IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ミツミ電機株式会社の特許一覧

<>
  • 特許-液滴センサ 図1
  • 特許-液滴センサ 図2
  • 特許-液滴センサ 図3
  • 特許-液滴センサ 図4
  • 特許-液滴センサ 図5
  • 特許-液滴センサ 図6
  • 特許-液滴センサ 図7
  • 特許-液滴センサ 図8
  • 特許-液滴センサ 図9
  • 特許-液滴センサ 図10
  • 特許-液滴センサ 図11
  • 特許-液滴センサ 図12
  • 特許-液滴センサ 図13
  • 特許-液滴センサ 図14
  • 特許-液滴センサ 図15
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-04-18
(45)【発行日】2023-04-26
(54)【発明の名称】液滴センサ
(51)【国際特許分類】
   G01W 1/14 20060101AFI20230419BHJP
   G01N 21/17 20060101ALI20230419BHJP
【FI】
G01W1/14 B
G01N21/17 E
【請求項の数】 13
(21)【出願番号】P 2019064983
(22)【出願日】2019-03-28
(65)【公開番号】P2020165731
(43)【公開日】2020-10-08
【審査請求日】2022-02-15
(73)【特許権者】
【識別番号】000006220
【氏名又は名称】ミツミ電機株式会社
(74)【代理人】
【識別番号】100107766
【弁理士】
【氏名又は名称】伊東 忠重
(74)【代理人】
【識別番号】100070150
【弁理士】
【氏名又は名称】伊東 忠彦
(72)【発明者】
【氏名】川崎 祐也
(72)【発明者】
【氏名】黒沢 英生
【審査官】福田 裕司
(56)【参考文献】
【文献】米国特許出願公開第2011/0054794(US,A1)
【文献】特開2009-150808(JP,A)
【文献】米国特許出願公開第2006/0043270(US,A1)
【文献】特開2006-071491(JP,A)
【文献】特開平10-323993(JP,A)
【文献】特開2006-029807(JP,A)
【文献】米国特許出願公開第2007/0052949(US,A1)
【文献】米国特許第04274705(US,A)
【文献】特開2012-177576(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01W 1/14
G01N 21/17
(57)【特許請求の範囲】
【請求項1】
回転楕円体の一部であって楕円面を有する光学カバーと、
前記楕円面の第1焦点又はその近傍に配置された光源と、
前記楕円面の第2焦点又はその近傍に配置された光検出器と、
を有し、
前記楕円面は、前記光源から出力された光を前記光検出器に向けて反射し、前記楕円面への液滴の付着により反射光量が変化する有効検出エリアを含み、
前記光学カバーには、前記光源から出力され、前記有効検出エリアで反射して前記光検出器に入射する光の光路外をくり抜いたくり抜き部が形成され
前記光学カバーには、前記第1焦点を中心とする半球状に窪む第1空間と、前記第2焦点を中心とする半球状に窪む第2空間とが形成され、
前記光源は、前記第1空間内に配置され、
前記光検出器は、前記第2空間内に配置されることを特徴とする液滴センサ。
【請求項2】
前記光学カバーは、前記回転楕円体を、長軸を含む平面で切断した形状であることを特徴とする請求項1に記載の液滴センサ。
【請求項3】
前記くり抜き部は、前記長軸を中心軸とした双円錐を前記平面で切断した形状であることを特徴とする請求項2に記載の液滴センサ。
【請求項4】
前記くり抜き部は、
前記光源から最も遠い前記有効検出エリアの端部に向かう光路と、前記光源から最も近い前記有効検出エリアの端部で反射されて前記光検出器に向かう光路と、前記長軸とで形成される三角形を、前記長軸の周りに回転させることにより得られる双円錐を、前記平面で切断した形状であることを特徴とする請求項3に記載の液滴センサ。
【請求項5】
前記くり抜き部は、
前記光源から最も遠い前記有効検出エリアの端部に向かう光路と、前記光源から最も近い前記有効検出エリアの端部で反射されて前記光検出器に向かう光路と、前記長軸とで形成される三角形を、前記長軸の周りに回転させることにより得られる双円錐形状を、前記平面で切断した形状よりも小さいことを特徴とする請求項3に記載の液滴センサ。
