その端部を配線設置領域として、有効活用することもできる。
【0019】
本発明の調光フィルムは、本発明の光透過性導電フィルムを備えるため、対象物の全面に貼着することができる。
【0020】
本発明の調光部材は、保護部材の全面に調光フィルムが貼着されているため、保護部材の全面で調光機能を有することができる。
【0021】
本発明の製造方法は、対象物全面に貼着することができる光透過性導電フィルムを得ることができる。
【図面の簡単な説明】
【0022】
【
図1】
図1A-Bは、本発明の光透過性導電フィルムの一実施形態を示し、
図1Aは、断面図、
図1Bは、斜視図を示す。
【
図2】
図2は、
図1Aに示す光透過性導電フィルムを製造する工程の斜視図を示す。
【
図3】
図3は、
図1Aに示す光透過性導電フィルムを備える調光フィルムの断面図を示す。
【
図4】
図4A-Eは、
図2に示す調光フィルムを用いて、調光部材を製造する工程図であって、
図4Aは、保護部材を用意する工程、
図4Bは、保護部材に熱硬化性接着剤層を設ける工程、
図4Cは、調光フィルムを熱硬化性接着剤層に配置する工程、
図4Dは、熱硬化性接着剤層を加熱硬化する工程、
図4Eは、調光フィルムを切断する工程を示す。
【発明を実施するための形態】
【0023】
図1Aにおいて、紙厚方向は、前後方向(第1方向)であり、紙面手前側が前側(第1方向一方側)、紙面奥側が後側(第1方向他方側)である。
図1Aにおいて、紙面左右方向は、左右方向(幅方向、第1方向に直交する第2方向)であり、紙面左側が左側(第2方向一方側)、紙面右側が右側(第2方向他方側)である。
図1Aにおいて、紙面上下方向は、上下方向(厚み方向、第1方向および第2方向に直交する第3方向)であって、紙面上側が、上側(厚み方向一方側、第3方向一方側)、紙面下側が、下側(厚み方向他方側、第3方向他方側)である。具体的には、各図の方向矢印に準拠する。
【0024】
<一実施形態>
1.光透過性導電フィルム
本発明の一実施形態である光透過性導電フィルム1は、例えば、調光素子の例としての調光フィルム、調光部材、調光装置などに用いられるフィルム(すなわち、調光用光透過性導電フィルム)である。光透過性導電フィルム1は、
図1に示すように、所定の厚みを有するフィルム形状(シート形状を含む)をなし、上下方向(厚み方向)と直交する所定方向(前後方向および左右方向、すなわち、面方向)に延び、平坦な上面(厚み方向一方面)および平坦な下面(厚み方向他方面)を有する。光透過性導電フィルム1は、例えば、調光フィルム4(後述、
図3参照)、調光部材6(後述、
図4E参照)および調光装置(後述)などの一部品であり、つまり、調光フィルム4などではない。すなわち、光透過性導電フィルム1は、調光フィルム4などを作製するための部品であり、調光機能層5などを含まず、部品単独で流通し、産業上利用可能なデバイスである。
【0025】
具体的には、光透過性導電フィルム1は、基材フィルム2と、光透過性導電層3とを順に備える。つまり、光透過性導電フィルム1は、基材フィルム2と、基材フィルム2の上側に配置される光透過性導電層3とを備える。好ましくは、光透過性導電フィルム1は、基材フィルム2と、光透過性導電層3とのみからなる。以下、各層について詳述する。
【0026】
2.基材フィルム
基材フィルム2は、光透過性導電フィルム1の最下層であって、光透過性導電フィルム1の機械的強度を確保する支持材である。また、基材フィルム2は、光透過性および可撓性を有する支持材である。基材フィルム2は、光透過性導電層3を支持する。
【0027】
基材フィルム2は、フィルム形状(シート形状を含む)を有する。
【0028】
基材フィルム2は、例えば、高分子フィルムからなる。高分子フィルムの材料としては、例えば、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、ポリエチレンナフタレートなどのポリエステル樹脂、例えば、ポリメタクリレートなどの(メタ)アクリル樹脂(アクリル樹脂および/またはメタクリル樹脂)、例えば、ポリエチレン、ポリプロピレン、シクロオレフィンポリマーなどのオレフィン樹脂、例えば、ポリカーボネート樹脂、ポリエーテルスルフォン樹脂、ポリアリレート樹脂、メラミン樹脂、ポリアミド樹脂、ポリイミド樹脂、セルロース樹脂、ポリスチレン樹脂、ノルボルネン樹脂などが挙げられる。これら高分子フィルムは、単独使用または2種以上併用することができる。基材フィルム2は、光透過性、耐熱性、機械的強度などの観点から、好ましくは、ポリエステル樹脂から形成されるポリエステル系フィルムが挙げられ、より好ましくは、ポリエチレンテレフタレートフィルムが挙げられる。
【0029】
基材フィルム2は、耐熱性、機械的強度がより一層優れる観点から、好ましくは、延伸フィルムであり、より好ましくは、二軸延伸フィルムである。
【0030】
基材フィルム2は、好ましくは、後述するように、大気環境下で加熱処理されたフィルムであり、より好ましくは、大気環境下で加熱処理された二軸延伸フィルムである。このような基材フィルム2を用いれば、基材フィルム2内部に存在する応力が緩和されるため、光透過性導電フィルム1を加熱により対象物に貼着した場合に、光透過性導電フィルム1の収縮を防止することができる。
【0031】
基材フィルム2の全光線透過率(JIS K-7105)は、例えば、80%以上、好ましくは、85%以上であり、また、例えば、100%以下、好ましくは、95%以下である。
【0032】
