IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ パナソニックIPマネジメント株式会社の特許一覧

特許7266183レーザ装置及びレーザ装置の除湿管理方法
<>
  • 特許-レーザ装置及びレーザ装置の除湿管理方法 図1
  • 特許-レーザ装置及びレーザ装置の除湿管理方法 図2
  • 特許-レーザ装置及びレーザ装置の除湿管理方法 図3
  • 特許-レーザ装置及びレーザ装置の除湿管理方法 図4
  • 特許-レーザ装置及びレーザ装置の除湿管理方法 図5
  • 特許-レーザ装置及びレーザ装置の除湿管理方法 図6
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-04-20
(45)【発行日】2023-04-28
(54)【発明の名称】レーザ装置及びレーザ装置の除湿管理方法
(51)【国際特許分類】
   H01S 5/068 20060101AFI20230421BHJP
   H01S 5/022 20210101ALI20230421BHJP
   H01S 3/00 20060101ALI20230421BHJP
【FI】
H01S5/068
H01S5/022
H01S3/00 G
【請求項の数】 6
(21)【出願番号】P 2020527489
(86)(22)【出願日】2019-06-21
(86)【国際出願番号】 JP2019024824
(87)【国際公開番号】W WO2020004288
(87)【国際公開日】2020-01-02
【審査請求日】2021-12-24
(31)【優先権主張番号】P 2018124853
(32)【優先日】2018-06-29
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】314012076
【氏名又は名称】パナソニックIPマネジメント株式会社
(74)【代理人】
【識別番号】110001427
【氏名又は名称】弁理士法人前田特許事務所
(72)【発明者】
【氏名】龍堂 誠
(72)【発明者】
【氏名】西尾 正敏
(72)【発明者】
【氏名】王 静波
【審査官】村井 友和
(56)【参考文献】
【文献】特開2012-024778(JP,A)
【文献】特開2012-094922(JP,A)
【文献】特開2017-103414(JP,A)
【文献】特開2017-191907(JP,A)
【文献】特開2018-028814(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01S 5/068
H01S 5/022
H01S 3/00
H01S 3/02
(57)【特許請求の範囲】
【請求項1】
レーザ発振器と、
前記レーザ発振器の内部を除湿するための除湿器と、
前記除湿器の運転を制御する制御部と、を備え、
前記制御部は、前記レーザ発振器の内部の水蒸気圧を前記レーザ発振器の内部に単分子層よりも多く水分子が吸着した状態の第1の水蒸気圧以上で、かつ前記レーザ発振器の内部で結露が生じ始める第2の水蒸気圧よりも低くするように前記除湿器を制御することを特徴とするレーザ装置。
【請求項2】
請求項1に記載のレーザ装置において、
前記除湿器は、内部に吸着剤を有するデシケータと、前記デシケータに接続されたエアーポンプと、を含み、
前記デシケータと前記エアーポンプと前記レーザ発振器とを接続する配管と前記デシケータとを介して、前記レーザ発振器の内部と前記エアーポンプとの間で気流を循環させて前記レーザ発振器の内部を除湿することを特徴とするレーザ装置。
【請求項3】
請求項1または2に記載のレーザ装置において、
前記除湿器を運転させて、所定の時間経過後に前記レーザ発振器の内部の水蒸気圧の低下が見られない場合は、前記制御部は作業者に対して警告を報知することを特徴とするレーザ装置。
【請求項4】
請求項1ないし3のいずれか1項に記載のレーザ装置において、
前記レーザ発振器が、前記第1の水蒸気圧以上でかつ前記第2の水蒸気圧よりも低い場合に、外部にレーザ光を出射可能に構成されていることを特徴とするレーザ装置。
【請求項5】
レーザ発振器と、前記レーザ発振器の内部を除湿するための除湿器とを備えたレーザ装置の除湿管理方法であって、
前記レーザ発振器の内部の水蒸気圧を、前記レーザ発振器の内部に単分子層よりも多く水分子が吸着した状態の第1の水蒸気圧以上で、かつ前記レーザ発振器の内部で結露が生じ始める第2の水蒸気圧よりも低くなるようにすることを特徴とするレーザ装置の除湿管理方法。