【請求項6】
前記くり抜き部は、前記長軸を中心軸とした回転楕円体を前記平面で切断した形状であることを特徴とする請求項2に記載の液滴センサ。
【請求項7】
前記回転楕円体は、前記長軸を中心軸とした双円錐に内接する形状であることを特徴とする請求項6に記載の液滴センサ。
【請求項8】
前記くり抜き部の表面は、散乱面であることを特徴とする請求項1ないし7いずれか1項に記載の液滴センサ。
【請求項9】
前記楕円面の中心と前記くり抜き部の中心とは一致しており、前記楕円面の中心に外来光を受光するセンサが配置されていることを特徴とする請求項1ないし8いずれか1項に記載の液滴センサ。
【請求項10】
前記光学カバーには、前記光の進路を変更しないように光路上に切り込み部が形成されていることを特徴とする請求項1ないし9いずれか1項に記載の液滴センサ。
【請求項11】
切り込み部は、前記第1焦点を頂点とした複数の回転扇体と、前記第2焦点を頂点とした複数の回転扇体とにより構成されており、
前記光は、前記各回転扇体の球面状の底面を通過することを特徴とする請求項10に記載の液滴センサ。
【請求項12】
前記底面は、散乱面であることを特徴とする請求項11に記載の液滴センサ。
【請求項13】
回転楕円体の一部であって楕円面を有する光学カバーと、
前記楕円面の第1焦点又はその近傍に配置された光源と、
前記楕円面の第2焦点又はその近傍に配置された光検出器と、
を有し、
前記楕円面は、前記光源から出力された光を前記光検出器に向けて反射し、前記楕円面への液滴の付着により反射光量が変化する有効検出エリアを含み、
前記光学カバーには、前記光源から出力され、前記有効検出エリアで反射して前記光検出器に入射する光の光路外をくり抜いたくり抜き部が形成され、
前記光学カバーは、前記回転楕円体を、長軸を含む平面で切断した形状であり、
前記くり抜き部は、前記長軸を中心軸とした回転楕円体を前記平面で切断した形状であり、
前記楕円面の中心と前記くり抜き部の中心とは一致しており、前記楕円面の中心に外来光を受光するセンサが配置されていることを特徴とする液滴センサ。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、雨滴、水滴等の液滴を感知する液滴センサに関する。
【背景技術】
【0002】
透明板の雨滴検出エリアに雨滴が付着したときの反射率の変化を利用して、雨滴を検出する装置が知られている(たとえば、特許文献1、2参照)。これらの装置では、発光素子から放射された光が透明板の表面で反射されて、受光部で受光される。雨滴検出エリアに雨滴が付着すると、透明板の界面で反射率が変化し、受光量が変化して雨滴の存在が検出される。
【先行技術文献】
【特許文献】
【0003】
【文献】特許第6094354号
【文献】特許第6167799号
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら、特許文献1、2に記載の装置で用いられている光学素子は、形状が複雑であるため作製が容易でないという問題がある。
【0005】
そこで、本出願人は、構成が簡単で、かつ製造が容易である新規な液滴センサを提案している(特願2017-254956)。この液滴センサは、例えば、回転楕円体を、その長軸を含む平面で切断した形状を有する光学カバーと、回転楕円体の第1焦点位置に配置された光源と、回転楕円体の第2焦点位置に配置された光検出器とを有する。
【0006】
この液滴センサは、構成が簡単で製造が容易であるだけでなく、回転楕円体の離心率を調整することにより、気体(例えば空気)との界面で全反射条件を満たし、かつ液体(例えば水)との界面で全反射条件を満たさない有効検出エリアを最大にすることを可能とし、高感度な液滴センサを実現するものである。この液滴センサは、製造が容易であるので低コスト化に有利であるが、さらなる低コスト化、及び軽量化が望まれている。
【0007】
本発明は、低コスト化及び軽量化を図ることを可能とする液滴センサを提供することを目的とする。
【課題を解決するための手段】
【0008】
