IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 学校法人大同学園の特許一覧

特許7266868テンセグリティ構造を有する構造体、建築部材および建築物
<>
  • 特許-テンセグリティ構造を有する構造体、建築部材および建築物 図1
  • 特許-テンセグリティ構造を有する構造体、建築部材および建築物 図2
  • 特許-テンセグリティ構造を有する構造体、建築部材および建築物 図3
  • 特許-テンセグリティ構造を有する構造体、建築部材および建築物 図4
  • 特許-テンセグリティ構造を有する構造体、建築部材および建築物 図5
  • 特許-テンセグリティ構造を有する構造体、建築部材および建築物 図6
  • 特許-テンセグリティ構造を有する構造体、建築部材および建築物 図7
  • 特許-テンセグリティ構造を有する構造体、建築部材および建築物 図8
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-04-21
(45)【発行日】2023-05-01
(54)【発明の名称】テンセグリティ構造を有する構造体、建築部材および建築物
(51)【国際特許分類】
   E04B 1/34 20060101AFI20230424BHJP
   E04C 3/02 20060101ALI20230424BHJP
【FI】
E04B1/34 Z
E04C3/02
【請求項の数】 6
(21)【出願番号】P 2019156685
(22)【出願日】2019-08-29
(65)【公開番号】P2021032036
(43)【公開日】2021-03-01
【審査請求日】2022-06-13
【新規性喪失の例外の表示】特許法第30条第2項適用 大同大学建築・インテリアデザイン専攻 平成30年度卒業研究梗概集,平成31年2月5日 大同大学建築・インテリアデザイン専攻 2018年度卒業研究発表会,平成31年2月6日
(73)【特許権者】
【識別番号】391002487
【氏名又は名称】学校法人大同学園
(74)【代理人】
【識別番号】100126170
【弁理士】
【氏名又は名称】水野 義之
(72)【発明者】
【氏名】萩原 伸幸
(72)【発明者】
【氏名】藤代 悠吾
【審査官】伊藤 昭治
(56)【参考文献】
【文献】特開平10-77684(JP,A)
【文献】特開2007-193377(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
E04B 1/34
E04C 3/02
E04B 1/32
E04C 2/00 - 2/54
F16S 3/04
F16S 3/06
E04B 1/18
E04B 1/19
(57)【特許請求の範囲】
【請求項1】
テンセグリティ構造を有する構造体であって、
角柱型あるいは角錐台型のテンセグリティである基本テンセグリティと、前記基本テンセグリティに対して鏡像対称な鏡像基本テンセグリティとを、それぞれの一側面が対向するように配置した状態において、前記基本テンセグリティと前記鏡像基本テンセグリティとの鏡像対称性を維持しつつ、前記基本テンセグリティおよび前記鏡像基本テンセグリティのそれぞれの前記一側面の頂点となる節点を単一平面上に位置するように前記基本テンセグリティおよび鏡像基本テンセグリティを変形した第1および第2の変形テンセグリティを、前記単一平面が重ね合わさるように組み合わせた形態となっている、
構造体。
【請求項2】
前記変形は、前記単一平面から伸びる圧縮材を短縮する変形を含む、請求項1記載の構造体。
【請求項3】
前記第1と第2の変形テンセグリティにおいて、前記単一平面上に位置し重複する圧縮材および張力材は、その一方が省略されている、請求項1または2記載の構造体。
【請求項4】
前記基本テンセグリティは、3つの圧縮材を有する3ストラット・テンセグリティである、請求項1ないし3のいずれか記載の構造体。
【請求項5】
請求項1ないし4のいずれか記載の構造体を複数組み合わせることにより構成され、面状の広がりを有する建築部材。
【請求項6】
請求項5記載の建築部材を架構構造として有する建築物。
【発明の詳細な説明】
【技術分野】
【0001】
この発明は、テンセグリティ構造を有する構造体に関し、特に、当該構造体を連結して面状の広がりを有する連結構造体の構築を可能にする技術に関する。
【背景技術】
【0002】