【請求項6】
請求項5に記載のレーザ装置の除湿管理方法において、
前記除湿器を運転させて、所定の時間経過後に前記レーザ発振器の内部の水蒸気圧の低下が見られない場合は、作業者に対して警告を報知することを特徴とするレーザ装置の除湿管理方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、除湿器を有するレーザ装置及びその除湿管理方法に関する。
【背景技術】
【0002】
従来、大出力のレーザ装置では、温度上昇による性能低下を防止するため、内部のレーザ光源や光学部品を水冷して温度を安定化させる構成が採用されている。一方、レーザ装置の温度が所定以下になると、内部で結露が生じ、レーザ光が結露水に吸収されたり散乱されたりして、レーザ出力が安定しないという問題があった。
【0003】
そこで、特許文献1には、レーザ発振器内部の光学部品を冷却するとともに、当該光学部品の表面にドライエアーを吹き付けることで、結露を防止する技術が提案されている。
【先行技術文献】
【特許文献】
【0004】
【文献】特開平04-356981号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
ところで、結露を防止するために、装置内部の露点を結露点より低い所定の管理基準以下となるように管理することが一般に行われている。また、特許文献1に開示された従来の構成では、内部の結露防止を目的としているが、露点管理についての言及はされていない。
【0006】
一方、レーザ装置、特にレーザ発振器内の露点を単に結露点よりも低くなるように管理するのみではレーザ出力が安定しない場合があることが本願発明者等の解析によりわかった。
【0007】
本発明は、かかる点に鑑みてなされたもので、その目的は、内部での結露を防止するとともに、レーザ出力の変動が抑制されたレーザ装置及びその除湿管理方法を提供することにある。
【課題を解決するための手段】
【0008】
上記目的を達成するために、本発明に係るレーザ装置は、レーザ発振器と、前記レーザ発振器の内部を除湿するための除湿器と、前記除湿器の運転を制御する制御部と、を備え、前記制御部は、前記レーザ発振器の内部の水蒸気圧を前記レーザ発振器の内部に単分子層よりも多く水分子が吸着した状態の第1の水蒸気圧以上で、かつ前記レーザ発振器の内部で結露が生じ始める第水蒸気圧よりも低くするように前記除湿器を制御することを特徴とする。
【0009】
この構成によれば、レーザ発振器内での結露を防止するとともに、レーザ光の出力変動を抑制することができ、レーザ装置の性能を安定させることができる。
【0010】
また、本発明に係るレーザ装置の除湿管理方法は、レーザ発振器と、前記レーザ発振器の内部を除湿するための除湿器とを備えたレーザ装置の除湿管理方法であって、前記レーザ発振器の内部の水蒸気圧を、前記レーザ発振器の内部に単分子層よりも多く水分子が吸着した状態の第水蒸気圧以上で、かつ前記レーザ発振器の内部で結露が生じ始める第水蒸気圧よりも低くなるようにすることを特徴とする。
【0011】
この方法によれば、レーザ発振器内での結露を防止するとともに、レーザ光の出力変動を抑制することができ、レーザ装置の性能を安定させることができる。
【発明の効果】
【0012】
以上説明したように、本発明に係るレーザ装置及びレーザ装置の除湿管理方法によれば、レーザ発振器内での結露を防止するとともに、レーザ光の出力変動を抑制することができ、レーザ装置の性能を安定させることができる。
【図面の簡単な説明】
【0013】
図1】本発明の実施形態1に係るレーザ装置の構成を示す模式図である。
図2】水分の吸着等温曲線を示す図である。
図3】レーザ発振器の内部雰囲気の露点と水分子吸着量及びレーザ出力との関係を示す図である。
図4】実施形態1に係るレーザ装置の除湿管理手順を示すフローチャートである。
図5】本発明の実施形態2に係るレーザ発振器の内部雰囲気の露点と水分子吸着量及びレーザ出力との関係を示す図である。
図6】実施形態2に係るレーザ装置の除湿管理手順を示すフローチャートである。
【発明を実施するための形態】
【0014】
以下、本発明の実施形態を図面に基づいて詳細に説明する。以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用物或いはその用途を制限することを意図するものでは全くない。
【0015】
(実施形態1)
[レーザ装置の構成]
図1は、本実施形態に係るレーザ装置の構成の模式図を示し、レーザ装置100は、レーザ発振器10と除湿器11と制御部9とで構成されている。