上記の課題を解決するために、液滴センサは、回転楕円体の一部であって楕円面を有する光学カバーと、前記楕円面の第1焦点又はその近傍に配置された光源と、前記楕円面の第2焦点又はその近傍に配置された光検出器と、を有し、前記楕円面は、前記光源から出力された光を前記光検出器に向けて反射し、前記楕円面への液滴の付着により反射光量が変化する有効検出エリアを含み、前記光学カバーには、前記光源から出力され、前記有効検出エリアで反射して前記光検出器に入射する光の光路外をくり抜いたくり抜き部が形成され、前記光学カバーには、前記第1焦点を中心とする半球状に窪む第1空間と、前記第2焦点を中心とする半球状に窪む第2空間とが形成され、前記光源は、前記第1空間内に配置され、前記光検出器は、前記第2空間内に配置されている。
【発明の効果】
【0009】
本発明によれば、低コスト化及び軽量化を図ることを可能とする液滴センサが実現される。
【図面の簡単な説明】
【0010】
図1】第1実施形態に係るレインセンサの外観図である。
図2】レインセンサを、長軸を含むXZ平面で切断した断面図である。
図3】光学カバーを底面側から見た斜視図である。
図4】発光素子から出力されて受光素子に入射する光の光路を示す図である。
図5】有効検出エリアに雨滴が付着することによる光路の変化を例示する図である。
図6】第1変形例に係るレインセンサの構成を示す断面図である。
図7】第2変形例に係るレインセンサの効果について説明する図である。
図8】第3変形例に係るレインセンサの構成を示す断面図である。
図9】発光素子から出力され受光素子に入射する光の光路、及び外来光の光路を示す図である。
図10】比較例として、第1実施形態に係るレインセンサに外来光を受光するセンサを設けた例を示す図である。
図11】第4変形例に係るレインセンサの構成を示す断面図である。
図12】第4変形例に係るレインセンサの光学カバーを底面側から見た底面図である。
図13】切り込み部を構成する複数の回転扇体の頂角及び半径の関係を説明する図である。
図14】発光素子から出力されて受光素子に入射する光の光路を示す図である。
図15】第4変形例において、第1回転扇体の形状を変形した例を示す図である。
【発明を実施するための形態】
【0011】
本発明の実施形態では、気体と液体の屈折率の差異による光学カバーとの境界面における反射率の変化を利用して、液滴の存在を光学的に検出する。液滴センサは、雨滴以外にも、結露、水滴、インク等の液滴の検出に適用可能である。以下の各実施形態では、液滴センサをレインセンサに適用した例を説明する。
<第1実施形態>
図1は、第1実施形態に係るレインセンサ10の外観図である。レインセンサ10は、雨滴の付着を検出する。雨滴の検出結果からたとえば単位時間当たり、及び/又は単位面積あたりの雨量を計測することができる。
【0012】
レインセンサ10は、光学カバー2と、発光素子3と、受光素子4とを有する。光学カバー2は、楕円面2aと、鍔部2bとを有する。発光素子3は、楕円面2aの第1焦点F1又はその近傍に配置されている。受光素子4は、楕円面2aの第2焦点F2又はその近傍に配置されている。ここで、発光素子3は光源の一例であり、受光素子4は光検出器の一例である。
【0013】
光学カバー2は、回転楕円体の一部を形成する固体のカバーであり、発光素子3の出力光の波長に対して透明な材料で形成されている。図1の例では、X方向に長軸、Y方向に短軸を持つ楕円を長軸Laの周りに回転させることにより得られる立体を回転楕円体とする。光学カバー2は、回転楕円体を、長軸Laを含むXY平面と水平な面で切り取った形状を有する。図1では、便宜上、光学カバー2の高さ方向をZ方向とする。
【0014】
光学カバー2は、ポリカーボネート、アクリル等の樹脂の他、透明セラミック、ガラス、高屈折率のプラスチック等で形成されてもよい。
【0015】
鍔部2bは、光学カバー2の下部からXY平面方向に延出した部分であり、平面形状は例えば、円形や楕円形である。なお、鍔部2bの平面形状は、これに限定されず、四角形状やその他形状であってもよい。鍔部2bは、Z方向に一定の厚みWを有する。鍔部2bの厚みWは、例えば、光学カバー2の高さHの約25%である。鍔部2bは、光学カバー2を本体側等に固定するための取り付け部として機能する。鍔部2bの厚みWは、例えば、取り付け部をネジ止めして光学カバーを固定する際にネジ止めの締め付けによって破損しないなど、固定にかかる応力に対する強度を確保することが可能であれば、光学カバー2の高さHの25%以下であってもよい。
【0016】
