IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ プライムプラネットエナジー&ソリューションズ株式会社の特許一覧 ▶ トヨタ自動車株式会社の特許一覧

<>
  • 特許-電極シートの製造方法 図1
  • 特許-電極シートの製造方法 図2
  • 特許-電極シートの製造方法 図3
  • 特許-電極シートの製造方法 図4
  • 特許-電極シートの製造方法 図5
  • 特許-電極シートの製造方法 図6
  • 特許-電極シートの製造方法 図7
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-04-24
(45)【発行日】2023-05-02
(54)【発明の名称】電極シートの製造方法
(51)【国際特許分類】
   H01M 4/04 20060101AFI20230425BHJP
   H01M 4/1393 20100101ALI20230425BHJP
   H01M 4/62 20060101ALI20230425BHJP
   H01M 4/36 20060101ALI20230425BHJP
【FI】
H01M4/04 Z
H01M4/1393
H01M4/62 Z
H01M4/36 A
【請求項の数】 3
(21)【出願番号】P 2021076103
(22)【出願日】2021-04-28
(65)【公開番号】P2022170170
(43)【公開日】2022-11-10
【審査請求日】2022-05-11
(73)【特許権者】
【識別番号】520184767
【氏名又は名称】プライムプラネットエナジー&ソリューションズ株式会社
(73)【特許権者】
【識別番号】000003207
【氏名又は名称】トヨタ自動車株式会社
(74)【代理人】
【識別番号】110000291
【氏名又は名称】弁理士法人コスモス国際特許商標事務所
(72)【発明者】
【氏名】大久保 壮吉
(72)【発明者】
【氏名】上薗 知之
(72)【発明者】
【氏名】宮島 桃香
(72)【発明者】
【氏名】嶋崎 汀
(72)【発明者】
【氏名】松山 美由紀
【審査官】渡部 朋也
(56)【参考文献】
【文献】特開2020-68113(JP,A)
【文献】特開2010-186664(JP,A)
【文献】特開平11-288739(JP,A)
【文献】特開2019-29187(JP,A)
【文献】特開2014-102992(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01M4/00-4/62
(57)【特許請求の範囲】
【請求項1】
第1表面及び上記第1表面とは逆側の第2表面を有する集電箔の上記第2表面上に電極層を有する電極シートの製造方法であって、
上記集電箔と、
上記集電箔の上記第2表面上に形成され、
活物質粒子に上記活物質粒子よりも小径でバインダ樹脂からなるバインダ粒子が複数結合した複合粒子が堆積した
未圧縮電極層と、を有し、
シート温度が常温の未圧縮電極シートを、
上記集電箔の上記第1表面に接触させる第1外周面を有する第1ロールと上記未圧縮電極層の電極層外面に接触させる第2外周面を有する第2ロールとのロール間隙に通して厚さ方向に圧縮しつつ、上記ロール間隙において上記未圧縮電極シートを加熱して、上記バインダ樹脂によって上記活物質粒子同士を結着させると共に上記活物質粒子を上記集電箔の上記第2表面に結着させるロールプレス工程を備え、
上記ロールプレス工程は、
記第1ロールの上記第1外周面の第1外周面温度TR1を、上記バインダ樹脂の溶融開始温度Ti+5℃~上記溶融開始温度Ti+25℃の温度範囲内(Ti+5℃≦TR1≦Ti+25℃)とし、
