(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-04-24
(45)【発行日】2023-05-02
(54)【発明の名称】複数のサイト間のデータ分割
(51)【国際特許分類】
H04W 76/20 20180101AFI20230425BHJP
H04W 72/0457 20230101ALI20230425BHJP
H04W 92/20 20090101ALI20230425BHJP
【FI】
H04W76/20
H04W72/0457 110
H04W92/20
【外国語出願】
(21)【出願番号】P 2020020501
(22)【出願日】2020-02-10
(62)【分割の表示】P 2017227257の分割
【原出願日】2011-02-11
【審査請求日】2020-03-11
【審判番号】
【審判請求日】2022-08-12
(32)【優先日】2010-02-12
(33)【優先権主張国・地域又は機関】US
(32)【優先日】2010-02-12
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】596008622
【氏名又は名称】インターデイジタル テクノロジー コーポレーション
(74)【代理人】
【識別番号】110001243
【氏名又は名称】弁理士法人谷・阿部特許事務所
(72)【発明者】
【氏名】カール エス.ワン
(72)【発明者】
【氏名】リー カイ
(72)【発明者】
【氏名】サシダハー モッヴァ
(72)【発明者】
【氏名】フィリップ ジェイ.ピエトラスキー
(72)【発明者】
【氏名】サミアン ジェイ.カウール
(72)【発明者】
【氏名】アリエラ ジェイ.ゼイラ
【合議体】
【審判長】廣川 浩
【審判官】石田 紀之
【審判官】本郷 彰
(56)【参考文献】
【文献】特開2009-124500(JP,A)
【文献】特開2009-290341(JP,A)
【文献】特表2011-530238(JP,A)
【文献】国際公開第2010/014969(WO,A1)
【文献】国際公開第2005/002141(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H04B7/24- 7/26
H04W4/00-99/00
3GPP TSG RAN WG1-4
SA WG1-4
CT WG1,4
(57)【特許請求の範囲】
【請求項1】
確立された無線ベアラを経由してデータを受信するように構成された無線送受信ユニット(WTRU)であって、前記確立された無線ベアラを経由して前記WTRUによって受信される前記データは、第1の基地局のパケットデータコンバージェンスプロトコル(PDCP)エンティティによって第1の部分および第2の部分に分割され、前記第1の部分は前記WTRUによって前記第1の基地局を経由して受信され、前記第2の部分は前記WTRUによって第2の基地局を経由して受信され、
プロセッサと、
前記プロセッサによって実行されるとき前記WTRUに、
前記第1の基地局から、前記確立された無線ベアラを経由して前記WTRUによって受信された前記データの前記第1の部分と関連付けられた少なくとも第1のPDCPパケットデータユニット(PDU)を受信し、
前記第2の基地局から、前記確立された無線ベアラを経由して前記WTRUによって受信された前記データの前記第2の部分と関連付けられた少なくとも第2のPDCP PDUを受信し、
前記WTRU
のPDCPにしたがって、少なくとも前記第1のPDCP PDUおよび前記第2のPDCP PDU
を含む前記受信されたデータを並べ替えさせる
命令を含むメモリと
を備えた、WTRU。
【請求項2】
前記命令は、前記プロセッサによって実行されるとき前記WTRUに、
少なくとも前記第1のPDCP PDUおよび前記第2のPDCP PDUの少なくとも一方をさらにバッファさせる
請求項1に記載のWTRU。
【請求項3】
前記確立された無線ベアラを経由して受信される前記データは、インターネットプロトコル(IP)パケットを含む、請求項1に記載のWTRU。
【請求項4】
無線通信のための方法であって、
無線送受信ユニット(WTRU)によって、確立された無線ベアラを経由してデータを受信するステップであって、前記確立された無線ベアラを経由して前記WTRUによって受信される前記データは、第1の基地局のパケットデータコンバージェンスプロトコル(PDCP)エンティティによって第1の部分および第2の部分に分割され、前記第1の部分は前記WTRUによって前記第1の基地局を経由して受信され、前記第2の部分は前記WTRUによって第2の基地局を経由して受信される、ステップと、
前記WTRUによって、前記第1の基地局を経由して、前記確立された無線ベアラを経由して前記WTRUによって受信された前記データの前記第1の部分と関連付けられた少なくとも第1のPDCPパケットデータユニット(PDU)を受信するステップと、
前記WTRUによって、前記第2の基地局を経由して、前記確立された無線ベアラを経由して前記WTRUによって受信された前記データの前記第2の部分と関連付けられた少なくとも第2のPDCP PDUを受信するステップと、
前記WTRU
のPDCPにしたがって、少なくとも前記第1のPDCP PDUおよび前記第2のPDCP PDU
を含む前記受信されたデータを並べ替えるステップと
を備える方法。
【請求項5】
少なくとも前記第1のPDCP PDUおよび前記第2のPDCP PDUの少なくとも一方をバッファするステップ
をさらに備える請求項4に記載の方法。
【請求項6】
前記確立された無線ベアラを経由して受信される前記データは、インターネットプロトコル(IP)パケットを含む請求項4に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、3GPPにおけるユーザ機器の動作に関する。
【0002】
関連出願の相互参照
本出願は、参照によりともに本明細書に組み込まれている、2010年2月12日に出願した米国特許仮出願第61/303,769号明細書、および2010年2月12日に出願した米国特許仮出願第61/304,377号明細書の利益を主張するものである。
【背景技術】
【0003】
より高いデータレートおよびスペクトル効率をサポートするために、3GPP(第3世代パートナーシッププロジェクト)LTE(ロングタームエボリューション)システムが、3GPP R8(リリース8)に導入されている(LTEリリース8は、本明細書でLTE R8またはR8-LTEと呼ばれ得る)。LTEにおいて、アップリンクの伝送は、SC-FDMA(シングルキャリア周波数分割多元接続)を使用して実行される。特に、LTEアップリンクで使用されるSC-FDMAは、DFT-S-OFDM(離散フーリエ変換拡散直交周波数分割多重化)技術に基づく。本明細書で使用されるSC-FDMAという用語とDFT-S-OFDMという用語は、互いに区別なく使用される。
【0004】
LTEにおいて、あるいはUE(ユーザ機器)と呼ばれるWTRU(ワイヤレス送信/受信ユニット)は、FDMA(周波数分割多元接続)構成において、割り当てられたサブキャリアの限られた連続するセットを使用して、アップリンクで送信する。例えば、アップリンクにおける全体的なOFDM(直交周波数分割多重化)信号帯域幅またはOFDMシステム帯域幅が、1から100まで番号が付けられた有用なサブキャリアから成る場合、所与の第1のWTRUが、サブキャリア1~12上で送信するように割り当てられ、第2のWTRUが、サブキャリア13~24上で送信するように割り当てられることが可能である、といった具合である。異なる複数のWTRUがそれぞれ、利用可能な伝送帯域幅のサブセットの中に送信することが可能であるのに対して、これらのWTRUにサービスを提供するeノードB(発展型ノード-B)は、伝送帯域幅全体にわたって合成アップリンク信号を受信することが可能である。
【0005】
LTEアドバンスト(本明細書でLTE-A、LTE R10、またはR10-LTEとも呼ばれるLTEリリース10(R10)を含み、さらにリリース11などの将来のリリースを含み得る)は、LTEネットワークおよび3Gネットワークに関する完全に準拠する4Gアップグレードパスを提供するLTE標準の拡張である。LTE-Aでは、キャリア集約がサポートされ、さらに、LTEの場合とは異なり、複数のキャリアが、アップリンク、ダウンリンク、またはアップリンクとダウンリンクの両方に割り当てられることが可能である。
【発明の概要】
【発明が解決しようとする課題】
【0006】
LTEとLTE-Aの両方において、UEは、したがって、ユーザは、セルエッジにおいてサービス低下を経験する可能性がある。スループット、QoS(サービス品質)、およびその他の要因は、UEがセルのエッジにおいて動作させられる場合に、他のセルからの干渉によって影響を受ける可能性がある。当技術分野で必要とされているのは、セルのエッジにおけるUE動作に関する問題に対処するLTE-Aの能力を活用する方法およびシステムである。
【課題を解決するための手段】
【0007】
ワイヤレス通信ネットワークにおいてデータを分割する方法およびシステムが、開示される。データは、ユーザ機器への送信のために複数の基地局を使用するように分割されることが可能であり、または複数の基地局に送信するためにユーザ機器によって分割されることが可能である。ある実施形態では、データ分割は、PDCP(パケットデータコンバージェンスプロトコル:Packet Data Convergence Protocol)層において実行され得る。ある実施形態では、データは、RLC(無線リンク制御)層において分割され得る。ある実施形態では、データは、MAC(媒体アクセス制御)層において分割され得る。これらの実施形態のそれぞれにおいて、データは、ユーザ機器上、および/または基地局上で分割され得る。ある実施形態では、データは、代わりに、サービングゲートウェイにおいてなど、ユーザプレーンで分割され得る。本開示の上記、およびさらなる態様が、後段でより詳細に説明される。
【0008】
開示される実施形態の以下の詳細な説明は、添付の図面と併せて読まれると、よりよく理解される。説明のため、図面では、例示的な実施形態が示されているが、主題は、開示される特定の要素または装置に限定されない。
【図面の簡単な説明】
【0009】
【
図1A】開示される1つまたは複数の実施形態が実施され得る例示的な通信システムを示すシステム図である。
【
図1B】
図1Aに示される通信システム内で使用され得る例示的なWTRU(ワイヤレス送信/受信ユニット)を示すシステム図である。
【
図1C】
図1Aに示される通信システム内で使用され得る例示的な無線アクセスネットワーク、および例示的なコアネットワークを示すシステム図である。
【
図2】限定的でない例示的なネットワークおよびコンポーネントキャリアの構成を示す図である。
【
図3】限定的でない別の例示的なネットワークおよびコンポーネントキャリアの構成を示す図である。
【
図4】限定的でない例示的なダウンリンクデータフローおよびシステムの構成を示す図である。
【
図5】限定的でない例示的なアップリンクデータフローおよびシステムの構成を示す図である。
【
図6】データを分割する限定的でない例示的な方法を示す図である。
【
図7】限定的でない例示的なアップリンクデータフローおよびシステムの構成を示す図である。
【
図8】データを分割する限定的でない例示的な方法を示す図である。
【
図9】限定的でない例示的なダウンリンクデータフローおよびシステムの構成を示す図である。
【
図10】限定的でない例示的なダウンリンクデータフローおよびシステムの構成を示す図である。
【
図11】限定的でない例示的なアップリンクデータフローおよびシステムの構成を示す図である。
【
図12】限定的でない例示的なダウンリンクデータフローおよびシステムの構成を示す図である。
【発明を実施するための形態】
【0010】
図1Aは、開示される1つまたは複数の実施形態が実施され得る例示的な通信システム100の図である。通信システム100は、音声、データ、ビデオ、メッセージング、ブロードキャストなどのコンテンツを複数のワイヤレスユーザに供給する多元接続システムであり得る。通信システム100は、複数のワイヤレスユーザが、ワイヤレス帯域幅を含むシステムリソースの共有を介して、そのようなコンテンツにアクセスすることを可能にすることができる。例えば、通信システム100は、CDMA(符号分割多元接続)、TDMA(時分割多元接続)、FDMA(周波数分割多元接続)、OFDMA(直交FDMA)、SC-FDMA(シングルキャリアFDMA)などの1つまたは複数のチャネルアクセス方法を使用することが可能である。