基材フィルム2のヘイズ(JIS K-7105)は、例えば、2.0%以下、好ましくは、1.8%以下、より好ましくは、1.5%以下、さらに好ましくは、1.2%以下であり、また、例えば、0.1%以上である。
【0033】
基材フィルム2の厚みは、例えば、2μm以上、好ましくは、50μm以上、より好ましくは、100μm以上であり、また、例えば、300μm以下、好ましくは、250μm以下である。基材フィルム2の厚みが上記下限以上であれば、光透過性導電層3の形成時に、高分子フィルムに含有する水分をより多く光透過性導電層3に付与できるため、光透過性導電層3の結晶化を抑制することができる。そのため、光透過性導電層3の非晶質性を維持することができる。また、基材フィルム2の厚みが上記下限以上であれば、光透過性導電フィルム1の強度に優れる。
【0034】
基材フィルム2の厚みは、例えば、膜厚計を用いて測定することができる。
【0035】
基材フィルム2の下面には、セパレータなどが備えられていてもよい。
【0036】
3.光透過性導電層
光透過性導電層3は、必要により後の工程でエッチングによりパターニングすることができる透明性の導電層である。
【0037】
光透過性導電層3は、フィルム形状(シート形状を含む)を有しており、基材フィルム2の上面全面に、基材フィルム2の上面に接触するように、配置されている。
【0038】
光透過性導電層3の材料としては、例えば、In、Sn、Zn、Ga、Sb、Ti、Si、Zr、Mg、Al、Au、Ag、Cu、Pd、Wからなる群より選択される少なくとも1種の金属を含む金属酸化物が挙げられる。金属酸化物には、必要に応じて、さらに上記群に示された金属原子をドープしていてもよい。
【0039】
光透過性導電層3としては、例えば、インジウムスズ複合酸化物(ITO)などのインジウム系導電性酸化物、例えば、アンチモンスズ複合酸化物(ATO)などのアンチモン系導電性酸化物などが挙げられる。光透過性導電層3は、優れた導電性および光透過性を確保できる観点から、インジウム系導電性酸化物を含有し、より好ましくは、インジウムスズ複合酸化物(ITO)を含有する。すなわち、光透過性導電層3は、好ましくは、インジウム系導電性酸化物層であり、より好ましくは、ITO層である。
【0040】
光透過性導電層3の材料としてITOを用いる場合、酸化スズ(SnO2)含有量は、酸化スズおよび酸化インジウム(In2O3)の合計量に対して、例えば、0.5質量%以上、好ましくは、3質量%以上、より好ましくは、8質量%以上、さらに好ましくは、10質量%超であり、また、例えば、25質量%以下、好ましくは、15質量%以下、より好ましくは、13質量%以下である。酸化スズの含有量が上記下限以上であれば、光透過性導電層3の優れた導電性を実現しつつ、結晶化をより確実に抑制できる。また、酸化スズの含有量が上記上限以下であれば、光透過性や導電性の安定性を向上させることができる。
【0041】
本明細書中における「ITO」とは、少なくともインジウム(In)とスズ(Sn)とを含む複合酸化物であればよく、これら以外の追加成分を含んでもよい。追加成分としては、例えば、In、Sn以外の金属元素が挙げられ、具体的には、Zn、Ga、Sb、Ti、Si、Zr、Mg、Al、Au、Ag、Cu、Pd、W、Fe、Pb、Ni、Nb、Cr、Gaなどが挙げられる。
【0042】
光透過性導電層3は、結晶質または非晶質(アモルファス)のいずれであってもよいが、好ましくは、非晶質であり、より具体的には、好ましくは、非晶質ITO層である。光透過性導電層3が非晶質であれば、耐クラック性、耐擦傷性に優れるため、加工性に優れる。すなわち、光透過性導電フィルム1を、貼着する対象物(例えば、後述するガラスなどの保護部材)に貼着加工する際に、光透過性導電フィルム1に発生するクラックや傷の発生を抑制することができる。そのため、貼着された光透過性導電フィルム1の外観や特性を良好に維持することができる。
【0043】
光透過性導電層3が非晶質または結晶質であることは、例えば、光透過性導電層3がITO層である場合は、20℃の塩酸(濃度5質量%)に15分間浸漬した後、水洗・乾燥し、15mm程度の間の端子間抵抗を測定することで判断できる。本明細書においては、光透過性導電フィルム1を塩酸(20℃、濃度:5質量%)に浸漬・水洗・乾燥した後に、光透過性導電層における15mm間の端子間抵抗が10kΩ以上である場合、光透過性導電層が非晶質であるものとする。
【0044】
光透過性導電層3の表面抵抗値は、例えば、1Ω/□以上、好ましくは、10Ω/□以上であり、また、例えば、200Ω/□以下、好ましくは、100Ω/□以下、より好ましくは、85Ω/□以下である。光透過性導電層3の表面抵抗値が上記範囲であれば、大型の調光装置として用いた場合であっても、良好な電気駆動を実現できる。
【0045】
光透過性導電層3の比抵抗値は、例えば、6×10-4Ω・cm以下、好ましくは、5.5×10-4Ω・cm以下、より好ましくは、5×10-4Ω・cm以下、さらに好ましくは、4.8×10-4Ω・cm以下であり、また、例えば、3×10-4Ω・cm以上、好ましくは、3.5×10-4Ω・cm以上、より好ましくは、4.0×10-4Ω・cm以上である。光透過性導電層3の比抵抗値が上記上限以下であれば、大型の調光装置として用いた場合でも、良好な電気駆動を実現できる。また、比抵抗値が上記下限以上であれば、光透過性導電層3の非晶質性をより確実に維持できる。
【0046】
