IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 富士通株式会社の特許一覧

特許7265138半導体デバイス、コンピュータ、及び半導体デバイスの製造方法
<>
  • 特許-半導体デバイス、コンピュータ、及び半導体デバイスの製造方法 図1
  • 特許-半導体デバイス、コンピュータ、及び半導体デバイスの製造方法 図2
  • 特許-半導体デバイス、コンピュータ、及び半導体デバイスの製造方法 図3
  • 特許-半導体デバイス、コンピュータ、及び半導体デバイスの製造方法 図4
  • 特許-半導体デバイス、コンピュータ、及び半導体デバイスの製造方法 図5
  • 特許-半導体デバイス、コンピュータ、及び半導体デバイスの製造方法 図6
  • 特許-半導体デバイス、コンピュータ、及び半導体デバイスの製造方法 図7
  • 特許-半導体デバイス、コンピュータ、及び半導体デバイスの製造方法 図8
  • 特許-半導体デバイス、コンピュータ、及び半導体デバイスの製造方法 図9
  • 特許-半導体デバイス、コンピュータ、及び半導体デバイスの製造方法 図10
  • 特許-半導体デバイス、コンピュータ、及び半導体デバイスの製造方法 図11
  • 特許-半導体デバイス、コンピュータ、及び半導体デバイスの製造方法 図12
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-04-18
(45)【発行日】2023-04-26
(54)【発明の名称】半導体デバイス、コンピュータ、及び半導体デバイスの製造方法
(51)【国際特許分類】
   H01L 29/861 20060101AFI20230419BHJP
   H01L 29/868 20060101ALI20230419BHJP
   H01L 29/41 20060101ALI20230419BHJP
   H01L 21/28 20060101ALI20230419BHJP
   H01L 21/329 20060101ALI20230419BHJP
   H01L 29/88 20060101ALI20230419BHJP
   H01L 29/06 20060101ALI20230419BHJP
【FI】
H01L29/91 L
H01L29/44 P
H01L21/28 301B
H01L29/88 Z
H01L29/91 F
H01L29/06 601N
【請求項の数】 11
(21)【出願番号】P 2019085468
(22)【出願日】2019-04-26
(65)【公開番号】P2020181937
(43)【公開日】2020-11-05
【審査請求日】2022-01-11
(73)【特許権者】
【識別番号】000005223
【氏名又は名称】富士通株式会社
(74)【代理人】
【識別番号】100087480
【弁理士】
【氏名又は名称】片山 修平
(72)【発明者】
【氏名】河口 研一
(72)【発明者】
【氏名】宮原 昭一
【審査官】杉山 芳弘
(56)【参考文献】
【文献】特開2004-193527(JP,A)
【文献】特表2013-508966(JP,A)
【文献】特開2015-034115(JP,A)
【文献】特開2015-050248(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01L 29/868
H01L 29/861
H01L 29/06
H01L 29/88
H01L 21/329
(57)【特許請求の範囲】
【請求項1】
基板と、
前記基板上に第1方向と前記第1方向に交差する第2方向に並んで設けられ、第1導電型の第1半導体層と前記第1半導体層上に設けられた前記第1導電型と反対の第2導電型の第2半導体層を含み、互いに相違する直径を有する複数のナノワイヤダイオードと、
前記複数のナノワイヤダイオードの端面に接続し、前記第1方向及び前記第2方向で隣接するナノワイヤダイオード同士のうち一部のナノワイヤダイオード同士のみを接続することで前記複数のナノワイヤダイオード全体を電気的に接続する第1導電性部材と、を備え、
前記第1導電性部材は、前記複数のナノワイヤダイオードの前記基板側の第1端面に接続する導電層と、前記複数のナノワイヤダイオードの前記第1端面と反対側の第2端面に接続する金属配線層とを含み、
前記複数のナノワイヤダイオードは、直径に対する前記複数のナノワイヤダイオードの個数の分布が一定になっている、半導体デバイス。
【請求項2】
前記複数のナノワイヤダイオードの前記直径に対する個数の分布は前記複数のナノワイヤダイオードの平均個数の±10%の範囲内である、請求項1記載の半導体デバイス。
【請求項3】
前記一部のナノワイヤダイオード同士は、延在方向に直交する断面の面積が互いに相違する前記導電層又は前記金属配線層を含む前記第1導電性部材によって接続されている、請求項1または2記載の半導体デバイス。
【請求項4】
前記第1導電性部材は、前記導電層と前記金属配線層とを接続する導電性ピラーを含み、
前記導電性ピラーは、前記複数のナノワイヤダイオードと同じ構造をしたダミーナノワイヤと、前記ダミーナノワイヤの表面を被覆する金属膜と、を含む、請求項1または2記載の半導体デバイス。
【請求項5】
前記第1導電性部材は、前記導電層と前記金属配線層とを接続する導電性ピラーを含み、
前記複数のナノワイヤダイオードのうちの一部のナノワイヤダイオードは、前記第1端面に接続する前記導電層と前記第2端面に接続する前記金属配線層とが前記導電性ピラーで接続されている、請求項1または2記載の半導体デバイス。
【請求項6】
前記複数のナノワイヤダイオードはトンネルダイオードである、請求項1から5のいずれか一項記載の半導体デバイス。
【請求項7】
前記複数のナノワイヤダイオードに電気的に接続された出力端子電極と、
前記複数のナノワイヤダイオードと前記出力端子電極の間に接続されたメモリスタと、を備える、請求項1から6のいずれか一項記載の半導体デバイス。
【請求項8】
前記メモリスタからの出力が前記複数のナノワイヤダイオードにフィードバックするように前記メモリスタと前記第1導電性部材とを電気的に接続する第2導電性部材を備える、請求項7記載の半導体デバイス。
【請求項9】
前記導電層は、n-GaAsからなる、請求項1から8のいずれか一項記載の半導体デバイス
【請求項10】
入力回路と、
前記入力回路からデータが入力されるリザーバ回路と、
前記リザーバ回路で処理されたデータが入力される出力回路と、を備え、