【0011】
図1Aに示されるとおり、通信システム100は、WTRU(ワイヤレス送信/受信ユニット)102a、102b、102c、102dと、RAN(無線アクセスネットワーク)104と、コアネットワーク106と、PSTN(公衆交換電話網)108と、インターネット110と、その他のネットワーク112とを含むことが可能であり、ただし、開示される実施形態は、任意の数のWTRU、基地局、ネットワーク、および/またはネットワーク要素を企図することが認識されよう。WTRU102a、102b、102c、102dのそれぞれは、ワイヤレス環境において動作するように、かつ/または通信するように構成された任意のタイプのデバイスであり得る。例として、WTRU102a、102b、102c、102dは、ワイヤレス信号を送信するように、かつ/または受信するように構成されることが可能であり、さらにUE(ユーザ機器)、移動局、固定加入者ユニットまたはモバイル加入者ユニット、ポケットベル、セルラ電話機、PDA(携帯情報端末)、スマートフォン、ラップトップ、ネットブック、パーソナルコンピュータ、ワイヤレスセンサ、家庭用電子機器などを含み得る。
【0012】
また通信システム100は、基地局114aと、基地局114bとを含むことも可能である。基地局114a、114bのそれぞれは、コアネットワーク106、インターネット110、および/またはネットワーク112などの1つまたは複数の通信ネットワークへのアクセスを円滑にするように、WTRU102a、102b、102c、102dの少なくとも1つとワイヤレスでインターフェースをとるように構成された任意のタイプのデバイスであり得る。例として基地局114a、114bは、BTS(基地局トランシーバ)、ノード-B、eノードB、ホームノードB、ホームeノードB、サイトコントローラ、AP(アクセスポイント)、ワイヤレスルータなどであり得る。基地局114a、114bはそれぞれ単一の要素として示されるが、基地局114a、114bは、任意の数の互いに接続された基地局および/またはネットワーク要素を含み得ることが認識されよう。
【0013】
基地局114aは、他の基地局、および/またはBSC(基地局コントローラ)、RNC(無線ネットワークコントローラ)、中継ノードなどのネットワーク要素(図示せず)も含み得るRAN104の一部であることが可能である。基地局114aおよび/または基地局114bは、セル(図示せず)と呼ばれ得る特定の地理的区域内でワイヤレス信号を送信するように、かつ/または受信するように構成され得る。セルは、セルセクタにさらに分割され得る。例えば、基地局114aに関連するセルは、3つのセクタに分割され得る。このため、一実施形態では、基地局114aは、3つの、すなわち、セルの各セクタにつき1つのトランシーバを含み得る。別の実施形態では、基地局114aは、MIMO(多入力多出力)技術を使用することが可能であり、したがって、セルの各セクタにつき複数のトランシーバを利用することが可能である。
【0014】
基地局114a、114bは、任意の適切なワイヤレス通信リンク(例えば、RF(無線周波数)、マイクロ波、IR(赤外線)、UV(紫外線)、可視光など)であることが可能な無線インターフェース116を介して、WTRU102a、102b、102c、102dの1つまたは複数と通信することが可能である。無線インターフェース116は、任意の適切なRAT(無線アクセス技術)を使用して確立され得る。
【0015】
より具体的には、前述したとおり、通信システム100は、多元接続システムであることが可能であり、さらにCDMA、TDMA、FDMA、OFDMA、SC-FDMAなどの1つまたは複数のチャネルアクセススキームを使用することが可能である。例えば、RAN104における基地局114a、およびWTRU102a、102b、102cは、WCDMA(広帯域CDMA)を使用して無線インターフェース116を確立することが可能なUTRA(UMTS(ユニバーサルモバイルテレコミュニケーションズシステム)地上無線アクセス)などの無線技術を実施することが可能である。WCDMAは、HSPA(高速パケットアクセス)および/またはHSPA+(発展型HSPA)などの通信プロトコルを含み得る。HSPAは、HSDPA(高速ダウンリンクパケットアクセス)および/またはHSUPA(高速アップリンクパケットアクセス)を含み得る。
【0016】
別の実施形態では、基地局114a、およびWTRU102a、102b、102cは、LTE(ロングタームエボリューション)および/またはLTE-A(LTEアドバンスト)を使用して無線インターフェース116を確立することが可能なE-UTRA(発展型UMTS地上無線アクセス)などの無線技術を実施することが可能である。
【0017】
他の実施形態では、基地局114a、およびWTRU102a、102b、102cは、IEEE802.16(すなわち、WiMAX(ワールドワイドインターオペラビリティフォーマイクロウェイブアクセス))、CDMA2000、CDMA2000 1X、CDMA2000 EV-DO、IS-2000(暫定標準2000)、IS-95(暫定標準95)、IS-856(暫定標準856)、GSM(グローバルシステムフォーモバイルコミュニケーションズ)、EDGE(エンハンストデータレートフォーGSMエボリューション)、GERAN(GSM EDGE)などの無線技術を実施することが可能である。
【0018】
図1Aの基地局114bは、例えば、ワイヤレスルータ、ホームノードB、ホームeノードB、またはアクセスポイントであることが可能であり、さらに事業所、自宅、車両、キャンパスなどの局所化された区域内でワイヤレス接続を円滑にするための任意の適切なRATを利用することが可能である。一実施形態では、基地局114b、およびWTRU102c、102dは、IEEE802.11などの無線技術を実施して、WLAN(ワイヤレスローカルエリアネットワーク)を確立することが可能である。別の実施形態では、基地局114b、およびWTRU102c、102dは、IEEE802.15などの無線技術を実施して、WPAN(ワイヤレスパーソナルエリアネットワーク)を確立することが可能である。さらに別の実施形態では、基地局114b、およびWTRU102c、102dは、セルラベースのRAT(例えば、WCDMA、CDMA2000、GSM、LTE、LTE-Aなど)を利用して、ピコセルまたはフェムトセルを確立することが可能である。
図1Aに示されるとおり、基地局114bは、インターネット110に対する直接接続を有し得る。このため、基地局114bは、コアネットワーク106を介してインターネット110にアクセスすることを要求されない可能性がある。
【0019】
RAN104は、WTRU102a、102b、102c、102dの1つまたは複数に音声、データ、アプリケーション、および/またはVoIP(ボイスオーバーインターネットプロトコル)サービスを提供するように構成された任意のタイプのネットワークであり得るコアネットワーク106と通信状態にあることが可能である。例えば、コアネットワーク106は、呼制御、料金請求サービス、モバイルロケーションベースのサービス、プリペイド通話、インターネット接続、ビデオ配信などを提供することが可能であり、かつ/またはユーザ認証などの高レベルセキュリティ機能を実行することが可能である。
図1Aに示されないものの、RAN104および/またはコアネットワーク106は、RAN104と同一のRAT、または異なるRATを使用する他のRANと直接または間接の通信状態にあることが可能であることが認識されよう。例えば、E-UTRA無線技術を利用していることが可能なRAN104に接続されていることに加えて、コアネットワーク106は、GSM無線技術を使用する別のRAN(図示せず)と通信状態にあることも可能である。
【0020】
コアネットワーク106は、WTRU102a、102b、102c、102dが、PSTN108、インターネット110、および/または他のネットワーク112にアクセスするゲートウェイの役割をすることも可能である。PSTN108は、POTS(通常の従来の電話サービス)を提供する回線交換電話網を含み得る。インターネット110は、TCP/IPインターネットプロトコルスイートにおけるTCP(伝送制御プロトコル)、UDP(ユーザデータグラムプロトコル)、およびIP(インターネットプロトコル)などの共通の通信プロトコルを使用する、互いに接続されたコンピュータネットワークおよびコンピュータデバイスの地球規模のシステムを含み得る。ネットワーク112は、他のサービスプロバイダによって所有される、かつ/または運用される有線通信ネットワークまたはワイヤレス通信ネットワークを含み得る。例えば、ネットワーク112は、RAN104と同一のRATを使用することも、異なるRATを使用することも可能な1つまたは複数のRANに接続された別のコアネットワークを含み得る。
【0021】
通信システム100におけるWTRU102a、102b、102c、102dのいくつか、またはすべてが、マルチモード能力を含むことが可能であり、すなわち、WTRU102a、102b、102c、102dは、異なる複数のワイヤレスリンクを介して異なる複数のワイヤレスネットワークと通信するための複数のトランシーバを含むことが可能である。例えば、
図1Aに示されるWTRU102cは、セルラベースの無線技術を使用することが可能な基地局114aと通信するとともに、IEEE802無線技術を使用することが可能な基地局114bと通信するように構成されることが可能である。
【0022】
図1Bは、例示的なWTRU102のシステム図である。
図1Bに示されるとおり、WTRU102は、プロセッサ118と、トランシーバ120と、送信/受信要素122と、スピーカ/マイクロフォン124と、キーパッド126と、ディスプレイ/タッチパッド128と、非リムーバブルメモリ130と、リムーバブルメモリ132と、電源134と、GPS(全地球測位システム)チップセット136と、他の周辺装置138とを含み得る。WTRU102は、ある実施形態に合致したままで、以上の要素の任意の部分的組合せを含み得ることが認識されよう。
【0023】
プロセッサ118は、汎用プロセッサ、専用プロセッサ、従来のプロセッサ、DSP(デジタルシグナルプロセッサ)、複数のマイクロプロセッサ、DSPコアに関連する1つまたは複数のマイクロプロセッサ、コントローラ、マイクロコントローラ、ASIC(特定用途向け集積回路)、FPGA(フィールドプログラマブルゲートアレイ)回路、他の任意のタイプのIC(集積回路)、状態マシンなどであり得る。プロセッサ118は、信号符号化、データ処理、電力制御、入出力処理、および/またはWTRU102がワイヤレス環境において動作することを可能にする他の任意の機能を実行することが可能である。プロセッサ118は、送信/受信要素122に結合され得るトランシーバ120に結合され得る。
図1Bは、プロセッサ118とトランシーバ120を別々の構成要素として示しているが、プロセッサ118とトランシーバ120は、電子パッケージまたはチップに一緒に組み込まれてもよいことが認識されよう。
【0024】
送信/受信要素122は、無線インターフェース116を介して基地局(例えば、基地局114a)に信号を送信するように、または基地局(例えば、基地局114a)から信号を受信するように構成され得る。例えば、一実施形態では、送信/受信要素122は、RF信号を送信するように、かつ/または受信するように構成されたアンテナであり得る。別の実施形態では、送信/受信要素122は、例えば、IR信号、UV信号、または可視光信号を送信するように、かつ/または受信するように構成されたエミッタ/検出器であり得る。さらに別の実施形態において、送信/受信要素122は、RF信号と光信号の両方を送受信するように構成され得る。送信/受信要素122は、ワイヤレス信号の任意の組合せを送信するように、かつ/または受信するように構成され得ることが認識されよう。
【0025】
さらに、送信/受信要素122は、
図1Bに単一の要素として示されているが、WTRU102は、任意の数の送信/受信要素122を含み得る。より具体的には、WTRU102は、MIMO技術を使用することが可能である。このため、一実施形態では、WTRU102は、無線インターフェース116を介してワイヤレス信号を送受信するための2つ以上の送信/受信要素122(例えば、複数のアンテナ)を含み得る。
【0026】
トランシーバ120は、送信/受信要素122によって送信されるべき信号を変調するように、かつ送信/受信要素122によって受信された信号を復調するように構成され得る。前述したとおり、WTRU102は、マルチモード能力を有することが可能である。このため、トランシーバ120は、WTRU102が、例えば、UTRAやIEEE802.11などの複数のRATを介して通信することを可能にするための複数のトランシーバを含み得る。
