(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-04-20
(45)【発行日】2023-04-28
(54)【発明の名称】発電システム及びこのような発電システムの動作によって発電する方法
(51)【国際特許分類】
F01D 15/08 20060101AFI20230421BHJP
F01K 13/00 20060101ALI20230421BHJP
F01K 25/10 20060101ALI20230421BHJP
F01K 25/08 20060101ALI20230421BHJP
F01D 15/10 20060101ALI20230421BHJP
F01K 25/04 20060101ALI20230421BHJP
【FI】
F01D15/08 A
F01K13/00 A
F01K25/10 H
F01K25/08
F01D15/10 A
F01K25/04
(21)【出願番号】P 2021559325
(86)(22)【出願日】2020-02-11
(86)【国際出願番号】 IB2020051081
(87)【国際公開番号】W WO2020201843
(87)【国際公開日】2020-10-08
【審査請求日】2021-10-20
(32)【優先日】2019-04-05
(33)【優先権主張国・地域又は機関】US
(32)【優先日】2019-05-07
(33)【優先権主張国・地域又は機関】BE
(73)【特許権者】
【識別番号】593074329
【氏名又は名称】アトラス コプコ エアーパワー,ナームローゼ フェンノートシャップ
【氏名又は名称原語表記】ATLAS COPCO AIRPOWER,naamloze vennootschap
(74)【代理人】
【識別番号】100094569
【氏名又は名称】田中 伸一郎
(74)【代理人】
【識別番号】100103610
【氏名又は名称】▲吉▼田 和彦
(74)【代理人】
【識別番号】100109070
【氏名又は名称】須田 洋之
(74)【代理人】
【識別番号】100098475
【氏名又は名称】倉澤 伊知郎
(74)【代理人】
【識別番号】100130937
【氏名又は名称】山本 泰史
(74)【代理人】
【識別番号】100144451
【氏名又は名称】鈴木 博子
(74)【代理人】
【識別番号】100170634
【氏名又は名称】山本 航介
(72)【発明者】
【氏名】エーマン ヘンリク
(72)【発明者】
【氏名】ゴーサルズ アントン ヤン
【審査官】北村 一
(56)【参考文献】
【文献】特表昭58-500448(JP,A)
【文献】特表昭58-501681(JP,A)
【文献】国際公開第2012/020630(WO,A1)
【文献】米国特許第03061733(US,A)
【文献】特開2011-241830(JP,A)
【文献】国際公開第2016/205188(WO,A1)
【文献】米国特許出願公開第2005/0189772(US,A1)
【文献】米国特許第04253031(US,A)
(58)【調査した分野】(Int.Cl.,DB名)
F01K 23/00-27/02
F01D 13/00-15/12;23/00-25/36
F01K 1/00-21/06
(57)【特許請求の範囲】
【請求項1】
発電システムであって、
インペラを備えた回転液体ポンプ(7)を含む液体ポンプセクション(4)であって、作動流体が加圧されて駆動シャフト(8)によって駆動される、液体ポンプセクション(4)と、
蒸発器(9)を含む蒸発器セクションであって、前記回転液体ポンプ(7)で加圧された作動流体が熱源からの熱の添加によって少なくとも部分的に蒸発される、蒸発器セクションと、
入口ポート(16)を備えた回転膨張器(11)及び回転膨張器要素を含む膨張器セクション(3)であって、前記蒸発器セクションにおいて少なくとも部分的に蒸発された作動流体が膨張される、膨張器セクション(3)と、
ロータを備えた回転発電機(13)を含む発電機セクション(5)と、
を備え、
前記膨張器セクション(3)、前記液体ポンプセクション(4)及び前記発電機セクション(5)は、前記回転膨張器(11)の前記回転膨張器要素、前記回転液体ポンプ(7)の前記インペラ及び前記回転発電機(13)の前記ロータとの間の相対回転速度比が機械的に維持されるように回転可能に接続される、
発電システムにおいて、
前記回転液体ポンプ(7)の前記インペラを駆動する前記駆動シャフト(8)は、前記回転液体ポンプ(7)に入る前記作動流体の制御された部分(15)が、前記液体ポンプセクション(4)から前記膨張器セクション(3)及び/又は前記発電機セクション(5)に移行することを可能にするスロットルデバイスを備えるように構成される、ことを特徴とする発電システム。
