(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-04-19
(45)【発行日】2023-04-27
(54)【発明の名称】超音波発生装置
(51)【国際特許分類】
H04R 1/34 20060101AFI20230420BHJP
A61B 8/00 20060101ALN20230420BHJP
【FI】
H04R1/34 330B
A61B8/00
(21)【出願番号】P 2019220988
(22)【出願日】2019-12-06
【審査請求日】2022-07-11
【新規性喪失の例外の表示】特許法第30条第2項適用 平成30年12月10日の超音波研究会において発表 平成30年12月10日の超音波研究会で頒布された電気情報通信学会技術研究報告に発表
(73)【特許権者】
【識別番号】000004547
【氏名又は名称】日本特殊陶業株式会社
(74)【代理人】
【識別番号】110000497
【氏名又は名称】弁理士法人グランダム特許事務所
(72)【発明者】
【氏名】森田 剛
(72)【発明者】
【氏名】陳 康
(72)【発明者】
【氏名】飯島 高志
(72)【発明者】
【氏名】入江 喬介
【審査官】大石 剛
(56)【参考文献】
【文献】国際公開第2006/028249(WO,A1)
【文献】国際公開第2013/183302(WO,A1)
【文献】特表2018-514355(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H04R 1/34
A61B 8/00
(57)【特許請求の範囲】
【請求項1】
超音波を発生させる超音波発生源と、
前記超音波発生源で発生した前記超音波を集束させる集束部と、
を有する超音波発生装置であって、
前記集束部は、
放物面とされた第1反射面を備え、前記超音波発生源で発生した前記超音波を前記第1反射面で反射させる第1反射部と、
前記第1反射面に対向して配置されるとともに放物面とされた第2反射面を備え、前記第1反射面で反射した前記超音波を前記第2反射面で反射させる第2反射部と、
前記第2反射面で反射した前記超音波が導入部を介して自身の内部に導入されるように配置され、前記超音波の伝送経路となる導波路と、
を有し、
前記第2反射面で反射した前記超音波が平面波として反射されるように、前記第2反射面の焦点と前記第1反射面の焦点とが配置されてなる
超音波発生装置。
【請求項2】
前記超音波発生源は、前記第1反射面に対向しつつ前記第2反射面の周りに環状に配置されており、
前記第1反射面は、前記導波路の前記導入部の周りに環状に配置されている
請求項1に記載の超音波発生装置。
【請求項3】
前記第1反射面の放物面および前記第2反射面の放物面は、回転放物面である
請求項1又は請求項2に記載の超音波発生装置。
【請求項4】
前記超音波発生源は、30kHz以上の周波数で前記超音波を発生させる
請求項1から請求項3のいずれか一項に記載の超音波発生装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、超音波発生装置に関するものである。
【背景技術】
【0002】
現在、診断や治療などの様々な用途で超音波が用いられており、特許文献1には、超音波を利用する技術の一例である超音波プローブや超音波診断装置が開示されている。特許文献1で開示される超音波プローブは、超音波を発生する超音波発生源と、超音波発生源で発生した超音波を伝達する超音波伝達部材と、超音波伝達部材によって伝達された超音波ビームの方向を変換する方向変換手段と、を含む構成をなす。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
ところで、超音波発生装置の利用が求められる状況としては、超音波導波管などの導波路を用いて超音波を伝送することが望ましい場合がある。本願の発明者は、このような要求に対応し得る構成の一つとして、導波路外に配置された超音波発生源で発生した超音波を導波路外に配置された集束器によって集束させて導波路内に導くような構成を想定した。しかし、単に超音波を集束させて導波路内に導くだけでは、導波路内において超音波の減衰が大きくなってしまうため、導波路においてより遠方までより強い超音波を伝送することが難しい。一方で、本願の発明者は、別の構成として、導波路内の所望の位置に超音波発生源を配置する構成も想定した。この構成によれば、超音波発生源を導波路内において超音波を伝送すべき対象の位置に近づけて配置することができるため、上述の減衰を抑えることができる。しかし、超音波発生源を導波路内に配置する場合、超音波発生源や周辺部品のサイズや構造などが導波路によって制約を受けてしまう。