光透過性導電層3の厚みは、例えば、10nm以上、好ましくは、30nm以上、より好ましくは、50nm以上であり、また、例えば、200nm以下、好ましくは、150nm以下、より好ましくは、100nm以下である。光透過性導電層3の厚みは、例えば、透過型電子顕微鏡を用いた断面観察により測定することができる。
【0047】
4.光透過性導電フィルムの製造方法
次に、光透過性導電フィルム1を製造する方法について説明する。
【0048】
光透過性導電フィルム1の製造方法は、例えば、基材フィルム2を大気環境下で加熱する前加熱工程と、次いで、基材フィルム2を5℃以下に冷却した状態で、基材フィルム2に光透過性導電層3を設ける導電層配置工程とを備える。光透過性導電フィルム1の製造方法は、好ましくは、
図2に参照されるように、ロールトゥロール方式により実施される。
【0049】
前加熱工程では、まず、基材フィルム2を用意する。例えば、ロールトゥロール方式の場合は、搬送方向(例えば、第1方向)に長尺で、ロール状に巻回された基材フィルム2を用いる。
【0050】
好ましくは、機械的強度、耐熱性、光透過性の観点から、二軸延伸基材フィルム2を用意する。
【0051】
続いて、基材フィルム2を大気環境下で加熱する。すなわち、光透過性導電層3を設ける前に、基材フィルム2を加熱する。基材フィルム2の加熱は、好ましくは、ロールトゥロール方式で実施され、例えば、大気環境下において、長尺のロール状に巻回された基材フィルム2を繰り出し、加熱しながら搬送した後、再び長尺のロール状に巻回する。
【0052】
この加熱処理により、基材フィルム2に内在している応力を解放することができ、光透過性導電フィルム1の貼着時の熱収縮を抑制することができる。特に、二軸延伸フィルムは、その製造時において、延伸によって、強い内部応力が印加されているため、基材フィルム2としての二軸延伸フィルムの熱収縮をより確実に抑制にすることができる。
【0053】
また、大気環境下での加熱のため、真空下での加熱と比べて、基材フィルム2に発生するシワや傷を抑制して、光透過性導電フィルム1の外観を良好に維持することができる。すなわち、ロール状の基材フィルム2をロールから繰り出す際または巻き取る際に、積層される基材フィルム2の間に大気を介在させることができるため、基材フィルム2の密着や摩擦を抑制し、シワや傷を抑制することができる。また、基材フィルム2を搬送する際に、搬送ロール(例えば、ガイドロール)と基材フィルム2との間にも大気を介在させることができるため、搬送ロールとの過度な密着を抑制し、シワや傷を抑制することもできる。これらの抑制は、大面積で使用されることが多い調光装置における外観に対して特に効果的である。
【0054】
加熱温度は、例えば、100℃以上、好ましくは、130℃以上、より好ましくは、150℃以上であり、また、例えば、220℃以下、好ましくは、200℃以下、より好ましくは、180℃以下である。加熱温度は、基材フィルム2を加熱するための加熱設備(例えば、IRヒーターや加熱ロール)の設定温度である。
【0055】
加熱時間は、例えば、0.3分以上、好ましくは、0.5分以上、より好ましくは、1分以上であり、また、例えば、10分以下、好ましくは、5分以下である。加熱時間が上記上限以下であれば、基材フィルム2からの過剰な析出物(オリゴマーなど)が発生することを抑制して、基材フィルム2の透明性低下や高ヘイズ化を抑制することができる。また、加熱時間が上記下限以上であれば、基材フィルム2の残留応力を十分に解放することができ、光透過性導電フィルム1の貼着時の熱収縮をより確実に抑制することができる。
【0056】
導電層配置工程では、例えば、乾式により、基材フィルム2の上面に光透過性導電層3を形成する。
【0057】
乾式としては、例えば、真空蒸着法、スパッタリング法、イオンプレーティング法などが挙げられる。好ましくは、スパッタリング法が挙げられる。
【0058】
スパッタリング法は、真空装置のチャンバー(成膜室)内にターゲットおよび被着体(基材フィルム2)を対向配置し、ガスを供給するとともに電圧を印加することによりガスイオンを加速しターゲットに照射させて、ターゲット表面からターゲット材料をはじき出して、そのターゲット材料を被着体表面に積層させる。
【0059】
スパッタリング法としては、例えば、2極スパッタリング法、ECR(電子サイクロトロン共鳴)スパッタリング法、マグネトロンスパッタリング法、イオンビームスパッタリング法などが挙げられる。好ましくは、マグネトロンスパッタリング法が挙げられる。
【0060】
スパッタリング法に用いる電源は、例えば、直流(DC)電源、交流中周波(AC/MF)電源、高周波(RF)電源、直流電源を重畳した高周波電源のいずれであってもよい。
【0061】
ターゲットとしては、光透過性導電層3を構成する上述の金属酸化物が挙げられる。例えば、光透過性導電層3の材料としてITOを用いる場合、ITOからなるターゲットを用いる。ターゲットにおける酸化スズ(SnO2)含有量は、酸化スズおよび酸化インジウム(In2O3)の合計量に対して、例えば、0.5質量%以上、好ましくは、3質量%以上、より好ましくは、8質量%以上、さらに好ましくは、10質量%超であり、また、例えば、25質量%以下、好ましくは、15質量%以下、より好ましくは、13質量%以下である。
【0062】
スパッタリング時は、好ましくは、真空下で実施され、その気圧は、例えば、1.0Pa以下、好ましくは、0.5Pa以下、より好ましくは、0.2Pa以下であり、また、例えば、0.01Pa以上である。
【0063】