【請求項2】
前記発電システム(1)はランキンサイクルであり、前記作動流体が循環する、ことを特徴とする請求項1に記載の発電システム。
【請求項3】
前記回転膨張器(11)の前記入口ポート(16)は、前記回転膨張器の出口ポート(17)よりも高い位置にある、ことを特徴とする請求項1又は2に記載の発電システム。
【請求項4】
前記回転液体ポンプ(7)は、前記回転膨張器(11)の前記入口ポート(16)よりも低い位置にある、ことを特徴とする請求項1~3の何れか1項に記載の発電システム。
【請求項5】
前記発電機セクション(5)の前記回転発電機(13)は、同期発電
機である、ことを特徴とする請求項1~4の何れか1項に記載の発電システム。
【請求項6】
前記作動流体は有機作動流体である、ことを特徴とする請求項1~5の何れか1項に記載の発電システム。
【請求項7】
前記作動流体は、潤滑剤を含み、又は潤滑剤として作用する、ことを特徴とする請求項1~6の何れか1項に記載の発電システム。
【請求項8】
前記回転膨張器要素は、前記回転液体ポンプ(7)の前記インペラを駆動する前記駆動シャフト(8)に装着される、ことを特徴とする請求項1~7の何れか1項に記載の発電システム。
【請求項9】
前記回転膨張器要素は、前記回転発電機(13)の前記ロータを駆動する駆動シャフト(12)に装着される、ことを特徴とする請求項1~8の何れか1項に記載の発電システム。
【請求項10】
前記回転液体ポンプ(7)の前記インペラを駆動する前記駆動シャフト(8)は、前記回転発電機(13)の前記ロータを駆動する前記駆動シャフト(12)とは異なる、ことを特徴とする請求項8及び9に記載の発電システム。
【請求項11】
前記回転発電機(13)の前記ロータは、前記回転液体ポンプ(7)の前記インペラを駆動する前記駆動シャフト(8)によって駆動される、ことを特徴とする請求項1-8の何れか1項に記載の発電システム。
【請求項12】
前記発電システム(1)は、前記回転膨張器(11)及び前記回転発電機(13)の全ての回転部品を封入する半密閉ハウジング(6)を更に備える、ことを特徴とする請求項1~11の何れか1項に記載の発電システム。
【請求項13】
前記半密閉ハウジング(6)は、前記回転液体ポンプ(7)の全ての回転部品を封入する、ことを特徴とする請求項12に記載の発電システム。
【請求項14】
前記半密閉ハウジング(6)における前記膨張器セクション(3)
の位置は、前記液体ポンプセクション(4)と前記発電機セクション(5)との間にある、ことを特徴とする請求項13に記載の発電システム。
【請求項15】
前記半密閉ハウジング(6)における前記発電機セクション(5)
の位置は、前記液体ポンプセクション(4)と前記膨張器セクション(3)との間にある、ことを特徴とする請求項13に記載の発電システム。
【請求項16】
前記回転膨張器(11)は、容積移送回転膨張
器である、ことを特徴とする請求項1~15の何れか1項に記載の発電システム。
【請求項17】
前記回転液体ポンプ(7)は、容積移送回転ポン
プである、ことを特徴とする請求項1~16の何れか1項に記載の発電システム。
【請求項18】
前記回転膨張器(11)及び/又は前記回転発電機(13)は、垂直方向位置に装着される、ことを特徴とする請求項1~17の何れか1項に記載の発電システム。
【請求項19】
前記回転膨張器(11)及び/又は前記回転発電機(13)は、水平方向位置に装着される、ことを特徴とする請求項1~17の何れか1項に記載の発電システム。
【請求項20】
前記スロットルデバイスは、前記回転液体ポンプ(7)の前記インペラが装着された前記駆動シャフト(8)と、前記液体ポンプセクション(4)と前記膨張器セクション(3)及び発電機セクション(5)のうちの一方との間の前記駆動シャフト(8)のシーリング(18)との間の開口部である、ことを特徴とする請求項1~19の何れか1項に記載の発電システム。
【請求項21】
発電システム(1)の動作によって発電する方法であって、
前記発電システム(1)が、
入口と、インペラを備えた回転液体ポンプ(7)と、を含む液体ポンプセクション(4)であって、作動流体が加圧されて駆動シャフト(8)によって駆動される液体ポンプセクション(4)と、
蒸発器(9)を含む蒸発器セクションであって、前記回転液体ポンプ(7)で加圧された作動流体が熱源からの熱の添加によって少なくとも部分的に蒸発される蒸発器セクションと、
回転膨張器要素を備えた回転膨張器(11)を含む膨張器セクション(3)であって、前記蒸発器セクションにおいて少なくとも部分的に蒸発された作動流体が膨張される膨張器セクション(3)と、