【0016】
レーザ発振器10は、レーザモジュール1とビーム結合器2と集光光学ユニット3とを有しており、集光光学ユニット3には光ファイバ4が接続され、後述するレーザ光LBを図示しないレーザ光出射部に導光する。
【0017】
レーザモジュール1は、異なる波長のレーザビームを発する複数のレーザダイオードまたはレーザアレイからなり、レーザモジュール1内で波長合成されたレーザ光が各レーザモジュール1からそれぞれ出射される。また、レーザモジュール1の内部にそれぞれ温湿度センサTHSが配設されている。
【0018】
ビーム結合器2は、複数のレーザモジュール1からそれぞれ出射されたレーザ光を一つのレーザ光(以下、レーザ光LBという)に結合して集光光学ユニット3に出射する。具体的には、各々のレーザ光の光軸を近接又は一致させるとともに、互いの光軸が平行になるように結合する。なお、レーザ光LBの波長域は例えば900nm~1μmの間にある。
【0019】
集光ユニット3は、内部に配設された集光レンズ(図示せず)によって、入射されたレーザ光LBのビーム径を所定の倍率で縮小し、光ファイバ4に入射する。また、集光ユニット3は図示しないコネクタを有し、コネクタには伝送ファイバ4の入射端が接続されている。
【0020】
レーザモジュール1とビーム結合器2と集光光学ユニット3とはそれぞれ連通しており、これらの内部(以下、レーザ発振器10の内部と言うことがある。)の雰囲気は、露点が所定の範囲なるように調整されている。レーザ発振器10の内部の除湿管理については後で詳述する。
【0021】
レーザ発振器10をこのような構成とすることで、レーザ光出力が数kWを超える高出力のレーザ装置100を得ることができる。なお、本実施形態では、4つのレーザモジュール1がレーザ発振器10に搭載されているが、特にこれに限定されない。レーザモジュール1の搭載個数は、レーザ装置100に要求される出力仕様や、個々のレーザモジュール1の出力仕様によって適宜変更されうる。
【0022】
なお、図示しないが、レーザ発振器10の内部には、集光光学ユニット3内の集光レンズを含め、数個~十数個の光学部品が配設されている。
【0023】
除湿器11は、エアーポンプ6とデシケータ7とドライエアー分配器5とを有しており、エアーポンプ6とデシケータ7とドライエアー分配器5とは配管8を介して直列に接続されている。また、ドライエアー分配器5から複数分岐した配管8は、複数のレーザモジュール1のそれぞれに接続されている。エアーポンプ6から吐出された気流は、配管8を介してデシケータ7に流入される。デシケータ7の内部には図示しない吸着剤であるデシカントが配設されており、デシケータ7に流入した気流中の水分がデシカントに吸収されて、水分含有量が低下した気流がデシケータ7から吐出される。デシケータ7から吐出された気流は、ドライエアー分配器5と配管8とを介して、レーザモジュール1の内部に流入する。前述したように、レーザ発振器10の各部は連通しているため、水分含有量が低下した気流がレーザ発振器10の内部、具体的には各レーザモジュール1とビーム結合器2と集光光学ユニット3の内部を流れ、配管8及びドライエアー分配器5を介してエアーポンプ6の吸気口に流入する。
【0024】
このように、エアーポンプ6を作動して、除湿器11とレーザ発振器10の内部との間で気流を循環させることで、レーザ発振器10の内部の湿度及び露点は一定の飽和値に到るまで低下する。なお、本実施形態において、エアーポンプ6から吐出する気流は大気であるが、不活性ガスの窒素ガス等であってもよい。
【0025】
制御部9は、レーザ発振器10と除湿器11とに接続されており、具体的には、レーザ発振器10の内部に配設された温湿度センサTHSの出力信号を受け取って、レーザ発振器10の内部雰囲気の露点を算出する。露点はレーザモジュール1毎に算出してもよいし、4つの温湿度センサTHSの出力信号のそれぞれに基づいて、平均値または代表値あるいは最も高い値をレーザ発振器10の内部雰囲気の露点として算出するようにしてもよい。また、制御部9は、除湿器11の運転を制御する。具体的には、エアーポンプ6に制御信号を出力して、エアーポンプ6の運転、例えば作動開始や停止を制御する。
【0026】
なお、制御部9は、レーザ発振器10のレーザ発振を制御するようにしてもよい。具体的には、レーザ発振器10に接続された図示しない電源に対して出力電圧やオン時間等の制御信号を供給することにより、各々のレーザモジュール1のレーザ発振制御を行ってもよい。各々のレーザモジュール1に対して個別にレーザ発振制御を行うことも可能である。例えば、レーザモジュール1毎にレーザ発振出力やオン時間等を異ならせるようにしてもよい。