スパッタリング時の導入ガスとしては、例えば、Arなどの不活性ガスが挙げられる。また、この方法では、酸素ガスなどの反応性ガスを併用する。反応性ガスの流量の、不活性ガスの流量に対する比(反応性ガスの流量(sccm)/不活性ガスの流量(sccm))は、例えば、0.1/100以上5/100以下である。
【0064】
光透過性導電層3を形成する際における基材フィルム2の温度は、5℃以下、好ましくは、0℃未満、より好ましくは、-3℃以下であり、また、例えば、-40℃以上、好ましくは、-20℃以上である。基材フィルム2の温度が上記上限を超過すると、基材フィルム2が搬送方向の張力により搬送方向に延伸してしまい、得られる光透過性導電フィルム1の基材フィルム2に応力が残存する。その結果、光透過性導電フィルム1を対象物に貼着した際に、熱収縮するおそれがある。
【0065】
基材フィルム2を冷却するには、例えば、基材フィルム2の下面を、冷却装置(例えば、冷却ロール)などに接触させる。
【0066】
ロールトゥロール方式においては、例えば、成膜ロールやニップロールを冷却して、冷却ロールとすることができる。上記基材フィルム2の温度は、冷却装置の設定温度とする。
【0067】
スパッタリング時の雰囲気(チャンバー内)は、含水していることが好ましく、スパッタ気圧(全圧)に対する、水分ガスの比(水分ガスの分圧(Pa)/スパッタリング気圧(Pa))は、例えば、0.006以上、好ましくは、0.008以上、より好ましくは、0.01以上であり、また、例えば、0.3以下、好ましくは、0.1以下、より好ましくは、0.07以下、さらに好ましくは、0.05以下である。含水量を上記範囲内とすれば、光透過性導電層3に微量の水を含ませることができ、光透過性導電層3の結晶化を抑制することができる。
【0068】
これによって、基材フィルム2と、光透過性導電層3とを備える光透過性導電フィルム1を得る。このときの光透過性導電層3は、非晶質である。
【0069】
得られる光透過性導電フィルム1において、その総厚みは、例えば、2μm以上、好ましくは、20μm以上であり、また、例えば、300μm以下、好ましくは、200μm以下である。
【0070】
光透過性導電フィルム1を、20℃から160℃まで昇温した後20℃まで降温する熱機械分析工程(前記分析工程;以下、「TMA」とも略する。)を実施したときに、前後方向(第1方向)におけるTMA前後の寸法変化、および、左右方向(第2方向)におけるTMA前後の寸法変化が、両方とも、膨張を示す。
【0071】
具体的には、TMAを実施する前の20℃における前後方向長さをL1、TMAを実施した後の20℃における前後方向長さをL1´、TMAを実施する前の20℃における左右方向長さをL2、TMAを実施した後の20℃における左右方向長さをL2´として、前後方向における寸法変化率ΔL1、左右方向における寸法変化率ΔL2、および、面内寸法変化率Rは、下記の式で示される。
【0072】
ΔL1={(L1
´-L1)/L1}×100 (%)
ΔL2={(L2
´-L2)/L2}×100 (%)
R = {(ΔL1)2+(ΔL2)2}1/2 (%)
そして、「前後方向(第1方向)におけるTMA前後の寸法変化が膨張を示す」とは、寸法変化率ΔL1が正の値を示すことであり、「左右方向(第2方向)におけるTMA前後の寸法変化が膨張を示す」とは、寸法変化率ΔL2が正の値を示すことである。
【0073】
TMAにおいて、光透過性導電フィルム1に印加する荷重は、19.6mNであり、測定時の光透過性導電フィルム1(測定サンプル)の大きさは、長辺(荷重が印加する方向)20mm、短辺3mmとする。その他の条件は、実施例に準ずる。
【0074】
なお、ロールトゥロール方式の場合、例えば、基材フィルム2を搬送する搬送方向(MD方向)を前後方向(第1方向)とし、搬送方向と直交する直交方向(TD方向)を左右方向(第2方向)とする(
図2参照)。
【0075】
寸法変化率ΔL1は、例えば、0%を超過し、好ましくは、0.10%以上であり、また、例えば、0.50%以下である。
【0076】
寸法変化率ΔL2は、例えば、0%を超過し、好ましくは、0.10%以上であり、また、例えば、0.50%以下である。
【0077】
面内寸法変化率Rは、例えば、0.55%以下、好ましくは、0.50以下、より好ましくは、0.40%以下、さらに好ましくは、0.30%以下である。
【0078】
また、光透過性導電フィルム1を、JIS C 2151に準じて、20℃(常温)から150℃まで昇温した後20℃(常温)まで降温する加熱工程を実施したときに、前後方向における加熱前後の寸法変化率ΔM1の絶対値、および、左右方向における加熱前後の寸法変化率ΔM2の絶対値の少なくとも一方が、0.35%未満、好ましくは、0.30%以下、より好ましくは、0.20%以下である。また、好ましくは、ΔM1の絶対値およびΔM2の絶対値が、両方とも、0.35%未満、好ましくは、0.30%以下、より好ましくは、0.20%以下である。
【0079】
JIS C 2151に準じる方法は、光透過性導電フィルム1に、引張荷重などの荷重を印加しない状態で、光透過性導電フィルム1を加熱する方法である。
【0080】
具体的には、上記加熱工程を実施する前の20℃における前後方向長さをM1、上記加熱工程を実施した後の20℃における前後方向長さをM1´、加熱工程を実施する前の20℃における左右方向長さをM2、加熱工程を実施した後の20℃における左右方向長さをM2´として、前後方向における寸法変化率ΔM1、および、左右方向における寸法変化率ΔM2は、下記の式で示される。
【0081】
ΔM1={(M1