ロータを備えた回転発電機(13)を含む発電機セクション(5)と、
を備え、
前記膨張器セクション(3)、前記液体ポンプセクション(4)及び前記発電機セクション(5)は、前記回転膨張器(11)の前記回転膨張器要素、前記回転液体ポンプ(7)の前記インペラ及び前記回転発電機(13)の前記ロータとの間の相対回転速度比が機械的に維持されるように回転可能に接続され、
前記回転液体ポンプ(7)に入る前記作動流体の制御された部分(15)は、前記回転液体ポンプ(7)の前記インペラが駆動される前記駆動シャフト(8)が備えられたスロットルデバイスにより前記液体ポンプセクション(4)から前記膨張器セクション(3)及び/又は前記発電機セクション(5)に移行することが可能となり、
前記回転膨張器(11)及び/又は前記回転発電機(13)は、前記液体ポンプセクション(4)から前記膨張器セクション又は前記発電機セクション(5)に移行する前記作動流体の前記制御された部分(15)によって冷却される、
ことを特徴とする、発電方法。
【請求項22】
前記回転膨張器の入口ポート(16)に送給される少なくとも部分的に蒸発された作動流体は、気体又は蒸気状態にある、ことを特徴とする請求項21に記載の発電方法。
【請求項23】
前記回転膨張器(11)の入口ポート(16)に送給される前記作動流体は、液体及び気体又は蒸気作動流体の混合物である、ことを特徴とする請求項21に記載の発電方法。
【請求項24】
前記回転発電機(13)の前記ロータは、前記液体ポンプセクション(4)の前記入口における作動流体圧力よりも高く且つ前記液体ポンプセクション(4)の出口における作動流体圧力よりも低い前記作動流体によってもたらされる圧力に曝される、ことを特徴とする請求項21~23の何れか1項に記載の発電方法。
【請求項25】
前記回転発電機(13)の前記ロータは、液体及び気体又は蒸気作動流体の混合物に曝される、ことを特徴とする請求項21~24の何れか1項に記載の発電方法。
【請求項26】
スロットルデバイスによって前記液体ポンプセクション(4)から前記膨張器セクション(3)及び/又は前記発電機セクション(5)に移行することができる作動流体の前記制御された部分(15)の質量流量は、前記液体ポンプセクション(4)の前記入口に送給された前記作動流体の総質量流量の25%よりも
低い、ことを特徴とする請求項21~25の何れか1項に記載の発電方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、作動流体を膨張させる膨張器セクションと、この作動流体を加圧する液体ポンプセクションと、発電機セクションとを備え、膨張器セクション、液体ポンプセクション及び発電機セクションが、膨張器セクション、液体媒体部及び発電機セクションの間の相対回転速度比が機械的に維持されるような方式で回転可能に接続された、発電システムに関する。
【背景技術】
【0002】
詳細には、発電システムは更に、膨張器セクション、液体ポンプセクション及び発電機セクションの全ての回転部品を封入する半密閉ハウジングを備えるが、発電システムは、これに限定されない。
【0003】
作動流体の圧力に関連するエネルギーを、ロータ、ピストン又は同様のものを有するタービン又は同様のものである膨張器の機械的運動エネルギーに変換することによって、膨張機械において発電することは公知である。この運動エネルギーは更に、シャフト、カップリング、ギア、ベルト、又は同様のものによって膨張機械に回転可能に接続されたロータを備えた回転発電機において電気エネルギーに変換することができる。膨張機械は、ランキンサイクル又はランキン回路という名称で知られる閉回路にて循環される作動流体によって駆動することができる。この閉回路は、
-液体ポンプから流入する作動流体が高圧ガス又は蒸気に少なくとも部分的に変換される1又は2以上の蒸発器を含む蒸発器セクションと、
-膨張器セクションと、
-冷却剤、例えば水又は空気の冷却回路に接続されて、作動流体から液体への完全な凝縮を可能にして、この液体がその後のサイクルのために液体ポンプによって周囲に圧送される1又は2以上の凝縮器を含む凝縮器セクションと、
を通って連続して作動流体を循環させる液体ポンプを備えている。
【0004】
ランキンサイクルを成立させるために、液体ポンプセクションの出口は、蒸発器セクションの入口に流体接続され、蒸発器セクションの出口は、膨張器セクションの入口に流体接続され、膨張器セクションの出口は、凝縮器セクションの入口に流体接続され、凝縮器の出口は、液体ポンプセクションの入口に流体接続される。
【0005】