【0027】
[本願発明に到った知見]
図2は、水分の吸着等温曲線を示し、図3は、レーザ発振器の内部雰囲気の露点と水分子吸着量及びレーザ出力との関係を示す。
【0028】
図2に示すように、物体の表面に吸着する水分子吸着量は、物体が置かれた雰囲気中の水蒸気圧の上昇とともに増加する。物体の表面には水分が吸着してない、正確には単分子層未満で水分が吸着している状態から、雰囲気中の水蒸気圧を上昇させると、水分子吸着量は増加するが、ある値より水蒸気圧が高くなると水分子吸着量の変化量は小さくなる。さらに、水蒸気圧を上昇させると、再び水蒸気圧が上昇し始め、飽和水蒸気圧に達する。つまり、水分が物体の表面に液層として成長する、いわゆる結露状態となる。
【0029】
ここで、物体の表面に水分子が単分子層以下で吸着している領域を第1の領域、水分子が単分子層よりも多く吸着しているが、液層として成長するには到らない、つまり、結露はしていない領域を第2の領域とする。
【0030】
図3の上側は、図2の横軸を露点Wに代えてプロットしたものであり、第4の露点WILから第1の露点W1Hまでの領域が上記第1の領域に相当し、第2の露点W2Lから第3の露点W2Hまでの領域が上記第2の領域に相当する。なお、第1の露点W1Hは、第1の領域における露点Wの上限値に対応し、第2の露点W2Lは、第2の領域における露点Wの下限値に対応している。なお、第1の露点W1Hは、第1の領域における水蒸気圧の上限値に対応した値である。第2の露点W2Lは、第2の領域における水蒸気圧の下限値に対応した値である。第3の露点W2Hは、第2の領域における水蒸気圧の上限値に対応し、レーザ発振器10の内部で結露が生じ始める結露点に相当する。また、第4の露点W1Lは、第1の領域における水蒸気圧の下限値よりも低い水蒸気圧に対応した値である。また、以降の説明において、第2の領域における水蒸気圧の下限値を第の水蒸気圧と、第2の領域における水蒸気圧の上限値を第の水蒸気圧と、それぞれ呼ぶことがある。
【0031】
従って、露点Wが第1の露点W1H以下であるときは、レーザ発振器10の内部には単分子層以下で吸着している状態である。また、露点Wが第2の露点W2L以上で、かつ第3の露点W2Hよりも低いときは、レーザ発振器10の内部には、水分子が単分子層よりも多く吸着しているが、結露はしていない状態である。
【0032】
ただし、実際には、第1~第3の露点W1H,W2L,W2Hは、レーザ装置100の除湿管理時に使用する設定値であり、上記の上限値や下限値や結露点とは直接的には一致していない。温湿度センサTHSの設置位置のばらつきや測定精度等を考慮して、第1及び第2の露点W1H,W2Lは、物理的な上限値や下限値から所定のマージンを持って設定するようにしている。本実施形態では、第1の露点W1Hを-12℃、第2の露点W2Lを+5℃に設定しているが、特にこれに限定されず、レーザ発振器10の個体差等によって適宜変更されうる。
【0033】
また、第4の露点W1Lは、除湿器11の性能限界に近い状態までレーザ発振器10の内部を除湿した場合の露点であり、本実施形態では、-30℃に設定されているが、特にこれに限定されない。
【0034】
一方、図3の下側に示すように、レーザ発振器10の内部雰囲気の露点W(以下、レーザ発振器10の内部の露点Wと呼ぶことがある。)が、第1の領域にあるときと第2の領域にあるときとで、レーザ出力が変化するという現象を本願発明者等は見出した。露点Wが第1の領域にあるときのレーザ出力L2に対して、露点Wが第2の領域にあるときのレーザ出力L1は5%程度低下している。レーザ発振器10の内部雰囲気の変化に応じて、このようなレーザ出力の変動が生じると、種々の不具合を生じることがある。例えば、レーザ発振器10を金属等の加工用光源として用いる場合、出力が5%低下すると加工不良を引き起こすおそれがある。
【0035】
このレーザ出力の低下に関して、本願発明者等は以下のように考えた。一般に、水の光吸収率には波長依存性があり、波長が700nm以上になると、光は水に実質的に吸収され始める。しかし、露点Wが第1の領域にあるときには、物体の表面に吸着する水分は単分子層以下であり、吸着水分によるレーザ光LBの損失は起こらないと考えてよい。
【0036】