前記リザーバ回路は、基板と、前記基板上に第1方向と前記第1方向に交差する第2方向に並んで設けられ、第1導電型の第1半導体層と前記第1半導体層上に設けられた前記第1導電型と反対の第2導電型の第2半導体層を含み、互いに相違する直径を有する複数のナノワイヤダイオードと、前記複数のナノワイヤダイオードの端面に接続し、前記第1方向及び前記第2方向で隣接するナノワイヤダイオード同士のうち一部のナノワイヤダイオード同士のみを接続することで前記複数のナノワイヤダイオード全体を電気的に接続する第1導電性部材と、を有し、前記第1導電性部材は、前記複数のナノワイヤダイオードの前記基板側の第1端面に接続する導電層と、前記複数のナノワイヤダイオードの前記第1端面と反対側の第2端面に接続する金属配線層とを含み、前記複数のナノワイヤダイオードは、直径に対する前記複数のナノワイヤダイオードの個数の分布が一定になっている半導体デバイスを備える、コンピュータ。
【請求項11】
基板上に第1方向と前記第1方向に交差する第2方向に並ぶように、第1導電型の第1半導体層と前記第1半導体層上に設けられた前記第1導電型と反対の第2導電型の第2半導体層とを含み、互いに相違する直径を有する複数のナノワイヤダイオードを形成する工程と、
前記複数のナノワイヤダイオードの端面に接続し、前記第1方向及び前記第2方向で隣接するナノワイヤダイオード同士のうち一部のナノワイヤダイオード同士のみを接続することで前記複数のナノワイヤダイオード全体を電気的に接続する導電性部材を形成する工程と、を備え
前記導電性部材は、前記複数のナノワイヤダイオードの前記基板側の第1端面に接続する導電層と、前記複数のナノワイヤダイオードの前記第1端面と反対側の第2端面に接続する金属配線層とを含み、
前記複数のナノワイヤダイオードは、直径に対する前記複数のナノワイヤダイオードの個数の分布が一定になっている半導体デバイスの製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、半導体デバイス、コンピュータ、及び半導体デバイスの製造方法に関する。
【背景技術】
【0002】
脳の構造を模したニューロモーフィックコンピューティングが知られている。その中でも、時系列情報処理に適したリザーバコンピューティングが注目されている。リザーバコンピューティングでは、リザーバと呼ばれる非線形要素を含むネットワーク型デバイスが用いられる。
【0003】
例えば、ポリオキソメタレートとカーボンナノチューブを用いたニューロモーフィックデバイスが知られている(例えば、非特許文献1)。また、半導体集積回路層から複数の導電ピンが垂直に延在し、複数の導電ピンがメムリスティブ層を含むナノワイヤ相互接続層で接続されたニューロモーフィック集積回路が知られている(例えば、特許文献1)。情報処理ユニットと垂直電極アレイユニットが対向し、垂直電極アレイユニットの垂直電極が情報処理ユニットのニューロンに接触又は所定距離だけ離れた構造のデバイスが知られている(例えば、特許文献2)。
【先行技術文献】
【特許文献】
【0004】
【文献】特表2011-507232号公報
【文献】特開2007-226762号公報
【非特許文献】
【0005】
【文献】Hirofumi Tanaka、外8名、「A molecular neuromorphic network device consisting of single-walled carbon nanotubes complexed with polyoxometalate」、NATURE COMMUNICATIONS、2018年7月12日
【発明の概要】
【発明が解決しようとする課題】
【0006】
非特許文献1に記載のデバイスは、非線形高分子である複数のポリオキソメタレートをカーボンナノチューブで接続する構成であるため、集積性に優れている。しかしながら、複数のポリオキソメタレートが所望の接続関係となるようにカーボンナノチューブで接続させることは難しい。複数のポリオキソメタレート、すなわち複数の非線形素子の接続関係が製造ロットごとにばらついてしまうと、性能にばらつきが生じてしまう。
【0007】
1つの側面では、複数の非線形素子の接続関係を良好に制御できることを目的とする。
【課題を解決するための手段】
【0008】
1つの態様では、基板と、前記基板上に第1方向と前記第1方向に交差する第2方向に並んで設けられ、第1導電型の第1半導体層と前記第1半導体層上に設けられた前記第1導電型と反対の第2導電型の第2半導体層を含み、互いに相違する直径を有する複数のナノワイヤダイオードと、前記複数のナノワイヤダイオードの端面に接続し、前記第1方向及び前記第2方向で隣接するナノワイヤダイオード同士のうち一部のナノワイヤダイオード同士のみを接続することで前記複数のナノワイヤダイオード全体を電気的に接続する第1導電性部材と、を備え、前記第1導電性部材は、前記複数のナノワイヤダイオードの前記基板側の第1端面に接続する導電層と、前記複数のナノワイヤダイオードの前記第1端面と反対側の第2端面に接続する金属配線層とを含み、前記複数のナノワイヤダイオードは、直径に対する前記複数のナノワイヤダイオードの個数の分布が一定になっている、半導体デバイスである。
【0009】
1つの態様では、入力回路と、前記入力回路からデータが入力されるリザーバ回路と、前記リザーバ回路で処理されたデータが入力される出力回路と、を備え、前記リザーバ回路は、基板と、前記基板上に第1方向と前記第1方向に交差する第2方向に並んで設けられ、第1導電型の第1半導体層と前記第1半導体層上に設けられた前記第1導電型と反対の第2導電型の第2半導体層を含み、互いに相違する直径を有する複数のナノワイヤダイオードと、前記複数のナノワイヤダイオードの端面に接続し、前記第1方向及び前記第2方向で隣接するナノワイヤダイオード同士のうち一部のナノワイヤダイオード同士のみを接続することで前記複数のナノワイヤダイオード全体を電気的に接続する第1導電性部材と、を有し、前記第1導電性部材は、前記複数のナノワイヤダイオードの前記基板側の第1端面に接続する導電層と、前記複数のナノワイヤダイオードの前記第1端面と反対側の第2端面に接続する金属配線層とを含み、前記複数のナノワイヤダイオードは、直径に対する前記複数のナノワイヤダイオードの個数の分布が一定になっている半導体デバイスを備える、コンピュータである。
【0010】