作動流体は、有機作動流体として選択することができ、ランキンサイクルは、有機ランキンサイクル又はORCという名称で知られている。有機作動流体の欠点は、これらが、典型的には、爆発性、有毒性、又は高価であることである。従って、回転膨張器及び/又は回転発電機の回転部品が、膨張器又は発電機のロータの周りに作動流体を収容するハウジングを貫通して、周囲空気と接触状態になる場合に、機械シャフトシールが必要とされる。このような機械シャフトシールは、高価であり、典型的には高価なメンテナンスを必要とする。
【0006】
作動流体と周囲空気との間の機械シャフトシールの使用を排除する一般的な方法は、膨張器と発電機の小型で「半密封の」又は「一体化」された複合装置を設計することである。膨張器と発電機の「半密封」又は「一体化」された複合装置とは、ハウジングに収容された膨張器及び発電機の複合装置を意味し、ここでは、膨張器及び発電機の全ての回転部分が、ハウジングによって完全に封入され、従って、周囲空気との接触から隔離されることを意味する。膨張器及び発電機の半密封又は一体化の複合装置の実施例は、とりわけ、米国特許第4,185,465号及びドイツ国特許第10 2012 016 488号に記載されている。欧州特許第0004609号では、冷媒作動流体におけるスクリュー膨張器、スクリュー圧縮機及び電気モータの半密封複合装置を示している。日本国特許特開平05-195808号及び中国国特許第206290297号は、膨張器、発電機及び液体ポンプの一体化複合装置を示している。
【先行技術文献】
【特許文献】
【0007】
【文献】米国特許第4,185,465号
【文献】ドイツ国特許第10 2012 016 488号
【文献】欧州特許第0004609号
【文献】日本国特許特開平05-195808号
【文献】中国国特許第206290297号
【文献】欧州特許第2 386 727号
【文献】国際特許公開第82/02741号
【発明の概要】
【発明が解決しようとする課題】
【0008】
膨張器、発電機及び液体ポンプの一体化複合装置の欠点は、膨張器を収容する膨張器セクション、発電機を収容する発電機セクション及び液体ポンプを収容する液体ポンプセクションの間でハウジングの内側の作動流体の望まない内部漏出が発生することであり、これは、ハウジングのこれらのセクションにおける作動流体の有意に異なる圧力レベルの存在に起因する。このような内部漏出は、発電効率を低下させるだけでなく、作動流体が混合液体-気体又は混合液体蒸気状態にあるときに激しい閃光に起因する発電システムの信頼性も低下する。加えて、作動流体の高圧蒸気が膨張器セクション又は発電機セクションから液体ポンプに漏出するときに、液体ポンプにおいてキャビテーションが発生する。更に、大量の液体は、蒸発器を通過することなく液体ポンプの駆動シャフトを介して液体ポンプから凝縮器に漏出し、発電効率の低下をもたらす可能性があり、「発電効率」は、蒸発器セクションにて作動流体に伝達された熱と液体ポンプに送出された仕事との合計に対する、膨張器セクションで発生した機械的エネルギーの比として定義される。或いは、液体ポンプからその駆動シャフトを介した漏出を回避するための液体ポンプの駆動シャフト上の密閉シールは、摩耗及び望ましくないメンテナンスを必要とする傾向がある。
【0009】
更に、発電機が永久磁石発電機である場合、この永久磁石発電機の磁石は、膨張器、発電機及び液体ポンプの一体化複合装置の小型化に起因して不十分な冷却を生じる可能性があり、その結果性能に恒久的損傷をもたらすことになる。
【0010】
欧州特許第2 386 727号は、膨張器セクション、液体ポンプセクション及びモータ発電機セクションの一体化複合装置を含むターボ膨張器を備えたランキンサイクルとして設計された発電システムを開示しており、モータ発電機セクションは、液体ポンプセクションによって加圧された作動流体の一部によって冷却される。このシステム設計の欠点は、発電機が液体ポンプセクションの出口において高い作動流体圧力に内部で曝され、これが、発電機のロータ及び他の内部部品に恒久的な損傷の原因となる可能性があることである。
【0011】
国際特許公開第82/02741号は、密閉ケースにおいて単一の垂直シャフト上に膨張器セクション、液体ポンプセクション及び発電機セクションの一体化複合装置を備えたランキンサイクルタービン発電機システムを開示しており、凝縮器から流入する作動流体の一部は、潤滑及び冷却目的のために液体ポンプセクションの上流のブースタポンプによってシャフトの軸受に圧送される。発電機の冷却は、上部軸受組立体からの作動流体の漏出及び液体ポンプセクションにおける液体ポンプによって達成される。このシステムの欠点は、液体ポンプに加えて、軸受中の流体力学潤滑剤としての流体の適切な機能を損なうことになる少量の熱の添加に起因する作動流体の一部の蒸発並びに軸受キャビティにおける蒸気の生成を回避するために、軸受を潤滑して冷却するのに用いられる作動流体の一部を加圧するブースタポンプが必要となることである。加えて、この場合も同様に、発電機のロータ及び他の内部部品は、液体ポンプセクションの軸受キャビティ及び出口における高い作動流体圧力に曝される。