【0027】
WTRU102のプロセッサ118は、スピーカ/マイクロフォン124、キーパッド126、および/またはディスプレイ/タッチパッド128(例えば、LCD(液晶ディスプレイ)ディスプレイユニットまたはOLED(有機発光ダイオード)ディスプレイユニット)に結合されることが可能であり、かつスピーカ/マイクロフォン124、キーパッド126、および/またはディスプレイ/タッチパッド128からユーザ入力データを受け取ることが可能である。また、プロセッサ118は、スピーカ/マイクロフォン124、キーパッド126、および/またはディスプレイ/タッチパッド128にユーザデータを出力することも可能である。さらに、プロセッサ118は、非リムーバブルメモリ130、および/またはリムーバブルメモリ132などの任意のタイプの適切なメモリからの情報にアクセスすること、およびそのようなメモリの中にデータを格納することが可能である。非リムーバブルメモリ130には、RAM(ランダムアクセスメモリ)、ROM(読み取り専用メモリ)、ハードディスク、または他の任意のタイプのメモリストレージデバイスが含まれ得る。リムーバブルメモリ132には、SIM(加入者IDモジュール)カード、メモリスティック、SD(セキュアデジタル)メモリカードなどが含まれ得る。他の実施形態において、プロセッサ118は、サーバまたはホームコンピュータ(図示せず)などの、WTRU102から物理的に遠隔に配置されたメモリからの情報にアクセスすること、およびそのようなメモリの中にデータを格納することが可能である。
【0028】
プロセッサ118は、電源134から電力を受け取ることが可能であり、さらにWTRU102内のその他の構成要素に対して電力を配電するように、かつ/または制御するように構成されることが可能である。電源134は、WTRU102に電力を供給するための任意の適切なデバイスであり得る。例えば、電源134には、1つまたは複数の乾電池(例えば、NiCd(ニッケルカドミウム)、NiZn(ニッケル亜鉛)、NiMH(ニッケル水素)、Li-ion(リチウムイオン)など)、太陽電池、燃料電池などが含まれ得る。
【0029】
プロセッサ118は、WTRU102の現在のロケーションに関するロケーション情報(例えば、緯度と経度)を提供するように構成され得るGPSチップセット136に結合されることも可能である。GPSチップセット136からの情報に加えて、またはそのような情報の代わりに、WTRU102は、基地局(例えば、基地局114a、114b)から無線インターフェース116を介してロケーション情報を受信すること、および/または近くの2つ以上の基地局から受信されている信号のタイミングに基づいて、WTRUのロケーションを特定してもよい。WTRU102は、ある実施形態と合致したままで、任意の適切なロケーション特定方法によってロケーション情報を獲得し得ることが認識されよう。
【0030】
プロセッサ118は、さらなるフィーチャ、機能、および/または有線もしくはワイヤレスの接続をもたらす1つまたは複数のソフトウェアモジュールおよび/またはハードウェアモジュールを含み得る、他の周辺装置138にさらに結合されることが可能である。例えば、周辺装置138には、加速度計、電子コンパス、衛星トランシーバ、デジタルカメラ(写真またはビデオのための)、USB(ユニバーサルシリアルバス)ポート、振動デバイス、電話トランシーバ、ハンズフリーヘッドセット、Bluetooth(登録商標)モジュール、FM(周波数変調)無線ユニット、デジタル音楽プレーヤ、メディアプレーヤ、ビデオゲームプレーヤモジュール、インターネットブラウザなどが含まれ得る。
【0031】
図1Cは、ある実施形態によるRAN104およびコアネットワーク106のシステム図である。前述したとおり、RAN104は、E-UTRA無線技術を使用して、無線インターフェース116を介してWTRU102a、102b、102cと通信することが可能である。RAN104は、コアネットワーク106と通信状態にあることも可能である。
【0032】
RAN104は、eノードB140a、140b、140cを含み得るが、RAN104は、ある実施形態と合致したままで、任意の数のeノードBを含んでもよいことが認識されよう。eノードB140a、140b、140cはそれぞれ、無線インターフェース116を介してWTRU102a、102b、102cと通信するための1つまたは複数のトランシーバを含み得る。一実施形態では、eノードB140a、140b、140cは、MIMO技術を実施することが可能である。このため、例えば、eノードB140aは、複数のアンテナを使用して、WTRU102aにワイヤレス信号を送信すること、およびWTRU102aからワイヤレス信号を受信することが可能である。
【0033】
eノードB140a、140b、140cのそれぞれは、特定のセル(図示せず)に関連することが可能であり、さらに無線リソース管理決定、ハンドオーバ決定、アップリンクおよび/またはダウンリンクにおけるユーザのスケジューリングなどを扱うように構成され得る。
図1Cに示されるとおり、eノードB140a、140b、140cは、X2インターフェースを介して互いに通信することが可能である。
【0034】
図1Cに示されるコアネットワーク106は、MME(移動性管理ゲートウェイ)142、サービングゲートウェイ144、およびPDN(パケットデータネットワーク)ゲートウェイ146を含むことが可能である。以上の要素のそれぞれはコアネットワーク106の一部として示されるが、これらの要素のうちのいずれの要素も、コアネットワーク事業者以外のエンティティによって所有され、かつ/または運用されることが可能であることが認識されよう。
【0035】
MME142は、S1インターフェースを介してRAN104におけるeノードB142a、142b、142cのそれぞれに接続されることが可能であり、さらに制御ノードの役割をすることが可能である。例えば、MME142は、WTRU102a、102b、102cのユーザを認証すること、ベアラ活性化/不活性化、WTRU102a、102b、102cの初期アタッチ中に特定のサービングゲートウェイを選択することなどを担うことが可能である。また、MME142は、RAN104と、GSMまたはWCDMAなどの他の無線技術を使用する他のRAN(図示せず)との間で切り換えるための制御プレーン機能をもたらすことも可能である。
【0036】
サービングゲートウェイ144は、S1インターフェースを介してRAN104におけるeノードB140a、140b、140cのそれぞれに接続され得る。サービングゲートウェイ144は、一般に、WTRU102a、102b、102cに/から、ユーザデータパケットをルーティングすること、および転送することが可能である。また、サービングゲートウェイ144は、eノードB間ハンドオーバ中にユーザプレーンをアンカすること、ダウンリンクデータがWTRU102a、102b、102cに利用可能である際にページングをトリガすること、WTRU102a、102b、102cのコンテキストを管理すること、および格納することなどの、他の機能を実行することも可能である。
【0037】
また、サービングゲートウェイ144は、WTRU102a、102b、102cに、インターネット110などのパケット交換網へのアクセスを提供して、WTRU102a、102b、102cとIP対応のデバイスとの間の通信を円滑にすることが可能であるPDNゲートウェイ146に接続されることも可能である。
【0038】
コアネットワーク106は、他のネットワークとの通信を円滑にすることが可能である。例えば、コアネットワーク106は、WTRU102a、102b、102cに、PSTN108などの回線交換網へのアクセスを提供して、WTRU102a、102b、102cと従来の陸線通信デバイスとの間の通信を円滑にすることが可能である。例えば、コアネットワーク106は、コアネットワーク106とPSTN108との間のインターフェースの役割をするIPゲートウェイ(例えば、IMS(IPマルチメディアサブシステム)サーバ)を含むことが可能であり、またはそのようなIPゲートウェイと通信することが可能である。さらに、コアネットワーク106は、WTRU102a、102b、102cに、他のサービスプロバイダによって所有され、かつ/または運用される他の有線ネットワークまたはワイヤレスネットワークを含み得るネットワーク112へのアクセスを提供することが可能である。
【0039】
LTE DL(ダウンリンク)伝送スキームは、OFDMA無線インターフェースに基づくことが可能である。LTE UL(アップリンク)方向に関して、DFT-S-OFDMA(DFT拡散OFDMA)に基づくSC(シングルキャリア)伝送が使用され得る。R8 LTE DL方向で、UEは、eノードBによって、LTE伝送帯域幅全体にわたる任意の位置でUEのデータを受信するように割り当てられることが可能である(例えば、OFDMAスキームが使用され得る)。LTE DLは、スペクトルの中心に使用されないDCオフセットサブキャリアを有し得る。R8 LTE UL方向で、R8 LTEシステムは、DTF-S-OFDMA伝送またはSC-FDMA伝送に基づくことが可能である。
【0040】
UEは、DL方向で、LTE伝送帯域幅全体の周波数領域にわたる任意の位置でUEの信号を受信することが可能である一方で、UL方向では、UEは、FDMA(周波数分割多元接続)構成において、割り当てられたサブキャリアの、限られた(または限られた場合のみ)、ただしある実施形態では隣接した、セット上で、送信することが可能である。この構成は、SC(シングルキャリア)FDMAと呼ばれ得る。ある実施形態では、ULにおける全体的なOFDM信号帯域幅またはOFDMシステム帯域幅が、1から100まで番号が付けられた有用なサブキャリアから成る場合、所与の第1のUEが、サブキャリア1~12上でUEの信号を送信するように割り当てられ、所与の第2のUEが、サブキャリア13~24上で送信するように割り当てられることが可能である、といった具合である。eノードBは、1つまたは複数のUEから伝送帯域幅全体にわたって複合UL信号を同時に受信することが可能であるが、各UEは、利用可能な伝送帯域幅のサブセットの中に送信すること(またはそのように送信することだけ)が可能である。したがって、ULにおけるDFT-S-OFDMは、UEに割り当てられた時間周波数リソースが、周波数の連続するサブキャリアのセットから成らなければならないというさらなる制約を伴う、従来の形態のOFDM伝送と見なされることが可能である。ULにおいて、DCサブキャリアは全く存在しなくてよい。1つの動作モードで、周波数ホッピングが、UEによってUL伝送に適用されることが可能である。
【0041】
LTE-Aは、CA(キャリア集約)フィーチャ、および柔軟性のある帯域幅構成フィーチャをサポートすることが可能である。このことは、DL伝送帯域幅およびUL伝送帯域幅が20MHzを超えることを許し得る(例えば、R8 LTEの場合と同様に)。例えば、40MHzから100MHzまでの伝送帯域幅がサポートされ得る。LTE R10において、CC(コンポーネントキャリア)は、このスペクトル集約フィーチャを可能にすることができる。ある実施形態では、各CCにつき20MHzの最大帯域幅を有する100MHzまでの集約されたスペクトルが、したがって、少なくとも5つのCCが、構成され得る。LTE-Aにおいて、異なるCCは、異なるカバレッジ(coverage)を有し得る。
【0042】
複数のCCを利用するある実施形態において、マルチキャリア干渉を防止するため、または軽減するために、異なるセルが、異なるセットのCCを使用することが可能である。そのようなセルは、
図2に示されるとおり、異なる範囲を有することが可能であり、さらに1より大きい有効周波数再利用パターンを有することが可能である。
【0043】
複数のCCを使用するキャリア集約は、RRC CONNECTED状態にあるUEに関係があることが可能である。アイドルなUEは、単一のULキャリアペアおよびDLキャリアペアを介して(例えば、FDD(周波数分割複信)を使用して)ネットワークにアクセスすることが可能である。LTE-A実施形態において、1つのサービングeノードBにおけるキャリア集約がサポートされ得る。この構成は、CAセルハンドオーバオプションを、ハンドオーバの後、またはハンドオーバの前のターゲット候補CCの割当てに縮小することが可能である。ハンドオーバの後にターゲット候補を割り当てることは、ユーザプレーン遅延を増加させる可能性があり、したがって、ハンドオーバ前の割当てが、より良好なパフォーマンスをもたらす可能性があり、さらにターゲットeノードBとソースeノードBとの間で測定情報交換のためのX2インターフェースメッセージを追加することを要求する可能性がある。