【0005】
本発明は、上述した課題の少なくとも一つを解決するためになされたものであり、導波路を用いて超音波を伝送し得る超音波発生装置において、導波路内での超音波の減衰を抑えることができる構成を、超音波発生源のサイズや構成が導波路によって制限されにくい構成で実現することを目的とする。
【課題を解決するための手段】
【0006】
本発明の一つである超音波発生装置は、
超音波を発生させる超音波発生源と、前記超音波発生源で発生した前記超音波を集束させる集束部と、を有する超音波発生装置であって、
前記集束部は、
放物面とされた第1反射面を備え、前記超音波発生源で発生した前記超音波を前記第1反射面で反射させる第1反射部と、
前記第1反射面に対向して配置されるとともに放物面とされた第2反射面を備え、前記第1反射面で反射した前記超音波を前記第2反射面で反射させる第2反射部と、
前記第2反射面で反射した前記超音波が導入部を介して自身の内部に導入されるように配置され、前記超音波の伝送経路となる導波路と、
を有し、
前記第2反射面で反射した前記超音波が平面波として反射されるように、前記第2反射面の焦点と前記第1反射面の焦点とが配置されてなる。
【0007】
上記の超音波発生装置は、導波路の外側に超音波発生源を配置することができ、この超音波発生源からの超音波を集束部によって集束させた上で導波路内に導くことができる。よって、上記の超音波発生装置は、導波路内に超音波発生源を配置する構成と比較して、超音波発生源のサイズや構成が導波路によって制限されにくくなる。しかも、上記の超音波発生装置は、超音波を平面波として導波路内に導くことができるため、導波路内での超音波の減衰を抑えることができる。本明細書において、平面波とは、波の伝搬方向が同じ方向に揃っている波のことを意味する。
【0008】
上記の超音波発生装置において、超音波発生源は、第1反射面に対向しつつ第2反射面の周りに環状に配置されていてもよい。そして、第1反射面は、導波路の導入部の周りに環状に配置されていてもよい。
【0009】
上記の超音波発生装置は、より大きな超音波発生源で発生した超音波を平面波に変換して狭い導波路内に導入し得る構成を、装置全体の大型化を抑えた効率的な配置によって実現することができる。
【0010】
上記の超音波発生装置において、第1反射面の放物面および第2反射面の放物面は、回転放物面であってもよい。
【0011】
上記の超音波発生装置は、超音波発生源からの超音波を集束させた上で平面波として導波路内に導き得る構成を、互いに対向して配置され且つ回転放物面とされた第1反射面および第2反射面を用いてコンパクトに実現することができる。
【0012】
上記の超音波発生装置において、超音波発生源は、30kHz以上の周波数で超音波を発生させるように動作してもよい。
【0013】
上記の超音波発生装置は、30kHz以上の周波数が適した用途に利用することができる。また、超音波発生源から発生する周波数が30kHz以上であれば、30kHz未満である場合よりもエネルギー密度をより高くすることができ、超音波によってより強い作用を与えやすくなる。
【発明の効果】
【0014】
本発明に係る超音波発生装置は、導波路内での超音波の減衰を抑えることができる構成を、超音波発生源のサイズや構成が導波路によって制限されにくい構成で実現することができる。
【図面の簡単な説明】
【0015】
【
図1】
図1は、第1実施形態に係る超音波発生装置を例示する断面概略図である。
【
図2】
図2は、
図1の超音波発生装置における超音波発生源及び第2反射部を軸A1の方向に見た平面図である。
【
図3】
図3は、軸A1と直交する投影面に第1反射面、第2反射面、導入部、対向面を投影した場合のそれぞれの外縁の関係を説明する説明図である。
【
図4】
図4は、
図1の超音波発生装置を備えた超音波発生システムを例示する説明図である。
【
図5】
図5は、シミュレーションで比較対象となる比較例1に関する第1構成を例示する説明図である。
【
図6】
図6は、シミュレーションで比較対象となる比較例2に関する第2構成を例示する説明図である。
【
図7】
図7は、シミュレーションで比較対象となる比較例3に関する第3構成を例示する説明図である。
【
図8】
図8は、第1実施形態の一態様である第4構成を例示する説明図である。
【
図9】
図9は、第1のシミュレーションの結果を示すグラフであり、位相差とr/aとの関係を示すグラフである。