【0012】
本発明の目的は、前述及び/又は他の欠点のうちの1又は2以上に対する解決策を提供することである。
【課題を解決するための手段】
【0013】
このために、本発明は、発電システムに関し、
-作動流体が加圧されて駆動シャフトによって駆動されるインペラを備えた回転液体ポンプを含む液体ポンプセクションと、
-回転液体ポンプで加圧された作動流体が熱源からの熱の添加によって少なくとも部分的に蒸発される蒸発器を含む蒸発器セクションと、
-蒸発器セクションにおいて少なくとも部分的に蒸発された作動流体が膨張される入口ポートを備えた回転膨張器及び回転膨張器要素を含む膨張器セクションと、
-ロータを備えた回転発電機を含む発電機セクションと、
を備え、
膨張器セクション、液体ポンプセクション及び発電機セクションは、回転膨張器の回転膨張器要素、回転液体ポンプのインペラ及び回転発電機のロータとの間の相対回転速度比が機械的に維持されるように回転可能に接続され、
回転液体ポンプのインペラを駆動する駆動シャフトは、回転液体ポンプに入る作動流体の制御された部分が液体ポンプセクションから膨張器セクション及び/又は発電機セクションに移行することを可能にするスロットルデバイスを備えるように構成されている、ことを特徴とする。
【0014】
作動流体の制御された部分が液体ポンプセクションから発電機セクションに移行する場合、本発明による発電システムの利点は、回転液体ポンプへの作動流体蒸気の漏出に起因する回転液体ポンプのキャビテーションを回避し、蒸発器を通過することなく回転液体ポンプから回転発電機に直接流れる大量の作動流体に起因する発電効率の損失を回避しながら、回転発電機のロータに液体ポンプセクションの回転液体ポンプを直接接続できることである。液体ポンプセクションから発電機セクションに移行するスロットルデバイスによって許容される作動流体の小さな制御された部分は、回転発電機を主に局所的蒸発によって適切なレベルまで冷却し続けるのに過不足がない。回転発電機は、これによって、液体ポンプセクションの出口で作動流体圧力よりも低い作動流体圧力に曝され、高過ぎる作動流体圧力に起因した回転発電機のロータ又は他の内部部品への損傷を防止する。
【0015】
作動流体の制御された部分が液体ポンプセクションから膨張器セクションに移行する場合の本発明による発電システムの利点は、回転液体ポンプへの作動流体蒸気の漏出に起因する回転液体ポンプのキャビテーションを回避し、蒸発器を通過することなく回転液体ポンプから回転膨張器に直接流れる大量の作動流体に起因する発電効率の損失を回避しながら、回転膨張器のロータに液体ポンプセクションの回転液体ポンプを直接接続できることである。液体ポンプセクションから発電機セクションに移行するスロットルデバイスによって許容される作動流体の小さな制御された部分は、回転膨張器の軸受及び他の回転部品を主に局所的蒸発によって適切なレベルまで冷却し続けるのに過不足がない。
【0016】
更なる利点は、回転発電機が永久磁石発電機である場合、及びスロットルデバイスによって許容される作動流体の制御された部分が、液体ポンプから発電機セクションに移行する場合、作動流体のこの制御された流体部分が、回転発電機の磁石を冷却するのに用いることができる点である。
【0017】
本発明の好ましい実施形態では、発電システムは、ランキン回路、好ましくは有機作動流体を有するORC回路として配列される。
【0018】
本発明の別の好ましい実施形態では、膨張器セクションの回転膨張器の入口ポートは、上述の回転膨張器の出口ポートよりも高い位置にある。更に、回転液体ポンプは、回転膨張器の入口ポートよりも低い位置にある。
【0019】
これは、混合液体蒸気相中の膨張作動流体が、混合相作動流体の内部上昇によって生じるポンプ損失なしで回転膨張器から出ることを可能にする利点をもたらす。
【0020】
本発明は、1つの単一膨張器セクション、1つの単一液体ポンプセクション、及び発電機セクションの一体化複合装置に用いることができる。
【0021】
しかしながら、本発明はまた、2又は3以上の膨張器セクション、2又は3以上の液体ポンプセクション、及び発電機セクションの一体化複合装置に用いてもよい。膨張器又は液体ポンプセクションの各々は、複数の回転膨張器又は回転液体ポンプを含むことができまる。