【0044】
UEがセルエッジに位置している場合、セルエッジにおけるパフォーマンスは、他のセルからの干渉によって制限され得るため、一様なユーザ体験(例えば、スループット、QoSなど)を提供することは、困難であり得る。ある実施形態では、UEが所与の時点であるCCの良好なカバレッジエリア(coverage area)内に入っている場合、CCが、このセルエッジ問題を軽減するのに使用され得る。ある実施形態では、
図3に示されるとおり、セルエッジまでの距離を変化させるように各CCの送信電力を変えるように隣接するeノードB(セルサイト)を協調させることによって、異なるセルエッジに関して重なり合うCCが作成され得る。
【0045】
図3で、UE350は、位置310にあることが可能であり、さらにeノードB361とCC320を介して通信していること(371a)が可能であり、さらにeノードB361とCC330を介して通信していること(372a)が可能である。UE350が、eノードB362に対してCC330が使用され得るが、CC320がeノードB361のセル境界内に留まる新たな位置311に移動すると、UE350は、eノードB361とCC320を介して依然として通信すること(371b)が可能であるが、この時点で、eノードB362とCC330を介して通信すること(372b)が可能である。このことは、ネットワークが1という周波数再利用率を保ちながら、UE350が、異なるロケーションにおいて異なるCCにハンドオーバすることによって、セル中心近くに留まることを可能にし得る。このシナリオにおいて、すべてのCC上でUEをそれぞれがサポートすることができる完全な能力の基地局(関連するRRH(ラジオヘッド)を有する基地局、および有さない基地局を含む)は、UEが異なるサイトからそれぞれが送信され得るCCのセット上で受信することができる場合に、使用され得る。
【0046】
eノードB361およびeノードB362は、eノードBと呼ばれるが、これらのネットワーク要素は、本明細書で説明される機能を実行することができる他の任意のタイプのデバイスおよび/またはネットワーク要素であり得ることに留意されたい。例えば、eノードB361および/またはeノードB362は、RRH(リモートラジオヘッド:remote radio head)、セクタアンテナ、任意のタイプの基地局、またはこれらもしくは他の任意のネットワーク要素の任意の組合せであり得る。任意のそのようなデバイスまたはネットワーク要素が、基地局、eノードB、ゲートウェイ、ノード、または他の任意のネットワーク要素によって実行されるものとして本明細書で説明される機能のいずれを実行するようにも構成されることが可能であり、さらにすべてのそのような実施形態が、本開示の範囲に含まれるものとして企図される。
【0047】
一部のLTE R10実施において、キャリア集約のための複数のCCのサポートが、1つのサービングeノードBに制限され得る。このことは、UEが、異なる複数のeノードBに対して1つのCCを使用してデータ接続を維持することを妨げ得る。UEが、
図3に示されるとおり、異なる2つのeノードB上のCCに関してカバレッジの重なり合いが存在するロケーションに移動するシナリオにおいて、ネットワークRRM(無線リソース管理)エンティティが、異なるサイトからの複数のCCを使用することによってデータスループット増加を十分に利用する代わりに、別のセルサイトにハンドオーバすべきかどうかを判定することが可能である。各CC上で利用可能な帯域幅を十分に利用するために、対応するデータストリームが、関連するeノードBにルーティングされること、および関連するeノードBからルーティングされることが可能である。
【0048】
各データストリームは、送信および受信をサポートするのに使用される、関連するリソース(帯域幅およびバッファ)を有する。各CCに関する集約帯域幅は、ネットワークの計画者によって知られ得るが、CC上でUEに利用可能な瞬間的な帯域幅は、通常、eノードBスケジューラの動的決定である。各CCにどれだけのデータを送るべきかの決定は、協調する各サイトのリソース要件に直接の影響を与える可能性がある。ある実施形態では、協調するeノードBは、例えば、そのeノードBの利用可能なリソースに関する情報を、データ分割を実行すべきかどうか、およびデータ分割をどのように実行するべきかを判定することが可能であり、かつ完全な(例えば、分割比または分割されない)データフローを受信するように構成されることが可能な、サービングeノードBにフィードバックすることが可能である。
【0049】
ある実施形態では、eノードBからUEへのSAE(サービスアーキテクチャエボリューション)ベアラのデータスループットは、RAN(無線アクセスネットワーク)における複数のサイトに対するデータストリームの分割を協調させることによって、増加され得る。データ分割は、PDCP層(パケットデータコンバージェンスプロトコル)、RLC(無線リンク制御)層、MAC(媒体アクセス制御)層を含め、RANスタックの任意の層において、または任意の組合せにおいて、または本明細書で開示される任意の手段を使用して、実施され得る。また、データ分割は、ユーザプレーンにおいて行われることも可能である。そのようなデータ分割を実行するためのシステムおよび方法は、本明細書で、より詳細に開示される。
【0050】
アップリンクデータおよびダウンリンクデータは、RANにおける複数のeノードBおよび他のサイト(例えば、RRH)にわたって分割され得る。DLデータ分割に関して、eノードBは、入ってくるデータストリームを、協調するCCの数に対応するN個のストリームに分割することが可能である。データ分割は、協調するCCによって報告される帯域幅利用可能性、バッファリングするエンティティによって報告されるバッファステータス、および/またはベアラQoS要件からのデータレートに基づくことが可能である。また、eノードBは、負荷に左右される機構などの、どのようにデータを分割すべきかを決定する対話型の手順をサポートすることも可能である。この機構は、瞬間的なバッファステータス、バッファステータスの別の目安(例えば、平均)、および/またはピアeノードB上の既存のエンティティの帯域幅に基づくアルゴリズムを使用することが可能である。フロー制御機構は、協調するCCのうちの任意のCC上の回復不能な伝送誤りを回復するために、まだ確認応答されていないデータをバッファリングすること、および/またはデータ分割エンティティから受け取られたデータをバッファリングして、そのデータを、帯域幅利用可能性に基づいて送信することができることが可能である。
【0051】
DLデータ分割において、eノードBは、SAEベアラを解体することなしに、協調するCCを動的に追加する、または除去する能力をサポートすることも可能である。また、eノードBは、現在のバッファステータスに関する定期的な測定レポート、および/またはイベントによってトリガされる測定レポートを供給するために、ならびに帯域幅利用に関する定期的な測定レポート、および/またはイベントによってトリガされる測定レポートを供給するために、伝送パスの負荷監視をサポートすることも可能である。
【0052】
DLデータ分割において、UEは、受信されたデータをバッファリングし、さらに異なるリンクから受信されたデータの並べ替えを実行して、そのデータが、そのデータが送られた順序で上位の層に供給されることを確実にすることが可能である。この機能は、そのエンティティより上の層が、一般に、そのような並べ替えを実行する能力を有さない(例えば、動作の通常の過程でそのような並べ替えを実行する能力を有さないなどの)場合に使用され得る。また、UEは、順次のデリバリをサポートすることも可能であり、かつデータストリーム分割に対応するデータパスをセットアップするように、影響を受ける層を構成することが可能である。
【0053】
DLデータ分割において、X2インターフェース(例えば、トンネリング)が、いくつかの機能をサポートすることが可能である。X2 AP(X2アプリケーションプロトコル)が、データ分割エンティティの構成および制御をもたらすことが可能であり、かつ測定レポートおよび/または帯域幅監視レポートをもたらすこと、ならびにエンティティのセットアップ、変更、および/または解放の構成をもたらすことを担うことが可能である。X2データトランスポートプロトコルまたはX2データトンネリングプロトコルは、サービングeノードBと協調するeノードBとの間にデータ分割エンティティを接続して、接続されたeノードBの間でデータの送信および/もしくは受信をもたらすこと、ならびに/または接続された2つのエンティティの間でデータ制御メッセージ(例えば、リセットメッセージ、バッファステータス、帯域幅監視レポートなど)を転送することが可能である。また、X2データトランスポートプロトコルまたはX2データトンネリングプロトコルは、X2 APを介して、またはトンネリングプロトコルを介する帯域内シグナリングを通じて、フロー制御交換をサポートすることも可能である。
【0054】
ULデータ分割において、UEは、入ってくるデータストリームを、協調するCCの数に対応するN個のストリームに分割することが可能である。データ分割は、協調するCCによってスケジュールされる帯域幅利用可能性、バッファリングエンティティから報告されるバッファステータス、および/またはベアラQoS要件からのデータレートに基づくことが可能である。UEは、瞬間的なバッファステータスもしくは他の目安のバッファステータス、および/またはeノードBによってスケジュールされたUL帯域幅に基づくアルゴリズムを使用する負荷に左右されるフロー制御機構をサポートすることが可能である。フロー制御機構は、協調するCCのうちの任意のCC上の回復不能な伝送誤りを回復するために、まだ確認応答されていないデータをバッファリングすること、および/またはデータ分割エンティティから受け取られたデータをバッファリングして、そのデータを、帯域幅利用可能性に基づいて送信することができることが可能である。
【0055】
ULデータ分割において、UEは、SAEベアラを解体することなしに、協調するCCを動的に追加する、または除去する構成をサポートすることも可能である。UEは、現在のバッファステータスに関する定期的な測定レポート、および/もしくはイベントによってトリガされる測定レポートをデータ分割エンティティに供給するために、ならびに/または帯域幅利用に関する定期的な測定レポート、および/もしくはイベントによってトリガされる測定レポートを供給するために、伝送パスの負荷監視をサポートすることも可能である。
【0056】
ULデータ分割において、eノードBは、UEに対する帯域幅をスケジュールし(協調するeノードBの同期を伴って、または伴わずに)、かつ受信されたデータをバッファリングし、さらに、異なるリンクから受信されたデータの並べ替えを実行して、そのデータが、そのデータが送られた順序で上位の層に供給されることを確実にするように構成され得る。この並べ替え機能は、そのエンティティより上の層が、一般に、そのような並べ替えを実行する能力を有さない(例えば、動作の通常の過程でそのような並べ替えを実行する能力を有さないなどの)場合に使用され得る。また、eノードBは、順次のデリバリをサポートすること、およびデータストリーム分割に対応するデータパスをセットアップするように、影響を受ける層を構成することをサポートすることも可能である。
【0057】
ULデータ分割において、X2インターフェース(例えば、トンネリング)が、いくつかの機能をサポートすることが可能である。X2アプリケーションプロトコルは、構成をもたらすことが可能であり、データ分割エンティティを制御することが可能であり、かつ測定レポートおよび/もしくは帯域幅レポートを送ること、ならびに/またはエンティティのセットアップ、変更、および/もしくは解放の構成をもたらすことを担うことが可能である。トンネリングプロトコルは、サービングeノードBと協調するeノードBとの間にデータ分割エンティティを接続して、接続されたeノードBの間でデータの伝送をもたらすこと、および/または接続された2つのエンティティの間でデータ制御メッセージ(例えば、リセットメッセージ、測定レポートなど)を転送することが可能である。
【0058】
ある実施形態において、データ分割は、PDCP層において実行され得る。ソースeノードBにおいてインターワーキング機能(PDCP IWF)が使用されて、協調するeノードBにおけるPDCP IWFに圧縮されたIPパケット(PDCP PDU)が転送されてから、送信バッファリングのためにRLC層に転送されることが可能である。PDCP IWFは、1つのSAEベアラ当り複数の無線ベアラのサポートを提供することが可能である。