発光素子3は、たとえば近赤外光を出力する発光ダイオードである。受光素子4は、たとえば近赤外領域の光に感度を有する量子井戸型の受光素子である。発光素子3は、光学カバー2の楕円面2aに向けて光を出力する。受光素子4は、発光素子3から出力され、光学カバー2の楕円面2aで反射された光を受光する。発光素子3及び受光素子4は、図示しない基板に実装されている。
【0017】
図1においてドット状のハッチングを施した領域Dは、有効検出エリアであり、楕円面2aに含まれる。有効検出エリアDは、光学カバー2の周囲が空気である場合に、発光素子3からの出力された光を全反射する楕円面2a上の領域である。すなわち、有効検出エリアDは、全反射条件を満たす領域である。この有効検出エリアDは、雨滴が付着したときだけ全反射条件が崩れるように形状が決定されている。すなわち、有効検出エリアDは、気体との界面で全反射条件を満たし、かつ液体との界面で全反射条件を満たさない領域である。これを実現する有効検出エリアDは、光学カバー2の屈折率、及び楕円面2aの離心率に依存する。
【0018】
光学カバー2を、屈折率が1.57の樹脂(例えば、ポリカーボネート)を用いて形成した場合には、有効検出エリアDの入射角θiは、44.3°<θi<51.4°である。なお、光学カバー2で雨滴の付着を検出できる最大検出エリアの入射角θmは、およそ、39.6°<θm<57.9°であるが、本実施形態においては、44.3°<θi<51.4°を満たす入射角θiのエリアを有効検出エリアDとして使用している。この場合、44.3°<θi<51.4°より外側の両端のエリアは有効検出エリアとして機能しないように遮光する必要がある。
【0019】
離心率とは、楕円面2aの中心から焦点までの距離と長軸半径との比で決まる値である。光学カバー2の屈折率が1.57の場合には、有効検出エリアDの面積は、離心率0.781で最大となる。有効検出エリアDの形状については、本出願人により出願された先願(特願2017-254956号)において、詳述されている。
【0020】
上述したように鍔部2bは光学カバー2を基板等に取り付けるための取り付け部として機能する。光学カバー2の高さHの約25%以下の領域から反射される光は、受光素子4で検出することがほとんどできないことから、この高さHの約25%以下の領域を、取り付け部としての鍔部2bとしている。これは、受光素子4は、上方向からの光に対する検出感度が高く、横方向(XY方向)からの光に対する検出感度が低いためである。この感度の低い領域を鍔部として使用することで、センサとしての検出感度をほとんど低下させることなく、取り付け部としての鍔部2bを形成することができる。
【0021】
図2は、レインセンサ10を、長軸Laを含むXZ平面で切断した断面図である。図3は、光学カバー2を底面2c側から見た斜視図である。
【0022】
図2及び図3に示すように、光学カバー2の内部には、第1空間5a、第2空間5b、及びくり抜き部6が形成されている。第1空間5aは、発光素子3が配置される第1焦点F1を中心とした半球状の空間であり、光学カバー2との界面は透過鏡面である。第2空間5bは、受光素子4が配置される第2焦点F2を中心とした半球状の空間であり、光学カバー2との界面は透過鏡面又は透過散乱面である。
【0023】
本実施形態では、第1空間5a及び第2空間5bの半径は、鍔部2bの厚みWとほぼ同一である。
【0024】
このように、第1空間5aは球面を有するので、発光素子3から出力された光を屈折させることなく光学カバー2の内部へ入射させる。同様に、第2空間5bは球面を有するので、楕円面2aにより反射された光を屈折させることなく第2空間5bへ入射させる。これにより、楕円の一方の焦点から出力された光を、他方の焦点で集光するという回転楕円体の基本性質を利用したレインセンサが実現できる。
【0025】
くり抜き部6は、光学カバー2の内部において、有効検出エリアDに入射する光、及び有効検出エリアDで反射される光の光路に影響しない部分をくり抜いた領域である。本実施形態では、くり抜き部6は、長軸Laを中心軸とした双円錐を、長軸Laを含むXZ平面で切断した形状である。具体的には、くり抜き部6は、第1半円錐形状部6aと、第2半円錐形状部6bとを、楕円面2aの短軸を含むYZ面で底面同士を接続した形状である。第1半円錐形状部6aと第2半円錐形状部6bとは同一の大きさである。なお、半円錐形状とは、円錐を、その中心軸を含む平面で切断した形状である。また、図4に示す一点鎖線より下側において光学カバー2が厚くなるように第1半円錐形状部6a又は第2半円錐形状部6bの形状を変更することにより、第1半円錐形状部6aと第2半円錐形状部6bとを異なる大きさとしてもよい。