架構構造を有する建築物等においては、屋内構造等の自由度を高めるため、架構スパンを拡大することが求められているが、架構スパンを拡大するためには、架構構造を構成する横架材について、その重量を低減するとともに、垂直荷重に対する剛性(垂直剛性)を高めることが要求される。このように、横架材の重量を低減しつつ、垂直剛性を高めることを可能とする構造としては、立体骨組構造が知られているが、立体骨組構造においては、圧縮力が加わる部材(圧縮材)と引張力が加わる部材(張力材)とが明確に分離していないため、骨組構造を構成する各部材の断面積を縮小することが難しく、重量の低減には限界がある。
【0003】
そこで、圧縮材に接合された張力材に初期張力を導入することにより、圧縮材に加わる圧縮力と張力材に導入された初期張力とで自己釣合の条件を満たし、重量の低減が困難な圧縮材の数を減らしつつ、構造の安定化を図ることが種々提案されている。例えば、特許文献1には、初期張力を導入することにより安定化した構造として、テンセグリティ構造を用いることが提案されている。
【0004】
特許文献1において提案されているテンセグリティ構造は、圧縮材の数を減らすことが可能となるため、横架材等として使用される構造体の軽量化を図ることが可能となる。しかしながら、架構スパンの拡大のために大規模な構造体を構築しようとした場合、圧縮材と張力材との自己釣合の条件が構造全体に波及する。そのため、テンセグリティ構造を用いた大規模な構造体は、施工が容易でない。また、局所的な変位が自己釣合の条件を崩すため、全体としての剛性を十分に高くするのが困難である。さらに、テンセグリティ構造では、自己釣合の条件を満たすために圧縮材と張力材との位置関係に制限が加わるため、所望の形状で大規模な構造体を構築することが困難である。
【0005】
このようなテンセグリティ構造の問題を解決するため、テンセグリティ構造を有する1つのユニットで自己釣合の条件を完結させ、当該ユニットを連結することで大規模な構造体(梁状の構造物)を構築することが提案されている(例えば、非特許文献1参照)。非特許文献1に開示された方法によれば、ユニットを正角柱型で圧縮材(ストラット)が4本の4ストラット・テンセグリティとすることにより、ユニット同士を隙間なく、繰り返し連結することができるので、大規模な構造体を構築することが可能となっている。
【先行技術文献】
【特許文献】
【0006】
【文献】米国特許3063521号公報
【非特許文献】
【0007】
【文献】待永崇宏、池本稔、藤本益美および今井克彦、「小径木丸棒とPC鋼棒を用いたシステムトラスで構成されたテンセグリティに関する実験的研究」、日本建築学会大会学術講演梗概集、一般社団法人日本建築学会、平成17年9月、p.945-948
【発明の概要】
【発明が解決しようとする課題】
【0008】
しかしながら、非特許文献1において提案された方法では、ユニットが正角柱型の4ストラット・テンセグリティに限定されているため、設計の自由度を高くすることができない。
【0009】
本発明は、上述した従来の課題を解決するためになされたものであり、テンセグリティ構造を有する構造体を連結して大規模な構造体を構築する際の設計の自由度をより高くする技術を提供することを目的とする。
【課題を解決するための手段】
【0010】
上記目的の少なくとも一部を達成するために、本発明は、以下の形態又は適用例として実現することが可能である。
【0011】
[適用例1]
テンセグリティ構造を有する構造体であって、角柱型あるいは角錐台型のテンセグリティである基本テンセグリティと、前記基本テンセグリティに対して鏡像対称な鏡像基本テンセグリティとを、それぞれの一側面が対向するように配置した状態において、前記基本テンセグリティと前記鏡像基本テンセグリティとの鏡像対称性を維持しつつ、前記基本テンセグリティおよび前記鏡像基本テンセグリティのそれぞれの前記一側面の頂点となる節点を単一平面上に位置するように前記基本テンセグリティおよび前記鏡像基本テンセグリティを変形した第1および第2の変形テンセグリティを、前記単一平面が重ね合わさるように組み合わせた形態となっている、構造体。
【0012】
この適用例によれば、基本テンセグリティとして、正角柱型の4ストラット・テンセグリティ以外の種々のテンセグリティを使用することができるので、テンセグリティ構造を有する構造体を連結して大規模な構造体を構築する際の設計の自由度をより高くすることができる。そして、構造体は、鏡像対称な2つの変形テンセグリティを組み合わせたものとなっているので、変形テンセグリティが単独で自己釣合の条件を満たさない場合であっても、構造体自体を自己釣合の条件を満たすようにすることができる。そのため、この適用例の構造体を連結することにより、大規模な構造体をより容易に構築することができる。