一方、露点Wが第2の領域にあるときには、物体の表面には、結露には到らないものの、ある程度の量の水分が吸着している。この吸着水分にレーザ光LBの一部が吸収され、結果としてレーザ出力が低下していると考えられる。前述したように、レーザ発振器10の内部には、レーザ光LBが入射し、あるいは透過する光学部品が複数配設されている。レーザ光LBが各々の光学部品を透過する際に、レーザ光LBの損失が生じ、その累計として5%程度の出力低下が生じていると考えられた。
【0037】
このように、レーザ発振器10の内部の露点Wが第1の領域と第2の領域の間にあるとき、例えば、図3に示す露点W0であるときは、露点Wのわずかな変動によって、レーザ光LBの出力が変動してしまい、上記の不具合を生じることとなる。
【0038】
そこで、本願発明者等は、レーザ発振器10の内部の露点Wに着目し、露点Wが所定の範囲になるように制御することで、上記の不具合を解消する技術を提案する。
【0039】
なお、実際にレーザ装置100を運転するにあたって、上記の露点W0は、レーザ発振器10毎に変動する場合があり、その範囲は予め実験して求めるようにしている。ただし、レーザ発振器10の容積や内部配置等の仕様によって、露点W0の範囲は概ね決まることが多いため、レーザ発振器10の仕様毎に露点W0の範囲をデータベース化しておき、これに基づいて第1の露点W1Hや第2の露点W2Lを設定するようにしてもよい。
【0040】
[レーザ装置の除湿管理手順]
図4は、本実施形態に係るレーザ装置の除湿管理手順を示す。なお、以下に示す手順において、制御部9が入力された値等に基づいて種々の判断を行う。
【0041】
まず、除湿器11を運転して、レーザ発振器10の内部の除湿を開始し(ステップS1)、露点Wを測定する(ステップS2)。前述したように、露点Wは、温湿度センサTHSの出力信号に基づいて、制御部9で演算処理が実行されて算出される。なお、露点Wの測定は所定のタイミング毎に実行される。
【0042】
測定された露点Wが第3の露点W2H以上か否かを判断する(ステップS3)。この判断及び以降のステップでの判断は制御部9でなされる。ステップS3での判断結果が肯定的であれば、所定の時間経過後に露点Wが低下しているかどうかを判断する(ステップS4)。なお、ステップS3での判断結果が否定的であれば、ステップS5に進む。
【0043】
ステップS4での判断結果が肯定的であれば、除湿器11が正常に運転されていると判断できるから、ステップS5に進む。一方、ステップS4での判断結果が否定的であれば、除湿器11が正常に運転されていない、あるいは除湿器11の除湿能力が許容範囲を超えて低下していると判断できるため、レーザ発振器10の内部で結露を生じるおそれがあるとして、制御部9は、警告信号を出力する(ステップS17)。また、警告信号出力後、所定の期間を経過すると、制御部9は、デシケータ7内のデシカントを交換するように別の警告信号を出力する(ステップS18)。
【0044】
ステップS4での判断結果が否定的であれば、ステップS5に進んで、測定された露点Wが第2の露点W2L以上でかつ第3の露点W2Hよりも低いかどうかを判断する。
【0045】
ステップS5での判断結果が肯定的であれば、所定の時間経過後に露点Wが低下しているかどうかを判断する(ステップS6)。ステップS6での判断結果が肯定的であれば、ステップS7に進む。一方、ステップS6での判断結果が否定的であれば、制御部9は、結露リスクを知らせるための警告信号を出力する(ステップS17)。また、警告信号出力後、所定の期間を経過すると、制御部9は、デシカント交換を促すための警告信号を出力する(ステップS18)。なお、ステップS5での判断結果が否定的であれば、ステップS8に進む。
【0046】
ステップS7では、測定された露点Wが第2の露点W2Lよりも低いかどうかを判断する。ステップS7での判断結果が肯定的であれば、ステップS8に進む。一方、ステップS7での判断結果が否定的、つまり、露点Wが第2の露点W2L以上である場合、何らかの理由でレーザ発振器10の内部の露点Wが上昇したとも考えられるため、ステップS14に進んで除湿を継続するとともに、ステップS6に戻って、所定の時間経過後に露点Wが低下しているかどうかを判断する。
【0047】
ステップS8では、再度、所定の時間経過後に露点Wが低下しているかどうかを判断する。ステップS8での判断結果が否定的であれば、ステップS17に進み、所定の期間経過後にステップS18に進む。
【0048】
