IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 国立大学法人 和歌山大学の特許一覧

特許7265258波長掃引型光コヒーレンストモグラフィー装置
<>
  • 特許-波長掃引型光コヒーレンストモグラフィー装置 図1
  • 特許-波長掃引型光コヒーレンストモグラフィー装置 図2
  • 特許-波長掃引型光コヒーレンストモグラフィー装置 図3
  • 特許-波長掃引型光コヒーレンストモグラフィー装置 図4
  • 特許-波長掃引型光コヒーレンストモグラフィー装置 図5
  • 特許-波長掃引型光コヒーレンストモグラフィー装置 図6
  • 特許-波長掃引型光コヒーレンストモグラフィー装置 図7
  • 特許-波長掃引型光コヒーレンストモグラフィー装置 図8
  • 特許-波長掃引型光コヒーレンストモグラフィー装置 図9
  • 特許-波長掃引型光コヒーレンストモグラフィー装置 図10
  • 特許-波長掃引型光コヒーレンストモグラフィー装置 図11
  • 特許-波長掃引型光コヒーレンストモグラフィー装置 図12
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-04-18
(45)【発行日】2023-04-26
(54)【発明の名称】波長掃引型光コヒーレンストモグラフィー装置
(51)【国際特許分類】
   H01S 5/34 20060101AFI20230419BHJP
   H01S 5/06 20060101ALI20230419BHJP
   H01S 5/14 20060101ALI20230419BHJP
   G01N 21/17 20060101ALI20230419BHJP
   A61B 3/10 20060101ALI20230419BHJP
   A61B 10/00 20060101ALN20230419BHJP
【FI】
H01S5/34
H01S5/06
H01S5/14
G01N21/17 625
A61B3/10 100
A61B10/00 E
【請求項の数】 5
(21)【出願番号】P 2019139400
(22)【出願日】2019-07-30
(65)【公開番号】P2021022684
(43)【公開日】2021-02-18
【審査請求日】2022-03-28
【新規性喪失の例外の表示】特許法第30条第2項適用 公開の事実1-1:平成30年10月1日、http://spie.org/conferences-and-exhibitions/photonics-west http://spie.org/OE125
【新規性喪失の例外の表示】特許法第30条第2項適用 公開の事実1-2:平成31年2月6日、SPIE Photonics West 2019
【新規性喪失の例外の表示】特許法第30条第2項適用 公開の事実1-3:平成31年3月1日、https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10939/1093911/Tunable-external-cavity-laser-diode-based-on-wavelength-controlled-self/10.1117/12.2509984.short、https://doi.org/10.1117/12.2509984
【新規性喪失の例外の表示】特許法第30条第2項適用 公開の事実2-1:平成31年2月25日、第66回応用物理学会春季学術講演会講演予稿集
【新規性喪失の例外の表示】特許法第30条第2項適用 公開の事実2-2:平成31年3月12日、第66回応用物理学会春季学術講演会
【新規性喪失の例外の表示】特許法第30条第2項適用 公開の事実3:平成30年11月24日、第21回光科学若手研究会
(73)【特許権者】
【識別番号】504145283
【氏名又は名称】国立大学法人 和歌山大学
(74)【代理人】
【識別番号】100111567
【弁理士】
【氏名又は名称】坂本 寛
(72)【発明者】
【氏名】尾崎 信彦
【審査官】淺見 一喜
(56)【参考文献】
【文献】特表2004-528705(JP,A)
【文献】特開2009-049122(JP,A)