【0013】
[適用例2]
前記変形は、前記単一平面から伸びる圧縮材を短縮する変形を含む、適用例1記載の構造体。この適用例によれば、第1および第2の変形テンセグリティの配列方向の長さが過度に長くなって、剛性等の機械特性に異方性が生じることを、抑制することができる。
【0014】
[適用例3]
前記第1と第2の変形テンセグリティにおいて、前記単一平面上に位置し重複する圧縮材および張力材は、その一方が省略されている、適用例1または2記載の構造体。重複する圧縮材および張力材を省略することにより、第1と第2の変形テンセグリティを組み合わせることによって得られる構造体の重量を低減することが可能となる。
【0015】
[適用例4]
前記基本テンセグリティは、3つの圧縮材を有する3ストラット・テンセグリティである、適用例1ないし3のいずれか記載の構造体。基本テンセグリティを3ストラット・テンセグリティとすることにより、変形テンセグリティおよび変形テンセグリティを組み合わせて形成される構造体をより容易に形成することができる。
【0016】
なお、本発明は、種々の態様で実現することが可能である。例えば、テンセグリティ構造を有する構造体およびその製造方法、その構造体を利用した建築部材およびその製造方法、あるいは、それらの構造体や建築部材を利用した建築物および建築方法等の態様で実現することができる。
【図面の簡単な説明】
【0017】
図1】テンセグリティ構造の一例を示す説明図。
図2】本実施形態のテンセグリティを形成する様子を示す説明図。
図3】本実施形態のテンセグリティを形成する様子を示す説明図。
図4】テンセグリティを組み合わせて平面的な構造体を構築する様子を示す説明図。
図5】連結構造体を構成するテンセグリティの具体的形状を示す三面図。
図6】評価の対象となる連結構造体の全体構成を示す斜視図。
図7】構造解析における支持および載荷の態様を示す説明図。
図8】連結構造体の垂直剛性評価結果を示すグラフ。
【発明を実施するための形態】
【0018】
以下、本発明を実施するための形態を以下の順序で説明する。
A.実施形態:
A1.テンセグリティ構造:
A2.本実施形態のテンセグリティの構成:
A3.平面状の構造体の構築:
B.連結構造体の評価:
C.変形例:
【0019】
A.実施形態:
A1.テンセグリティ構造:
図1は、テンセグリティ構造の一例を示す説明図である。ここで、テンセグリティ構造とは、棒状の圧縮材(ストラット)と張力材(ケーブル)とを組み合わせた構造であり、ストラットが負担する圧縮応力と、ケーブルに導入される張力とが全体で自己釣合の状態となることで安定した構造を謂う。なお、本発明および本明細書においては、特に区別する必要がない場合、テンセグリティ構造そのもの、および、テンセグリティ構造を有する構造体を併せて、単に「テンセグリティ」とも呼ぶ。
【0020】
図1に示すテンセグリティ100は、3本のストラット111~113と、9本のケーブル131~153とを有している。ストラット111~113とケーブル131~153とは、ストラット111~113の両端の節点(ノード)161~173において、ストラットとケーブルとのなす角度が自在に変更可能(角度自在)となるように接合されている。
【0021】
このように、テンセグリティ100は、3本のストラット111~113を有しているため、3ストラット・テンセグリティとも呼ばれる。また、テンセグリティ100は、図1からわかるように、正三角柱(一般的には、正角柱)の平行な2つの底面を捩った形状をしているため、正角柱型のテンセグリティとも呼ばれる。なお、本明細書および本発明においては、このような正角柱型のテンセグリティにおいて、基となる正角柱の底面および側面に相当する面(すなわち、ケーブルやストラットで囲まれた領域)を、それぞれ底面および側面とも呼ぶ。また、図1からわかるように、テンセグリティ100においては、1つの側面は2つの平面(一例をハッチングで示す)で構成されている。
【0022】
テンセグリティ100において、ケーブル131~153に適宜設定された張力(初期張力)を導入することにより、テンセグリティ100は自己釣合の状態となる。具体的には、ケーブル131~153のそれぞれに自己釣合応力比に比例した初期張力を導入することにより、テンセグリティ100は自己釣合の状態となり、その構造が安定する。なお、自己釣合応力比は、一般逆行列を用いた周知の方法により算出することができる。
【0023】