1つの態様では、基板上に第1方向と前記第1方向に交差する第2方向に並ぶように、第1導電型の第1半導体層と前記第1半導体層上に設けられた前記第1導電型と反対の第2導電型の第2半導体層とを含み、互いに相違する直径を有する複数のナノワイヤダイオードを形成する工程と、前記複数のナノワイヤダイオードの端面に接続し、前記第1方向及び前記第2方向で隣接するナノワイヤダイオード同士のうち一部のナノワイヤダイオード同士のみを接続することで前記複数のナノワイヤダイオード全体を電気的に接続する導電性部材を形成する工程と、を備え、前記導電性部材は、前記複数のナノワイヤダイオードの前記基板側の第1端面に接続する導電層と、前記複数のナノワイヤダイオードの前記第1端面と反対側の第2端面に接続する金属配線層とを含み、前記複数のナノワイヤダイオードは、直径に対する前記複数のナノワイヤダイオードの個数の分布が一定になっている半導体デバイスの製造方法である。
【発明の効果】
【0011】
1つの側面として、複数のナノワイヤダイオード(非線形素子)の接続関係を良好に制御することができる。
【図面の簡単な説明】
【0012】
図1図1(a)は、実施例1に係る半導体デバイスの上面図、図1(b)は、図1(a)のA-A間の断面図、図1(c)は、図1(a)のB-B間の断面図である。
図2図2(a)から図2(d)は、実施例1に係る半導体デバイスの製造方法を示す断面図(その1)である。
図3図3(a)から図3(c)は、実施例1に係る半導体デバイスの製造方法を示す断面図(その2)である。
図4図4(a)は、実施例2に係る半導体デバイスの上面図、図4(b)は、図4(a)のA-A間の断面図、図4(c)は、図4(a)のB-B間の断面図である。
図5図5は、実施例3に係る半導体デバイスの断面図である。
図6図6(a)から図6(c)は、実施例3に係る半導体デバイスの製造方法を示す断面図(その1)である。
図7図7(a)から図7(c)は、実施例3に係る半導体デバイスの製造方法を示す断面図(その2)である。
図8図8(a)は、実施例4に係る半導体デバイスの上面図、図8(b)は、図8(a)のA-A間の断面図、図8(c)は、図8(a)のB-B間の断面図である。
図9図9は、実施例5に係る半導体デバイスの断面図である。
図10図10(a)は、実施例6に係る半導体デバイスの上面図、図10(b)は、図10(a)のA-A間の断面図である。
図11図11(a)は、実施例7に係る半導体デバイスの上面図、図11(b)は、図11(a)のA-A間の断面図、図11(c)は、図11(a)のB-B間の断面図である。
図12図12は、実施例8に係るコンピュータを示すブロック図である。
【発明を実施するための形態】
【0013】
以下、図面を参照して、本発明の実施例について説明する。
【実施例1】
【0014】
図1(a)は、実施例1に係る半導体デバイスの上面図、図1(b)は、図1(a)のA-A間の断面図、図1(c)は、図1(a)のB-B間の断面図である。図1(a)において、金属配線層26の下に位置するナノワイヤダイオード50及び金属ピラー24を点線で図示している(以下の図4図8(a)、図10(a)、図11(a)においても同じ)。実施例1の半導体デバイス100は、リザーバコンピューティングシステムのリザーバとして用いられる半導体デバイスである(実施例2から実施例7の半導体デバイスにおいても同じ)。図1(a)から図1(c)のように、実施例1の半導体デバイス100は、基板10上に複数のナノワイヤダイオード50が設けられている。複数のナノワイヤダイオード50は、第1方向及び第1方向に交差(例えば直交)する第2方向に格子状に並んで設けられている。基板10は、例えば半絶縁性の半導体基板であるが、その他の場合でもよい。基板10は、一例として半絶縁性のGaAs基板である。
【0015】
ナノワイヤダイオード50は、第1導電型(例えばn型)の半導体層52と、半導体層52に接合された第1導電型とは反対の第2導電型(例えばp型)の半導体層54と、が長手方向に積層されている。すなわち、ナノワイヤダイオード50は、n型の半導体層52とp型の半導体層54が接合されたpn接合を有する半導体ダイオードである。n型の半導体層52は、一例として硫黄(S)がドーピングされたn-InAs層である。p型の半導体層54は、一例として亜鉛(Zn)がドーピングされたp-GaAsSb層である。ナノワイヤダイオード50の高さ(長さ)は例えば1.5μm~2.0μm程度である。複数のナノワイヤダイオード50は、様々な大きさの直径を有するナノワイヤダイオード50によって構成されている。すなわち、複数のナノワイヤダイオード50は、互いに相違する直径を有する。複数のナノワイヤダイオード50の直径は例えば20nm~100nm程度の範囲内でばらついている。
【0016】
基板10とナノワイヤダイオード50との間に導電層22が設けられている。導電層22はナノワイヤダイオード50の基板10側の端面56に接している。実施例1では、導電層22は、ナノワイヤダイオード50を構成するn型の半導体層52の端面に接している。導電層22は、複数のナノワイヤダイオード50それぞれが接する箇所が互いに電気的に分離するように島状に分離されている。導電層22は、例えば導電性半導体層であるが、金属層などのその他の場合でもよい。導電層22は、一例としてシリコン(Si)がドーピングされたn-GaAs層である。導電層22の厚さは、例えばとして100nm~200nm程度である。
【0017】
基板10上に、導電層22を覆って絶縁膜12が設けられている。絶縁膜12は、例えば窒化シリコン膜又は酸化シリコン膜などの無機絶縁膜であるが、樹脂膜などの有機絶縁膜の場合でもよい。導電層22上における絶縁膜12の厚さは、例えば50nm程度である。
【0018】
絶縁膜12上に、ナノワイヤダイオード50の側面を被覆する絶縁膜14が設けられている。ナノワイヤダイオード50の基板10とは反対側の端面58は絶縁膜14の上面から露出している。実施例1では、ナノワイヤダイオード50を構成するp型の半導体層54の端面が絶縁膜14の上面から露出している。絶縁膜14は、一例としてBCB(Benzocyclobutene)樹脂で形成された樹脂膜であるがその他の有機絶縁膜でもよいし、無機絶縁膜でもよい。
【0019】
絶縁膜14上に、ナノワイヤダイオード50の端面58に接した金属配線層26が設けられている。金属配線層26は、ナノワイヤダイオード50の端面58と接触する箇所に電極28を有する。電極28は、例えば円形形状をしているが、矩形形状などの他の形状であってもよい。絶縁膜12及び14を貫通し、一方の端面が導電層22に接し、他方の端面が金属配線層26に接した金属ピラー24が設けられている。金属配線層26と金属ピラー24は、銅又は金などの導電率の高い金属で形成されている。金属配線層26と金属ピラー24は、同じ金属で形成されていてもよいし、異なる金属で形成されていてもよい。金属ピラー24の直径は、例えば1μm~5μm程度である。金属配線層26の厚さは、例えば1μm~5μm程度である。ここで、導電層22と金属ピラー24と金属配線層26をまとめて導電性部材20と称すこととする。