一方、ステップS8での判断結果が肯定的であれば、ステップS9に進んで、測定された露点Wが第1の露点W1H以上でかつ第2の露点W2Lよりも低いかどうかを判断する。ステップS9での判断結果が否定的であれば、ステップS10に進む。また、ステップS9での判断結果が肯定的である場合、レーザ発振器10の内部の露点Wが前述した第1の領域と第2の領域との間にあり、レーザ出力が不安定となるため、ステップS15に進んで除湿を継続するとともに、ステップS8に戻って、所定の時間経過後に露点Wが低下しているかどうかを判断する。
【0049】
ステップS10では、測定された露点Wが第4の露点W1L以上でかつ第1の露点W1Hよりも低いかどうかを判断する。ステップS10での判断結果が肯定的であれば、ステップS11に進む。一方、ステップS10での判断結果が否定的である場合、レーザ発振器10の内部の露点Wが第4の露点W1Lよりも低い、つまり、除湿器11の性能限界に近い状態までレーザ発振器10の内部が除湿されているとして、除湿を停止する(ステップS13)。なお、除湿停止後、所定の期間を経過すると、ステップS1に戻って、再度、除湿を開始する。
【0050】
ステップS11では、再度、所定の時間経過後に露点Wが低下しているかどうかを判断する。ステップS11での判断結果が否定的であれば、ステップS18に進み、制御部9は、デシカント交換を促すための警告信号を出力する。
【0051】
一方、ステップS11での判断結果が肯定的である場合、測定された露点Wが第4の露点W1Lよりも低いかどうかを判断する(ステップS12)。ステップS12での判断結果が肯定的であれば、ステップS13に進んで除湿を停止し、所定の期間経過後にステップS1に戻って、再度、除湿を開始する。また、ステップS12での判断結果が否定的であれば、ステップS16に進んで除湿を継続するとともに、ステップS11に戻って、所定の時間経過後に露点Wが低下しているかどうかを判断する。
【0052】
なお、ステップS17及びステップS18において、制御部9からの警告信号に基づいて、レーザ装置100を操作する作業者にレーザ発振器10の内部で結露を生じるおそれがあること及びデシカントの交換時期が来ていることが報知される。実際には、図示しない表示部に警告画面が表示されるか、または、図示しない音声出力部から警告音または警告音声が出力されて、作業者に交換時期の到来を知らせるようにする。
【0053】
また、レーザ共振器10の内部の露点Wが+15℃以上になった場合にも、制御部9は、デシケータ7内のデシカントを交換するように警告信号を出力する。実際の第3の露点W2Hは、温湿度センサTHSの設置位置のばらつきや測定精度等を考慮して、この値よりも低い値、例えば、+13℃に設定されている。従って、温湿度センサTHSで測定された露点Wが温湿度センサTHSの設置位置のばらつきや測定精度等を考慮して、実際の値より低い値に設定されている場合での第3の露点W2Hとなるときには、レーザ発振器10の内部では結露は生じていない。なお、図示しないレーザ発振器10の冷却温度等に応じて、警告信号を出力する露点の下限値や第3の露点W2Hの設定値は適宜修正される。
【0054】
なお、上記の除湿管理手順において、除湿器11を運転して、レーザ発振器10の内部の露点Wが第1の領域まで十分に低下している場合、制御部9は露点Wが第1の領域であることを作業者に通知し、作業者はレーザ出力が第1の領域でのレーザ出力となることを確認する。またはレーザ出力の補正が必要な場合はレーザ出力を補正する。また、レーザ出力が第2の領域より大きくなる第1の領域内で露点Wを制御するようにしてレーザ発振を行う。また、除湿器11のデシケータ7内のデシカントの除湿能力が低下して、第1の領域まで露点Wを低下できないが、第2の領域内には露点Wを維持させることは十分に可能な場合、制御部9は露点Wが第2の領域であることを作業者に通知し、作業者はレーザ出力が第2の領域でのレーザ出力となることを確認する。またはレーザ出力の補正が必要な場合はレーザ出力を補正する。また、レーザ出力が第1の領域より小さくなる第2の領域内で露点Wを制御するようにしてレーザ発振を行う。
【0055】
言いかえると、レーザ発振器10は、内部の露点が第1の露点W1Hよりも低いか、あるいは、第2の露点W2L以上でかつ第3の露点W2Hよりも低い場合に、外部にレーザ光LBを出射可能に構成されている。
【0056】
[効果等]
以上説明したように、本実施形態のレーザ装置100は、レーザ発振器10と、その内部を除湿するための除湿器11と、除湿器11の運転を制御する制御部9と、を備えている。
【0057】