図1に示すように、テンセグリティ100は、ノード161~173の位置関係において、2つの底面のそれぞれの中心を通る軸に対して3回対称、すなわち、120°の回転毎にノード161の位置関係が一致する形状となっているが、並進対称性や鏡像対称性を有していない。詳細については後述するが、このように、テンセグリティ100は、ノード161~173の位置関係において対称性が低くなっているため、複数のテンセグリティ100を連結させて平面状等の面状の広がりを有する構造体を形成することは困難である。
【0024】
なお、上述の通り、テンセグリティ100は、正角柱型のテンセグリティであるため、底面を対向させるように配列するとともに、対向する底面の向きを合わせることにより、複数のテンセグリティ100を連結し、直線状に伸びる構造体を構築することは可能である。しかしながら、この場合、テンセグリティ100の配列方向に沿って側面の向きが回転するため、面状の広がりを有する構造体を形成することは困難である。
【0025】
A2.本実施形態のテンセグリティの構成:
図2および図3は、本実施形態のテンセグリティ300を形成する様子を示す説明図である。図2(a)は、正角柱型の3ストラット・テンセグリティ100,200を示し、図2(b)および図3(a)は、後述するように3ストラット・テンセグリティ100,200を変形した変形テンセグリティ700,800を示している。また、図3(b)は、本実施形態のテンセグリティ300を示している。
【0026】
図2(a)に示す2つの3ストラット・テンセグリティ100,200のうち、-x方向(紙面左方)側のテンセグリティ100は、図1に示したものと同一である。一方、+x方向(紙面右方)側のテンセグリティ200は、テンセグリティ100をx方向について鏡像反転した形状となっている。なお、テンセグリティ200において、テンセグリティ100と対応する要素(ストラット、ケーブルおよびノード)については、符号の下2桁を対応するテンセグリティ100の要素と同一とし、符号の最上位の桁(100の位)を1から2に変更している。
【0027】
図2(a)からわかるように、2つのテンセグリティ100,200の側面を対向させた状態において、それぞれの対向面に位置するテンセグリティ100の2つのノード163,172と、テンセグリティ200の2つのノード263,272とを重ね合わせても、テンセグリティ100の2つのノード162,173と、テンセグリティ200の2つのノード262,273とは重なり合わない。そのため、2つのテンセグリティ100,200を組み合わせても、その構造は安定しない。
【0028】
そこで、それぞれ対向面に位置する、テンセグリティ100の4つのノード162,163,172,173と、テンセグリティ200の4つのノード262,263,272,273とが重なり合うように、2つのテンセグリティ100,200における鏡像対称性を維持しつつ、テンセグリティ100,200を変形する。具体的には、テンセグリティ100の対向面の頂点となるノード162,163,172,173と、テンセグリティ200の対向面の頂点となるノード262,263,272,273とが、それぞれ平行な単一平面上に位置するように変形する。
【0029】
図2(b)に示す2つの変形テンセグリティ700,800は、それぞれ、上述のように基となるテンセグリティ100,200(以下、「基本テンセグリティ100,200」とも呼ぶ)の対向面を単一の平面となるように変形したものであり、互いにx方向(対向方向)について鏡像反転した形状となっている。これらの変形テンセグリティ700,800においては、基本テンセグリティ100,200と対応する要素(ストラット、ケーブルおよびノード)については、符号の下2桁を対応する基本テンセグリティ100,200の要素と同一とし、符号の最上位の桁(100の位)を1から7および2から8に変更している。
【0030】
上述の通り、変形テンセグリティ700の対向面上のノード762,763,772,773と、変形テンセグリティ800の対向面上のノード862,863,872,873とは、それぞれ単一平面上に位置するため、変形テンセグリティ700,800は、自己釣合がとれない状態、すなわち、自己釣合応力比の解が存在しない状態となっている。そのため、変形テンセグリティ700,800自体は、そのままの状態では構造が安定しない。
【0031】