記第2ロールの上記第2外周面の第2外周面温度TR2を、上記第1外周面温度TR1よりも低く、かつ、上記バインダ樹脂の上記溶融開始温度Ti+5℃以下の温度範囲内(TR2<TR1,TR2≦Ti+5℃)として行う
電極シートの製造方法。
【請求項2】
請求項1に記載の電極シートの製造方法であって、
前記ロールプレス工程は、
前記第2外周面温度TR2を、前記第1外周面温度TR1より10℃以上低く、かつ、前記バインダ樹脂の前記溶融開始温度Ti+5℃以下の温度範囲内(TR2≦TR1-10℃,TR2≦Ti+5℃)として行う
電極シートの製造方法。
【請求項3】
請求項1又は請求項2に記載の電極シートの製造方法であって、
前記活物質粒子は、黒鉛粒子であり、
前記バインダ樹脂は、PVDFである
電極シートの製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、電極シートの製造方法に関する。
【背景技術】
【0002】
従来、集電箔の一方或いは両方の表面上に電極合材層を設けた電極シートが知られている。このような電極シートの製造方法に関する従来技術として、例えば、特許文献1(特許文献1の特許請求の範囲等を参照)が挙げられる。
【0003】
この特許文献1には、まず、溶媒を含まず、活物質粉体とバインダ粉体とを混合して、活物質粒子の表面に複数のバインダ粒子を結合させた複合粒子からなる混合粉体を用意する。そして、これを静電気力によって飛翔させて集電箔の表面上に堆積させた未圧縮の電極層を有する未圧縮の電極シートを形成する。その後、ロールプレス工程において、対向して回転する一対のホットロール(第1ロールと第2ロール)の間隙に、この未圧縮の電極シートを通す(ロールプレスする)。これにより、電極層に含まれるバインダ樹脂を軟化または溶融させつつ、電極層と集電箔とを圧縮することで、活物質粒子とバインダ樹脂とを有する電極層が集電箔の表面に接着された電極シートを製造する。
【先行技術文献】
【特許文献】
【0004】
【文献】特開2020-68113号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかしながら、電極層の一部が剥離してバインダ樹脂及び活物質粒子がロール表面に付着したり、ロール表面には付着しないが電極層の一部が集電箔から剥離して浮き上がる場合があった。本発明は、かかる問題点に鑑みてなされたものであって、改良された電極シートの製造方法を提供することを目的とする。
【課題を解決するための手段】
【0006】
(1)上記課題を解決するための本発明の一態様は、第1表面及び上記第1表面とは逆側の第2表面を有する集電箔の上記第2表面上に電極層を有する電極シートの製造方法であって、上記集電箔と、上記集電箔の上記第2表面上に形成され、活物質粒子に上記活物質粒子よりも小径でバインダ樹脂からなるバインダ粒子が複数結合した複合粒子が堆積した未圧縮電極層と、を有し、シート温度が常温の未圧縮電極シートを、上記集電箔の上記第1表面に接触させる第1外周面を有する第1ロールと上記未圧縮電極層の電極層外面に接触させる第2外周面を有する第2ロールとのロール間隙に通して厚さ方向に圧縮しつつ、上記ロール間隙において上記未圧縮電極シートを加熱して、上記バインダ樹脂によって上記活物質粒子同士を結着させると共に上記活物質粒子を上記集電箔の上記第2表面に結着させるロールプレス工程を備え、上記ロールプレス工程は、上記第1ロールの上記第1外周面の第1外周面温度(TR1)を、上記バインダ樹脂の溶融開始温度(Ti)+5℃~上記溶融開始温度(Ti)+25℃の温度範囲内(Ti+5℃≦TR1≦Ti+25℃)とし、上記第2ロールの上記第2外周面の第2外周面温度(TR2)を、上記第1外周面温度(TR1)よりも低く、かつ、上記バインダ樹脂の上記溶融開始温度(Ti)+5℃以下の温度範囲内(TR2<TR1,TR2≦Ti+5℃)として行う電極シートの製造方法である。