【文献】特開2009-170775(JP,A)
【文献】特開2013-010012(JP,A)
【文献】国際公開第2013/008005(WO,A2)
(58)【調査した分野】(Int.Cl.,DB名)
H01S 5/00-5/50
G01N 21/17
A61B 3/10
A61B 10/00
JSTPlus/JMEDPlus/JST7580(JDreamIII)
(57)【特許請求の範囲】
【請求項1】
波長可変レーザ光源を備える波長掃引型光コヒーレンストモグラフィー装置であって、
前記波長可変レーザ光源は、
電流が注入されることで、レーザ発振せずに増幅自然発光により生じた種光を出射する利得チップと、
前記種光から選択された波長の光をレーザ発振させるよう構成され、レーザ発振の波長を制御可能である外部共振器と、
を備え、
前記利得チップは、1μmから1.15μmの範囲内に、第1励起準位間発光の中心波長が存在する量子ドットを有し、
前記種光は、基底準位間発光よりも大きな光強度を有する前記第1励起準位間発光を少なくとも含み、
前記外部共振器は、前記第1励起準位間発光の中心波長を含む範囲である波長可変幅内において、レーザ発振の波長を制御するよう構成され
前記波長可変幅は、前記外部共振器を用いた前記レーザ発振においてレーザ発振した波長範囲であり、
前記外部共振器を用いた前記レーザ発振において、前記基底準位間発光はレーザ発振に寄与せず、前記第1励起準位間発光はレーザ発振に寄与しており、
前記外部共振器を用いた前記レーザ発振の前記波長範囲は、前記基底準位間発光の前記中心波長を含まない範囲であるとともに、前記第1励起準位間発光の中心波長を含む範囲である
波長掃引型光コヒーレンストモグラフィー装置。
【請求項2】
前記量子ドットは、前記基底準位間発光の前記中心波長が、1.15μmよりも長波長側に存在するよう構成されている
請求項1に記載の波長掃引型光コヒーレンストモグラフィー装置。
【請求項3】
前記量子ドットは、1μmから1.15μmの前記範囲内に、第2励起準位間発光の中心波長がさらに存在するよう構成され、
前記種光は、前記第2励起準位間発光をさらに含み、
前記波長可変幅は、前記第2励起準位間発光の中心波長をさらに含む範囲である
請求項1又は請求項2に記載の波長掃引型光コヒーレンストモグラフィー装置。
【請求項4】
前記種光において、前記第2励起準位間発光は、前記基底準位間発光よりも大きい光強度を有する
請求項3に記載の波長掃引型光コヒーレンストモグラフィー装置。
【請求項5】
前記量子ドットは、1μmから1.15μmの前記範囲内に、第2励起準位間発光の中心波長がさらに存在するとともに、前記基底準位間発光の中心波長が、1.15μmよりも長波長側に存在するよう構成され、
前記種光において、前記第2励起準位間発光は、前記基底準位間発光よりも大きい光強度を有し、
前記波長可変幅は、前記基底準位間発光の前記中心波長よりも長波長側を含まず、前記第2励起準位間発光の中心波長をさらに含む範囲である
請求項1に記載の波長掃引型光コヒーレンストモグラフィー装置。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、波長掃引型光コヒーレンストモグラフィー装置及び波長可変レーザ光源に関する。
【背景技術】
【0002】
光コヒーレンストモグラフィー(OCT)は、光を用いた非侵襲医療用断層イメージングなどに用いられる。OCTにはいくつかの画像取得方式があるが、現在は、波長を連続的に変化させる波長掃引レーザ光源(SS:Swept Source)を用いた波長掃引型OCT(SS-OCT)が主流となってきている。
【先行技術文献】
【特許文献】
【0003】
【文献】特開2018-152573号公報
【発明の概要】
【0004】
SSの実現には、例えば、波長可変レーザ発振が可能な、一定の利得帯域を持った光学利得媒体を用意する必要がある。また、SS-OCTにおいて、得られる画像の光軸分解能は、光源である波長可変レーザの波長掃引幅と逆比例の関係にあるため、高い光軸分解能を得るためには、広帯域なレーザ波長可変幅が必要である。
【0005】