【0022】
本発明はまた、発電システムの動作によって発電する方法に関し、
発電システムは、
-入口と、作動流体が加圧されて駆動シャフトによって駆動されるインペラを備えた回転液体ポンプとを含む液体ポンプセクションと、
-回転液体ポンプで加圧された作動流体が熱源からの熱の添加によって少なくとも部分的に蒸発される蒸発器を含む蒸発器セクションと、
-蒸発器セクションにおいて少なくとも部分的に蒸発された作動流体が膨張される、回転膨張器要素を備えた回転膨張器を含む膨張器セクションと、
-ロータを備えた回転発電機を含む発電機セクションと、
を備え、
膨張器セクション、液体ポンプセクション及び発電機セクションは、回転膨張器の回転膨張器要素、回転液体ポンプのインペラ及び回転発電機のロータとの間の相対回転速度比が機械的に維持されるように回転可能に接続され、
回転液体ポンプに入る作動流体の制御された部分は、回転液体ポンプのインペラが駆動される駆動シャフトが備えられたスロットルデバイスにより液体ポンプセクションから膨張器セクション及び/又は発電機セクションに移行することが可能となり、回転膨張器及び/又は回転発電機は、液体ポンプセクションから膨張器セクション又は発電機セクションに移行する作動流体の制御された部分によって冷却される、特徴を有する。
【0023】
本発明の好ましい実施形態では、スロットルデバイスによって液体ポンプセクションから膨張器セクション及び/又は発電機セクションに移行することができる作動流体の制御された部分の質量流量は、液体ポンプセクションの入口に送給された作動流体の総質量流量の25%よりも低く、好ましくは10%よりも低く、より好ましくは5%よりも低く、更により好ましくは3%よりも低い。このようにして、作動流体の制御された部分は、回転発電機のロータ及び他の構成要素又は回転膨張器の軸受及び他の回転部品を、主として局所的蒸発によって適切なレベルまで冷却し続けるのに過不足がない。
【0024】
本発明の特性をより良く示すことを意図して、回転液体ポンプの駆動シャフトにスロットルデバイスが備えられた本発明による発電システムの幾つかの好ましい実施形態は、添付図面を参照して、限定ではなく例証として以下で説明される。
【図面の簡単な説明】
【0025】
【
図1A】本発明による発電システムを含むランキン回路を概略的に示す図である。
【
図1B】本発明による発電システムを含むランキン回路を概略的に示す図である。
【
図2】発電システムの異なる変形形態を示す図である。
【
図3】発電システムの異なる変形形態を示す図である。
【
図4】発電システムの異なる変形形態を示す図である。
【
図5】発電システムの異なる変形形態を示す図である。
【
図6】発電システムの回転液体ポンプの駆動シャフトのシーリングをより詳細に示す図である。
【発明を実施するための形態】
【0026】
この場合、
図1Aの発電システム1は、膨張器セクション3、液体ポンプセクション4、及び発電機セクション5の一体化複合装置2を含むランキン回路である。
【0027】
好ましくは、膨張器セクション3及び発電機セクション5の全ての回転部品、及び好ましくはまた液体ポンプセクション4は、半密閉ハウジング6に封入される。
【0028】
液体ポンプセクション4の回転液体ポンプ7は、回転液体ポンプ7の駆動シャフト8によって駆動される回転インペラにより回路を通して作動流体を駆動する。回転液体ポンプ7は、容積移送回転ポンプ、好ましくはギアポンプとすることができる。
【0029】
回路を通る作動流体の流れは以下の通りである。
【0030】
回転液体ポンプ7は、熱交換器10の第1のセクションである蒸発器9を含む蒸発器セクションを通って、液体形態の作動流体を駆動する。熱源から熱を提供する加熱媒体は、熱交換器10の第2のセクションを通って、好ましくは蒸発器9を通って流れる作動流体に対する対向流として流れる。
【0031】
熱源は、圧縮機設備などのプロセス設備からの廃熱とすることができ、その結果、発電システム1は、回収された廃熱を有用な機械又は電気エネルギーに変換する、いわゆるWTP(廃熱電力)設備である。
【0032】
作動流体は、加熱媒体から作動流体への熱伝達に起因して蒸発器9において少なくとも部分的に蒸発し、気体又は蒸気状態で、或いは液体と気体もしくは蒸気の混合物として蒸発器9から離れる。
【0033】
作動流体は、典型的には、蒸発器9中の作動流体に熱を提供する加熱媒体の温度に対して、蒸発器9における作動流体圧力にて沸点であるより好ましい蒸発特性によって特徴付けられる。
【0034】