【0020】
複数のナノワイヤダイオード50は、金属配線層26の一部である入力端子電極30と出力端子電極32との間に接続され、第1方向及び第2方向に格子状に並んで設けられている。入力端子電極30に入力される信号は複数のナノワイヤダイオード50を経由した後に出力端子電極32から出力される。複数のナノワイヤダイオード50は導電性部材20で電気的に接続されることでネットワーク状に接続されているが、第1方向及び第2方向で隣接するナノワイヤダイオード50同士が全て導電性部材20で電気的に接続されている訳ではない。第1方向及び第2方向で隣接する一部のナノワイヤダイオード50同士は導電性部材20で電気的に接続されてなく、第1方向及び第2方向で隣接する残りのナノワイヤダイオード50同士は導電性部材20で電気的に接続されている。実施例1では、第1方向で隣接するナノワイヤダイオード50同士は、それぞれの端面58が金属配線層26で接続されることが互いに電気的に接続されている。第2方向で隣接するナノワイヤダイオード50同士は、一方のナノワイヤダイオード50の端面56と他方のナノワイヤダイオード50の端面58が導電層22と金属ピラー24と金属配線層26で接続されることで互いに電気的に接続されている。
【0021】
第1方向及び第2方向で隣接するナノワイヤダイオード50同士を接続する金属配線層26の幅はそれぞれ同じ大きさになっている。また、複数の金属ピラー24の直径もそれぞれ同じ大きさになっている。なお、同じ大きさには製造誤差程度に異なる略同じ大きさも含まれる。
【0022】
複数のナノワイヤダイオード50は様々な直径を有することから、複数のナノワイヤダイオード50は様々な接続面積(接触面積)で電極28に接続(接触)している。したがって、複数のナノワイヤダイオード50は様々な接続抵抗(接触抵抗)で電極28に電気的に接続している。すなわち、複数のナノワイヤダイオード50は互いに相違する直径を有することから、複数のナノワイヤダイオード50は互いに相違する接続面積(接触面積)で電極28に接続(接触)している。したがって、複数のナノワイヤダイオード50は互いに相違する接続抵抗(接触面積)で電極28に電気的に接続している。
【0023】
このように、半導体デバイス100は、互いに相違する直径を有する複数のナノワイヤダイオード50を備えることで、非線形性が異なる複数の非線形素子を備えている。この複数のナノワイヤダイオード50は、半導体デバイス100をリザーバコンピューティングシステムのリザーバとして用いた場合にニューロン素子として機能する。また、導電性部材20が互いに相違する直径を有する複数のナノワイヤダイオード50の端面56、58に接続する(接する)ことで、複数のナノワイヤダイオード50の導電性部材20との接続抵抗(接触抵抗)が異なっている。このナノワイヤダイオード50と導電性部材20との接続抵抗の違いによって、半導体デバイス100をリザーバとして用いた場合に、複数のナノワイヤダイオード50の接続の重み付けが実現される。さらに、隣接する一部のナノワイヤダイオード50同士は電気的に接続されてなく、残りのナノワイヤダイオード50同士は電気的に接続されていることでも、複数のナノワイヤダイオード50の接続の重み付けが実現される。よって、半導体デバイス100をリザーバコンピューティングシステムのリザーバとして用いることができる。
【0024】
図2(a)から図3(c)は、実施例1に係る半導体デバイスの製造方法を示す断面図である。図2(a)のように、例えば半絶縁性のGaAs基板で表面の結晶方位が(111)Bの基板10上に、例えばMOCVD(Metal Organic Chemical Vapor Deposition)法を用いて、n-GaAsからなる導電層22を成長する。n型不純物のドーピングには例えばシリコン(Si)を用い、Si濃度は例えば1×1018cm-3~1×1020cm-3である。導電層22の厚さは、例えば100nm~200nm程度である。
【0025】
図2(b)のように、例えばフォトリソグラフィ法及びエッチング法を用いて導電層22の一部を除去し、導電層22を島状に分離する。
【0026】
図2(c)のように、基板10上に、例えばプラズマCVD法を用いて導電層22を覆う例えば窒化シリコン膜からなる絶縁膜12を形成する。導電層22上における絶縁膜12の厚さは例えば50nm程度である。その後、ナノワイヤダイオード50を形成する領域の絶縁膜12を例えばフォトリソグラフィ法及びエッチング法を用いて除去して、絶縁膜12に導電層22が露出する複数の開口を形成する。複数の開口は様々な大きさの開口サイズを有する。その後、絶縁膜12の複数の開口で露出した導電層22上に、例えば真空蒸着法及びリフトオフ法を用いて複数の金属薄膜102を形成する。金属薄膜102は、例えば金(Au)膜である。金属薄膜102は、ナノワイヤ成長の際の触媒となる。複数の開口は様々なサイズを有することから、複数の金属薄膜102は様々な大きさの直径を有する。複数の金属薄膜102の直径は、例えば20nm~100nm程度の範囲内でばらついている。
【0027】
図2(d)のように、絶縁膜12の開口に形成した金属薄膜102上に、例えばMOCVD法を用いて、例えばn-InAsからなる半導体層52とp-GaAsSbからなる半導体層54を含むナノワイヤダイオード50を成長する。成長温度は例えば400℃~450℃である。原料には、トリメチルインジウム(TMIn)、トリエチルガリウム(TEGa)、アルシン(AsH)、トリメチルアンチモン(TMSb)を用いる。n型不純物のドーピングには、成長時に硫化水素(HS)を供給することで硫黄(S)をドーピングする。S濃度は、例えば1×1018cm-3~1×1020cm-3である。p型不純物のドーピングには、成長時にジエチル亜鉛(DEZn)を供給することで亜鉛(Zn)をドーピングする。Zn濃度は、例えば1×1018cm-3~1×1020cm-3である。ドーピング濃度及びバンドギャップを適切に制御することで、トンネル接合が形成され、バックワードダイオードとして機能させることができる。半導体層52の高さは例えば0.5μm~0.7μm程度であり、半導体層54の高さは例えば0.8μm~1.5μm程度であり、ナノワイヤダイオード50の高さは例えば1.5μm~2.0μm程度である。複数の金属薄膜102及び金属薄膜102が形成された絶縁膜12の複数の開口は様々な大きさを有することから、様々な直径を有する複数のナノワイヤダイオード50が成長される。