さらに、生体サンプルの主成分である血液中のヘモグロビンや水による光吸収が極小となる波長が、1.05μm付近に存在する。このため、SS-OCTにおいて、高分解能と高深達度(画像深さ)を両立するためには、生体内透過性の高い1.05μm付近を中心とした広帯域な波長可変幅を有する光源が必要となる。すなわち、1.1μm帯(1.0~1.15μm)において、広帯域なレーザ発振を可能とする光学利得媒体が必要となる。
【0006】
光学利得媒体として、半導体材料を用いることができれば、小型軽量かつ安価な光源が得られる。しかし、従来は、1.1μm帯で広帯域な光学利得幅を有する半導体材料の選択肢は少なく、広帯域なレーザ発振を得ることは困難であった。
【0007】
本開示の一の側面は、波長可変レーザ光源を備えるSS-OCT装置である。開示の波長可変レーザ光源は、電流が注入されることで、レーザ発振せずに広帯域な増幅自然発光により生じた種光を出射する利得チップと、前記種光から選択された波長の光をレーザ発振させるよう構成され、レーザ発振の波長を制御可能である外部共振器と、を備え、前記利得チップは、1μmから1.15μmの範囲内に、第1励起準位間発光の中心波長が存在する量子ドットを有し、前記種光は、基底準位間発光よりも大きな光強度を有する前記第1励起準位間発光を少なくとも含み、前記外部共振器は、前記第1励起準位間発光の中心波長を含む範囲である波長可変幅内において、レーザ発振の波長を制御するよう構成されている。
【0008】
本開示の他の側面は、波長可変レーザ光源である。更なる詳細は、後述の実施形態として説明される。
【図面の簡単な説明】
【0009】
図1図1は、波長掃引型光コヒーレンストモグラフィー装置の構成図である。
図2図2は、波長可変レーザ光源の構成図である。
図3図3は、利得チップの断面図である。
図4図4は、基底準位間発光、第1励起準位間発光、及び第2励起準位間発光の説明図である。
図5図5は、直線状リッジ導波路を有する利得チップのELスペクトルである。
図6図6は、J字形状リッジ導波路を有する利得チップのELスペクトルである。
図7図7は、基底準位間発光、第1励起準位間発光、及び第2励起準位間発光における電流と光強度の関係を示すグラフである。
図8図8は、注入電流が350mAである場合にレーザ発振した波長範囲を示す図である。
図9図9は、注入電流が400mAである場合にレーザ発振した波長範囲を示す図である。
図10図10は、注入電流が500mAである場合にレーザ発振した波長範囲を示す図である。
図11図11は、注入電流が600mAである場合にレーザ発振した波長範囲を示す図である。
図12図12は、注入電流毎のレーザ発振可能な波長可変幅を示す図である。
【発明を実施するための形態】
【0010】
<1.波長掃引型光コヒーレンストモグラフィー装置及び波長可変レーザ光源の概要>
【0011】
(1)実施形態に係る波長掃引型光コヒーレンストモグラフィー装置は、波長可変レーザ光源を備える。前記波長可変レーザ光源は、電流が注入されることで、レーザ発振せずに増幅自然発光により生じた種光を出射する利得チップと、前記種光から選択された波長の光をレーザ発振させるよう構成され、レーザ発振の波長を制御可能である外部共振器と、を備える。
【0012】
前記利得チップは、1μmから1.15μmの範囲内に、第1励起準位間発光の中心波長が存在する量子ドットを有する。前記種光は、基底準位間発光よりも大きな光強度を有する前記第1励起準位間発光を少なくとも含む。前記外部共振器は、前記第1励起準位間発光の中心波長を含む範囲である波長可変幅内において、レーザ発振の波長を制御するよう構成されている。かかる構成により、波長掃引の中心が1.1μm付近である、生体用・医療用に適した波長掃引型光コヒーレンストモグラフィー装置が得られる。
【0013】
(2)前記波長可変幅は、基底準位間発光の中心波長よりも長波長側を含まない範囲であるのが好ましい。
【0014】
(3)前記量子ドットは、前記基底準位間発光の前記中心波長が、1.15μmよりも長波長側に存在するよう構成されているのが好ましい。
【0015】
(4)前記量子ドットは、1μmから1.15μmの前記範囲内に、第2励起準位間発光の中心波長がさらに存在するよう構成され、前記種光は、前記第2励起準位間発光をさらに含み、前記波長可変幅は、前記第2励起準位間発光の中心波長をさらに含む範囲であるのが好ましい。