【
図10】
図10は、第2のシミュレーションの結果を示すグラフであり、エネルギーと時間との関係を示すグラフである。
【発明を実施するための形態】
【0016】
1.第1実施形態
1-1.超音波発生装置の構成
図1で示される超音波発生装置1は、超音波を発生させる装置であり、超音波診断装置、超音波治療装置、キャビテーション発生装置、などに用いられる装置である。
【0017】
超音波発生装置1は、超音波を発生させる超音波発生源4と、超音波発生源4で発生した超音波を集束させる集束部6と、を有する装置である。
【0018】
超音波発生源4は、例えば、トランスデューサなどの超音波発生素子によって構成されている。但し、超音波を発生し得る手段であれば、素子以外の公知の超音波発生装置によって超音波発生源4が構成されていてもよい。超音波発生源4は、軸A1の方向に沿うように第1反射面12に向かう平面波として超音波を発生させる。超音波発生源4は、例えば、30kHz以上の周波数で超音波を発生させる。
【0019】
集束部6は、超音波発生源4で発生した超音波を集束させて伝送する器具である。集束部6は、第1反射部10、第2反射部20、導波路8を備える。
【0020】
第1反射部10は、超音波発生源4で発生した超音波を第1反射面12で反射させる反射器である。第1反射面12は、第1反射部10における超音波発生源4側の面であり、導波路8側に向かって膨らむ構成をなす凸な放物面である。第1反射面12は、軸A1を通る所定の仮想平面において軸A1を中心とするように描かれる放物線を、軸A1を中心として回転させた回転放物面とされている。第1反射部10は、30kHz以上の周波数帯で損失が小さい材料によって構成されることが望ましい。
図1で示される代表例では、第1反射部10は、金属(例えばジェラルミン)によって構成され、第1反射面12は、金属の表面として構成されている。
【0021】
第1反射面12は、後述される導波路8における導入部8Aの周りに環状に配置されている。
図1のように、導波路8において第1反射面12に隣接して設けられた端部が導入部8Aとされており、導入部8Aから軸A1を中心とする径方向外側に張り出すように第1反射面12が配置されている。
【0022】
第2反射部20は、第1反射面12に対向して配置される反射器である。第2反射部20は、第2反射面22を備え、第1反射面12で反射した超音波を第2反射面22で反射させる。第2反射面22は、第2反射部20における第1反射面12側の面であり、軸A1の方向において導波路8とは反対側に凹む放物面である。第2反射面22は、軸A1を通る所定の仮想平面において軸A1を中心とするように定められる放物線を、軸A1を中心として回転させた回転放物面とされている。第2反射部20は、30kHz以上の周波数帯で損失が小さい材料によって構成されることが望ましい。
図1で示される代表例では、第2反射部20は、金属(例えばジェラルミン)によって構成され、第2反射面22は、金属の表面として構成されている。
【0023】
導波路8は、超音波の伝送経路となる部位である。導波路8は、中実の柱状に構成されている。導波路8は、第2反射面22で反射した超音波が導入部8Aを介して自身の内部に導入されるように配置される。導入部8Aは、導波路8の端部であり、第1反射面12に隣接する露出面を有する。導波路8は、この露出面を導入面として超音波を自身の内部に導入する。導入部8Aの表面である露出面は、例えば外縁が円形状をなす。更に、導入部8Aの露出面は、平坦面として構成されている。導波路8は、導入部8Aから軸A1の方向に沿って延びる軸部8Bを有する。軸部8Bは、自身の外周面が軸A1を中心とする円筒面である中実の軸部であり、軸部8Bの軸の中心が軸A1となっている。導波路8は、導入部8Aを介して導入される平面波である超音波が軸部8B内を通るように配置され、導入部8Aから導入された超音波は軸部8Bに沿った経路で移る。導波路8が超音波を誘導する誘導先は特に限定されず、生体内であってもよく、その他の領域であってもよい。
【0024】
図1のように、超音波発生装置1は、超音波発生源4が第1反射面12に対向して配置されている。具体的には、超音波発生源4における一方側の面である対向面4Aが第1反射面12と向かい合っている。
【0025】
図2のように、超音波発生源4は、第1反射面12に対向しつつ第2反射面22の周りに環状に配置されている。従って、超音波発生源4は、第2反射面22の周囲から軸A1に沿った方向に超音波を発することができるようになっている。超音波発生源4は、所定の厚さで板状に構成されている。