制御部9は、レーザ発振器10の内部の露点Wを当該内部に単分子層以下の水分子が吸着した状態の第1の露点W1Hより低くするか、あるいは、露点Wをレーザ発振器10の内部に単分子層よりも多く水分子が吸着した状態の第2の露点W2L以上で、かつレーザ発振器10の内部で結露が生じ始める第3の露点W2Hよりも低くするように除湿器11を制御する。
【0058】
また、本実施形態のレーザ装置100の除湿管理方法は、レーザ発振器10の内部の露点Wを、レーザ発振器10の内部に単分子層以下の水分子が吸着した状態の第1の露点W1Hより低くなるように、あるいは、レーザ発振器10の内部に単分子層よりも多く水分子が吸着した状態の第2の露点W2L以上で、かつレーザ発振器10の内部で結露が生じ始める第3の露点W2Hよりも低くなるようにする。
【0059】
このようにすることで、レーザ発振器10の故障要因となる結露を防止するとともに、吸着水分による吸収に起因したレーザ光LBの出力変動を抑制することができ、レーザ装置100の性能を安定させることができる。
【0060】
除湿器11は、内部に吸着剤であるデシカントを有するデシケータ7と、デシケータ7に接続されたエアーポンプ6と、を含み、デシケータ7とエアーポンプ6とレーザ発振器10とを接続する配管8とデシケータ7とを介して、レーザ発振器10の内部とエアーポンプ6との間で気流を循環させてレーザ発振器10の内部を除湿している。
【0061】
このようにすることで、簡便な構成でレーザ発振器10の内部を除湿することができる。
【0062】
除湿器11を運転させて、所定の時間経過後に露点Wの低下が見られない場合は、制御部9は作業者に対して警告を報知する。
【0063】
このようにすることで、レーザ発振器10の内部での結露リスクやデシケータ7内のデシカントの交換時期の到来を作業者に確実に知らせることができる。
【0064】
また、露点Wは、レーザ発振器10の内部に配設された温湿度センサTHSの出力信号に基づいて、制御部9で算出されるようにしてもよい。
【0065】
また、レーザ装置100において、レーザ発振器10は、内部の露点が第1の露点W1Hよりも低いか、あるいは、第2の露点W2L以上でかつ第3の露点W2Hよりも低い場合に、外部にレーザ光LBを出射可能に構成されている。
【0066】
このようにすることで、レーザ光LBの出力を長期に亘って安定化でき、レーザ装置100の信頼性を向上させることができる。
【0067】
また、レーザ装置100の除湿管理方法において、除湿器11を運転させて、レーザ発振器10の内部を除湿するステップと、レーザ発振器10の内部の露点Wを測定するステップと、露点Wが第1の露点W1H以上で、かつ第2の露点W2Lよりも低いか否かを判断し、判断結果が肯定的であれば、レーザ発振器10の内部の除湿を継続するステップと、露点Wが第1の露点W1Hよりも低い第4の露点W1Lよりも低ければ、除湿器11の動作を停止するステップと、を備えている。
【0068】
このようにすることで、レーザ光LBの出力が変動する露点Wの範囲を避けて、レーザ装置100を運転でき、その性能を安定させるとともに、レーザ発振器10の内部の露点Wをそれ以上低下させる必要が無い時点で除湿器11の動作を停止することで、レーザ装置100の運転コストを低減するとともに、デシカントの交換時期を長くして、生産性が低下するのを抑制できる。
【0069】
(実施形態2)
図5は、本実施形態に係るレーザ発振器の内部雰囲気の露点の露点と水分子吸着量及びレーザ出力との関係を示し、図6は、レーザ装置の除湿管理手順を示す。
【0070】
前述したように、レーザ発振器10の内部に吸着する水分は、レーザ光LBを吸収してレーザ出力の低下を引き起こす。
【0071】
一方、物体表面に付着する水分子は当該表面に発生する静電気を抑制する働きがある。従って、レーザ発振器10の内部の露点Wが図3に示す第1の領域にあると、光学部品の表面に吸着した水分子は単分子層以下であり、当該表面は静電気が発生しやすい状態となり、微小なホコリ等が吸着されやすくなる。
【0072】
しかし、レーザ装置100が、金属加工等を行う大出力のレーザ装置である場合、レーザ発振器10の内部に配置された光学部品にわずかなホコリや汚れがあっても、これらがレーザ光LBを吸収し焼き付いて、光学部品が損傷してしまい、レーザ装置100及びレーザ発振器10の重大な故障要因となるおそれがある。また、通常、レーザ発振器100の組み立ては、清浄度(クリーン度)が管理されたクリーンルーム内で行われる。しかしクリーンルーム内の清浄度が低い場合、微小なホコリ等を十分に排除することは困難である。つまり、レーザ発振器100の組み立て時の清浄度が不十分な場合、レーザ発振器10の内部の露点Wが第1の領域にあると、レーザ装置100及びレーザ発振器10に故障が発生するおそれがある。