【0016】
(5)前記種光において、前記第2励起準位間発光は、前記基底準位間発光よりも大きい光強度を有するのが好ましい。
【0017】
(6)前記量子ドットは、1μmから1.15μmの前記範囲内に、第2励起準位間発光の中心波長がさらに存在するとともに、前記基底準位間発光の中心波長が、1.15μmよりも長波長側に存在するよう構成され、前記種光において、前記第2励起準位間発光は、前記基底準位間発光よりも大きい光強度を有し、前記波長可変幅は、前記基底準位間発光の前記中心波長よりも長波長側を含まず、前記第2励起準位間発光の中心波長をさらに含む範囲であるのが好ましい。
【0018】
(7)実施形態に係る波長可変レーザ光源は、電流が注入されることで、レーザ発振せずに増幅自然発光により生じた種光を出射する利得チップと、前記種光から選択された波長の光レーザ発振させるよう構成され、レーザ発振の波長を制御可能である外部共振器と、を備える。前記利得チップは、1μmから1.15μmの範囲内に、第1励起準位間発光の中心波長が存在する量子ドットを有し、前記種光は、基底準位間発光よりも大きな光強度を有する前記第1励起準位間発光を少なくとも含み、前記外部共振器は、前記第1励起準位間発光の中心波長を含む範囲である波長可変幅内において、レーザ発振の波長を制御するよう構成されている。
【0019】
<2.波長掃引型光コヒーレンストモグラフィー装置及び波長可変レーザ光源の例>
【0020】
図1は、波長掃引型光コヒーレンストモグラフィー装置(以下、「SS-OCT)10を示している。SS-OCTは、波長可変レーザ光源11と、ハーフミラー12と、参照ミラー13と、フォトディテクタ15と、を備える。波長可変レーザ光源11は、波長を連続的に掃引したレーザ光を出力する。波長可変レーザ光源11から出力された光は、ハーフミラー12によって、参照ミラー13へ進行する参照光と、サンプル14側へ進行する信号光と、に分けられる。参照ミラー13から反射した参照光とサンプル14から反射した信号光は、ハーフミラー12において合波され、干渉光となる。干渉光強度が、フォトディテクタ15によって検出される。干渉光強度の時間波形をフーリエ変換することで、信号光の光軸上の反射光強度分布を取得することができる。
【0021】
図2は、波長可変レーザ光源11を示している。波長可変レーザ光源11は、利得媒体である利得チップ21と、外部共振器22と、を備える。利得チップ21は、リッジ型導波路21Aを備える。ここでは、導波路21Aは、導波路21Aの一端面21B側がJ字形状に傾斜したJ字形状リッジ導波路として構成した。J字状の傾斜角度(端面に対して垂直方向からの傾斜角度)θは、7°とした。なお、作製した利得チップ21は、図2に示すように平面視において矩形状であり、短辺の長さが2mmであり、長辺の長さが6mmである。なお、利得チップ21は、端面から光が出射するものに限られず、利得チップ21から垂直に光を放出するものであってもよい。
【0022】
外部共振器22は、回折格子22Aと、光ファイバ(レンズドファイバ)23と、を備える。傾斜端面21Bから出射した種光は、光ファイバ23によって回折格子22Aに導かれる。回折格子22Aは、一例として、リトロー型に配置している。回折格子22Aは、回折格子角度を変更可能に構成されている。回折格子角度を変更することで、様々な波長光を利得チップ21へ帰還させることができる。特定波長の光を帰還させる手法として、回折格子22A以外にも、プリズムや、バンドパスフィルターを用いることが可能である。また、回折格子22Aへの光入射角度を変更するために、ポリゴンミラーやガルバノミラー、MEMS素子、光学スキャナなどを利用することも可能である。利得チップ21では、外部共振器22から帰還した光の波長において、レーザ発振が誘起される。
【0023】
利得チップ21において誘起されたレーザ光は、導波路21Aの外部共振器とは反対側の端面21Cから出力される。出力されたレーザ光を測定する場合、レーザ光は、端面21Cから光スペクトルアナライザまで、光ファイバ(レンズドファイバ)24によって導かれる。
【0024】