【0028】
図3(a)のように、絶縁膜12上に、ナノワイヤダイオード50を埋め込む例えばBCB樹脂からなる絶縁膜14を形成する。その後、ナノワイヤダイオード50の端面58が露出するまで、絶縁膜14をエッチバックにより平坦化する。
【0029】
図3(b)のように、金属ピラー24を形成する領域の絶縁膜12、14を例えばフォトリソグラフィ法及びエッチング法を用いて除去して、絶縁膜12、14を貫通する複数の貫通孔を形成する。その後、例えば真空蒸着法及びめっき法を用いて、複数の貫通孔に埋め込まれた例えば直径が1μm~5μm程度の銅又は金からなる金属ピラー24を形成する。絶縁膜12及び14を貫通する複数の貫通孔は例えば同じ直径を有し、複数の貫通孔に埋め込まれた複数の金属ピラー24は例えば同じ直径を有する。なお、同じ直径には製造誤差程度に異なる略同じ直径も含まれる。
【0030】
図3(c)のように、ナノワイヤダイオード50の端面58を含む絶縁膜14上に、例えば真空蒸着法及びリフトオフ法を用いて、電極28、入力及び出力端子電極30、32を含む、例えば厚さが1μm~5μm程度の金属配線層26を形成する。以上により、実施例1の半導体デバイス100が形成される。
【0031】
実施例1によれば、第1方向及び第2方向に並んだ複数のナノワイヤダイオード50が基板10上に設けられている。複数のナノワイヤダイオード50は、n型の半導体層52と半導体層52上に設けられたp型の半導体層54とを含み、互いに相違する直径を有する。第1方向及び第2方向で隣接するナノワイヤダイオード50同士のうちの一部のナノワイヤダイオード50同士のみが、ナノワイヤダイオード50の端面56、58に接続する導電性部材20で接続されている。また、複数のナノワイヤダイオード50全体は導電性部材20によって電気的に接続されている。これにより、上述したように、半導体デバイス100をリザーバコンピューティングシステムのリザーバとして用いることができる。半導体デバイス100は、半導体技術を用いて製造されることから、非特許文献1のように非線形高分子間をカーボンナノチューブで電気的に接続する場合に比べて、複数のナノワイヤダイオード50(非線形素子)の接続関係を良好に制御できる。また、半導体デバイス100は、ナノワイヤダイオード50と導電性部材20で構成されているため、部品点数を少なくでき、消費電力を低く抑えることができる。
【0032】
実施例1において、複数のナノワイヤダイオード50は直径の大きさ毎の個数が一定になっている場合が好ましい。つまり、直径の値に対する複数のナノワイヤダイオード50の個数の分布が一定であることが好ましい。例えば、直径が20nm、30nm、40nm、・・・、90nm、100nmであるナノワイヤダイオード50の個数が一定になっている場合が好ましい。これにより、複数のナノワイヤダイオード50の非線形性の分布が良好な状態になり、半導体デバイス100を用いたリザーバの性能を向上させることができる。なお、個数が一定(個数の分布が一定)とは個数(個数の分布)が完全に同じ場合に限られず、非線形性の分布を良好な状態にできる程度に個数(個数の分布)が異なる場合も含む。複数のナノワイヤダイオード50を直径毎に振り分けたときのナノワイヤダイオード50の平均個数の±10%の範囲内にそれぞれの直径でのナノワイヤダイオード50の個数が入っていればよい。
【0033】
複数のナノワイヤダイオード50はトンネルダイオードである場合が好ましい。トンネルダイオードは非線形性が強い素子であり、非線形性が強い素子に対して非線形性を弱めることは容易に行える。このため、ナノワイヤダイオード50にトンネルダイオードを用いることで、複数のナノワイヤダイオード50の非線形性のばらつきを大きくすることが可能となり、半導体デバイス100を用いたリザーバの性能を向上させることができる。
【0034】
実施例1では、トンネルダイオードの例として、半導体層52がn-InAsからなり、半導体層54がp-GaAsSbからなる場合を例に示したが、その他の場合でもよい。例えば、半導体層52がn-InGaAsからなり、半導体層54がp-GaAsSbからなる場合でもよい。例えば、半導体層52がn-GaAsからなり、半導体層54がp-InSbからなる場合でもよい。例えば、半導体層52がn-InGaAsからなり、半導体層54がp-AlInSbからなる場合でもよい。また、ナノワイヤダイオード50はトンネルダイオードでない場合でもよい。この場合、例えば、半導体層52がn-GaAsからなり、半導体層54がp-GaAsからなる場合でもよい。また、ナノワイヤダイオード50は、pn接合の代わりに、i型の半導体を介するpin接合であってもよい。
【0035】
なお、実施例1では、複数のナノワイヤダイオード50が第1方向及び第2方向に格子状に並んでいる場合を例に示したが、第1方向及び第2方向に千鳥状に並んでいる場合やその他の形状で並んでいる場合でよい。
【実施例2】
【0036】
図4(a)は、実施例2に係る半導体デバイスの上面図、図4(b)は、図4(a)のA-A間の断面図、図4(c)は、図4(a)のB-B間の断面図である。図4(a)から図4(c)のように、実施例2の半導体デバイス200では、複数の金属配線層26は様々な幅の金属配線層26を含んで構成されている。すなわち、第1方向で隣接するナノワイヤダイオード50a、50bを接続する金属配線層26と、第1方向で隣接するナノワイヤダイオード50b、50cを接続する金属配線層26とは、幅の長さが異なっている。また、第2方向で隣接するナノワイヤダイオード50d、50eを接続する金属配線層26と、第2方向で隣接するナノワイヤダイオード50e、50fを接続する金属配線層26とは、幅の長さが異なっている。複数の金属配線層26は、厚みが同じであることから、配線幅が異なることで延在方向に直交する断面の面積が異なっている。その他の構成は、実施例1と同じであるため説明を省略する。
【0037】
実施例2によれば、第1方向及び第2方向で隣接する複数のナノワイヤダイオード50同士は、延在方向に直交する断面の面積が様々な大きさの金属配線層26を含む導電性部材20によって接続されている。つまり、第1方向及び第2方向で隣接する複数のナノワイヤダイオード50同士は、延在方向に直交する断面の面積が互いに相違する金属配線層26を含む導電性部材20によって接続されている。実施例1では、ナノワイヤダイオード50と導電性部材20の接続抵抗及び導電性部材20のレイアウトによって、複数のナノワイヤダイオード50の接続の重み付けを実現している。実施例2では、ナノワイヤダイオード50と導電性部材20の接続抵抗及び導電性部材20のレイアウトに、導電性部材20の電気抵抗を加えて、複数のナノワイヤダイオード50の接続の重み付けを実現できる。よって、重み付けを細かく制御することが可能となり、半導体デバイス200を用いたリザーバの性能を向上させることができる。