【0026】
図4は、発光素子3から出力されて受光素子4に入射する光の光路を示す図である。図4に示すように、くり抜き部6は、光学カバー2を低コスト化及び軽量化するために、光路外において、可能な限り大きくすることが好ましい。
【0027】
具体的には、図4に示すように、発光素子3から最も遠い有効検出エリアDの端部に向かう光路Aと、発光素子3から最も近い有効検出エリアDの端部で反射されて受光素子4に向かう光路Bと、楕円面2aの長軸Laとで形成される三角形を、長軸Laの周りに回転させることにより得られる双円錐形状を、長軸Laを含むXZ平面で切断した形状が、くり抜き部6の最大形状である。この最大形状を光学カバー2からくり抜くことにより、くり抜き部6を形成してもよい。実際には、光路A及び光路Bを含まないように、例えば、図4の一点鎖線部分をくり抜き部6の形状とすることで、最大形状に設定することができる。なお、本実施形態では、発光素子3の発光部が実際には有限の大きさを持つことを考慮して、くり抜き部6の形状を、上記最大形状よりも小さく設定している。
【0028】
図5は、有効検出エリアDに雨滴が付着することによる光路の変化を例示する図である。図5に示すように、有効検出エリアDに雨滴が付着すると、有効検出エリアDの界面における反射率差が変化することにより全反射条件が崩れて、発光素子3からの入射光が透過する。これにより、有効検出エリアDにおける反射光量が減少し、受光素子4での受光量が低減する。受光素子4での受光量の変化をモニタすることで、雨滴の存在と量を検出することができる。
【0029】
なお、有効検出エリアDに入射しない発光素子3からの光の一部は、くり抜き部6の表面に入射するが、このような光は、検出には寄与しない無効光である。このような光が仮に受光素子4に入射した場合には、検出信号に対するDCオフセットとなる。検出に必要なダイナミックレンジが確保されていれば、DCオフセットは、レインセンサ10の機能や性能には影響しない。
【0030】
以上のように、光学カバー2において光路外にくり抜き部6を形成することで、レインセンサ10の機能や性能に影響を与えることなく、低コスト化及び軽量化を図ることができる。また、光学カバー2を、射出成形により形成する場合には、成形時間が短くなり、製造単位のコストが低減する。
【0031】
また、射出成形では、形成後、冷却する過程で樹脂が収縮することにより肉厚部分が凹んで変形するヒケと呼ばれる現象が生じる。本実施形態では、くり抜き部6を形成することで、光学カバー2が薄肉化されることから、ヒケの発生が低減させることができコスト低減することができるという効果が得られる。
【0032】
以下に、上記第1実施形態の各種変形例について説明する。
<第1変形例>
図6は、第1変形例に係るレインセンサ10aの構成を示す断面図である。本変形例に係るレインセンサ10aは、光学カバー2に、鍔部2bの厚みWより大きい半径を有する第1空間5a及び第2空間5bの半径を形成している点のみが第1実施形態に係るレインセンサ10と異なる。図6では、第1空間5a及び第2空間5bの半径を、可能な限り大きくしている。これにより、さらなる低コスト化及び軽量化が図られる。
【0033】
第1空間5a及び第2空間5bの半径を大きくしたとしても、第1空間5a及び第2空間5bの表面が球面である限り、光路に影響を与えず、検出に影響を与えることはない。
<第2変形例>
第2変形例として、光学カバー2のくり抜き部6の表面を、入射光を散乱させる砂面(散乱面)とする。上述のように、発光素子3からくり抜き部6の表面に光が入射したとしても、検出に必要なダイナミックレンジが十分に確保されている場合には、レインセンサの機能や性能に影響しないが、DCオフセットが大きく、検出に必要なダイナミックレンジが十分に確保できない場合には、くり抜き部6の表面を散乱面とすることにより、DCオフセットを低減することができる。これにより、検出に必要なダイナミックレンジを確保することが可能となる。
【0034】
図7は、第2変形例に係るレインセンサ10bの効果について説明する図である。図7に示すように、くり抜き部6の表面が散乱面でない場合には、発光素子3から出力された光の一部は、二点鎖線で示す経路のように、くり抜き部6の表面6cで反射された後、楕円面2aで反射されて受光素子4に入射する可能性がある。このような光は、条件によっては、ダイナミックレンジを低下させて検出感度を低下させる恐れがある。