図3は、利得チップ21の断面模式図を示している。利得チップ21は、分子線エピタキシー法により形成された結晶基板に対し、半導体微細加工技術による導波路構造の形成と、電極蒸着により作製される。利得チップ21は、p-i-n接合AlGaAs/GaAs内に、InAs量子ドット(InAs-QD)が複数積層されている。より具体的には、利得チップ21は、下から、第1電極31、基板32、コンタクト層33、クラッド層34、導波層35、クラッド層36、コンタクト層37、及び第2電極39を備える。第2電極39と、クラッド層36との間には、導波路上面以外に絶縁層38が設けられている。
【0025】
導波層35は、4層の活性層(InAs-QD層)35Aを含む。各活性層35Aの上には、キャッピング層35Bが形成されている。量子ドット(InAs自己組織化量子ドット)は、分子線エピタキシー装置内で、量子ドットの原料となるIn・AsをGaAs基板上に供給することにより形成される。
【0026】
ここで、通常のInAs-QDは、1.2-1.3μm帯において広帯域な発光を示す。QDが、広帯域発光をするのは、QDがサイズ分布及びIn組成分布を有するためである。発光広帯域性を有するため、QDは、広帯域な波長可変光源として好適である。しかし、通常のInAs-QDは、1.2-1.3μm帯の発光特性を有し、水を含む生体サンプルに対する透過率が低くなるため、眼科用途などのОCTには不適であった。
【0027】
そこで、本発明者は、QDの発光波長を短波長側へシフトさせるため、QDのサイズ(高さ)が通常よりも小さくなるように、QDの成長条件を制御した。QDのサイズが小さくなると、QDの発光波長は短波長側へシフトする。
【0028】
ここで、通常のQDを形成する場合、QDの成長のための適正な成長温度が設定される。適正な成長温度は、他の成長条件にも依存するが、一般に、480℃程度である。なお、ここでの成長温度は、QDが形成される基板上の温度である。成長温度が適正な温度よりも高いと、Inの熱拡散が強く生じ、QD構造が崩れてしまう。このため、高すぎる成長温度は、一般的には好ましくはない。
【0029】
これに対して、本発明者は、成長温度を適正な温度(約480℃)よりもやや高い温度(500℃~510℃程度)に設定することで、Inの熱拡散をやや強めに生じさせた。Inの熱拡散がやや強めに生じることで、QD構造をやや崩して、QDのサイズを小さくすることができた。しかも、成長温度を高くしすぎないことでQD構造の大きな崩れを防いだ。また、QDの成長時には、QD構造の崩れを防ぐために必要なバックプレッシャー(As圧(BEP))を与え、適切な成長速度を確保した。
【0030】
また、単にQDの構造を崩すと、QDが欠陥を内包し易くなる。すなわち、QDの成長の際に、大きく非平衡状態になると、原子の拡散が強くおきて、原子が結合されていない欠陥が内包される。欠陥を内包したQDは、キャリア損失によって光学利得が十分に得られなくなるため、レーザ発振には不適である。このため、QDは欠陥が少ないことが望まれる。したがって、熱拡散を生じさせつつも、欠陥を含まないように、適切に拡散させながら、単結晶が積みあがった積層結晶が形成されるように成長条件を制御する。
【0031】
本発明者は、上記の観点から、QD層35A及びキャッピング層35Bの成長時の成長温度を制御し、サイズが通常よりも小さく、欠陥が少なく高品質であってレーザ発振可能な程度に大きな利得が得られるQDの作製に成功した。
【0032】
また、本発明者は、QDのサイズを単に小さくするのではなく、QDの第1励起準位(ES1)間発光及び第2励起準位(ES2)間発光の発光波長が、1μmから1.15μmの範囲内に存在するように、QDのサイズを制御した。これにより、1μmから1.15μm付近での高効率なレーザ発振を得ることができる。
【0033】
ここで、単一のQDは、量子閉じ込め効果によって、伝導帯と価電子帯にそれぞれ離散的な電子準位を有し、それらの準位間での電子と正孔の再結合により離散的な発光を示す。これが一定のサイズ分布をもったQDの集合体になると、図4に示すように、一定の広がりをもった離散的な発光、すなわち、基底準位(GS)間発光、ES1間発光、及びES2間発光を生じ得る。QDの発光エネルギーは、GS、ES1、及びES2の順に離散的に増加する。これに伴い、QDの発光波長は、GS、ES1、及びES2の順に短波長化する。これらの各準位間発光のうち、第1励起準位及び第2励起準位は、一般的に各準位の電子の状態数が基底準位に対して多く、基底準位間発光よりも利得が大きくなる。