【0007】
本件のバインダ樹脂は、動的粘弾性測定で得られる損失正接tanδの温度特性のうち、バインダ樹脂の融点Tm以下の温度域の温度特性について見ると、温度の上昇と共に直線状にゆっくり上昇していた損失正接tanδが、温度が融点Tmに近づくと、温度の上昇と共に直線状に急激に上昇するように変化する特性を有する。この急激上昇変化の開始点の温度を、バインダ樹脂の「溶融開始温度」Tiとする。
即ち、バインダ樹脂について、ガラス転移点を越えたゴム状態の温度から融点Tmを超えて溶融した温度までの温度範囲(例えばTm-50℃~Tm+20℃の範囲)に亘り、温度と動的粘弾性との関係を測定し、損失弾性率G”、貯蔵弾性率G’及びこれらの比である損失正接tanδ(=G”/G’)の温度特性を得る。すると、ガラス転移点よりも融点Tmに近づいた温度領域では、バインダ樹脂の損失弾性率G”及び貯蔵弾性率G’はいずれも、温度の上昇と共に徐々に低下する。しかし、さらに温度が融点Tmに近づくと、損失弾性率G”及び貯蔵弾性率G’は温度の上昇と共に急激に低下するようになる。但し、温度が融点Tmに達しバインダ樹脂が溶融状態になると、一転して、損失弾性率G”及び貯蔵弾性率G’の急減は収まり、温度の上昇と共にゆっくり減少するように推移する。損失弾性率G”及び貯蔵弾性率G’がこのように推移するため、これらの比であるバインダ樹脂の損失正接tanδ(=G”/G’)は、ガラス転移点よりも融点Tmに近づいた温度領域では、温度の上昇と共に徐々にかつ概ね直線状に上昇する。温度の上昇と共に損失弾性率G”及び貯蔵弾性率G’が共に減少するが、温度が高いほどバインダ樹脂が軟化するために加えられた振動エネルギーが損失となる割合が増加するためであると推測される。しかし、さらに温度が融点Tmに近づくと、温度の上昇と共に損失正接tanδが急激に(ランプ関数状に)上昇する領域が現れる。バインダ樹脂の一部が溶融し始め、損失弾性率G”及び貯蔵弾性率G’が急減するが、貯蔵弾性率G’の減少割合が大きく、温度上昇と共に損失正接tanδ即ち損失が著しく増加するためと推測される。ところが、温度が融点Tmに達しバインダ樹脂が溶融状態になると、一転して、損失正接tanδは高い値であるが概ね一定の値に落ち着く。そこで、バインダ樹脂が溶融し始めて、温度の増加と共に、損失正接tanδが急増し始める温度を「溶融開始温度」Tiとする。
【0008】
なお、上述の損失正接tanδの温度特性を取りうる樹脂は、ガラス転移点及び融点を有する結晶性樹脂であり、例えば、PVDF(ポリ塩化ビニリデン)、PTFE(ポリテトラフルオロエチレン)などのフッ素系樹脂や、PE(ポリエチレン),PP(ポリプロピレン),PA(ポリアミド),POM(ポリアセタール、ポリオキシメチレン),PET(ポリエチレンテレフタレート),PBT(ポリブチレンテレフタレート),PPS(ポリフェニレンサルファイド),PEEK(ポリエーテルエーテルケトン)などが挙げられる。
【0009】
上述の製造方法では、ロールプレス工程において、集電箔の第1表面に第1外周面を接触させる第1ロールの第1外周面の第1外周面温度TR1を、バインダ樹脂の溶融開始温度Ti+5℃以上(Ti+5℃≦TR1)として、ロールプレスを行う。従って、第1ロールの第1外周面に接する集電箔の温度TCも、概ね、バインダ樹脂の溶融開始温度Ti+5℃以上の温度(Ti+5℃≦TC≒TR1)となる。このため、未圧縮電極層のうち、集電箔の第2表面付近に存在する複合粒子のバインダ粒子が溶融して、溶融したバインダ樹脂を介して活物質粒子を、集電箔の第2表面に確実に付着させ得る。
【0010】