なお、本実施形態では、図2(a)および図2(b)からわかるように、基本テンセグリティ100,200を基に変形テンセグリティ700,800を形成するに際し、対向面から伸びるストラット111,113,211,213を短縮しているが、対向面から伸びるストラット111,113,211,213は必ずしも短縮する必要はない。ただし、後述するように、変形テンセグリティ700,800から本実施形態のテンセグリティ300(図3(b))を形成する際に、y方向、すなわち、変形テンセグリティ700,800の配列方向の長さが過度に長くなり、剛性等の機械特性に異方性が生じることを抑制することができるので、対向面から伸びるストラット111,113,211,213は、短縮するのが好ましい。
【0032】
図3(a)および図3(b)に示すように、本実施形態のテンセグリティ300は、単一平面となった変形テンセグリティ700,800の対向面を重ね合わせるように組み合わせることにより形成されている。このように形成されたテンセグリティ300は、5本のストラット311~315と、14本のケーブル331~354と、ストラット311~315およびケーブル331~354を角度自在に接合する8つのノード361~374とを有している。また、鏡像対称の2つの変形テンセグリティ700,800を組み合わせた形状となっているため、テンセグリティ300自体が鏡像対称性を有している。
【0033】
図3(a)および図3(b)からわかるように、テンセグリティ300の5本のストラット311~315のうち、ストラット311,314は、それぞれ変形テンセグリティ700のストラット711,713に対応し、ストラット312,313は、それぞれ変形テンセグリティ800のストラット811,813に対応する。また、ストラット315は、対向面に位置する変形テンセグリティ700のストラット712および変形テンセグリティ800のストラット812の双方に対応する。
【0034】
テンセグリティ300のケーブル331,334,341,344,351は、それぞれ変形テンセグリティ700のケーブル731,733,741,743,751に対応し、ケーブル332,333,342,343,353は、それぞれ変形テンセグリティ800のケーブル831,833,841.843,851に対応する。また、ケーブル335,345,352,354は、それぞれ対向面に位置する変形テンセグリティ700のケーブル732,742,752,753および変形テンセグリティ800のケーブル832,842,852,853の双方に対応する。
【0035】
そして、テンセグリティ300のノード361,371は、それぞれ変形テンセグリティ700のノード761,771に対応し、ノード363,373は、それぞれ変形テンセグリティ800のノード861,871に対応する。また、ノード362,364,372,374は、それぞれ対向面に位置する変形テンセグリティ700のノード762,763,772,773および変形テンセグリティ800のノード862,863,872,873の双方に対応する。
【0036】
上述のように、図3(a)に示す変形テンセグリティ700,800では、自己釣合がとれない状態となっているため、変形テンセグリティ700,800自体は、そのままの状態では構造が安定しない。しかしながら、変形テンセグリティ700,800単独での自己釣合を要求せず、適切な拘束条件を与えることにより、構造が安定する応力比を求めることが可能となる。
【0037】
変形テンセグリティ700,800の場合、図3(a)に示すように、変形テンセグリティ700,800のそれぞれの対向面に位置するノード762,763,772,773,862,863,872,873に対して、x方向の移動を規制し、y方向およびz方向の移動を許容する拘束条件を与えることにより、変形テンセグリティ700,800の構造を安定化させることができる。
【0038】
このように、ノード762,763,772,773,862,863,872,873に対して与えられる拘束条件は、これらのノード762,763,772,773,862,863,872,873に対して、適宜設定されたx方向の荷重を加えることと等価である。そして、変形テンセグリティ700,800は、互いにx方向について鏡像反転した形状となっているため、変形テンセグリティ700,800において対応するノード(例えば、ノード763とノード863)の拘束条件に等価な荷重は、大きさが同じで、逆方向となる。
【0039】
そのため、変形テンセグリティ700,800を組み合わせたテンセグリティ300においては、変形テンセグリティ700,800において対応する対向面に位置するノードが単一のノード(例えば、ノード763とノード863についてはノード364)に対応する。そのため、変形テンセグリティ700,800において対応するノードの拘束条件に等価な荷重が相殺されるので、拘束条件を与えることなくテンセグリティ300の構造が安定する自己釣合の状態となる。