【0059】
図4は、PDCP層においてデータ分割を実行するデータ分割実施形態において使用され得る例示的なDLデータフローおよびシステム構成を示す。UE401は、UE401がeノードB410およびeノードB420の両方と通信することを許すロケーションにあることが可能である。IPパケット405は、eノードB410において受信されることが可能であり、さらにIPパケット405の宛先としてUE401を有することが可能である。IPパケット405は、無線ベアラ403aおよび403bを含み得るSAEベアラ402を介してeノードB410に送信され得る。PDCP IWF450は、eノードB間トンネル440を部分的に用いて、eノードB410とeノードB420との間でデータを分割することを円滑にすることが可能である。
【0060】
IPヘッダ圧縮が、ヘッダ圧縮モジュール411aおよび411bにおいて実行されて、ラジオインターフェースを介して送信される必要があるビットの数を減らすことが可能である。任意のモード(例えば、Uモード(単方向モード)、Oモード(双方向楽観モード)、およびRモード(双方向高信頼モード))で堅牢なヘッダ圧縮が使用され得る。OモードおよびRモードは、誤り回復のためにフィードバックチャネルを利用することが可能である。圧縮は前のフレーム情報を使用するため、ヘッダ圧縮モジュール411aおよび411bによって実行されるヘッダ圧縮処理が実行されてから、フィードバック処理を伴うデータ分割が、1つのエンティティにおいて(例えば、1つだけのエンティティにおいて)実行されることが可能である。
【0061】
送信されるデータの暗号化および完全性保護が、暗号化モジュール412aおよび412bにおいて実行され得る。eノードB間トンネル440が、PDCP PDUの一部分を、分割されたデータストリームサブフローとして、協調するeノードB420に伝送するが、複数のHFN(ハイパーフレーム番号)およびPDCP SN(シーケンス番号)をシグナリングするとともに、保持しなければならないことを回避するように、暗号化の後に伝送することが可能である。
【0062】
データは、PDCP eノードB間マルチプレクサ413において分割されることが可能であり、eノードB420のために分割されたデータが、eノードB間トンネル440を介してeノードB420に送信されることが可能である。eノードB410から送信されるべきデータは、RLCバッファ414aおよび414bに供給され、MACマルチプレクサ415によってMAC層において多重化され、PHY変調-符号化モジュール417によって物理層において変調され、符号化されて、さらにCC471を介してUE401に最終的に送信されることが可能である。eノードB420から送信されるべきデータは、RLCバッファ424aおよび424bに供給され、MACマルチプレクサ425によってMAC層において多重化され、PHY変調-符号化モジュール427によって物理層において変調され、符号化されて、さらにCC472を介してUE401に最終的に送信されることが可能である。eノードB410およびeノードB420は、UE401からチャネルステータスデータ419および429(例えば、ダウンリンクチャネル品質情報)を受信し、さらにRLCバッファからデータを受け取り、MACマルチプレクサおよびPHY変調-符号化モジュールを用いてデータの送信を協調させるMACスケジューラ416および426をそれぞれ有することが可能である。
【0063】
移動端末装置のために構成された1つの無線ベアラ当り1つのPDCPエンティティが存在し得る。データ分割をサポートするのに、スケジューラ(例えば、受け取られたPDCPパケットの、活性のサイトへの単純なラウンドロビン配布、または宛先eノードB420からのバッファステータスフィードバックまたは送信レートフィードバックを用いた何らかの分割アルゴリズムに基づく)が、別のCCを介して送信するために別のサイト(例えば、eノードB420)にPDCP PDU(例えば、IPパケット405の一部分を含む)を転送するのに使用され得る。この構成は、1つの無線ベアラ当りセットアップされる2つ以上の(ある実施形態では、一緒に送信するサイトの数に依存する)データストリーム(例えば、PDCP/RLC/MAC)をもたらす(例えば、参加するCC当り1つ、さらにUEに関してN個、ただし、Nは、参加するCCの総数)。PDCP/RLCインターフェース上に存在するスケジューラが、RLC層におけるさらなる処理のために、メインサービングサイトおよび協調サイトを含む異なる複数のサイトへのデータ転送のスケジューリングを担うことが可能である。
【0064】
PDCP IWF450において、協調するCCにおける輻輳した、または限られたPHY(物理層)帯域幅がバッファオーバフローを生じた場合にデータが失われるのを回避するのに、フロー機構が使用され得る。フロー機構は、協調するCCに関するデータバッファステータス(例えば、RLCバッファ占有率)、および/または瞬間的な帯域幅情報、もしくは帯域幅の他の何らかの目安の情報をもたらす、トンネリングプロトコルを介したフィードバックであり得る。
【0065】
図5に示されるPDCP層における対応するULデータ分割は、DLの場合と同一のモジュールレイアウトを利用するが、データパス方向を逆にする。
図4に示されるとおり実行される機能のいずれに関しても、逆の機能が、
図5における同一のモジュールおよび/またはエンティティによって実行されることが可能であり、またはそのような逆の機能が、異なるモジュールもしくはエンティティによって実行されることが可能であることに留意されたい。例えば、eノードB410および420のMACマルチプレクサが、UL信号に関する逆多重化を実行することも可能である。DLとULはともに、参加するCCごとに1つのPDCPエンティティを用いて構成され得る。
図5では、データマージャが、PDCP eノードB間マルチプレクサ413のマージャエンティティによってeノードB410において実行され得る。ある実施形態において、物理層HARQ ACK/NACKが、送信側セルとは独立に扱われることが可能である。
【0066】
図5で、UE401から送信されるべきデータが、PDCP IWFデータ分割(図示せず)によって、UE401上に構成されたRLCバッファ434aおよび434bに供給され、MACマルチプレクサ435によってMAC層において多重化され、PHY変調-符号化モジュール437によって物理層において変調され、符号化され、分割されて、最終的に、CC473を介してeノードB410に、およびCC474を介してeノードB420に送信されることが可能である。この場合も、eノードB410およびeノードB420は、UE401からチャネルステータスデータ419および429(例えば、アップリンクチャネル品質情報)を受信するMACスケジューラ416および426をそれぞれ有することが可能である。
【0067】
受信側(
図4のUE401、または
図5のeノードB)で、データ分割を再マージするデータマージャが実行されることが可能であり、さらに、「RLC-順次デリバリ」のために接続が構成される実施形態において、個別のRLCエンティティが部分的にPDCPデータストリームを受信している可能性があるので、RLCエンティティの代わりにマージャエンティティが、このタスクを実行することが可能である。データマージャは、Iu(無線インターフェース)上の様々な伝送パス遅延に起因して順序の乱れたデリバリを格納するのに使用され得るバッファに対するアクセスを有することが可能である。
図4で、データマージャが、マージャエンティティ407によってUE401において実行され得る。PDCP層におけるデータ分割は、PDCPに限られた変更を要求して、確立されたシステムアーキテクチャに小さな影響しか与えないことが可能である。また、この構成は、構成変更を最小限に抑え、かつ別々のルート/サイト(例えば、eノードB、RRH、ノードBなど)からの独立したPDCP PDUデリバリを許すことも可能である。
【0068】
データ分割を使用しない(またはデータ分割を制限する)実施において、HO(ハンドオーバ)の前の準備中に、またはHO中に、シームレスなハンドオーバが、データ複製を使用してRANによって保証されることが可能である。ソースeノードBとターゲットeノードBとの間のデータルート(データストリームを転送するトンネリング)が、UEがHOを命令される前に確立されることが可能である。HOが成功した後、ソースeノードBが、PDCP SN(PDCPパケット伝送ステータス)をターゲットeノードBに転送して、失われるパケットがないように送信ステータスを同期させることが可能である。
【0069】
データ分割実施形態において、対応するHO手順は、いくつかの仕方で実行され得る。HOコマンドは、複数のCCを扱うように変更され得ることに留意されたい。サービングCCおよび/または協調するCCの間でハンドオーバが行われるある実施形態において、従来のハンドオーバに類似するハンドオーバが、実行され得る。CC協調構成は、協調構造を維持するように更新される必要がある可能性があり、さらに、ハンドオーバ先が、必要とされるサービス品質をサポートすることができない場合、協調構造は、再編成される必要があり得る。シームレスなデータ伝送が、PDCP SN同期を用いて保証され得る。ハンドオーバが協調するCCの間で行われるある実施形態において、ソースの協調するeノードBとターゲットの協調するeノードBとの間でトンネリングが確立され得る、従来のハンドオーバ手順のサブセットが、実行されることが可能である。データ転送は、新たなトンネリングプロトコルによって、またはeノードB間の既存のGPRSトンネリングプロトコルを再使用することによって(ある実施形態では、いくらかの変更を伴って)扱われ得る。さらなる変更が、ハンドオーバ準備情報(例えば、X2シグナリング)およびハンドオーバコマンド(例えば、無線を介するRRCピアメッセージ)に対して実行されて、サービングCCが変わっていないことが示され得る。
【0070】
X2インターフェースが、eノードB間RESOURCE(例えば、セル容量)STATUS REQUESTおよびeノードB間RESOURCE UPDATEをサポートすることが可能である。セル容量は、UL/DLのGBR(保証されたビットレート)/非GBR/合計のPRB(物理リソースブロック)使用量のパーセンテージ、およびUL/DL S1 TNL(トランスポートネットワーク層)負荷(例えば、低/中/高/過負荷)の点で、またはRLC送信バッファの中で待っていることが可能なPDCP PDUの数を示し得る新たなIEを介して、与えられることが可能である。協調するCC上の利用可能な帯域幅を推定する目的で、このことは、PDCPレベルのデータ分割に関して、かつ分割スケジューラアルゴリズムを最適化するのに十分であり得る。
【0071】
CC間においてサイト間で協調するデータ分割を確立するために、X2インターフェースが、いくつかの仕方で扱われることが可能である。初期確立は、部分的ハンドオーバとして扱われることが可能であり、その場合、ハンドオーバ準備情報メッセージが使用され得る。ある実施形態では、この目的で新たなX2シグナリングプロトコルを作成することは必要ない可能性がある。ある実施形態では、ソースeノードBが、協調的な伝送をサポートするリソース(例えば、PDCP/RLC/MAC)を割り当てるようターゲットeノードBに要求する新たなX2シグナリングメッセージが、作成され得る。そのようなメッセージは、何らかの最低限のデータレートおよびQoSをサポートするのに十分な情報を伝送することが可能である。
図4および
図5に示されるアーキテクチャおよび構成は、PDCP層以外においてデータ分割を実行する実施形態を含め、本明細書で開示される任意の実施形態で使用され得ることに留意されたい。
【0072】
ある実施形態では、データ分割は、RLC層において実行され得る。そのような実施形態において、AM(確認応答モード)モードベアラが構成され得るが、本明細書で説明される開示は、他のモードのベアラで実施されてもよい。データ分割は、より上位の層から受け取られたデータの単一のストリームをデータの複数のストリームに分割することによって実現され得る。分割されたデータの各ストリームは、本明細書でフローと呼ばれ得る。各フローは、3GPP標準文書において現在定義される、RLCエンティティと同様であり得る。各フローは、シーケンス番号を有するSDU(サービスデータ単位)としてデバイス(例えば、eノードB)に入力されることが可能であり、さらにSDUのストリームとしてデバイスから出力されることが可能である。デバイス内で、SDUは、PDU(プロトコルデータ単位)に細分されることが可能であり、さらにピアノード上で再組立てされることが可能である。