【0026】
図3には、第1反射面12(
図1)、第2反射面22(
図1)、導入部8A(
図1)、対向面4A(
図1)が投影面P1(
図1)に投影されたときの投影面P1での外縁の関係が示されている。投影面P1は、第2反射面22の軸A1と直交する仮想的な平面であり、
図1では一点鎖線で示されている。投影面P1に第1反射面12を平行投影によって投影した投影図形が第1投影図形であり、
図3では、第1投影図形の外縁が符号S1で示される。また、投影面P1に第2反射面22を平行投影によって投影した投影図形が第2投影図形であり、
図3では、第2投影図形の外縁が符号S2で示される。更に、投影面P1に導入部8Aを平行投影によって投影した投影図形が第3投影図形であり、
図3では、第3投影図形の外縁が符号S3で示される。更に、投影面P1に超音波発生源4の対向面4Aを投影した投影図形が第4投影図形であり、
図3では、第4投影図形の外縁が符号S4で示される。また、
図3では、投影面P1と中心軸A1とが交差する位置が符号Cで示される。
図1、
図3では、第1投影図形の外縁の径がB1であり、第2投影図形の外縁の径がB2であり、第3投影図形の外縁の径がB3であり、第4投影図形の外縁の径がB4である。
図1、
図3で例示される超音波発生装置1は、B1>B2であり、B1>B3であり、B4>B2であり、B4>B3である。より具体的には、超音波発生装置1は、B1>B4>B2>B3である。
図3の例では、第1投影図形、第2投影図形、第3投影図形、第4投影図形の各外縁がいずれも円形をなし、各図形の外縁の直径が上記関係となっている。
【0027】
1-2.超音波発生システムの動作
図4は、超音波発生装置1を備えた超音波発生システム100の例である。超音波発生システム100は、超音波診断装置として構成され、超音波発生装置1に加え、信号送受信回路40や信号表示装置42を含む。超音波発生システム100は、超音波発生装置1で生じた超音波を対象物に照射し、超音波が対象物で反射して生じる超音波を画像信号に変換して画像表示を行うシステムである。
【0028】
信号送受信回路40は、超音波発生源4を通じて超音波の送受信を行う装置である。信号送受信回路40は、超音波発生源4に超音波を発生させるための電気信号(送信信号)を出力する機能と、超音波発生源4が超音波を受けることで生じる電気信号(受信信号)を受信する機能とを有する。送信信号は、例えば、トランスデューサとして構成された超音波発生源4を駆動するための駆動信号であり、受信信号は、トランスデューサとして構成された超音波発生源4が超音波を受信したときに生じる電気信号である。
【0029】
超音波発生システム100は、以下のように動作する。まず、信号送受信回路40から超音波発生源4へと送信信号が与えられた場合に送信信号に応じて超音波発生源4が超音波を発する。超音波発生源4で発生する超音波は、軸A1の方向に向かう平面波である。超音波発生源4で発生した超音波は、集束部6において第1反射面12で反射し、第1反射面12の焦点(点Fs)に向かって集束し、点Fs付近を通過した後に第2反射面22で反射する。
【0030】
集束部6は、第2反射面22で反射した超音波が平面波として反射されるように、第2反射面22の焦点と第1反射面12の焦点とが配置されてなる。具体的には、第2反射面22の焦点と第1反射面12の焦点とが点Fsで一致している。つまり、点Fsは、第2反射面22の焦点でもあり、第1反射面12の焦点でもある。このように構成されているため、第1反射面12で反射して点Fsに向かって集束するように集められた超音波は、第2反射面22で反射して平面波となる。このように第2反射面22で反射して平面波となった超音波は、導入部8Aを通過して導波路8に導入される。導波路8内に入り込んだ超音波は、導波路8で伝送されて対象物に照射される。そして、対象物に照射された超音波は、対象物で反射し、対象物の画像情報を乗せた超音波として導波路8内を戻り、超音波発生源4によって受けられる。超音波発生源4によって超音波が受けられると、超音波発生源4が受けた超音波に応じた電気信号が信号送受信回路40によって受信され、受信された信号に含まれる画像情報が信号表示装置42によって表示される。なお、超音波発生源4が受信した超音波(画像情報を含む超音波)に基づいて画像表示を行う技術は、超音波診断装置などに用いられる公知技術を採用し得る。
【0031】
1-3.シミュレーション
以下の説明は、超音波発生装置1及び比較例のシミュレーション結果に関する。