【0040】
なお、図3(a)および図3(b)からわかるように、2つの変形テンセグリティ700,800を組み合わせてテンセグリティ300を構成する際、変形テンセグリティ700において対向面に位置するストラット712およびケーブル732,742,752,753と、変形テンセグリティ800において対向面に位置するストラット812およびケーブル832,842,852,853とが重複する。そのため、本実施形態のテンセグリティ300では、これらの重複するストラットおよびケーブルの一方を省略している。但し、重複するストラットおよびケーブルを省略することなく、ストラットおよびケーブルを重複させたままにすることも可能である。但し、テンセグリティ自体の構造がより簡単になるとともに、テンセグリティの重量を低減することが可能となる点で、重複するストラットおよびケーブルは、その一方を省略するのが好ましい。
【0041】
A3.平面状の構造体の構築:
図4は、本実施形態のテンセグリティ300を組み合わせて平面的な構造体を構築する様子を示す説明図である。図4(a)は、4つのテンセグリティ300a~300dを近接して配置した状態を表し、図4(b)は、4つのテンセグリティ300a~300dを組み合わせた状態を表している。なお、このように同一の構成を有する複数のテンセグリティ300およびそれらの構成要素については、必要に応じてアルファベット1文字を符号に付加し、個々のテンセグリティ300a~300dやそれらの構成要素を区別する。また、図4(a)および図4(b)では、図示の便宜上、テンセグリティ300a~300dの構成要素については必要のない限り符号を省略し、また、ストラットを太線で描いている。
【0042】
図4(a)に示すように、4つのテンセグリティ300a~300dのうち、y方向に配列される2つのテンセグリティ300a,300bは、図2(b)と同一の向きに配置されている。一方、x方向に配列される残りの2つのテンセグリティ300c,300dは、z軸を中心に180°回転した状態で配置されている。
【0043】
このように配置することによりテンセグリティ300aの2つのノード364a,374aの位置関係は、テンセグリティ300bの2つのノード362b,372b、テンセグリティ300cの2つのノード363c,373c、および、テンセグリティ300dの2つのノード361d,371dのそれぞれの位置関係と一致する。
【0044】
また、互いに対向するテンセグリティ300a、300cでは、テンセグリティ300aの対向面に位置するノード363a,364a,373a,374aの位置関係と、テンセグリティ300cの対向面に位置するノード364c,363c,374c,373cの位置関係とが一致する。同様に、互いに対向するテンセグリティ300a~300dの他の組み合わせについても、図4(a)において白抜きで示す対向面に位置する各ノードの位置関係は、互いに一致する。
【0045】
このようにテンセグリティ300a~300dを適宜配置することにより、白丸で示す対向面に位置する各ノードの位置関係が一致する。そのため、図4(b)に示すように、テンセグリティ300a~300dは、対向面に位置するノードが離間しない(隙間がない)状態で平面状に配置することが可能となっている。
【0046】
さらに、4つのテンセグリティ300a~300dは、x方向あるいはy方向に配列されることにより、隙間なく平面状に配置することができる。そのため、図4の例で示すようにx方向およびy方向にテンセグリティ300を配列することにより、さらに多くのテンセグリティ300を隙間なく平面状に配置し、より大規模な構造体を得ることが可能となる。
【0047】
このように、本実施形態のテンセグリティ300によれば、その配置を適宜設定することにより、テンセグリティ300を隙間なく平面状に配置することができるので、平面状の大規模な構造体を形成することができる。そして、テンセグリティ300は、それ単体で自己釣合の状態となっているため、複数のテンセグリティ300を連結させた大規模な構造体(連結構造体)を構築した場合においても、連結構造体の全体が自己釣合の条件を充足する。
【0048】
また、テンセグリティ300は、棒状のストラット311~315およびケーブル331~354により構成されるため、構造体としての軽量化を図ることができる。そのため、テンセグリティ300の構造を実現した構造部材を用いることにより、屋根や梁などの大規模な建築部材の軽量化を図ることができる。