´-M1)/M1}×100 (%)
ΔM2={(M2
´-M2)/M2}×100 (%)
寸法変化率ΔM1は、例えば、-0.35%を超過し、好ましくは、-0.30%以上、より好ましくは、-0.25%以上であり、また、例えば、0.35%未満、好ましくは、0.30%以下、より好ましくは、0.20%以下である。
【0082】
寸法変化率ΔM2は、例えば、-0.35%を超過し、好ましくは、-0.20%以上、より好ましくは、-0.10%以上であり、また、例えば、0.35%未満、好ましくは、0.20%以下、より好ましくは、0.10%以下である。
【0083】
好ましくは、前後方向における加熱工程前後の寸法変化、および、左右方向(第2方向)における加熱工程前後の寸法変化の少なくともいずれか一方が、収縮を示す。前後方向における加熱工程前後の寸法変化、および、左右方向(第2方向)における加熱工程前後の寸法変化が、両方とも、収縮を示す。
【0084】
なお、「前後方向における加熱工程前後の寸法変化が収縮を示す」とは、寸法変化率ΔM1が負の値を示すことである。「左右方向における加熱工程前後の寸法変化が収縮を示す」とは、寸法変化率ΔM2が負の値を示すことである。
【0085】
光透過性導電フィルム1のヘイズ(JIS K-7105)は、例えば、2.0%以下、好ましくは、1.8%以下、より好ましくは、1.5%以下、さらに好ましくは、1.2%以下であり、また、例えば、0.1%以上である。光透過性導電フィルム1のヘイズが上記範囲内であれば、調光用光透過性導電フィルムとして好適に利用できる。
【0086】
この光透過性導電フィルム1は、必要に応じてエッチングを実施して、光透過性導電層3を、所定形状にパターニングすることができる。
【0087】
5.調光フィルムの製造方法
次に、光透過性導電フィルム1を用いて調光フィルム4を製造する方法について
図3を参照して説明する。
【0088】
調光フィルム4の製造方法は、例えば、光透過性導電フィルム1を2つ製造する工程と、次いで、調光機能層5を2つの光透過性導電フィルム1によって挟む工程とを備える。
【0089】
まず、光透過性導電フィルム1を2つ製造する。なお、1つの光透過性導電フィルム1を切断加工して、2つの光透過性導電フィルム1を用意することもできる。
【0090】
2つの光透過性導電フィルム1は、第1の光透過性導電フィルム1A、および、第2の光透過性導電フィルム1Bである。
【0091】
次いで、例えば、湿式により、第1の光透過性導電フィルム1Aにおける光透過性導電層3の上面(表面)に調光機能層5を形成する。
【0092】
例えば、液晶組成物またはその溶液を、第1の光透過性導電フィルム1Aにおける光透過性導電層3の上面に塗布して、塗膜を形成する。液晶組成物は、調光用途に使用できるものであれば限定的でなく、公知のものが挙げられ、例えば、特開平8-194209号公報に記載の液晶分散樹脂が挙げられる。
【0093】
続いて、第2の光透過性導電フィルム1Bを塗膜の上面に、第2の光透過性導電フィルム1Bの光透過性導電層3と塗膜とが接触するように、積層する。これによって、2つの光透過性導電フィルム1、つまり、第1の光透過性導電フィルム1Aおよび第2の光透過性導電フィルム1Bによって、塗膜を挟み込む。
【0094】
その後、塗膜に対して、必要に応じて適宜の処理(例えば、熱乾燥処理、光硬化処理)を施して、調光機能層5を形成する。調光機能層5は、第1の光透過性導電フィルム1Aの光透過性導電層3と、第2の光透過性導電フィルム1Bの光透過性導電層3との間に配置される。
【0095】
これによって、第1の光透過性導電フィルム1Aと、調光機能層5と、第2の光透過性導電フィルム1Bとを順に備える調光フィルム4を得る。
【0096】
6.調光部材の製造方法
次に、調光フィルム4を用いて調光部材6を製造する方法について
図4A-Eを参照して説明する。
【0097】
調光部材6の製造方法は、例えば、保護部材7に熱硬化性接着剤層8を形成する工程と、熱硬化性接着剤層8に調光フィルム4を配置する工程と、熱硬化性接着剤層8を加熱硬化する工程と、調光フィルム4を切断する工程とを備える。
【0098】
まず、
図4Aに示すように、保護部材7を用意する。保護部材7は、調光フィルム4を貼着する対象物であって、例えば、窓ガラス、間仕切り、インテリアなどが挙げられる。具体的には、保護部材7は、適宜の機械的強度および厚みを有する硬質性の透明板が用いられ、例えば、ガラス板、強化プラスチック板(例えば、ポリカーボネート系樹脂)などが挙げられる。
【0099】
続いて、
図4Bに示すように、保護部材7に熱硬化性接着剤層8を形成する。例えば、液状の熱硬化性接着組成物を、保護部材7の上面(表面)の全面に塗布する。
【0100】
熱硬化性接着組成物としては、例えば、エポキシ系熱硬化性接着組成物、アクリル系熱硬化性接着組成物などが挙げられる。なお、熱硬化性接着組成物は、熱硬化後に調光フィルム4と保護部材7との貼付を維持できる限り任意の樹脂を採用でき、上記例示に限定されない。
【0101】
塗布方法としては、例えば、アプリケータを用いる方法、ポッティング、キャストコート、スピンコート、ロールコートなどが挙げられる。
【0102】
次いで、
図4Cに示すように、熱硬化性接着剤層8に調光フィルム4を配置する。すなわち、調光フィルム4を、熱硬化性接着剤層8を介して、保護部材7の上面に配置する。
【0103】