加えて、第1ロールの第1外周面温度TR1を、溶融開始温度Ti+25℃以下の温度(TR1≦Ti+25℃)とするので、第1ロールの第1外周面に接する集電箔の温度TCも、概ね、バインダ樹脂の溶融開始温度Ti+25℃以下の温度(TC≒TR1≦Ti+25℃)になる。このため、未圧縮電極層のうち、集電箔の第2表面付近に存在する複合粒子のバインダ粒子が溶融したバインダ樹脂の粘度が低下して粘着力が低下し過ぎることが無く、集電箔の第2表面に一旦付着したバインダ樹脂及び活物質粒子が、即ち、圧縮中の電極層が、集電箔の第2表面から剥がれて第2ロールの第2外周面に付着することが防止できる。
【0011】
さらに上述の製造方法では、ロールプレス工程において、未圧縮電極層の電極層外面に接触させる第2ロールの第2外周面の第2外周面温度TR2を、集電箔の第1表面に接触させる第1ロールの第1外周面の第1外周面温度TR1よりも低くしてロールプレスを行う。このため、未圧縮電極層のうち、電極層外面側の部位の温度が、集電箔側の部位よりも低くなり、バインダ樹脂が溶融し難くなるので、未圧縮電極層が第2ロールに付着して剥離することが生じにくい。
【0012】
また第2外周面温度TR2を、バインダ樹脂の溶融開始温度Ti+5℃以下の温度範囲内(TR2<TR1,TR2≦Ti+5℃)として、ロールプレスを行う。
従って、第2ロールの第2外周面に接する未圧縮電極層の電極層外面の温度TEも、バインダ樹脂の溶融開始温度Ti+5℃以下の温度(TE≒TR2≦Ti+5℃)となる。しかも、予備加熱をしていない、シート温度が常温の未圧縮電極シートを、ロール間隙に通して厚さ方向に圧縮しつつ、ロール間隙において未圧縮電極シートを加熱するので、加熱される期間は短い。このため、第2ロールの第2外周面に接する未圧縮電極層の電極層外面の温度TEは、バインダ樹脂の溶融開始温度Tiに達しない(TE<Ti)か、達したとしてもその期間はごく短く、しかも高々TE≦Ti+5℃であるので、電極層外面においてバインダ樹脂が十分には溶融しない。このため、未圧縮電極層の電極層外面付近に存在する複合粒子のバインダ粒子が溶融して、溶融したバインダ樹脂やバインダ樹脂を介した活物質粒子が、第2ロールの第2外周面に付着することが抑制される。
【0013】
なお、「常温」とは+5℃~+35℃の温度範囲内の温度をいう。
【0014】
(2)に記載の電極シートの製造方法であって、前記ロールプレス工程は、前記第2外周面温度TR2を、前記第1外周面温度TR1より10℃以上低く、かつ、前記バインダ樹脂の前記溶融開始温度Ti+5℃以下の温度範囲内(TR2≦TR1-10℃,TR2≦Ti+5℃)として行う電極シートの製造方法とすると良い。
【0015】
この製造方法では、ロールプレス工程は、第2外周面温度TR2を、第1外周面温度TR1よりも10℃以上低く、しかも、バインダ樹脂の溶融開始温度Ti+5℃以下の温度範囲内として行う。このように、第2外周面温度TR2を第1外周面温度TR1に比して十分低くすることで、電極層をなすバインダ樹脂及び活物質粒子を、集電箔に確実に接着させる一方、第2ロールの第2外周面に付着するのを確実に抑制することができる。
【0016】
(3)(1)又は(2)に記載の電極シートの製造方法であって、前記活物質粒子は、黒鉛粒子であり、前記バインダ樹脂は、PVDFである電極シートの製造方法とすると良い。
【0017】
この製造方法では、電極層に用いる活物質粒子を黒鉛粒子とし、バインダ樹脂をPVDFとするので、適切に電極シートを製造することができる。
【図面の簡単な説明】
【0018】
図1】実施形態に係る負極シートの平面図である。
図2】実施形態に係る負極シートの断面図である。
図3】バインダ樹脂の動的粘弾性(貯蔵弾性率E’、損失正接tanδ)の温度特性、及び溶融開始温度Ti及び融点Tmを示すグラフである。
図4】実施形態に係り、負極シートの製造工程を示すフローチャートである。
図5】実施形態に係り、負極シートの製造を示す説明図である。