【0073】
送信側エンティティ上で、RLC層において実行されるさらなる機能には、データを1つまたは複数のフローに分割することを担うデータ分割エンティティが含まれ得る。送信側の各フローは、RLCの現行のバージョンと機能的に均等である。データ分割エンティティは、データ分割エンティティがより上位の層から受け取るすべてのSDUが、それらのSDUのいくつかがCC上でeノードBに送られる場合でも、バッファリングされることを確実にして、例えば、無線に伝送障害が存在する場合、またはCCのうちの1つとUEとの間に他の何らかの問題が存在する場合、データが再送され得るようにすることが可能である。
【0074】
受信側エンティティ上で、フローは、フローエンティティがSDUを並べ替えることを扱わない可能性があることを除いて、現行のRLC機能と同様である。この機能は、データマージエンティティによって実行され得る。データマージエンティティは、1つまたは複数のフローから入力を受信することが可能であり、さらにSDUをバッファリングし、並べ替えてから、それらのSDUをより上位の層に送ることが可能である。
【0075】
図6は、RLC層においてULデータ分割を実行する方法600を示す。ブロック605で、UE上のRLCエンティティは、PDCPからSDUを受信することが可能である。ブロック610で、データ分割が構成されるかどうかについての判定が行われる。データ分割が構成されずに、ブロック615で、RLCが、バッファ情報でMAC層を更新し、さらにMACからのデータ要求を待つことが可能である。データ分割が構成される場合、ブロック620で、データは、UE上に存在するデータ分割エンティティに供給され得る。ブロック625で、データ分割エンティティが、そのデータを複数のフローに分割することが可能である(ただし、各フローはそれ自体、RLC AMエンティティのように振舞うことが可能である)。データがどのように分割されるべきかの決定は、MACからの入力に基づく各CC上で利用可能な帯域幅、および各フロー上の現在のバッファステータスを含め、複数の要因に基づくことが可能である。データが、各CCに関するフローに分割されると、ブロック630で、MACに関するバッファ占有率情報が更新されることが可能であり、さらにMACエンティティが、無線で送信するためのデータのスケジューリングを決定することが可能である。MACスケジューラが、複数のフローの概念に対処するように変更され得る。
【0076】
ブロック635で、MACスケジューラエンティティが、各フローからデータを選択し、さらに、選択されたデータを、Iu(無線インターフェース)を介して宛先eノードBに送信するためにPHYに転送することが可能である。eノードBにおいて各フロー上でデータを受信すると、ブロック640で、適切な制御メッセージが、そのデータに確認応答するために、または再送を要求するために、同一のフロー上でUEとeノードBとの間で交換される。PDUが組み立てられてSDUにされると、すべてのフローは、所与のUEに関するEPC(拡張パケットコアネットワーク)に対する接続を有する一次eノードBに送信され得ることに留意されたい。これらのフローは独立に振舞うので、任意のRLC制御情報(再送要求、リセットなど)が、所与のフローを扱っている適切なエンティティによって扱われることが可能である。正しいエンティティが制御情報を扱っているため、再送要求を扱う際の待ち時間が短縮され得る。
【0077】
他のRLCエンティティからのフローを受け取る一次eノードB上のRLCエンティティが、データをマージ機能またはマージエンティティに供給する。マージエンティティは、受け取られたデータをマージすること、およびそのデータが、PDCPに供給される前に、順序どおりになっていることを確実にすることを担う。
【0078】
図7は、RLC層データ分割が実行されるある実施形態に従って使用され得る例示的なデータフローおよびアーキテクチャを示す。UE730が、PDCP層739においてデータを受け取り、そのデータをRLC層737に供給することができる。RLC層737で、データ分割エンティティ736が、データを、MAC735に供給されるフロー731と732に分割する。データ分割エンティティ736は、データを別々のフローに分割すると、RLC SDUを追跡することが可能である。MAC735が、異なるCCを介してデータの別々の部分を(フロー731および732として)eノードB710およびeノードB720に送信することが可能なPHY734に供給することが可能である。
【0079】
eノードB720が、PHY724でデータを受信して、そのデータをMAC725に供給することが可能であり、MAC725は、フロー732のデータをRLC727に供給する。次に、RLC727が、フローデータを、トンネル740を介してeノードB710に供給することが可能である。eノードB710で、データフロー731が、PHY714において受信されることが可能であり、PHY714は、データフロー731をMAC715に供給することが可能であり、MAC715は、フロー731のデータをRLC717に供給する。次に、RLC717のデータマージエンティティ718が、そのデータフローをマージして、適切に順序付けられたSDUにして、さらに、もたらされたデータをPDCP719に供給することが可能であり、PDCP719は、そのデータをIPパケットとしてネットワークに送信することが可能である。データマージエンティティ718が、RLC SDUを追跡することが可能である。X2シグナリング750が、eノードB710とeノードB720との間で制御情報を交換するのに使用され得る。
【0080】
図8は、RLC層においてDLデータ分割を実行する方法800を示す。ブロック805で、所与のUEに関するEPCとのコンテキストを有するeノードBエンティティ上のRLCエンティティが、そのUEを宛先とするデータを受信する。CCが全く関与しない通常のモードにおいて、このことは、そのチャネルに関する合計バッファ占有率の変化をもたらし得る。ブロック810で、eノードB上のRLCエンティティが、データ分割が構成されるかどうかを決定することが可能である。構成される場合、ブロック820で、RLCエンティティが、データ分割エンティティを調べて、そのSDUがピアeノードBに送信されるべきか、またはそのSDUがローカル送信に利用可能であるかを判定することが可能である。データ分割が構成されない場合、受け取られたデータを処理することが、ブロック815で通常どおりに進められることが可能である。
【0081】
ブロック820で、データ分割エンティティが、ピアエンティティにおいて利用可能な帯域幅、ピアエンティティの現在のバッファステータスなどを含み得る様々な要因に基づいて、そのデータがピアRLCに送られるべきか否かを判定することが可能である。X2インターフェース上の瞬間的なバッファステータスが利用できない可能性があるので、データ分割を決定するアルゴリズムは、想定されるデータレート、または前回に報告された測定、および前回に報告された測定以来の時間に基づく予測に基づいて、分割を決定することが可能である。
【0082】
データがローカルフロー上で(すなわち、eノードBから宛先UEに直接に)送られるべき場合、バッファ占有率情報は、ブロック825で更新されるようにMACに供給されることが可能であり、さらにブロック830で、RLCは、データが要求されると、MAC層にデータを送信することが可能である。データは、ブロック835でUEに送信され得る。
【0083】
データが異なるeノードBに送られるべき場合、データは、ブロック840で、eノードB-eノードBトンネルを介してピアeノードBに送られることが可能である。ピアeノードB上の受信側RLCは、上位の層からデータを受け取ったとした場合と同様に振舞うことが可能である。違いは、RLC伝送ステータスフィードバック(例えば、RLCバッファステータス、およびSDUについての情報は送信されない)が、協調するRLCエンティティによってソースeノードB上のRLCデータ分割エンティティに転送されることである。このことは、データ分割エンティティが、障害の生じたパケットを別の利用可能なCCを介して送信すること、およびシームレスなハンドオーバのために最新のバッファステータスを維持することを可能にすることができる。
【0084】
各CC上のRLCエンティティは、そのRLCエンティティがMAC層に供給するバッファ占有率情報を更新することが可能である。MACエンティティは、データ利用可能性、および帯域幅利用可能性に基づいてデータ伝送をスケジュールすることが可能である。UE側で、MACからデータを受信すると、再組立て機能が、各フローに関して独立に、現行のRLC標準のとおりに実行されることが可能である。送信されなければならないRLC制御情報が存在する場合、UE側のMACが、そのデータが送信されるべきフローについて通知を受けることが可能である。SDUが形成されると、SDUは、SDUを並べ替えることを担う(データマージ機能がそのように構成されている場合)データマージ機能に供給される。SDUは、RLCからPDCP層に送り出される前に順序付けられていることが可能である。並べ替えることは、SDUに追加されたシーケンス番号に基づいて、またはPDCPによって供給されるシーケンス番号に基づいて、行われ得る。
【0085】
図9は、RLC層データ分割が実行されるある実施形態に従って使用され得る例示的なデータフローおよびアーキテクチャを示す。eノードB910が、PDCP層919においてIPパケット990を受信して、そのデータをRLC層917に供給することが可能である。RLC層917で、データ分割エンティティ918が、そのデータをフロー931と932に分割することが可能である。データ分割エンティティ918は、フロー932がピアeノードBに送信されるべきであるのに対して、フロー931がローカルで(すなわち、UE930に直接に)送信されるべきことを判定することが可能である。データ分割エンティティ918は、フロー931をMAC915に供給することが可能である(例えば、バッファ占有率情報を更新した後、要求が行われると)。データ分割エンティティ918は、データ分割エンティティ918がデータを別々のフローに分割すると、RLC SDUを追跡することが可能である。MAC915は、フロー931に関するデータをPHY914に供給することが可能であり、PHY914は、フロー931を、第1のCCを介してUE930に送信することが可能である。
【0086】
eノードBフロー910が、フロー932を、トンネル940を介してeノードB920に供給することが可能である。RLC層927が、フロー932をMAC925に供給することが可能である(例えば、バッファ占有率情報を更新した後、要求が行われると)。MAC925は、フロー932に関するデータをPHY924に供給することが可能であり、PHY924は、フロー932を、第2のCCを介してUE930に送信することが可能である。X2シグナリング950が、eノードB910とeノードB920との間で制御情報を交換するのに使用され得る。
【0087】
UE930で、データフロー931および932が、データフロー931および932をMAC935に供給することが可能なPHY934によって受け取られることが可能であり、MAC935は、フロー931および932のデータをRLC937に供給する。次に、RLC937のデータマージエンティティ936が、それらのデータフローをマージして、適切に順序付けられたSDUにし、さらに、もたらされるデータをPDCP939に供給し、PDCP939は、そのデータをIPパケットとしてネットワークに送信することが可能である。データマージエンティティ938は、RLC SDUを追跡することが可能である。
【0088】
RLC層データ分割実施形態に関して、ハンドオーバ動作は、PDCP層データ分割に関して開示された手段を含め、本明細書で開示される任意の手段または方法を使用して実行され得る。
【0089】
ある実施形態において、データ分割が、MAC層において実行され得る。送信バッファリングを提供することが可能な、協調するeノードB上に構成されたMAC IWFにRLCパケット(例えば、PDU)を転送するMAC IWFが、ソースeノードB上に構成され得る。MAC層データ分割は、本明細書で説明されるとおり、HSPA(高速パケットアクセス)構成、ならびにLTE構成およびLTE-A構成に適用されることが可能であることに留意されたい。HSPA構成において、LTE-AにおけるサービングeノードBは、HSPAにおけるサービングRNC(無線ネットワークコントローラ)と均等であることが可能であり、さらにLTE-Aにおける協調するeノードBは、HSPAにおけるノードBまたはRNCと均等であることが可能である。