この際、調光フィルム4は、保護部材7と略同一サイズとなるように配置する。具体的には、調光フィルム4を、保護部材7と略同一サイズ(同一前後方向長さおよび同一左右方向長さ)となるように切断し、続いて、保護部材7の周端縁と調光フィルム4の周端縁とが上下方向に投影したときに一致するように、調光フィルム4を熱硬化性接着剤層8の上面に配置する。
【0104】
次いで、
図4Dに示すように、熱硬化性接着剤層8を加熱硬化する。
【0105】
加熱温度は、例えば、80℃以上、好ましくは、100℃以上であり、また、例えば、180℃以下、好ましくは、160℃以下である。
【0106】
加熱時間は、例えば、5分以上、好ましくは、20分以上、より好ましくは、30分以上であり、また、例えば、600分以下、好ましくは、300分以下である。
【0107】
加熱硬化は、大気環境下または真空環境下で実施してもよく、また、適度な圧力を印加してもよい。
【0108】
その後、保護部材7に貼着された調光フィルム4を、室温(5~35℃)に冷却する。
【0109】
これにより、熱硬化性接着剤層8が熱硬化されて、接着剤層8aが形成される。その結果、調光フィルム4は、接着剤層8aを介して、保護部材7に貼着(固着)される。
【0110】
そして、光透過性導電フィルム1、ひいては、調光フィルム4は、面方向側方(前後方向および左右方向)に膨張して、調光フィルム4の端部(はみ出し部9)は、保護部材7の端縁から面方向側方にはみ出す。すなわち、調光フィルム4の周端縁は、保護部材7の周端縁よりも外側方に位置する。
【0111】
次いで、
図4Dの仮想線に示すように、調光フィルム4を切断する。すなわち、調光フィルム4の端部を上下方向に切断し、調光フィルム4のはみ出し部9を除去する。
【0112】
これによって、
図4Eに示すように、保護部材7と、その上面に設けられる接着剤層8aと、接着剤層8aの上面に配置される調光フィルム4とを備える調光部材6を得る。
【0113】
調光部材6において、保護部材7と、調光フィルム4とは、略同一サイズである。すなわち、上下方向に投影したときに、保護部材7の周端縁は、調光フィルム4の周端縁と一致する。
【0114】
調光部材6は、配線(図示せず)、電源(図示せず)および制御装置(図示せず)を装着することにより、例えば、電気駆動型の調光装置(図示せず)として用いられる。電気駆動型としては、電界駆動型および電流駆動型が挙げられる。一例として、電界駆動型の調光装置では、配線および電源によって、第1の光透過性導電フィルム1Aにおける光透過性導電層3と、第2の光透過性導電フィルム1Bにおける光透過性導電層3とに電圧が印加され、それによって、それらの間において電界が発生する。そして、制御装置に基づいて、上記した電界が制御されることによって、それらの間に位置する調光機能層5が、配向状態または不規則状態となって、光を透過させる、または、遮断(もしくは散乱)する。
【0115】
この光透過性導電フィルム1および調光フィルム4は、20℃-160℃-20℃の熱機械分析工程(TMA)を実施したときに、前後方向における寸法変化、および、左右方向における寸法変化の両方が、膨張を示す。そのため、保護部材7(対象物)に対して加熱によって貼着した場合において、加熱前の状態よりも膨張する。したがって、保護部材7の端部の表面が露出することを防止でき、保護部材7の全面に対して光透過性導電フィルム1を確実に貼着することができる。
【0116】
このメカニズムは定かではないが、光透過性導電フィルム1を保護部材7に対して熱硬化性接着剤を介して加熱によって貼着した場合と、光透過性導電フィルム1に、引張荷重を印加して加熱するTMAを実施した場合とで、光透過性導電フィルム1の膨張・収縮が同様の挙動を示すことによるものと推察される。
【0117】
また、貼着後、光透過性導電フィルム1および調光フィルム4のはみ出し部9を切断することにより、保護部材7と略同一サイズの光透過性導電フィルム1および調光フィルム4を貼着することができる。
【0118】
調光フィルム4を用いた調光部材6は、保護部材7の全面に調光フィルム4が貼着されているため、保護部材7の全面で(特に端部においても)調光機能を有することができる。
【0119】
7.変形例
図1に示す実施形態では、基材フィルム2の上面に光透過性導電層3が直接配置されているが、例えば、図示しないが、基材フィルム2の上面および/または下面に、機能層を設けることができる。
【0120】
すなわち、例えば、光透過性導電フィルム1は、基材フィルム2と、基材フィルム2の上面に配置される機能層と、機能層の上面に配置される光透過性導電層3とを備えることができる。また、例えば、光透過性導電フィルム1は、基材フィルム2と、基材フィルム2の上面に配置される光透過性導電層3と、基材フィルム2の下面に配置される機能層とを備えることができる。また、例えば、基材フィルム2の上側および下側に、機能層と光透過性導電層3とをこの順に備えることもできる。
【0121】
機能層としては、易接着層、アンダーコート層、ハードコート層などが挙げられる。易接着層は、基材フィルム2と光透過性導電層3との密着性を向上させるために設けられる層である。アンダーコート層は、光透過性導電フィルム1の反射率や光学色相を調整するために設けられる層である。ハードコート層は、光透過性導電フィルム1の耐擦傷性を向上するために設けられる層である。これらの機能層は、1種単独であってもよく、2種以上併用してもよい。
【0122】
図4Eに示す実施形態では、保護部材7の上面に接着剤層8aと調光フィルム4とを備える調光部材6を示しているが、例えば、図示しないが、調光フィルム4の上面に、さらに、接着剤層8aおよび保護部材7を順に備えていてもよい。