【0073】
そこで、図5に示すように、第2の露点W2Lの設定値を第2の領域における露点Wの下限値よりも高い値に設定し、かつ、レーザ発振器10の内部の露点Wを第2の露点W2L以上で、かつ第3の露点W2Hよりも低い状態に管理することで、レーザ発振器10の内部での結露や静電気の発生を防止しつつ、レーザ光LBの出力変動を抑制することができ、レーザ装置100の性能を安定させることができる。言い換えると、第2の露点W2Lの設定値を第2の領域における水蒸気圧の下限値に対応する値よりも高い値に設定し、かつ、レーザ発振器10の内部の露点Wを第2の露点W2L以上で、かつ第3の露点W2Hよりも低い状態に管理することで、レーザ発振器10の内部での結露や静電気の発生を防止しつつ、レーザ光LBの出力変動を抑制することができ、レーザ装置100の性能を安定させることができる。なお、本実施形態における第2の露点W2Lの設定値に対応する水蒸気圧も第の水蒸気圧と呼ぶことがある。
【0074】
また、図6に示すように、この場合の除湿管理手順は図4に示す手順に比べて簡素化される。図6に示すステップS21~S27は、図4に示すステップS1~S7と同様であるので説明を省略する。また、図6に示すステップS28,S29は、図4に示すステップS13,S14と同様であり、図6に示すステップS30,S31は、図4に示すステップS17,S18と同様であるので説明を省略する。
【0075】
本実施形態に示す除湿管理手順と、実施形態1に示す除湿管理手順とでは、除湿を停止するタイミングが異なり、本実施形態では、レーザ発振器10の内部の露点Wが第2の露点W2Lよりも低くなった場合に、除湿を停止している(ステップS28)。
【0076】
つまり、露点Wが第2の露点W2Lよりも低くなり、レーザ光LBの出力変動が起こりやすい露点、例えば図5に示す、レーザ出力が変動する範囲である、露点Wが第1の露点W1H以上でかつ第2の露点W2Lより低い範囲(第1の領域と第2の領域の間の範囲)の露点W0に到達する可能性があるため、除湿器11の作動を継続させる必要が無いと判断して、制御部9は除湿器11による除湿を停止させ(ステップS28)、所定の時間経過後に、ステップS21に戻って、レーザ発振器10の内部の除湿を再開する。
【0077】
本実施形態によれば、露点Wが第2の露点W2Lよりも低くなると、除湿器11の運転を停止するようにしているので、レーザ発振器10の内部、特に、図示しない光学部品の表面に所定量の水分が吸着した状態を維持でき、静電気の発生を防止することができる。このことにより、光学部品にホコリ等が吸着するのを抑制し、ホコリ等がレーザ光LBを吸収することに起因した光学部品の損傷を防止できる。
【0078】
また、レーザ発振器10の内部の露点Wを第2の露点W2L以上で、かつ第3の露点W2Hよりも低い状態になるように制御部9が除湿器11を制御することで、レーザ装置100の性能を安定させることができる。また、第2の露点W2Lを、単分子層よりも多く表面に水分が吸着する第2の領域の下限値よりも高い値に設定しているため、光学部品の表面に所定量の水分が吸着した状態を確実に維持して、静電気の発生を抑制できる。
【0079】
なお、本実施形態におけるレーザ光LBの出力は、実施形態1におけるレーザ光LBの出力に対して約5%低下するものの、レーザ光LBの出力変動を抑制することができる。
【0080】
(その他の実施形態)
実施形態1,2において、温湿度センサTHSはレーザモジュール1内に配設するようにしたが、ビーム結合器2や集光光学ユニット3にそれぞれ配設されていてもよい。
【0081】
レーザ発振器10内のレーザ光源はレーザモジュール1でなくてもよく、また、単一であってもよい。また、デシケータ7内の吸着剤はゼオライト系材料でも他のタイプの材料でもよい。
【産業上の利用可能性】
【0082】
本発明に係るレーザ装置は、内部の結露を防止し、レーザ出力の変動を抑制できるため、金属加工等に用いられる大出力のレーザ装置に適用する上で有用である。
【符号の説明】
【0083】
1 レーザモジュール
2 ビーム結合器
3 集光光学ユニット
4 光ファイバ
5 ドライエアー分配器
6 エアーポンプ
7 デシケータ
8 配管
9 制御部
10 レーザ発振器
11 除湿器
100 レーザ装置
THS 温湿度センサ
W1H 第1の露点
W2L 第2の露点
W2H 第3の露点
W1L 第4の露点
図1
図2
図3
図4
図5
図6