図6】実施形態に係り、ロールプレス工程における、負極シートの圧縮の様子を示す説明図である。
図7】ロールプレス工程における、第1外周面温度TR1及び第2外周面温度TR2と、各調査例に係る負極シートの良否との関係を示すグラフである。
【発明を実施するための形態】
【0019】
(実施形態)
以下、本発明を具体化した実施形態を、図1図6の図面を参照しつつ説明する。本実施形態は、リチウムイオン二次電池の負極シートの製造に、本発明を適用したものである。すなわち、本実施形態では、電極シートの製造方法として、負極シート1の製造方法を例示する。本実施形態では、帯状の集電箔2と、この集電箔2の一方の表面2B上に形成された帯状の負極層3(電極層)と、を備える帯状の負極シート1(電極シート)を製造する(図1図2参照)。
【0020】
まず、本実施形態に係る負極シート1について説明する。上述したように、長手方向DLに長い帯状の負極シート1は、長手方向DLに長い帯状の集電箔2と、長手方向DLに長い帯状の負極層3とを備える。集電箔2は、一対の表面である第1表面2A及び第2表面2Bを有している。一方、負極層3は、集電箔2の第2表面2B上のうち、幅方向DWの中央に形成されている。このため、この負極シート1は、幅方向DWの中央に位置し、集電箔2と負極層3とが重なる重ね部1Sのほか、幅方向DWの両側(図1の上側、下側)に位置し、集電箔2が露出する箔露出部2Eである集電部1Cとを有している。
【0021】
負極シート1のうち、集電箔2は厚さ8μmの銅箔からなる。また、負極層3は、黒鉛粒子である活物質粒子6と、活物質粒子6同士及び活物質粒子6と集電箔2とを結着するバインダ樹脂7とからなる。活物質粒子6である黒鉛粒子としては、例えば、球状黒鉛、鱗片状黒鉛が挙げられ,本実施形態では球状黒鉛を用いた。また、バインダ樹脂7としては、PTFE,PVDFなどのフッ素系樹脂が挙げられ、本実施形態ではバインダ樹脂7としてPVDFを用いた。本実施形態で用いたバインダ樹脂7(PVDF)は、溶融開始温度Tiが155℃(Ti=155℃)である(図3参照)。
【0022】
なお、バインダ樹脂7(PVDF)の溶融開始温度Tiの値は、以下のようにして取得した。即ち、アイティー計測制御株式会社製の動的粘弾性測定装置DVA-220を用い、0.05gのバインダ樹脂7を10Hzで歪ませた条件で動的粘弾性(貯蔵弾性率G’、損失弾性率G”)及び損失正接tanδ(=G”/G’)を測定する。そして、温度Tの増加と共に、バインダ樹脂が融け始めることにより貯蔵弾性率G’及び損失弾性率G”が急減し、逆に、損失正接tanδが急増し始める温度Tを「溶融開始温度」Tiとする。具体的には、図3に示すバインダ樹脂7の損失正接tanδの温度特性のうち、バインダ樹脂7の融点Tm(164℃)を含む温度域(例えば、100~164℃の温度域)において、温度Tの上昇と共に直線状にゆっくり上昇していた損失正接tanδが、温度Tが融点Tmに近づくと、温度Tの上昇と共に直線状に急激に上昇するように変化する。この急激上昇変化の開始点の温度Tを溶融開始温度Tiとする。
【0023】
さらに具体的には、図3において「●」で示される損失正接tanδの測定点のうち、100~150℃の温度域の測定点から、温度Tの増加と共にtanδが直線状かつ僅かに上昇することを示す回帰直線LAを得る。また、156~164℃の温度域の測定点から、温度Tの増加と共にtanδが直線状かつ急激に上昇することを示す回帰直線LBを得る。そしてこれらの交点CRPに対応する温度Tを、溶融開始温度Tiとする。本実施形態のバインダ7では、溶融開始温度Tiは155℃(Ti=155℃)であることが理解出来る。
【0024】
なお、融点Tmは、温度Tの上昇と共に貯蔵弾性率G’及び損失弾性率G”が急減するのが収まり、温度の上昇と共にゆっくり減少するよう推移に切り替わる温度であり、融点TmはTm=164℃である。