【0123】
また、調光部材の製造方法において、保護部材7の周端縁よりも外側方に位置している調光フィルム4の端部9を、
図4Dの仮想線に示すように、切断しているが、例えば、端部9の一部を任意の大きさで切断せずに残してもよい。その端部9の一部は、例えば、第1の光透過性導電フィルム1A(または、第2の光透過性導電フィルム1B)における光透過性導電層3と、電源とを接続するための配線を設置する領域(配線設置領域)などとして利用することができる。
【0124】
また、調光フィルム4を保護部材7に貼着する前に、あらかじめ調光フィルム4の光透過性導電層3の外周部に配線を配置してもよい。
【0125】
また、
図4A-Eでは、調光部材6の製造方法は、熱硬化性接着剤層8を用いて保護部材7に調光フィルム4を貼着しているが、接着剤層としては、加熱によって接着可能であればよく、熱硬化性接着層に限定されない。例えば、図示しないが、熱溶融性接着剤を用いて保護部材7に調光フィルム4を貼着してもよい。すなわち、調光部材6の製造方法は、例えば、保護部材7に熱溶融性接着剤層を形成する工程と、熱溶融性接着剤層に調光フィルム4を配置する工程と、熱溶融性接着剤層を加熱溶融する工程と、調光フィルム4を切断する工程とを備えていてもよい。
【0126】
熱溶融性接着剤層を形成する方法としては、例えば、熱溶融性接着組成物からなるシートを保護部材7の上面の全面に積層する。
【0127】
熱溶融性接着組成物としては、例えば、エチレン酢酸ビニル系組成物、ポリオレフィン系組成物、ポリアミド系組成物、ポリエステル系組成物、ポリプロピレン系組成物、ポリウレタン系組成物などの熱可塑性樹脂組成物などが挙げられる。これらは1種単独であってもよく、2種以上併用していてもよい。このような熱溶融性接着組成物は、例えば、ホットメルト接着剤として用いられている。
【0128】
熱溶融性接着剤層の加熱温度は、例えば、上記した熱硬化性接着剤層8の加熱温度と同様である。
【0129】
<その他の実施形態>
上記した一実施形態では、光透過性導電フィルム1として、調光用光透過性導電フィルム)を例示したが、例えば、光透過性導電フィルムは、調光用以外の用途にも適用することができる。
【0130】
具体的には、光透過性導電フィルムは、例えば、画像表示装置(LCD、有機EL)などの光学装置に備えられる。好ましくは、光透過性導電フィルムは、タッチパネル用基材として用いられる。タッチパネルの形式としては、光学方式、超音波方式、静電容量方式、抵抗膜方式などの各種方式が挙げられ、特に静電容量方式のタッチパネルに好適に用いられる。
【実施例】
【0131】
以下、本発明に関し、実施例を用いて詳細に説明するが、本発明はその要旨を超えない限り、実施例に限定されるものではなく、本発明の技術思想に基づいて各種の変形および変更が可能である。また、以下の記載において用いられる配合割合(含有割合)、物性値、パラメータなどの具体的数値は、上記の「発明を実施するための形態」において記載されている、それらに対応する配合割合(含有割合)、物性値、パラメータなど該当記載の上限(「以下」、「未満」として定義されている数値)または下限(「以上」、「超過」として定義されている数値)に代替することができる。
【0132】
実施例1
光透過性の基材フィルムとして、第1方向(搬送方向、MD)に長尺なポリエチレンテレフタレート(PET)フィルム(厚み188μm、二軸延伸フィルム)を用意した。
【0133】
PETフィルムをロールトゥロール方式にて、大気下で170℃にて1分間加熱した(前加熱)。
【0134】
次いで、加熱したPETフィルムをロールトゥロール型スパッタリング装置に設置し、DCマグネトロンスパッタリング法により、厚み65nmの非晶質ITOからなる光透過性導電層を形成した。なお、スパッタリングの条件として、PETフィルムの温度を、-5℃に設定した。スパッタリング時の雰囲気を、ArおよびO2を導入した気圧0.2Paとした真空雰囲気(流量比はAr:O2=100:3.3)とし、その含水量(水分ガス/全圧)は、0.05とした。ターゲットとして、12質量%の酸化スズと88質量%の酸化インジウムとの焼結体を用いた。
【0135】
比較例1
PETフィルムに前加熱を実施しなかった以外は、実施例1と同様にして、光透過性導電フィルムを製造した。
【0136】
比較例2
PETフィルムの厚みを50μmとし、スパッタリングにおけるPETフィルムの温度を0℃に設定し、スパッタリング時の雰囲気をArおよびO2を導入した気圧0.4Paとした真空雰囲気(流量比はAr:O2=100:3.0)とし、ターゲットとして、10質量%の酸化スズと90質量%の酸化インジウムとの焼結体を用い、光透過性導電層の厚みを25nmとした以外は、実施例1と同様にして、光透過性導電フィルムを製造した。
【0137】
比較例3
スパッタリングにおけるPETフィルムの温度を140℃に設定し、含水量を0.005に設定し、光透過性導電層の形成後にさらに大気下で170℃、2分の条件で後加熱を実施した以外は、比較例2と同様にして、光透過性導電フィルムを製造した。
【0138】
(評価)
(1)厚み
PETフィルム(基材フィルム)の厚みは、膜厚計(尾崎製作所社製、装置名「デジタルダイアルゲージ DG-205」)を用いて測定した。ITO層(光透過性導電層)の厚みは、透過型電子顕微鏡(日立製作所製、装置名「HF-2000」)を用いた断面観察により測定した。
【0139】
(2)熱機械分析(TMA)による寸法変化の測定