【0034】
そこで、レーザ発振を得たい帯域に、ES1及びES2の準位間発光波長が存在するようにQDのサイズを制御することにより、高効率なレーザ発振を得ることができる。すなわち、ES1及びES2準位間の発光波長を、1μmから1.15μmの範囲内に存在させることで、1μmから1.15μmの範囲近傍において高効率なレーザ発振が得られる。
【0035】
本発明者が採用したQDの成長条件(実施例)は、次のとおりである。
・QDの成長速度:約0.2M/s
・QD成長時のInAs供給量:約2.0ML
・As圧(BEP):1.8×10-5Torr
【0036】
上記の条件下において、QD層35Aの成長時の基板温度は、500℃から510℃程度に設定した。この温度は、通常のQD成長温度である約480℃に比べて20℃から30℃ほど高い。
【0037】
また、キャッピング層35Bの成長時の基板温度は、450℃から460℃程度に下げた。この温度は、通常のキャッピング層成長温度よりも10℃から20℃程度高い。
【0038】
なお、成長条件は、上記に限られるものではなく、上記の観点からInの熱拡散をやや強めに生じさせることができる成長条件を適宜設定すればよい。
【0039】
図5は、上記に従って作製された利得チップ21のエレクトロルミネセンス(EL)スペクトルS2,S3,S4と、通常のQD(Reg. InAs-QDs)のフォトルミネッセンス(PL)スペクトルS1と、を示している。図5において、S2は、5mAの電流注入時のELスペクトルであり、S3は、3mAの電流注入時のELスペクトルであり、S4は、1mAの電流注入時のELスペクトルである。
【0040】
1mAから5mAの低い電流注入時には、GS間での発光ピークの波長が、1160nm(1.16μm)付近に存在していることがわかる。通常のQD(Reg. InAs-QDs)のGS間発光ピークの波長は、1250nm(1.25μm)付近に存在していることから、利得チップ21では、発光ピークが90nm程度、短波長側へシフトしている。
【0041】
図5は、J字形状ではなく、直線状のリッジ導波路を形成した以外は、上記と同様の利得チップ21によって、外部共振器22を用いることなく、ファブリ・ペロー・レージング(Fabry-Perot lasing)を行った場合のELスペクトルS11,S12をさらに示している。図5において、S11は、110mA注入時のELスペクトルであり、S12は、100mA注入時のELスペクトルである。
【0042】
図5に示すように、110mA(S11)の注入電流により、基底準位間発光の波長(1160nm付近)においてレーザ発振が観測された。光出力対注入電流特性から、レーザ発振閾値は106mAと見積もられ、100mA(S12)では、レーザ発振が生じていない。外部共振器22を用いないファブリ・ペロー・レージングの場合、発光波長の可変性に欠け、得られる発光波長も、1160nm程度である。
【0043】
図6は、導波路21Aが、J字形状リッジ導波路である以外は、図5のケースと同様の利得チップ21から得られるELスペクトルを示している。この場合も、外部共振器22は用いられていない。図6は、注入電流を100mA、200mA、300mA、400mA、500mAとした場合それぞれのELスペクトルを示している。
【0044】
直線状のリッジ導波路を備える利得チップ21の場合、図5に示すように、注入電流が106mAを超えると内部共振によりレーザ発振が誘起されていた。これに対して、J字形状リッジ導波路21Aを備える利得チップ21の場合、100mAを超える大きな電流を注入しても、レーザ発振が生じていないことがわかる。
【0045】
利得チップ21内部におけるレーザ発振が抑制されることで、100mAを超える大きな電流を注入しても、増幅自然発光が得られる。注入電流は、例えば、650mA程度まで大きくすることができた。
【0046】
利得チップ21に大きな電流を注入してもレーザ発振が生じなければ、利得チップ21による増幅自然発光は、GS間発光だけでなく、ES1間での発光を含むことができる。注入電流を十分に大きくすれば、利得チップ21による増幅自然発光は、ES2間の発光をさらに含むことができる。