【0025】
次いで、本実施形態の負極シート1の製造方法について説明する(図4図6参照)。まず、堆積工程S1において、長さ200m×幅100mm×厚さ8μmの寸法を有する帯状の集電箔2の第2表面2B上に複合粒子15を、幅55mm×厚さ180μmに堆積させた未圧縮負極層13を有する未圧縮負極シート11を形成する。この未圧縮負極シート11は、圧縮により負極シート1となる。
なお、この堆積工程S1に用いる複合粒子15は、活物質粒子6の粉体とバインダ粒子17の粉体とを、重量比で97.5:2.5の割合で混合して得たものである。さらに詳細には、ハイスピードミキサ(アーステクニカ製)を用いて、活物質粒子6とバインダ粒子17とを、上述の割合で混合して、活物質粒子6にこれよりも小径のバインダ粒子17が複数付着した複合粒子15を作製したものである。
【0026】
堆積工程S1では、図において破線で示す堆積装置DPにより、集電箔2の第2表面2B上に複合粒子15が堆積した未圧縮負極層13を形成する。この堆積装置DPで用いる堆積手法としては、例えば、静電気力により、複合粒子15を集電箔2に向けて飛翔させ、集電箔2上に複合粒子15を堆積させて未圧縮負極層13を形成する手法が挙げられる。
更に具体的には、上述の複合粒子15と磁性キャリア粒子(図示しない)とを混合して、複合粒子15を磁性キャリア粒子に静電吸着させた複合キャリア粒子(図示しない)を得る。得られた複合キャリア粒子をマグネットロール(図示しない)のロール表面に磁気吸着させて成膜領域(図示しない)に移動させ、集電箔2を巻き付けたバックアップロール(図示しない)とマグネットロールとの間に掛けた直流電圧により、磁性キャリア粒子に吸着された複合粒子15に静電気力Fsを掛けて、複合粒子15をマグネットロールから集電箔2に向けて飛翔させ、堆積させる手法が挙げられる。
【0027】
次いで、ロールプレス工程S2において、シート圧縮装置100を用いて、未圧縮負極シート11を厚さ方向DTに圧縮して、負極シート1を形成する(図5図6参照)。先ず、このシート圧縮装置100について説明する。シート圧縮装置100は、第1ロール110及び第2ロール120を有している。第2ロール120は、その軸線120AXが、第1ロール110の軸線110AXと平行になるように配置されており、第1ロール110と第2ロール120とは、ロール間隙GPを開けて対向している。また、第1ロール110及び第2ロール120は、図5に矢印で示すように、順方向(第1ロール110は時計回りに、第2ロール120は反時計回りに)に回転しており、ロール間隙GPに挟まれた未圧縮負極シート11は、厚さ方向DTに圧縮され、搬送方向DHに送られる。
本実施形態では、テスター産業株式会社製SA602小型卓上ロールプレスを用いており、第1ロール110及び第2ロール120はいずれもΦ100×165mmである。
【0028】
このうち、図5図6において下方に位置する第1ロール110は、第1外周面110Gの温度である第1外周面温度TR1が、TR1=170℃にされている。一方、図5図6において、第1ロール110の上方に位置する第2ロール120は、第2外周面120Gの温度である第2外周面温度TR2が、TR2=140℃にされている。なお、第1外周面温度TR1及び第2外周面温度TR2は、デジタル温度計(CUSTOM社製デジタル温度計CT-1310)に表面温度測定用センサプローブ(CUSTOM社製センサプローブIK-500)を装着し、このセンサプローブの先端を各ロールの外周面110G,120Gに接触させて測定した。
【0029】