【0035】
くり抜き部6の表面6cを散乱面とすることにより、表面6cへの入射光を散乱させ、検出に不要な光が受光素子4に入射する量を低減することができる。なお、表面6cの面粗さは、散乱効果を考慮して適宜設定すればよい。
<第3変形例>
図8は、第3変形例に係るレインセンサ10cの構成を示す断面図である。本変形例に係るレインセンサ10cの光学カバー2には、第1実施形態に係るレインセンサ10の光学カバー2に形成されたくり抜き部6とは異なる形状のくり抜き部20が形成されている。また、本変形例に係るレインセンサ10cでは、光学カバー2の楕円面2aの中心部に、外来光を受光することを目的とした照度計等のセンサ30が設けられている。
【0036】
図8に示すように、レインセンサ10cの光学カバー2には、楕円面21を有するくり抜き部20が形成されている。くり抜き部20は、Y方向に短軸を持つ楕円を長軸Laの周りに回転させることにより得られる回転楕円体を、長軸Laを含むXY平面と水平な面で切り取った形状を有する。くり抜き部20の楕円面21の中心は、光学カバー2の楕円面2aの中心と一致している。
【0037】
くり抜き部20は、第1実施形態と同様に、有効検出エリアDに入射する光、及び有効検出エリアDで反射される光の光路に影響しない部分をくり抜いた領域である。くり抜き部20は、第1実施形態のくり抜き部6の形状である双円錐に内接するように離心率が決定されていることが好ましい。
【0038】
また、光学カバー2のくり抜き部20の表面である楕円面21を、入射光を散乱させる砂面(散乱面)としてもよい。この場合、楕円面21の面粗さを、散乱効果を考慮して適宜設定することにより、第2変形例と同様の効果を得ることができる。
【0039】
図9は、発光素子3から出力され受光素子4に入射する光の光路、及び外来光の光路を示す図である。図9に示すように、本変形例に係るレインセンサ10cでは、光学カバー2の楕円面2aとくり抜き部20の楕円面21とは、それらの形状により、センサ30に外来光が入射する確率を上げ、レインセンサ10cの周囲の明るさの検出感度を高めることができる。
【0040】
図10は、比較例として、第1実施形態に係るレインセンサ10に外来光を受光するセンサ30を設けた例を示す図である。センサ30は、光学カバー2の楕円面2aの中心部に配置されている。本比較例では、くり抜き部6の形状が双円錐であるので、上方からの外来光は、くり抜き部6の表面において、センサ30から離れる方向に屈折する。したがって、比較例では、センサ30に外来光が入射しにくく、レインセンサ10の周囲の明るさの検出には適さない。
【0041】
このように、本変形例に係るレインセンサ10cは、低コスト化及び軽量化に加えて、照度計等のセンサによる外来光の検出を可能とするといった付加的な作用が得られる。
<第4変形例>
図11は、第4変形例に係るレインセンサ10dの構成を示す断面図である。図12は、第4変形例に係るレインセンサ10dの光学カバー2を底面2c側から見た底面図である。本変形例に係るレインセンサ10dは、光学カバー2に、光路外にくり抜き部6を形成することに加えて、光の進路を変更しないように光路上に切り込み部を形成したものである。
【0042】
図11及び図12に示すように、光学カバー2に形成されたくり抜き部6は、第1実施形態と同一の双円錐形状である。本変形例における第1空間5a及び第2空間5bは、半球状であるが、第1変形例のように、半径を可能な限り大きくしている。
【0043】
切り込み部は、第1焦点F1を頂点とした複数の回転扇体と、第2焦点F2を頂点とした複数の回転扇体とにより構成されている。ここで、回転扇体とは、扇形状を、頂点を通る中心軸の周りに回転させることにより得られる立体形状である。回転扇体は、底面が球面の一部となる。
【0044】
本変形例では、第1焦点F1を頂点とした複数の回転扇体は、第1回転扇体41aと、第2回転扇体42aと、第3回転扇体43aとからなる。第1回転扇体41a、第2回転扇体42a、及び第3回転扇体43aは、頂点が第1焦点F1に一致し、回転軸が長軸Laに一致している。
【0045】