【0047】
ここで、量子ドットに供給される電流密度が低い場合、GS間発光が支配的である。電流密度が大きくなるとGS間発光(中心波長1172nm)が飽和し、ES1間発光(中心波長1120nm)が増加し始める。ES1は、GSよりも状態数が多いため、GS間発光よりもES1間発光の利得は大きくなる。例えば、図6では、注入電流が100mAでは、ES1間発光の光強度は、GS間発光と同程度又はやや低い。しかし、図6において、注入電流が200mA以上になると、ES1間の発光強度は、GS間発光よりも大きくなっている。発明者の実験によれば、図7に示すように、注入電流が約120mAを超えると、ES1間発光の光強度は、GS間発光よりも大きくなる。
【0048】
電流密度を十分に大きくすると、ES1間発光だけでなく、ES2間発光(中心波長1075nm)も増加する。ES2は、GSよりも状態数が多いため、GS間発光よりもES2間発光の利得を大きくすることができる。例えば、図6では、注入電流が200mAでは、ES2間発光の光強度は、GS間発光と同程度又はやや低い。しかし、図6において、注入電流が300mA以上になると、ES2間発光の光強度は、GS間発光よりも大きくなっている。発明者の実験によれば、図7に示すように、注入電流が約220mAを超えると、ES2間発光の光強度は、GS間発光よりも大きくなる。
【0049】
このように、レーザ発振を抑制しつつ、注入電流を十分に大きくすることで、GS間発光よりも光強度が高いES1及びES2間発光を得ることができる。中心波長が異なるES1及びES2間発光の双方を活用することで、広帯域性を確保することができる。広帯域性を確保するには、ES2間発光の強度が、ES1間発光と同程度以上であるのが好ましい。図6に示すように、ES2間発光の強度を、ES1間発光と同程度以上にするには、注入電流を300mA以上、好ましくは、400mA以上とすればよい。
【0050】
図6のELスペクトルによれば、注入電流を300mA以上にした場合、生体用のSS-OCTにおいて望まれる1100nm帯(1.1μm帯)付近において、波長が離散的であるES1及びES2間発光を活用した広帯域性を確保できる。しかも、GS間発光よりも利得を大きくすることができる。なお、広帯域性は、QDのサイズ分布によっても得られている。
【0051】
なお、QDの発光波長制御に伴う成長条件の変化によってQDが欠陥を含むと、キャリア損失により、注入電流を大きくしても図6に示すようなES1及びES2間発光が得られないことが起き得る。そのため、成長条件を適切に制御して、欠陥を少なくするのが好ましい。また、成長基板サイズが大きくなるにつれ、基板上の場所によってもQDの発光特性が変化する可能性があるため、成長基板から大量に製作された利得チップ21のうち、強度や帯域といったQDの発光特性が望ましい物を選別して使用してもよい。すなわち、製作した利得チップ21に、電流(例えば、300mA以上)を注入してELスペクトルを測定し、十分に大きなES1及びES2間発光が所望の波長帯で得られているか否かを基準にして、よりQDの発光特性が優れた利得チップ21を選定すればよい。
【0052】
図6のケースで用いられた利得チップ21(導波路21AがJ字形状リッジ導波路)を、図2に示す外部共振器22付きの波長可変レーザ光源11に用いると、レーザ発振を誘起させることができる。すなわち、利得チップ21から得られる広帯域な増幅自然発光(GS間発光、ES1間発光、及びES2間発光を含む)を種光とし、種光を外部共振器22に導くことで、回折格子22Aによって選択された特定の波長の光が、利得チップ21に帰還し、レーザ発振する。
【0053】
外部共振器22を用いた場合、レーザ発振は、注入電流を約300mA以上にすると誘起され、300mA未満では、レーザ発振は誘起されなかった。すなわち、外部共振器22を用いた場合、レーザ発振の閾値は300mA程度であることが確認された。
【0054】