【0038】
なお、実施例2では、金属配線層26の幅が異なることで断面積が異なる場合を例に示したが、金属配線層26の厚さが異なることで断面積が異なる場合でもよい。
【0039】
なお、複数の導電性部材20に含まれる金属ピラー24の直径が、隣接する複数のナノワイヤダイオード50同士を接続する導電性部材20で互いに相違していてもよい。この場合、重み付けを更に細かく制御することが可能となる。
【実施例3】
【0040】
図5は、実施例3に係る半導体デバイスの断面図である。図5のように、実施例3の半導体デバイス300では、金属ピラー24の代わりに、ダミーナノワイヤ40とダミーナノワイヤ40の表面を被覆する金属膜36とを有する導電性ピラー34が設けられている。ダミーナノワイヤ40は、ナノワイヤダイオード50と同じ構造をしている。すなわち、ダミーナノワイヤ40は、半導体層52と同じ材料からなる半導体層42と、半導体層42上に設けられ、半導体層54と同じ材料からなる半導体層44と、を含んで構成されている。金属膜36は、例えば銅又は金などの導電率の高い金属で形成されている。金属膜36は、金属配線層26と同じ材料で形成されてもよいし、異なる材料で形成されてもよい。また、絶縁膜12上に例えば酸化アルミニウム膜などの無機絶縁膜からなる絶縁膜60が設けられている。絶縁膜60は、ナノワイヤダイオード50及びダミーナノワイヤ40よりも厚みが薄く、絶縁膜12の上面からナノワイヤダイオード50の側面に沿って延びている。その他の構成は、実施例1と同じであるため説明を省略する。
【0041】
図6(a)から図7(c)は、実施例3に係る半導体デバイスの製造方法を示す断面図である。図6(a)のように、基板10上に、例えばMOCVD法を用いて導電層22を形成する。例えばフォトリソグラフィ法及びエッチング法を用いて導電層22の一部を除去し、導電層22を島状に分離する。基板10上に、例えばプラズマCVD法を用いて導電層22を覆う絶縁膜12を形成する。その後、ナノワイヤダイオード50及びダミーナノワイヤ40を形成する領域の絶縁膜12を例えばフォトリソグラフィ法及びエッチング法を用いて除去し、絶縁膜12に導電層22が露出する複数の開口を形成する。絶縁膜12の複数の開口で露出した導電層22上に、例えば真空蒸着法及びリフトオフ法を用いて複数の金属薄膜102を形成する。金属薄膜102は、ナノワイヤ成長の際の触媒となる。
【0042】
図6(b)のように、絶縁膜12の開口に形成した金属薄膜102上に、例えばMOCVD法を用いて、n-InAsからなるナノワイヤ状の半導体層52、42を成長する。半導体層52、42上に、p-GaAsSbからなるナノワイヤ状の半導体層54、44を成長する。半導体層52と54によってナノワイヤダイオード50が形成される。半導体層42と44によって、ナノワイヤダイオード50と同じ構造をしたダミーナノワイヤ40が形成される。ダミーナノワイヤ40の直径は、例えばナノワイヤダイオード50の直径よりも小さい。
【0043】
ナノワイヤダイオード50及びダミーナノワイヤ40を形成した後、ナノワイヤダイオード50及びダミーナノワイヤ40を覆う絶縁膜60を形成する。絶縁膜60は、ナノワイヤダイオード50及びダミーナノワイヤ40よりも薄く、絶縁膜12の上面からナノワイヤダイオード50及びダミーナノワイヤ40の表面に沿って延在して形成される。その後、ダミーナノワイヤ40周囲の絶縁膜60及び12を例えばフォトリソグラフィ法及びエッチング法を用いて除去する。これにより、ダミーナノワイヤ40周囲では導電層22が露出する。
【0044】
図6(c)のように、例えばスパッタリング法を用いて、ナノワイヤダイオード50及びダミーナノワイヤ40を覆う金属膜36を形成する。金属膜36は、ダミーナノワイヤ40の表面とダミーナノワイヤ40周囲で露出した導電層22とに接して形成される。
【0045】
図7(a)のように、ダミーナノワイヤ40を覆い、ナノワイヤダイオード50などのその他の領域を覆わないフォトレジスト膜104を形成する。その後、フォトレジスト膜104をマスクに金属膜36をエッチングする。これにより、ダミーナノワイヤ40の表面に接して形成された金属膜36は残存し、ナノワイヤダイオード50を覆う金属膜36などのダミーナノワイヤ40の表面以外に形成された金属膜36は除去される。これにより、ダミーナノワイヤ40とダミーナノワイヤ40の表面を被覆する金属膜36とを有する導電性ピラー34が形成される。
【0046】
図7(b)のように、フォトレジスト膜104を除去した後、絶縁膜60上に、ナノワイヤダイオード50及び導電性ピラー34を埋め込む絶縁膜14を形成する。その後、ナノワイヤダイオード50の端面58及び導電性ピラー34の端面が露出するまで、絶縁膜14をエッチバックする。
【0047】
図7(c)のように、ナノワイヤダイオード50の端面58と導電性ピラー34の端面とを含む絶縁膜14上に、例えば真空蒸着法及びリフトオフ法を用いて金属配線層26を形成する。以上により、実施例3の半導体デバイス300が形成される。
【0048】
実施例1では、導電層22と金属配線層26を電気的に接続する導電性ピラーとして金属ピラー24が設けられている場合を例に示したが、この場合に限られない。実施例3のように、導電層22と金属配線層26が、ナノワイヤダイオード50と同じ構造をしたダミーナノワイヤ40とダミーナノワイヤ40の表面を被覆する金属膜36とを含む導電性ピラー34で電気的に接続されていてもよい。金属ピラー24の製造可能な最小直径は数μm程度であるのに対し、導電性ピラー34は直径をサブミクロンとすることができる。このため、半導体デバイス300を小型化することができ、また、導電性部材20の電気抵抗の振り幅を大きくすることもできる。
【実施例4】
【0049】