図13に示すように、第1回転扇体41aの頂角D1は第2回転扇体42aの頂角D2より大きく、第2回転扇体42aの頂角D2は第3回転扇体43aの頂角D3より大きい。第1回転扇体41aの半径R1は第2回転扇体42aの半径R2より短く、第2回転扇体42aの半径R2は第3回転扇体43aの半径R3より短い。なお、回転扇体の半径とは、回転扇体を展開した場合に形成される扇形の半径に対応する。
【0046】
第1回転扇体41aの底面51a、第2回転扇体42aの底面52a、第3回転扇体43aの底面53aは、それぞれ第1焦点F1を中心とした球面状である。
【0047】
また、第2焦点F2を頂点とした複数の回転扇体は、第1回転扇体41bと、第2回転扇体42bと、第3回転扇体43bとからなる。第1回転扇体41b、第2回転扇体42b、及び第3回転扇体43bは、第1回転扇体41a、第2回転扇体42a、及び第3回転扇体43aとそれぞれ同一の形状であり、楕円面2aの短軸に対して線対称となっている。なお、図15に示す第1半円錐形状部6a又は第2半円錐形状部6bの形状を、図4に示す一点鎖線より下側において光学カバー2が厚くなるように変更することにより、第1半円錐形状部6aと第2半円錐形状部6bを線対称でない形状としてもよい。
【0048】
本変形例では、光学カバー2には、くり抜き部6、第1空間5a、第2空間5bの他、切り込み部としての回転扇体41a~43a,41b~43bが形成され、全体として1つの空間を形成している。
【0049】
図14は、発光素子3から出力されて受光素子4に入射する光の光路を示す図である。図14に示すように、本変形例に係るレインセンサ10dでは、発光素子3から出力された光の一部は、回転扇体41a~43aの底面51a~53aを通過して有効検出エリアDに入射し、有効検出エリアDで反射された光は、回転扇体41b~43bの底面51b~53bを通過する。
【0050】
底面51a~53aは第1焦点F1を中心とした球面状であり、底面51b~53bは第2焦点F2を中心とした球面状であるので、光は各底面に垂直入射する。このため、切り込み部により光の進路が変更されることはなく、切り込み部を形成することによる検出感度への影響はない。
【0051】
なお、切り込み部を構成する回転扇体の数は限定されず、各回転扇体の頂角及び半径は適宜変更可能である。例えば、図15に示すように、第1回転扇体41a,41bの頂角を大きくし、底面51a,51bを有効検出エリアDの外側まで広げてもよい。有効検出エリアD外は、検出に寄与する光が通過する領域ではないため、有効検出エリアD外の底面51a,51bの形状は球面状でなくてもよい。同様に、有効検出エリアD外の第1空間5a及び第2空間5bの表面の形状は球面状でなくてもよい。
【0052】
また、回転扇体の底面(底面51b~53b)を、砂面(散乱面)としてもよい。これにより、発光素子3及び受光素子4の位置ずれによる検出感度の変動を抑えることができる。
【0053】
また、上記複数の変形例は、矛盾しない限り互いに組わせることが可能である。
【0054】
本発明に係る液滴センサは、発光素子3及び受光素子4は、それぞれ第1焦点F1及び第2焦点F2又はその近傍に配置されるが、発光素子3の発光部の形状や大きさ、出射光プロファイル、及び受光素子4の受光部の形状や大きさに応じて、有効検出エリアD上における感度特性ができるだけフラットになるようにそれぞれ配置することが好ましい。
【0055】
また、レインセンサ、結露センサ等に適用することができる。レインセンサは、たとえば、街路樹、街灯等に設置して局所的な雨量分布の測定や天候情報の収取や、車両のワイパー制御に用いることができる。結露センサは、コピー機、サーバ装置等のオフィスオートメーション機器に用いることができる。さらに、レインセンサを環境センサに組み込んで、他のセンサ(温度センサ、風向風量センサ等)と組み合わせて用いることもできる。
【符号の説明】
【0056】
2 光学カバー、2a 楕円面、2b 鍔部、2c 底面、3 発光素子、4 受光素子、5a 第1空間、5b 第2空間、6 くり抜き部、6a 第1半円錐形状部、6b 第2半円錐形状部、6c 表面、10,10a~10d レインセンサ、20 くり抜き部、21 楕円面、30 センサ、41a,41b 第1回転扇体、42a,42b 第2回転扇体、43a,43b 第3回転扇体、51a~53a,51b~53b 底面
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15