【0049】
さらに、テンセグリティ300自体が自己釣合状態で安定した構造となっているため、工場などにおいて予めテンセグリティ300を製造し、建築現場においてテンセグリティ300を組み立てて大規模構造物を構築することも可能である。この場合、輸送時の嵩が大きくなるものの、大規模構造物の構築時にケーブルに張力を導入する工程が省略できるので、大規模構造物を構築することがより容易となり、大規模構造物の建築コストを低減することがより容易となる。
【0050】
B.連結構造体の評価:
上記実施形態のように構成されたテンセグリティを連結して得られる平面状の連結構造体について、屋根等の構造物に適用し得ることを確認するため、垂直荷重に対する連結構造体の剛性を評価した。具体的には、上記実施形態で例示したテンセグリティを連結した連結構造体について構造解析を行い、垂直荷重を加えた際の、連結構造体のほぼ中央における変位を評価した。
【0051】
図5は、連結構造体を構成するテンセグリティの具体的形状を示す三面図である。図5に示すように、連結構造体を構成するテンセグリティは、x方向およびz方向のノード間隔を625mmとし、y方向のノード間隔を250mmとした。そのため、x方向およびy方向におけるテンセグリティの長さは1250mmとなり、テンセグリティの高さは625mmとなっている。
【0052】
このテンセグリティにおいて、ストラットは、直径φが81.9mmの桧丸棒とし、ケーブルは、プレストレスコンクリート用の緊張材として使用される直径φが7.26mmのPC棒鋼(PC鋼線)とした。なお、これらの部材の機械的諸元(直径φ、断面積A、塑性断面係数Zp、断面2次モーメントI、ヤング係数E)は、次の表1の通りである。
【表1】
【0053】
また、テンセグリティにおいて自己釣合を実現するために各ケーブルに導入される初期張力は、自己釣合応力比として最も引張力が大きくなるケーブル(図2のケーブル352,354)については15kNに設定し、他のケーブルについては、自己釣合応力比に応じて変更して設定した。
【0054】
図6は、評価の対象となる連結構造体の全体構成を示す斜視図である。なお、図6では、ストラットを太線で表すとともに、+z方向(上方)のケーブルを細い実線で表し、他のケーブルを破線で表している。図6に示すように、連結構造体は10個のテンセグリティにより構成されている。この連結構造体では、図5で示す状態と向きが同じ4個のテンセグリティをy方向に配列するとともに、図5で示す状態からz軸を中心に180°回転させたテンセグリティをy方向に配列されたテンセグリティと対向するように配置している。なお、連結構造体を構築するに際して、対向しあるいは隣接するテンセグリティのケーブルが重複するが、当該ケーブルはそのまま重複した状態で残すものとした。
【0055】
このように構成された連結構造体は、ストラットとなる桧の単位体積当たりの重量を410kg/mとし、ケーブルとなるPC棒鋼の単位体積当たりの重量を7850kg/mとすると、単一のテンセグリティの重量が15.4kgとなるため、総重量が154kgとなる。また、連結構造体を水平面(x-y面)に投影した際の投影面積(水平投影面積)は、6.74mとなるため、連結構造体の単位水平投影面積当たりの重量は、22.9kg/mとなる。
【0056】
図7は、構造解析における支持および載荷の態様を示す説明図である。図7(a)は、上方(+z方向)側に位置するケーブルの配置を示し、図7(b)は、下方(-z方向)側に位置するケーブルの配置を示している。なお、図7において、白抜きの三角(白三角)および下線を付した白三角は支持点を表し、黒塗りの丸(黒丸)は荷重が付加される載荷点を表している。また、白抜きの丸(白丸)は、変位を評価した点(評価点)を表している。
【0057】
図7に示すように、構造解析に際しては、連結構造体の支持、荷重の付加、および、変位の評価は、いずれも、連結構造体の下方(-z方向)側に位置するノードに対して行っている。また、支持条件は、4つの支持点のうち、右方(+y方向)側の支持点をピン支持とし、左方(-y方向)側の支持点をy方向のローラー支持とする単純支持とした。
【0058】
構造解析は、荷重を付加しない状態から、各載荷点に付加される荷重を100Nずつ10kNに到達するまで増加させ、その際の評価点の変位を評価することにより行った。なお、構造解析は、各ケーブルの張力が消失しない範囲にて行っているため、ケーブルの非抗圧性については考慮していない。
【0059】