シミュレーションでは、
図5~
図8の構成が用いられた。
【0032】
図5の構成は、超音波発生源4を構成する素子4Yを、導波路108Aの端部を覆うようにそのまま導波路108Aに取り付けた構成である。
図5の構成では、導波路108Aは、中実の柱状に構成され、自身の端部が超音波導入部として機能する。
図5では、素子4Yのうち、導波路108Aの端部から外れる領域は省略されている。以下の説明では、
図5の構成が第1構成である。
【0033】
図6は、第1反射部10と同様の湾曲状態の反射部110Bを備えた超音波発生装置である。
図6の超音波発生装置は、第1反射面12(
図1)と同様の回転放物面である反射面112Bによって超音波発生源4で発生する超音波を反射させ、導波路108B内に導く構成である。導波路108Bは、中実の柱状に構成され、自身の端部が超音波導入部として機能し、当該端部が反射面112Bの焦点Fc付近に位置する。更に、導波路108Bは、反射面112Bの軸A2と平行に続いている。導波路108Bの中心は、軸A2と一致している。
図6の構成において、超音波発生源4を構成する素子4Zの厚さは、
図5の素子4Yと同一である。
図6~
図8の構成で用いられる素子4Zは同一の構成である。素子4Zは、
図1の超音波発生源4と同様の構成であり、外径D2及び内径D1が
図1の超音波発生源4と異なる。素子4Zは、外径D2が40mmであり、内径D1が16mmであり、環状且つ円板状をなす。
図6の構成では、素子4Zで発生した超音波は、軸A2に沿って移動する平面波として反射面112Bに入射し、反射面112Bで1回反射して焦点Fcに向かって集束し、導波路108B内に入り込む。なお、
図5~
図8における超音波発生源4の周波数は、1.45MHzである。以下の説明では、
図6の構成が第2構成である。
【0034】
図7の構成は、
図6の構成と比較して反射面122Cが設けられている点のみが
図6と異なる。具体的には、
図7の構成で用いられる導波路108Cは、反射面122Cが設けられている点のみが
図6の構成で用いられる導波路108Bと異なる。反射面122Cは、反射面112Bで反射した超音波を平面波に変換して導波路108Cの奥へと導く反射面(回転放物面)である。
図7の構成も、第1反射面12(
図1)と同様の回転放物面である反射面112Bによって超音波発生源4(具体的には素子4Z)で発生する超音波を反射させ、導波路108C内に導く構成である。但し、反射面112Bで反射した超音波のうち、一部の超音波は反射面122Cによって平面波に変換される。以下の説明では、
図7の構成が第3構成である。
【0035】
図8の構成は、
図1に示される超音波発生装置1と同様の構成である。以下の説明では、
図8の構成が第4構成である。
図8の構成において、超音波発生源4は、
図6、
図7の構成に用いられる素子4Zであり、導波路8の形状及び径は、
図5~
図7で用いられる導波路108A,108B及び導波路108Cにおける反射面122Cよりも奥側の部分と同一である。
【0036】
第1のシミュレーションでは、
図5~
図8の4種類の超音波発生装置において導波路108A,108B,108C,8の端部から一定距離L1だけ離れた仮想面J(
図5~
図8参照)での位相差が算出された。第1のシミュレーションでは、L1が1mmとされている。具体的には、第1~第4構成の各々において、L1=1mmの位置の仮想面Jにおける導波路の軸の中心を原点としたときの中心からの径方向の距離がrとされ、導波路の径がaとされている。第1~第4構成の各々において、aは1mmである。第1のシミュレーションでは、r/aを0~1まで変化させて、仮想面Jにおける径方向の各位置(各r/a)での位相差が求められた。r/aは、径方向の位置を特定する値であり、r/aが0に近づくほど導波路の軸の中心に近い位置であり、r/aが1に近づくほど導波路の外周面に近い位置である。径方向の各位置(各r/a)での位相差は、r/a=0の位置(径方向中心)の超音波の位相と各位置(各r/a)の超音波の位相との差である。
図9は、第1のシミュレーションの結果を示すグラフである。
図9のグラフにおいて、縦軸は位相差(°)であり、横軸は径方向の座標を示す位置(r/a)である。
図9のように、第1実施形態に相当する第4構成(
図8)は、
図6で示される第2構成や
図7で示される第3構成と比較して、r/aが大きくなっても位相差が大きくならない。つまり、第4構成では、導波路の外周面に近い位置を通る超音波と導波路の中心を通る超音波とで位相差が小さいため、導波路を進行する過程で減衰がより生じにくい。