図8(a)は、実施例4に係る半導体デバイスの上面図、図8(b)は、図8(a)のA-A間の断面図、図8(c)は、図8(a)のB-B間の断面図である。図8(a)では、絶縁膜12、14で覆われた導電層22を点線で図示している。図8(a)から図8(c)のように、実施例4の半導体デバイス400では、第1方向で隣接するナノワイヤダイオード50同士は、それぞれの端面56が導電層22で接続されることで互いに電気的に接続されている。また、第1方向で隣接するナノワイヤダイオード50a、50bを接続する導電層22と、第1方向で隣接するナノワイヤダイオード50b、50cを接続する導電層22とは、幅の長さが異なっている。このため、ナノワイヤダイオード50a、50bを接続する導電層22の延在方向に直交する断面の面積と、ナノワイヤダイオード50b、50cを接続する導電層22の延在方向に直交する断面の面積とは、大きさが異なっている。その他の構成は、実施例1と同じであるため説明を省略する。
【0050】
実施例1では、第1方向で隣接するナノワイヤダイオード50同士は金属配線層26で接続されている場合を例に示したが、実施例4のように、導電層22で接続されている場合でもよい。
【0051】
また、実施例4によれば、第1方向で隣接する複数のナノワイヤダイオード50同士は、延在方向に直交する断面の面積が様々な大きさの導電層22を含む導電性部材20によって接続されている。つまり、第1方向で隣接する複数のナノワイヤダイオード50同士は、延在方向に直交する断面の面積が互いに相違する導電層22を含む導電性部材20によって接続されている。これにより、実施例2と同様に、ナノワイヤダイオード50と導電性部材20の接続抵抗及び導電性部材20のレイアウトに、導電性部材20の電気抵抗を加えて、複数のナノワイヤダイオード50の接続の重み付けを実現できる。よって、重み付けを細かく制御することが可能となり、半導体デバイス400を用いたリザーバの性能を向上させることができる。
【0052】
なお、実施例4では、導電層22の幅が異なることで断面積が異なる場合を例に示したが、導電層22の厚さが異なることで断面積が異なる場合でもよい。
【実施例5】
【0053】
図9は、実施例5に係る半導体デバイスの断面図である。図9のように、実施例5の半導体デバイス500では、複数のナノワイヤダイオード50のうちのナノワイヤダイオード50gは、端面56に接続する導電層22と端面58に接続する金属配線層26とが金属ピラー24で接続されている。その他の構成は、実施例1と同じであるため説明を省略する。
【0054】
実施例5のように、複数のナノワイヤダイオード50のうちの一部のナノワイヤダイオード50gでは、端面56に接続する導電層22と端面58に接続する金属配線層26とが金属ピラー24で接続されていてもよい。これにより、ナノワイヤダイオード50gは再帰ループを持つ非線形素子として動作する。よって、半導体デバイス500を用いたリザーバの性能を向上させることができる。
【実施例6】
【0055】
図10(a)は、実施例6に係る半導体デバイスの上面図、図10(b)は、図10(a)のA-A間の断面図である。図10(a)では、絶縁膜12、14で覆われた導電層22を点線で図示している。図10(a)及び図10(b)のように、実施例6の半導体デバイス600では、複数のナノワイヤダイオード50と出力端子電極32との間に可変抵抗素子である複数のメモリスタ70が電気的に接続されている。すなわち、メモリスタ70の一端は金属配線層26、金属ピラー24、及び導電層22を介してナノワイヤダイオード50に接続され、他端は導電層22を介して出力電極端子32に接続されている。メモリスタ70は、例えばナノワイヤダイオード50の半導体層52と同じ材料で形成された半導体層72と、半導体層72上に設けられ、半導体層54と同じ材料で形成された半導体層74と、半導体層72、74の周囲を覆う酸化膜76と、を備える。なお、メモリスタ70は、この構造に限られる訳ではなく、可変抵抗素子として機能すればその他の場合でもよい。酸化膜76は、例えば酸化チタン(TiO)膜、酸化ニッケル(NiO)膜、又は酸化コバルト(CoO)膜などであるが、その他の場合でもよい。その他の構成は、実施例1と同じであるため説明を省略する。
【0056】
実施例6によれば、複数のナノワイヤダイオード50と出力端子電極32の間にメモリスタ70が接続されている。メモリスタ70は電流量に応じて抵抗値が変化する。このため、複数のナノワイヤダイオード50からメモリスタ70を介して出力端子電極32に電流が流れる際に、メモリスタ70の抵抗値が電流量に応じて変化する。よって、メモリスタ70で信号強度に応じた抵抗値による重み付け情報を記憶することが可能となる。
【実施例7】
【0057】
図11(a)は、実施例7に係る半導体デバイスの上面図、図11(b)は、図11(a)のA-A間の断面図、図11(c)は、図11(a)のB-B間の断面図である。図11(a)では、絶縁膜14などで覆われた導電層22及び金属配線層82を点線で図示している。また、金属配線層26の下に位置する導電性ピラー84を点線で図示している。図11(a)から図11(c)のように、実施例7の半導体デバイス700は、実施例6の半導体デバイス600と同様に、複数のナノワイヤダイオード50と出力端子電極32との間に複数のメモリスタ70が電気的に接続されている。また、メモリスタ70を通過した電流がナノワイヤダイオード50にフィードバックされるよう、ナノワイヤダイオード50に接続する導電性部材20とメモリスタ70とを電気的に接続する導電性部材80が設けられている。導電性部材80は、絶縁膜12上に設けられ、メモリスタ70に接続する金属配線層82と、金属配線層82と導電性部材20に含まれる金属配線層26及び導電層22とを電気的に接続する導電性ピラー84と、を含む。導電性ピラー84は、例えばダミーナノワイヤ40の表面が金属膜36で被覆されたピラーであってもよいし、金属ピラーであってもよい。その他の構成は、実施例1と同じであるため説明を省略する。
【0058】
実施例7によれば、メモリスタ70からの出力がナノワイヤダイオード50にフィードバックするように、メモリスタ70と導電性部材20(例えば金属配線層26)とを電気的に接続する導電性部材80を備える。これにより、入力端子電極30から入力されるデータと導電性部材80を介してメモリスタ70からフィードバックされるデータとが複数のナノワイヤダイオード50で処理される。このため、半導体デバイス700を用いたリザーバ回路の効率的な学習を可能とすることができる。
【0059】
導電性部材80は、入力端子電極30に近接するナノワイヤダイオード50の列と出力端子電極32に近接するナノワイヤダイオード50の列との中間よりも入力端子電極30側に位置する導電性部材20に接続することが好ましい。これにより、メモリスタ70からフィードバックされるデータが多くのナノワイヤダイオード50に入力されるようになる。よって、導電性部材80は、入力端子電極30に近接するナノワイヤダイオード50の列に位置する導電性部材20に接続することがより好ましい。