図8は、連結構造体の垂直剛性評価結果を示すグラフである。図8のグラフにおいて、縦軸は連結構造体に載荷された総荷重、すなわち、載荷点(図7の黒丸)に与えられた荷重の総和を表し、縦軸は評価点(図7の白丸)における変位を表している。図8に示すように、評価を行った連結構造体においては、総荷重が40kNに至るまで、変位はほぼ直線状に変化した。このことから、総荷重が40kNの状態においても、いずれのケーブルも張力が喪失することなく形状の安定性が保たれることがわかった。また、総荷重を35kNとした状態における変位は、3.07mmと十分に小さく、連結構造体の垂直剛性が十分に高くなることがわかった。
【0060】
以上で説明したように、本発明を適用した連結構造体においては、総荷重を35kNとした状態における変位が3.07mmであった。一方、非特許文献1において提案されている梁状の構造物(対照構造物)においては、評価を行った連結構造体と使用する部材(ストラットおよびケーブル)の材質と直径φとが同一となっているが、総荷重を同一とした際の変位は、約8mmとなっている。このことから、本発明を適用することにより、連結構造体の垂直剛性を十分に(対照構造物の約2.6倍)高くすることが可能であることがわかった。
【0061】
一方、本発明を適用した連結構造体では、単位水平投影面積当たりの重量が22.9kg/mであり、対照構造物の15.8kg/mよりも大きくなった。しかしながら、その比率は、約1.45倍程度であり、本発明を適用した連結構造体においても、重量の低減を十分に行い得ることがわかった。
【0062】
C.変形例:
本発明は上記実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の態様において実施することが可能であり、例えば次のような変形も可能である。
【0063】
上記実施形態では、テンセグリティ300の基となる基本テンセグリティを、正角柱型の3ストラット・テンセグリティ100としているが、他の種類の基本テンセグリティを変形した鏡像対称な変形テンセグリティを組み合わせて、面状の広がりを有する連結構造体を構築し得るテンセグリティを形成することも可能である。
【0064】
例えば、基本テンセグリティを正角錐台型の3ストラット・テンセグリティとすることも可能である。ここで、正角錐台型のテンセグリティとは、正角錐台の平行な2つの底面を捩った形状となっているテンセグリティを謂う。このようにしても、側面を構成する2つの平面を単一平面となるように変形した変形テンセグリティと、当該変形テンセグリティと鏡像対称な変形テンセグリティとを組み合わせることにより、面状の広がりを有する連結構造体を構築可能なテンセグリティを得ることができる。なお、この場合、2つの底面の大きさの違いにより、連結構造体は平面状ではなく、ドーム状の形状となる。
【0065】
また、基本テンセグリティは、必ずしも正角柱型あるいは正角錐台型のテンセグリティである必要もない。基本テンセグリティとしては、底面の形状が正多角形ではない角柱型あるいは角錐台型のテンセグリティとすることも可能である。この場合においても、側面を構成する2つの平面を単一平面となるように変形した変形テンセグリティと、当該テンセグリティと鏡像対称な変形テンセグリティとを組み合わせることにより、面状の広がりを有する連結構造体を構築可能なテンセグリティを得ることができる。
【0066】
さらに、基本テンセグリティは、必ずしも3ストラット・テンセグリティである必要はない。一般的に、基本テンセグリティとしては、五角柱や五角錐台型のテンセグリティ等、ノードの配置がそのままで連結可能となっていない角柱型あるいは角錐台型のテンセグリティを採用することも可能である。但し、基本テンセグリティとしては、変形テンセグリティおよび変形テンセグリティを組み合わせて形成されるテンセグリティをより容易に形成することが可能となる点で、3ストラット・テンセグリティとするのが好ましい。
【符号の説明】
【0067】
100…テンセグリティ
111~113…ストラット
131~153…ケーブル
161~173…ノード
200…テンセグリティ
211~213…ストラット
231~253…ケーブル
261~273…ノード
300…テンセグリティ
311~315…ストラット
331~354…ケーブル
361~374…ノード
700…変形テンセグリティ
711~713…ストラット
731~753…ケーブル
761~773…ノード
800…変形テンセグリティ
811~813…ストラット
831~853…ケーブル
861~873…ノード
図1
図2
図3
図4
図5
図6
図7
図8