蒸発器9中の作動流体の沸点が低いほど、より良好でより効率的な熱が、低温の加熱媒体によって作動流体に提供される。典型的には、作動流体は、その臨界点温度が熱交換器10中の加熱媒体の最高温度に近いものが選択される。
【0035】
更に、作動流体は、発電システム1の構成要素のための潤滑剤を含み、又は潤滑剤として作用することができる。
【0036】
適切な有機作動流体の実施例は、1,1,1,3,3-ペンタフルオロプロパンである。しかしながら、本発明は、この特定の作動流体に限定されない。
【0037】
蒸発器9を離れた少なくとも部分的に蒸発された作動流体は、膨張器セクション3の回転膨張器11において膨張される。回転膨張器11は、例えば、消費者に電気エネルギーを供給するために発電機セクション5において回転発電機13のロータに結合された流出駆動シャフト12によって駆動される回転膨張器要素の形態で構築されるので、作動流体の熱エネルギーを機械的エネルギーに変換できるように構成される。
【0038】
膨張器セクション3の回転膨張器11は、容積移送回転膨張器、好ましくは二軸回転膨張器とすることができる。
【0039】
発電機セクション5の回転発電機13は、同期発電機、好ましくは永久磁石発電機とすることができる。
【0040】
膨張器セクション3を離れた膨張した作動流体は、凝縮器14を含む凝縮セクションを通って流れ、ここでは冷却媒体と接触状態になり、冷却媒体によって冷却され、これによりランキン回路の後続のサイクルのために回転液体ポンプ7によって液体として周りに圧送することを可能にするために、作動流体が完全に凝縮することが確保される。
【0041】
回転液体ポンプ7に入る作動流体の制御された部分15は、回転液体ポンプ7のインペラを駆動する駆動シャフト8上に設けられたスロットルデバイスを介して、液体ポンプセクション4から発電機セクション5に漏出することができる。作動流体15のこの制御された部分は、回転発電機13にわたって通過することになる。このようにして、回転発電機13のロータ及び他の構成要素は、適切な程度まで冷却される。
【0042】
図1Bに示すように、膨張器セクション3及び発電機セクション5の位置は、ハウジング6において置き換えることができ、その結果、作動流体の制御された部分15は、回転液体ポンプ7の駆動シャフト8に設けられたスロットルデバイスを介して膨張器セクション3に漏出するようになる。次いで、作動流体の制御された部15は、回転膨張器11の軸受及び他の構成要素を冷却するのに用いられる。
【0043】
図1A及び/又は1Bでは、作動流体の制御された部分15は、膨張器セクション3及び発電機セクション5の両方を通って流れ、回転膨張器11の構成要素及び発電機13の構成要素の両方を冷却するのに用いられることを排除するものではない。
【0044】
膨張器セクション3、液体ポンプセクション4及び発電機セクション5は、回転膨張器11の回転膨張器要素、回転液体ポンプ7のインペラ及び回転発電機13のロータとの間の相対回転速度比が機械的に維持されるように回転可能に接続される。
【0045】
これは、回転膨張器11の回転膨張器要素、回転液体ポンプ7のインペラ、回転発電機13のロータ、回転液体ポンプ7の駆動シャフト8、及び回転発電機13の駆動シャフト12をギアボックスによって接続することにより達成することができる。しかしながら、回転膨張器11の回転膨張器要素及び/又は回転液体ポンプ7のインペラは、駆動シャフト8に直接装着することができる。同様に、回転膨張器11の回転膨張器要素及び/又は回転発電機13のロータは、駆動シャフト12に直接装着することができる。
【0046】
本発明の変形形態では、回転膨張器要素11は、回転液体ポンプ7のインペラを駆動する駆動シャフト8に装着される。更に、回転膨張器11の回転膨張器要素は、回転発電機13のロータを駆動する駆動シャフト12に装着することができる。
【0047】
回転液体ポンプ7のインペラを駆動する駆動シャフト8は、例えば、回転液体ポンプ7のインペラが回転膨張器11の雄型ロータ要素に接続された駆動シャフト8によって駆動され、回転発電機13のロータが回転膨張器11の雌型ロータ要素に接続された駆動シャフト12によって駆動されるときに、回転発電機13のロータを駆動する駆動シャフト12とは異なる場合があり、又はその逆も同じである。或いは、回転発電機13のロータは、回転液体ポンプ7のインペラと同じ駆動シャフトとすることができ、その結果、駆動シャフト8及び12は、1つの同じ駆動シャフトとなる。
【0048】
図2~5に示すように、半密閉ハウジング6において膨張器セクション3、液体ポンプセクション4及び発電機セクション5の位置決め及び向きについて、様々な構成が実施可能である。