レーザ発振の閾値が300mA程度であったことから、図6に示す100mA及び200mAの場合に得られている増幅自然発光では、レーザ発振には不十分であることがわかる。図6において、GS間発光の波長(1172nm付近)における発光強度は、300mA以上に注入電流を大きくしても、飽和しており、GS間発光に寄与するキャリアの遷移レートの増大は見込めない。一方で、ES1およびES2間発光の強度は、注入電流を300mA以上に増加するに伴って増加しており、発光に寄与するキャリアの遷移レートが増加していくことを示している。このことから、利得チップ21においては、GS間発光はレーザ発振に寄与せず、閾値以上の注入電流増加に応じて発光強度を大きくできるES1およびES2間発光を利用することで、レーザ発振が可能となる。
【0055】
外部共振器22における回折格子22Aの入射光角度を変更することで、様々な波長光を利得チップ21に帰還させることができる。図8図11は、帰還させる波長を様々に変化させた場合のレーザ発振の測定結果を示している。
【0056】
図8は、利得チップ21への注入電流Iが350mAの場合を示す。この場合、レーザ光は、波長λECLpeak=1092~1125nmの範囲で生じ、波長可変範囲Δλは約33nmである。レーザ発振した波長範囲からして、利得チップ21への注入電流Iが350mAの場合、ES1間発光及びES2間発光がレーザ発振に用いられ、GS間発光はレーザ発振に用いられていないことがわかる。
【0057】
図9は、利得チップ21への注入電流Iが400mAの場合を示す。この場合、レーザ光のピーク波長λECLpeakは、1084~1135nmであり、波長可変範囲Δλは約51nmである。レーザ発振した波長範囲からして、利得チップ21への注入電流Iが400mAの場合も、ES1及びES2間発光がレーザ発振に用いられ、GS間発光はレーザ発振に用いられていないことがわかる。
【0058】
図10は、利得チップ21への注入電流Iが500mAの場合を示す。この場合、レーザ光は、波長λECLpeak=1078~1139nmの範囲で生じ、波長可変範囲Δλは約61nmである。レーザ発振した波長範囲からして、利得チップ21への注入電流Iが500mAの場合も、ES1及びES2間発光がレーザ発振に用いられ、GS間発光はレーザ発振に用いられていないことがわかる。
【0059】
図11は、利得チップ21への注入電流Iが600mAの場合を示す。この場合、レーザ光は、波長λECLpeak=1074~1139nmの範囲で生じ、波長可変範囲Δλは約65nmである。レーザ発振した波長範囲からして、利得チップ21への注入電流Iが600mAの場合も、ES1及びES2間発光がレーザ発振に用いられ、GS間発光はレーザ発振に用いられていないことがわかる。
【0060】
図12は、図8から図11に示すレーザ発振した波長範囲を、横軸を波長とし、縦軸を注入電流としたグラフに表したものである。図12から明らかなように、注入電流を大きくするほど、レーザ発振する波長範囲が広くなることがわかる。
【0061】
特に、注入電流Iが600mAの場合、約1100nm(1.1μm)を中心とした65nmの広いレーザ発振可能な波長可変幅が得られた。したがって、この利得チップ21を有する波長可変レーザ光源11を備えるSS-OCTは、1.1μm帯での波長掃引が可能であり、高分解能かつ高深達度なOCTを実現可能である。
【0062】
<3.付記>
本発明は、上記実施形態に限定されるものではなく、様々な変形が可能である。
【符号の説明】
【0063】
10 :波長掃引型光コヒーレンストモグラフィー装置
11 :波長可変レーザ光源
12 :ハーフミラー
13 :参照ミラー
14 :サンプル
15 :フォトディテクタ
21 :利得チップ
21A :J字形状リッジ導波路
21B :傾斜端面
21C :反対端面
22 :外部共振器
22A :回折格子
23 :光ファイバ
24 :光ファイバ
31 :第1電極
32 :基板
33 :コンタクト層
34 :クラッド層
35 :導波層
35A :活性層(量子ドット層)
35B :キャッピング層
36 :クラッド層
37 :コンタクト層
38 :絶縁層
39 :第2電極
ES1 :第1励起準位間発光
ES2 :第2励起準位間発光
GS :準位間発光
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12