【0090】
図10は、MAC層データ分割が実行されるある実施形態に従って使用され得る例示的なDLデータフローおよびアーキテクチャを示す。eノードB1010は、PDCP符号化を実行し、さらにRLCバッファ層1017aおよび1017bにデータを供給することが可能なPDCP1019aおよび1019bにおいて、IPパケット1090を受け取ることが可能である。RLCバッファ1017aおよび1017bは、MAC1015にデータを供給することが可能であり、MAC1015は、適切なデータ分割を決定することが可能であり、かつデータを少なくとも2つの部分に分割する多重化エンティティ1019を含み得る。多重化エンティティ1019は、ピアeノードBに関する利用可能な帯域幅を考慮に入れることが可能であり、かつデータ多重化を実行する際にRLC PDUを転送することが可能である。ピアeノードBを使用して送られるように決定されたデータは、転送するエンティティ1018によって、eノードB間トンネル1040を介してeノードB1020に供給されることが可能である。ローカルで(すなわち、eノードB1010からUE1030に直接に)送信されるように決定されたデータは、任意のHARQ(ハイブリッドARQ)機能を実行することが可能であり、かつ第1のCCを使用してUE1030に送信する(1061)ためにPHY1014にデータを転送することが可能なHARQ1016に供給されることが可能である。
【0091】
eノードB1020は、UE1030のためのデータを、eノードB間トンネル1040を介してeノードB1010から受信すると、eノードB間バッファ1028においてそのようなデータをバッファリングすることが可能である。バッファ1028は、多重化エンティティ1029による多重化、およびHARQエンティティ1026によって実行されるHARQ機能のために、MAC1025にデータを供給することが可能である。このデータは、第2のCCを使用してUE1030に送信される(1062)ようにPHY1024に供給されることが可能である。
【0092】
サービングeノードB1010上のMACスケジューラ1012が、協調するeノードB1020からの報告された(例えば、推定された、または所定の保証される、もしくは平均の伝送などの)サポーティングデータレートを、ペイロード選択アルゴリズムにおける基準として使用して、RLC PDUが送信のために協調するサイト間CCに転送されることを要求することが可能である。
【0093】
協調するeノードB1020におけるMACスケジューラ1022が、eノードB1020上でサポートされ得る(例えば、推定された、所定の、または計算された保証される、もしくは平均の伝送などの)データレートを、定期的にサービングeノードB1010に報告して、その2つのeノードB間に接続が存在する間にサポートレートを更新することが可能である。この制御情報、および他の制御情報が、X2シグナリングインターフェース1050を介してeノードB間で交換され得る。ある実施形態において、セル無線リソースステータスごとのX2インターフェースは要求され得るが、DL/ULのGBR/非GBR/合計PRBを提供する無線リソースステータスの更新は、オプションであり得る。また、PRBステータスは、そのような情報が利用可能である場合、スケジューリング入力の代替として使用されることも可能である。
【0094】
また、協調するeノードB1020におけるMACスケジューラ1022が、協調するCCのための標準のペイロード選択を、eノードB間バッファ1028において利用可能なRLC PDUバッファを使用して固定サイズのPDUとして実行すること、または利用可能な無線リソースに合わせて多重化1029によってサイズ変更することも可能である。RLC PDUサイズ選択は、報告されたサポーティングデータレート、または保証されたレートに対処するようにサービングeノードB MACスケジューラ1012によって実行され得る。
【0095】
eノードB1010上のMAC eノードB間データ転送エンティティ1018は、処理のためにPHYに、および/またはトンネル1040を介してeノードB1020に、MACデータを送ることが可能な受動的中継ユニットであり得る。
【0096】
協調するeノードB1020におけるMAC eノードB間バッファ1028は、X2インターフェース上のデータトンネリングに起因することがあり得る可変の待ち時間に対処する、協調するeノードB1020上の一時的「パーキング」エリアの役割をすることが可能である。
【0097】
サイト間トンネル1040は、サービングeノードB1010から協調するeノードB1020にRLC PDUを転送するデータパイプであり得る。協調するeノードBごとに1つのトンネルが存在し得る。
【0098】
図10、およびMAC層データ分割に関連して本明細書で説明される構成およびデータフローは、システムアーキテクチャに小さい影響しか与えずに、MAC層に限定された変更だけで実施され得る。そのような変更は、最小限であることが可能であり、さらに、CoMP(Coordinated Multipoint Transmission:調整されたマルチポイント伝送)手順をサポートするのに要求される変更と同一である、または小さな違いしか有さないことが可能な構成変更であることが可能である。ある実施形態では、CoMP手順のいくつかは、いくらかの変更を加えて再利用されることが可能である。ある実施形態では、参加サイトに関する無線インターフェースリソース予約が、X2インターフェース遅延を低減するのに使用され得る。RLC SDUまたは順次のデリバリは、すべての関係のあるRLC PDUが正しく受信されてからでないと、RLCがRLC PDUを上位の層に送ることができないことを要求することが可能である。RLC PDUは、それぞれが他方とは異なる待ち時間を有し得る、異なる2つの物理層インターフェースを介して送信され得ることに留意されたい。したがって、受信側RLCエンティティが、さらなる入力データをバッファリングする要件が存在し得る。協調するCCは、上位層再送タイマ限度内でRLC PDUを送信する必要がある可能性がある。
【0099】
図10に関して説明されたのと同一のデバイスおよびエンティティを使用する、対応するUL MAC層データ分割のデータフローおよびアーキテクチャが、
図11に示される。
図11に示される機能は、既存のLTEシグナリング構造および/またはLTE-Aシグナリング構造とほとんど、または完全に適合することが可能であるが、複数のCCに関する構成の拡張、およびネットワークからの対応するスケジューリングを含むことも可能である。正常に受信されたMAC PDUを、サービングeノードB上のRLCに転送する、対応するネットワーク要件は、CoMP手順を導入するのに必要とされるものと同一であり得る。
【0100】
図11で、データが、UE1030上のRLCバッファ1037aおよび1037bにおいて受信されることが可能であり、かつデータ分割を決定して、別々のCC1063および1064上でeノードB1010および1020にそれぞれ送信するためにPHY1034にデータを供給することが可能なMAC多重化エンティティ1039に供給されることが可能である。優先度処理データが、MAC多重化エンティティ1039によって使用され得る。そのようなデータは、優先度処理エンティティ1032とMACスケジューラ1012および1022との間で交換され得る。UE1030からデータを直接に受信すると、eノードB1010のPHY1014は、そのデータをMAC1015に供給することが可能であり、MAC1015は、HARQ機能を実行し、かつデータを多重化エンティティ1019に供給することが可能である。多重化エンティティ1019は、そのデータと、トンネル1040を介してeノードB1020から受信されたデータを逆多重化することが可能である。UE1030からデータを直接に受信すると、eノードB1020のPHY1024は、データをMAC1025に供給することが可能であり、MAC1025は、HARQ機能を実行し、かつデータを多重化エンティティ1029に供給することが可能であり、多重化エンティティ1029は、そのデータを逆多重化して、そのデータを、トンネル1040を介してeノードB1010に供給することが可能である。逆多重化の後、データは、RLCバッファ1017aおよび1017b、PDCP復号器1019aおよび1019bに供給されることが可能であり、さらにその後、IPパケット1091としてネットワークに送信されることが可能である。バッファステータス1073および1074が、UE1030によってMACスケジューラ1012および1022にそれぞれ供給されることが可能である。
【0101】
MAC層データ分割実施形態において、LTE R8によってサポートされる基本的なハンドオーバフィーチャが、協調構造を再編成すること、および/または保持することをサポートする構成、およびX2シグナリングインターフェース上の部分的ハンドオーバのサポートの追加で、本明細書で説明されるハンドオーバをサポートすることが可能である。サービングCC、または協調するCCの部分的ハンドオーバは、eノードB間のさらなるデータパスの確立を使用することが可能である。パス確立中、またはパス再確立中に失われたMACパケットは、RLCレベルの再送(RLCは常にサービングCC上にあり、移動していない可能性があるので、協調するCCハンドオーバに関して)、またはPDCP再送(PDCP送信ステータスはターゲットセルに転送されるので、サービングハンドオーバに関して)で自律的に処理され得るので、データコピーの必要は全くない可能性がある。X2ハンドオーバシグナルインターフェースが、RRC層によって定義されたハンドオーバ準備情報をカプセル化することが可能である。したがって、部分的ハンドオーバを通信することのシグナリング問題は、ハンドオーバ準備情報の中で協調構造のコンテキストを供給するようにRRCハンドオーバメッセージを変更することで、対処され得る。
【0102】
ある実施形態では、ユーザプレーンデータ分割が、例示的なシステムにおいて実施されることが可能である。PDCP層、RLC層、MAC層、またはサービングゲートウェイデータ分割において、または上記、および/もしくは本明細書で開示される他の任意の手段のうちの任意の手段の任意の組合せを使用するシステムにおいて、効率的なデータ分割決定のために、サービングeノードBが、利用可能なリソース、および遠隔のeノードBからのローカルスケジューリング情報を考慮に入れる必要がある可能性がある。RANデータ分割実施形態において、専用の「インターワーキング機能」が、X2リンクによってもたらされる遅延を軽減するようにダウンリンクフレームをバッファリングするのに使用され得る。サービングeノードBは、X2遅延を考慮に入れることが可能であり、RANデータ分割の代わりにS-GW(サービングゲートウェイ)データ分割を開始することによって、X2待ち時間を低減することが可能である。データ分割が使用されるべきことを決定すると、サービングeノードBは、データを分割することを始めるようサービングゲートウェイに命令する制御信号を、サービングゲートウェイに送信することができる。
【0103】
ある実施形態では、X2インターフェース上のユーザプレーン負荷が、サービングゲートウェイにおいてデータ分割が行われることを許すフレームワークを構築すること、およびキャリア固有のハンドオーバを許すようにLTE R8ハンドオーバを拡張することによって、低減され得る。そのような実施形態を実施するために、サービングeノードBが、サービングゲートウェイにキャリア固有のハンドオーバ決定を通知することを許し、さらにサービングゲートウェイが、UEトラフィックをキャリア固有の仕方で分割することを可能にするメッセージシーケンスが、使用され得る。キャリア固有のハンドオーバを実施する実施形態において、eノードB-MMEメッセージングは、影響を受けるRAB(無線アクセスベアラ)のリストのハンドオーバの通知をサポートし、かつMMEがキャリア固有のPATH_SWITCH_REQUESTメッセージをサポートすることを要求するように、拡張され得る。
【0104】
例えば、UE350が位置311にある場合に2つのeノードBに接続され得る、