【実施例8】
【0060】
図12は、実施例8に係るコンピュータを示すブロック図である。図12のように、実施例8のコンピュータ800は、入力回路90と、リザーバ回路92と、出力回路94と、を備える。コンピュータ800は、学習データ回路96を備えていてもよい。学習時においては、学習データ回路96から入力される学習データ(教師データ)に基づいて、読み出し重み付け部98で適切な重み付けがなされるように読み出し重み付け部98が調整される。コンピュータ800が利用される際には、リザーバ回路92から学習データ回路96が切り離される。そして、入力回路90からリザーバ回路92にデータが入力され、リザーバ回路92で入力されたデータの演算処理が行われる。リザーバ回路92での演算処理の結果は出力回路94から出力される。リザーバ回路92として、実施例1から実施例7の半導体デバイスを用いることができる。
【0061】
以上、本発明の実施例について詳述したが、本発明はかかる特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
【0062】
なお、以上の説明に関して更に以下の付記を開示する。
(付記1)基板と、前記基板上に第1方向と前記第1方向に交差する第2方向に並んで設けられ、第1導電型の第1半導体層と前記第1半導体層上に設けられた前記第1導電型と反対の第2導電型の第2半導体層を含み、互いに相違する直径を有する複数のナノワイヤダイオードと、前記複数のナノワイヤダイオードの端面に接続し、前記第1方向及び前記第2方向で隣接するナノワイヤダイオード同士のうち一部のナノワイヤダイオード同士のみを接続することで前記複数のナノワイヤダイオード全体を電気的に接続する第1導電性部材と、を備える半導体デバイス。
(付記2)前記複数のナノワイヤダイオードは、直径に対する個数の分布が一定になっている、付記1記載の半導体デバイス。
(付記3)前記複数のナノワイヤダイオードは、前記第1方向及び前記第2方向に格子状に並んで設けられている、付記1または2記載の半導体デバイス。
(付記4)前記第1導電性部材は、前記複数のナノワイヤダイオードの前記基板側の第1端面に接続する導電層と、前記複数のナノワイヤダイオードの前記第1端面と反対側の第2端面に接続する金属配線層と、を含み、前記一部のナノワイヤダイオード同士は、延在方向に直交する断面の面積が互いに相違する前記導電層又は前記金属配線層を含む前記第1導電性部材によって接続されている、付記1から3のいずれか一項記載の半導体デバイス。
(付記5)前記導電層又は前記金属配線層は、幅が互いに相違することで前記断面の面積が互いに相違する、付記4記載の半導体デバイス。
(付記6)前記第1導電性部材は、前記複数のナノワイヤダイオードの前記基板側の第1端面に接続する導電層と、前記複数のナノワイヤダイオードの前記第1端面と反対側の第2端面に接続する金属配線層と、前記導電層と前記金属配線層とを接続する導電性ピラーと、を含み、前記導電性ピラーは、前記複数のナノワイヤダイオードと同じ構造をしたダミーナノワイヤと、前記ダミーナノワイヤの表面を被覆する金属膜と、を含む、付記1から3のいずれか一項記載の半導体デバイス。
(付記7)前記第1導電性部材は、前記複数のナノワイヤダイオードの前記基板側の第1端面に接続する導電層と、前記複数のナノワイヤダイオードの前記第1端面と反対側の第2端面に接続する金属配線層と、前記導電層と前記金属配線層とを接続する導電性ピラーと、を含み、前記複数のナノワイヤダイオードのうちの一部のナノワイヤダイオードは、前記第1端面に接続する前記導電層と前記第2端面に接続する前記金属配線層とが前記導電性ピラーで接続されている、付記1から3のいずれか一項記載の半導体デバイス。
(付記8)前記複数のナノワイヤダイオードはトンネルダイオードである、付記1から7のいずれか一項記載の半導体デバイス。
(付記9)前記複数のナノワイヤダイオードに電気的に接続された出力端子電極と、前記複数のナノワイヤダイオードと前記出力端子電極の間に接続されたメモリスタと、を備える、付記1から8のいずれか一項記載の半導体デバイス。
(付記10)前記メモリスタからの出力が前記複数のナノワイヤダイオードにフィードバックするように前記メモリスタと前記第1導電性部材とを電気的に接続する第2導電性部材を備える、付記9記載の半導体デバイス。
(付記11)入力回路と、前記入力回路からデータが入力されるリザーバ回路と、前記リザーバ回路で処理されたデータが入力される出力回路と、を備え、前記リザーバ回路は、基板と、前記基板上に第1方向と前記第1方向に交差する第2方向に並んで設けられ、第1導電型の第1半導体層と前記第1半導体層上に設けられた前記第1導電型と反対の第2導電型の第2半導体層を含み、互いに相違する直径を有する複数のナノワイヤダイオードと、前記複数のナノワイヤダイオードの端面に接続し、前記第1方向及び前記第2方向で隣接するナノワイヤダイオード同士のうち一部のナノワイヤダイオード同士のみを接続することで前記複数のナノワイヤダイオード全体を電気的に接続する第1導電性部材と、を有する半導体デバイスを備える、コンピュータ。
(付記12)基板上に第1方向と前記第1方向に交差する第2方向に並ぶように、第1導電型の第1半導体層と前記第1半導体層上に設けられた前記第1導電型と反対の第2導電型の第2半導体層とを含み、互いに相違する直径を有する複数のナノワイヤダイオードを形成する工程と、前記複数のナノワイヤダイオードの端面に接続し、前記第1方向及び前記第2方向で隣接するナノワイヤダイオード同士のうち一部のナノワイヤダイオード同士のみを接続することで前記複数のナノワイヤダイオード全体を電気的に接続する導電性部材を形成する工程と、を備える半導体デバイスの製造方法。
【符号の説明】
【0063】
10 基板
12、14 絶縁膜
20 導電性部材
22 導電層
24 金属ピラー
26 金属配線層
28 電極
30 入力端子電極
32 出力端子電極
34 導電性ピラー
36 金属膜
40 ダミーナノワイヤ
42、44 半導体層
50~50g ナノワイヤダイオード
52、54 半導体層
56、58 端面
70 メモリスタ
72、74 半導体層
76 酸化膜
80 導電性部材
82 金属配線層
84 導電性ピラー
90 入力回路
92 リザーバ回路
94 出力回路
96 学習データ回路
98 読み出し重み付け部
100~700 半導体デバイス
800 コンピュータ
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12