【0049】
図2は、膨張器セクション3、発電機セクション5及び液体ポンプセクション4の複合装置を示し、これらのセクションは、回転膨張器11の回転膨張器要素、回転液体ポンプ7のインペラ及び回転発電機13のロータの間の相対回転速度比が機械的に維持されるように垂直方向に装着されて回転可能に接続される。作動流体の制御された部分15は、回転発電機15のロータ及び他の内部構成要素を冷却するために、液体ポンプセクション4から発電機セクション5に流れる。膨張器セクション3の回転膨張器11には、この回転膨張器11の出口ポート17よりも高い位置にある入口ポート16が備えられる。液体ポンプセクション4の回転液体ポンプ7は、回転膨張器11の入口ポート16よりも低い位置にあり、混合相の作動流体の内部上昇及び回転膨張器11から回転液体ポンプ7への気体又は蒸気作動流体の逆流に起因して、回転液体ポンプ7のキャビテーション及び結果として生じる圧送損失を回避する。
【0050】
図3は、
図2の複合装置の変形形態を示し、膨張器セクション3及び発電機セクション5の位置が置き換えられており、その結果、回転液体ポンプ7の駆動シャフト8に設けられたスロットルデバイスによって許容される作動流体の制御された部分15は、回転膨張器11の軸受及び他の回転部品を冷却するために液体ポンプセクション4から膨張器セクション3に流れるようになる。
【0051】
図4は、
図2の複合装置の変形形態を示し、膨張器セクション3、発電機セクション5及び液体ポンプセクション4が水平に装着される。
【0052】
図5は、
図4における、膨張器セクション3、発電機セクション5及び液体ポンプセクション4の複合装置の変形形態を示し、膨張器セクション3及び発電機セクション5の位置が置き換えられている。
【0053】
図6では、作動流体の制御された部分15は、圧力レベルp1の液体ポンプセクション4からp1よりも低い圧力レベルp2にて膨張器セクション3及び発電機セクション5のうちの一方に回転液体ポンプ7の駆動シャフト8を介してスロットル調整されて漏出していることが示される。この場合、スロットルデバイスは、回転液体ポンプ7のインペラが装着された駆動シャフト8と、液体ポンプセクション4と膨張器セクション3及び発電機セクション5のうちの一方との間のこの駆動シャフト8のシーリング18との間の開口部である。
【0054】
回転液体ポンプ7のインペラを駆動する駆動シャフト8が備えられている、スロットルデバイスによって液体ポンプセクション4から膨張器セクション3又は発電機セクション5に移行することができる作動流体の制御された部分15は、本発明による発電システム1の動作によって発電する方法において回転膨張器11又は回転発電機13を冷却するのに用いることができる。
【0055】
本方法では、膨張器セクション3の回転膨張器11の入口ポート16は、蒸発器セクションにおいて蒸発器9から流入する少なくとも部分的に蒸発された作動流体に送給される。
【0056】
回転発電機13のロータは、液体ポンプセクション4の入口における作動流体圧力レベルよりも高く且つ液体ポンプセクション4の出口における作動流体圧力レベルよりも低い圧力レベルで、作動流体によって冷却されこれに曝される。回転発電機13を冷却している作動流体の温度が、その冷却作用中に上昇するにつれて、この作動流体は、回転発電機13のロータが液体及び気体又は蒸気作動流体の混合物に曝されるように蒸発することができる。
【0057】
作動流体の制御された部分15の質量流量は、液体ポンプセクション4の入口に送給される作動流体の総質量流量に対してごく一部であり、好ましくは25%よりも低く、より好ましくは10%よりも低く、更により好ましくは5%よりも低く、更により好ましくは3%よりも低い。
【0058】
本発明は、実施例として記載され図面に示された実施形態に限定されるものではないが、本発明によるこのような発電システムの動作によって発電する発電システム及び方法は、本発明の範囲から逸脱することなく、あらゆる種類の形態又は寸法で実現することができ、ひいては、2以上の膨張器セクション又は液体ポンプセクションを備えた発電システム、或いは2以上の回転膨張器を備えた膨張器セクションと2以上の回転液体ポンプを備えた液体ポンプセクションを含む発電システムにも適用することができる。
【符号の説明】
【0059】
1 発電システム
2 一体化複合装置
3 膨張器セクション
4 液体ポンプセクション
5 発電機セクション
6 ハウジング
7 回転液体ポンプ7
8、12 駆動シャフト
9 蒸発器
10 熱交換器
11 回転膨張器
13 発電機
14 凝縮器
15 作動流体の制御された部分