図3に示されるある実施形態では、適切なRRCシグナリングが、分割されたRRC接続をサポートするのに必要とされ得る。一部の実施形態では、UEに関して活性状態への遷移が完了すると、またはターゲットeノードBにおいて、ハンドオーバ準備中にハンドオーバリソース割当てが完了した後、eノードB UEコンテキストが確立されることが可能である。eノードB UEコンテキストは、1つの活性のUEに関連するeノードBにおける情報のブロックであり得る。この情報のブロックは、活性のUEに向けたE-UTRANサービスを維持するのに要求される必要な情報を含み得る。UE状態情報、セキュリティ情報、UE能力情報、およびUEに関連する論理S1接続のIDが、eノードB UEコンテキストの中に含められることが可能である。
【0105】
ある実施形態では、ユーザプレーンデータ分割が、
図12に示されるサービングゲートウェイにおいて実行され得る。IPパケット405が、PDN(パケットデータネットワーク)ゲートウェイ1210において受信され、かつサービングゲートウェイ1220に送信されることが可能である。サービングゲートウェイ1220が、そのデータを分割し、さらにそのデータの一部分を、S1ベアラ1251を介してeノードB1230に送信し、さらにそのデータのその他の部分を、S1ベアラ1252を介してeノードB1240に送信することが可能である。次に、eノードB1230および1240が、そのデータを、無線ベアラを介してUE1270に送信することが可能である。確認応答されていないPDCP SDU1261および1262が、eノードB間で転送されて、ロスレス(lossless)ハンドオーバを許すことが可能である。サービングゲートウェイにおける個々のCCに関連するベアラのデータ分割が、eノードBからの入力、および/またはサービングゲートウェイ上で実行される負荷分散アルゴリズムに基づいて可能にされ得る。単一のコンポーネントキャリアが、HARQエンティティに関連することが可能である。複数の論理チャネルが、異なるコンポーネントキャリアにトランスペアレントにマップされることが可能である。
【0106】
CCが1つのeノードB(ソース)から別のeノードB(ターゲット)にハンドオーバされる際、ソースeノードBは、サービングゲートウェイに関連するMMEに(直接に、またはターゲットeノードBを介して)、コンポーネントキャリア上で伝送されていた無線ベアラを通知することが可能である。このことは、ソースeノードBから、サービングゲートウェイに関連するMMEに送信されるべきメッセージを作成することによって、またはパススイッチ要求メッセージを拡張することによって、達成することが可能である。
【0107】
新たなGTP(GPRSトンネリングプロトコル)トンネルエンドポイントに向けてのダウンリンクGTPの切換えを要求するパス切換えメッセージが、eノードBとMMEとの間で交換されることが可能である。パス切換えメッセージは、ソースeノードBからターゲットeノードBに切り換えられる必要があるすべてのE-RAB(EUTRAN RAB)のリストであることが可能なダウンリンクリストIE(情報要素)の中の切り換えられるべきE-RABを伝送することが可能である。PATH SWICH REQUESTメッセージ内のダウンリンクリストIEの中で切り換えられるべきE-RABが、UEコンテキストの中にそれまでに含まれていたすべてのE-RABを含まない可能性がある場合、MMEは、含まれていないE-RABを、eノードBによって暗黙に解放されたものと考えることが可能である。
【0108】
キャリア固有のハンドオーバをサポートするのに、パススイッチ要求(または代替のメッセージ)が、切り換えられる必要があるRABのリストを伝送することが可能である。しかし、MMEおよびサービングゲートウェイは、残りのトラフィックを、それまでと同様にソースeノードBに転送することを続けることが可能である。
【0109】
eノードBは、S-GW(サービングゲートウェイ)におけるデータの分割をどのように要求するかを決定することが可能である。ある実施形態では、eノードBは、RABレベルにおけるデータ分割を要求することが可能であり、その場合、パス切換えメッセージは、分割される必要があるすべてのRABのリストを含み得る。eノードBがRABレベルでデータを分割することを望まない場合、eノードBは、新たなeノードBにリダイレクトされるべきトラフィックのパーセンテージを有するインジケータを送ることが可能である。ある実施形態では、「保つべきRAB」リストが、より古い機器との潜在的な適合性問題または解釈問題を回避するのに使用され得る。また、サービングeノードBは、ルーティングアルゴリズムを実施して、MMEが利用できない可能性があるAS情報に基づいて、最適なRAB/RBマッピングを決定することも可能である。MME/S-GWが、eノードBによって示唆されるとおりのデータ分割ルーティング、または代替のデータ分割ルーティングを採用することを決定する場合に、ルーティング示唆をもたらすオプションのIEが、「PATH SWITCH REQUEST」の中に含められてもよい。データ分割ルーティングを決める決定に対するいくつかの潜在的な能動的な入力には、RB/RAB分割割当て(特定のeノードB MACアドレスに対するRAB/RBのマッピング)、データ分割のパーセンテージ、およびその他の入力が含まれ得る。
【0110】
無線ベアラからの部分的データが、コンポーネントキャリア上で送られることが可能であり、さらにこのことが、サービングゲートウェイに、同様の構成をミラーリングするようにトラフィックを分割するオプションを許す特別なインジケータによって示されることが可能である。この特別なインジケータは、1回限りのイベントであること、またはチャネル品質測定に基づいて分割比を変更する、サービングeノードBからS-GW/MMEへの定期的通知であることが可能である。
【0111】
MME/S-GWが、eノードBによって与えられるステータス入力に基づいてデータフロー分割決定を行うのに使用される何らかのルーティングインテリジェンスを実施することが可能である。そのような入力には、利用可能なeノードB(例えば、PDCP)バッファ、平均伝送待ち時間(例えば、UE上の、または特定のRAB/RBごとの)、サポート可能なトラフィック負荷分散(例えば、eノードBごとの%負荷)、およびその他が含まれ得る。
【0112】
S-GWから送られるパケットは、GTPトンネルにおいてカプセル化されたIPトラフィックであることが可能であり、さらに、単一のE-RAB IDに関して、1つはソースeノードBに終端し、もう1つはターゲットeノードBに終端する2つのGTPトンネルの作成を要求することが可能であることに留意されたい。このことは、無線ベアラマッピングに1対1RABを規定する一部の実施とは異なり得る。
【0113】
ある実施形態では、UEは、セキュリティ情報およびNAS情報を提供する1つの特別なセルを有するネットワークに対する1つのRRC接続を有することが可能である。
図3を再び参照すると、起動時に、位置311にあるUE350が、eノードB361に対するRRC接続、ならびにCC320およびCC330Bという確立されたコンポーネントキャリアセットに関連する。このため、UE350は、eノードB361におけるサービングセル(または特別なセル)に関連することが可能であり、かつサービングセルハンドオーバが行われるまで、eノードB361からセキュリティ情報およびNAS移動性情報を獲得することが可能である。
【0114】
CC330がサービングセルである協調的なコンポーネントキャリア展開において移動性をサポートするために、UE350が位置311に移動することが、RRC接続再構成を使用してシグナリングされるRRC接続ハンドオーバを生じさせることが可能であり、かつ新たなセキュリティパラメータを考慮に入れるようにMAC/RLC層のリセットを生じさせることが可能である。CC330がサービングセルではないある実施形態において、UE350は、UE350が位置310から位置311に移動する際に、eノードB361に対するUE350のRRC接続を維持することが可能である。セキュリティ手順は、後段で説明されるとおり、ハンドオーバのためのさらなる機構を必要とする可能性がある。
【0115】
UEに関する活性状態への遷移が完了すると、またはターゲットeノードBにおいてハンドオーバ準備中のハンドオーバリソース割当ての完了の後、eノードB UEコンテキストが確立され得る。ある実施形態では、ハンドオーバ手順は、ソースeノードBから送られた{KeNB*,NCC}ペアから導き出された、暗号化および暗号化アルゴリズムのための新規の鍵を生成するよう、ターゲットeノードBおよびUEをトリガすることが可能である。ターゲットeノードBは、このタプルを使用して新規のKeNBを生成することが可能である。KUPenc鍵(KeNBから導き出された)が、特定の暗号化アルゴリズムを用いたユーザプレーントラフィックの保護のために使用され得る。
【0116】
図3のUE350が、例えば、位置310から位置311に移動するに際に、ソースeノードB361とのRRC接続を維持するある実施形態において、ターゲットeノードB362において実行されているPDCPエンティティは、ソースeノードB361と同一の鍵を使用し続ける必要がある可能性がある。このことは、UEが、異なる複数のeノードBからPDCPエンティティを同時に受信することを許す可能性がある。これらの鍵は、ソースeノードBからターゲットeノードBへのハンドオーバのハンドオーバ準備段階におけるハンドオーバコマンドで交換されることが可能である。ある実施形態では、この情報はS-GWからの初期コンテキストセットアップ中に伝えられることが可能である。
【0117】
ある実施形態では、電力ヘッドルーム、バッファステータスレポート、およびチャネル品質レポートを含むアップリンクレポートが、ターゲットeノードBにおいて利用できる可能性があり、さらにX2-APを介してソースeノードBからターゲットeノードBに転送されることが可能であり、またはUEが、それらのレポートを2つのeノードBに別々に送ることが可能である。後方互換性をもたらすために、UEは、サービングセルに関するレポートを「サービングeノードB」に送ることが可能である。しかし、このことは、ターゲットeノードBにおけるスケジューラに関する入力の利用可能性に遅延を生じさせる可能性があり、このことは、一部の実施で、最適でないスケジューリング決定をもたらし得る。
【0118】
キャリア集約を用いるLTE-Aにおいてハンドオーバを適切にサポートするために、キャリア固有のRSRPおよび/またはRSRQを含め、キャリアごとのUE測定、および集約されたダウンリンクキャリアを介する報告が定義される必要がある可能性がある。LTE R8機構は、測定がサービングセルに基づくことが可能であるため、周波数内測定をサポートしない可能性がある。例えば、eノードBが、3つのキャリアF1、F2、およびF3を所有することが可能であり、さらにF1およびF2を使用していることが可能であり、さらにF1がサービングセルであることが可能である。F3の信号品質がF2より良好である場合、UEがこの状況を報告することができるように、この状況を扱う測定スキームを有することが望ましい可能性がある。一部の実施において、非サービングセルからの測定を含む、キャリア固有の測定が、所望される可能性がある。
【0119】
特徴および要素は、特定の組合せによって上記で説明されるものの、各特徴または各要素は、単独で使用されることも、その他の特徴および要素との任意の組合せで使用されることも可能であることが、当業者には認識されよう。さらに、本明細書で説明される方法は、コンピュータまたはプロセッサによって実行されるようにコンピュータ可読媒体に組み込まれたコンピュータプログラム、ソフトウェア、またはファームウェアにおいて実施され得る。コンピュータ可読媒体の例には、電子信号(有線接続またはワイヤレス接続を介して伝送される)およびコンピュータ可読記憶媒体が含まれる。コンピュータ可読記憶媒体の例には、ROM(読み取り専用メモリ)、RAM(ランダムアクセスメモリ)、レジスタ、キャッシュメモリ、半導体メモリデバイス、内部ハードディスクやリムーバブルディスクなどの磁気媒体、光磁気媒体、ならびにCD-ROMディスクおよびDVD(デジタルバーサタイルディスク)などの光媒体が含まれるが、これらに限定されない。ソフトウェアに関連するプロセッサが、WTRU、UE、端末装置、基地局、RNC、または任意のホストコンピュータにおいて使用するための無線周波数トランシーバを実施するのに使用され得る。
【符号の説明】
【0120】
102、102a~102d WTRU
104 RAN
106 コアネットワーク
108 PSTN
110 インターネット
112 他のネットワーク
114a、114b 基地局
118 プロセッサ
120 トランシーバ
122 アンテナ