実施例および各比較例の光透過性導電フィルムを、長辺20mm、短辺3mmの短冊に切り出し、測定サンプルとした。なお、MD方向(第1方向)の寸法変化を測定する場合は、MD方向が長辺、TD方向(MD方向と直交する方向、第2方向)が短辺となるように、また、TD方向の寸法変化を測定する場合は、TD方向が長辺、MD方向が短辺となるように、それぞれ切断した。これにより、各方向の寸法変化を計測するための測定サンプルを作製した。
【0140】
測定サンプルを熱機械分析装置(エスアイアイ・テクノロジー社製、「TMA/SS71000」)にセットして、MD方向およびTD方向のそれぞれについて、20℃から160℃に昇温し、さらに20℃に降温したときの寸法変化率を測定した。
【0141】
すなわち、昇温前の20℃におけるMD方向長さをL1、昇温後の20℃におけるMD方向長さをL1
´として、MD方向の寸法変化率ΔL1(%)を「{(L1
´-L1)/L1}×100(%)」の式により算出した。また、昇温前の20℃におけるTD方向長さをM2、昇温後の20℃におけるTD方向長さをL2
´として、TD方向の寸法変化率ΔL2(%)を「{(L2
´-L2)/L2}×100(%)」の式により算出した。さらに、測定サンプル全体の面内寸法変化率Rを「{(ΔL1)2+(ΔL2)2}1/2」の式により算出した。
【0142】
なお、熱機械分析の条件は、下記の通りとした。
【0143】
測定モード :引っ張り法
荷重 :19.6mN
昇温速度 :10℃/min
測定雰囲気 :Air(流量200ml/min)
チャッキング距離:10mm
(3)JIS C 2151による寸法変化率の測定
実施例および各比較例の光透過性導電フィルムを、MD方向(第1方向)10cm、TD方向(MD方向と直交する方向、第2方向)10cmに切断して、サンプルを作製した。このときの温度は、20℃であった。
【0144】
JIS C 2151に準じて、サンプルを熱風オーブンで150℃で30分間加熱した後、20℃まで降温させた。この高温処理後の寸法変化率を、MD方向およびTD方向のそれぞれについて、測定した。
【0145】
すなわち、昇温前の20℃におけるMD方向の長さをM1、昇温後の20℃におけるMD方向長さをM1
´として、MD方向の寸法変化率ΔM1(%)を「{(M1
´-M1)/M1}×100(%)」の式により算出した。また、昇温前の20℃におけるTD方向長さをM2、昇温後の20℃におけるTD方向長さをM2
´として、TD方向の寸法変化率ΔM2(%)を「{(M2
´-M2)/M2}×100(%)」の式により算出した。
【0146】
(4)ガラスへの貼着試験
市販のガラス板(前後方向長さ30cm×左右方向長さ25cm)の一方面全面に、熱硬化性樹脂(アクリル系接着剤)を塗布した。次いで、ガラス板と同一サイズの実施例および各比較例の光透過性導電フィルムを用意し、各光透過性導電フィルムを、ガラス板の周端縁と光透過性導電フィルムの周端縁とが一致するように、熱硬化性接着剤の上面に配置し、その後、大気環境下で、150℃で60分、加熱した。これにより、ガラス板に光透過性導電フィルムを貼着した。
【0147】
ガラスの周端部にも光透過性導電フィルムが貼着されていた場合を〇と評価した。一方、ガラス板の周端部に光透過性導電フィルムが貼着されていない箇所が観察された場合を×と評価した。
【0148】
なお、実施例1において、貼着した光透過性導電フィルムは、ガラス板よりも僅かに縦方向および横方向よりも膨張していたため、膨張したフィルム端部を切断することにより、ガラス板全体に、ガラス板と同サイズの光透過性導電フィルムを貼着することができることが分かる。
【0149】
一方、各比較例では、貼着した光透過性導電フィルムが、貼着時の加熱により、収縮してしまい、ガラス板の周端部に、光透過性導電フィルムが貼着することができなかった。
【0150】
(5)非晶質性
実施例および各比較例の光透過性導電フィルムを、大気環境下、80℃、20時間の条件で加熱した。その後、加熱した光透過性導電フィルムを、塩酸(濃度:5質量%)に15分間浸漬した後、水洗・乾燥し、各導電層の15mm程度の間の二端子間抵抗を測定した。15mm間の二端子間抵抗が10kΩを超過した場合を、非晶質と判断して、〇と評価した。10kΩを超過しなかった場合を、結晶質と判断して、×と評価した。結果を表1に示す。
【0151】
(6)外観
実施例および各比較例の光透過性導電フィルムの表面を肉眼で観察した。フィルム表面に、シワやスジが完全に観察されなかった場合を◎と評価し、シワやスジがわずかに観察されたが、調光装置として支障が生じないレベルであった場合を〇と評価し、やや大きいシワやスジが観察されたが、調光装置として大きな支障が生じないレベルであった場合を△と評価し、調光装置として使用できないレベルのシワやスジが観察された場合を×と評価した。結果を表1に示す。
【0152】
【0153】
なお、上記発明は、本発明の例示の実施形態として提供したが、これは単なる例示に過ぎず、限定的に解釈してはならない。当該当技術分野の当業者によって明らかな本発明の変形例は、後記請求の範囲に含まれる。
【産業上の利用可能性】
【0154】
本発明の光透過性導電フィルムは、各種の工業製品に適用することができ、例えば、調光部材に備えられる調光フィルムや、画像表示装置に備えられるタッチパネル用基材などに好適に用いられる。
【符号の説明】
【0155】
1 光透過性導電フィルム
2 基材フィルム
3 光透過性導電層
4 調光フィルム
5 調光機能層
6 調光部材
7 保護部材