【0037】
第2のシミュレーションでは、第1~第4構成のそれぞれについて、導波路108A,108B,108C,8の端部から一定距離L1だけ離れた仮想面J(
図5~
図8参照)でのエネルギーが算出された。第2のシミュレーションでの距離L1は、5mmである。
図10は、第2のシミュレーションの結果を示すグラフである。
図10には、第1~第4構成のそれぞれにおける仮想面J(
図5~
図8参照)でのエネルギーと時間との関係が示される。
図10のグラフにおいて、縦軸は、第1~第4構成における仮想面J(
図5~
図8参照)でのエネルギーであり、横軸は、第1~第4構成における超音波発生源の駆動開始からの経過時間である。
図10のシミュレーションでは、第1~第4構成の各々において導波路の端部から仮想面Jまでの距離L1は5mmである。
図10のように、第1実施形態に相当する第4構成(
図8)では、第1~第3構成と比較して、導波路の端部からある程度奥まった仮想面Jでも高いエネルギーが得られることが確認された。
【0038】
1-4.超音波発生装置の作用及び効果の例
超音波発生装置1は、導波路8の外側に超音波発生源4を配置することができ、この超音波発生源4からの超音波を集束部6によって集束させた上で導波路8内に導くことができる。よって、超音波発生装置は1、導波路8内に超音波発生源を配置する構成と比較して、超音波発生源4のサイズや構成が導波路8によって制限されにくくなる。具体的には、超音波発生装置1は、超音波発生源4を大型化させやすく、より強い超音波を導波路8内に導きやすくなる。しかも、超音波発生装置1は、超音波を平面波として導波路8内に導くことができるため、導波路8内での超音波の減衰を抑えることができる。
【0039】
超音波発生装置1では、超音波発生源4は、第1反射面12に対向しつつ第2反射面22の周りに環状に配置されている。そして、第1反射面12は、導波路8の導入部8Aの周りに環状に配置されている。よって、超音波発生装置1は、より大きな超音波発生源4で発生した超音波を平面波に変換して狭い導波路8内に導入し得る構成を、装置全体の大型化を抑えた効率的な配置によって実現することができる。
【0040】
超音波発生装置1は、30kHz以上の周波数が適した用途に利用することができる。また、超音波発生源4で発生する周波数が30kHz以上であれば、30kHz未満である場合よりもエネルギー密度をより高くすることができ、超音波によってより強い作用を与えやすくなる。
【0041】
<他の実施形態>
本開示は、上記記述及び図面によって説明した実施形態に限定されるものではない。上述又は後述の実施形態の特徴は、矛盾しない範囲であらゆる組み合わせが可能である。また、上述又は後述の実施形態のいずれの特徴も、必須のものとして明示されていなければ省略することもできる。更に、上述した実施形態の特徴は、次のように変更されてもよい。
【0042】
上記実施形態では、
図4のように超音波発生システム100が超音波診断装置として構成された例を示したが、超音波発生システム100は超音波治療装置であってもよい。或いは、超音波発生システム100は対象物(例えば、液体)に超音波を照射して気泡などのキャビテーションを発生させるキャビテーション発生装置であってもよい。
【0043】
第1実施形態では、
図3のように、投影面P1において第1投影図形の外縁S1の内側に第4投影図形の外縁S4が収まるように構成されていたが、投影面P1において第4投影図形の外縁S4が第1投影図形の外縁S1の外側となるように構成されていてもよい。
【0044】
第1実施形態では、
図3のように、投影面P1において第3投影図形の外縁S3の内側に第2投影図形の外縁S2が収まるように構成されていたが、投影面P1において第3投影図形の外縁S3が第2投影図形の外縁S2の外側となるように構成されていてもよい。
【0045】
なお、今回開示された実施の形態は全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、今回開示された実施の形態に限定されるものではなく、特許請求の範囲によって示された範囲内又は特許請求の範囲と均等の範囲内での全ての変更が含まれることが意図される。
【符号の説明】
【0046】
1…超音波発生装置
4…超音波発生源
4A…対向面
6…集束部
8…導波路
8A…導入部
10…第1反射部
12…第1反射面
20…第2反射部
22…第2反射面
A1…軸(第1反射面の軸、第2反射面の軸)
P1 投影面