なお、本実施形態では、ロール間隙GPにおけるロールプレスに先立って、例えば特許文献1に記載のように、一方のロールに対して30度を越える大きな抱き角を形成して接触させ、プレスに先立って予備的に未圧縮負極シート11を加熱することは行っていない。即ち、ロール間隙GPを通す前の未圧縮負極シート11のシート温度TSは常温、つまり、5~35℃の範囲内の温度であり、予備加熱を行うことなく、シート温度TSが常温の未圧縮負極シート11を、第1ロール110と第2ロール120との間のロール間隙GPに通している。但し、ロールプレス加工上、第1ロール110或いは第2ロール120に対して10度以下の抱き角を形成して、未圧縮負極シート11をロール間隙GPに通すことはあり得る。
【0030】
更に具体的には、図5図6に示すように、集電箔2が図中下側になり、未圧縮負極層13が上側になるようにして、未圧縮負極シート11をロール間隙GPに向けて投入し、第1ロール110の第1外周面110Gを集電箔2の第1表面2Aに接触させ、第2ロール120の第2外周面120Gを未圧縮負極層13の負極層外面13Uに接触させる。
【0031】
そして、線圧が600kN/mとなるロール間隙GPの大きさとして、第1ロール110及び第2ロール120を周速1m/minで回転させてロールプレスを行い、未圧縮負極シート11を1m/minで搬送する。かくして、ロール間隙GPにおいて、未圧縮負極シート11を厚さ方向DTに圧縮すると共に、第1ロール110及び第2ロール120によって未圧縮負極シート11を加熱して、バインダ樹脂7によって、活物質粒子6同士を結着させると共に活物質粒子6を集電箔2の第2表面2Bに結着させる。即ち、負極層3を集電箔2の第2表面2Bに接着する。そして、これにより、厚さ方向DTに加熱圧縮された帯状の負極シート1が連続的に製造される。
【0032】
その後は、巻き取り工程S3において、帯状の負極シート1を図示しないリールに巻き取る。
【0033】
本実施形態では、負極層3の一部が剥離してバインダ樹脂7及び活物質粒子6が第2ロール120の第2外周面120Gに付着する不具合も、第2外周面120Gには付着しないが負極層3の一部が集電箔2から剥離して浮き上がる不具合も生じず、良好な帯状の負極シート1が得られた。
【0034】
本実施形態のロールプレス工程S2では、前述のように、第1ロール110の第1外周面温度TR1をTR1=170℃とした。即ち、第1外周面温度TR1は、バインダ樹脂7(PVDF)の溶融開始温度Ti(=155℃)よりも15℃高い温度にした(TR1=Ti+15℃)。一方、第2ロール120の第2外周面温度TR2をTR2=140℃とした。即ち、第2外周面温度TR2を、第1外周面温度TR1よりも低く(TR2<TR1)、かつ、バインダ樹脂7の溶融開始温度Ti(=155℃)よりも15℃低い温度にしてある(TR2=Ti-15℃)。
【0035】
このように本実施形態では、第2外周面120Gの第2外周面温度TR2を、バインダ樹脂7の溶融開始温度Tiよりも15℃低い温度、即ち、バインダ粒子17(バインダ樹脂7)が融けない温度とした。すると、ロール間隙GPにおいて、第2ロール120の第2外周面120Gに接する未圧縮負極層13の負極層外面13U(負極層3の負極層外面3U)の温度TEも、第2外周面温度TR2と同程度の温度、即ち、バインダ樹脂7の溶融開始温度Tiよりも低い温度(TE≒TR2<Ti)となる。
このため、ロールプレスによる圧力によって、バインダ粒子17(バインダ樹脂7)を介して活物質粒子6同士を結着させることはでき、負極層3を形成することができる。しかし、バインダ粒子17による付着力は比較的弱く、第2ロール120の第2外周面120Gに、バインダ粒子17(バインダ樹脂7)やこれを介して活物質粒子6が付着することは抑制される。
【0036】
一方、集電箔2の第1表面2Aに接触させる第1ロール110の第1外周面110Gの第1外周面温度TR1を、バインダ樹脂の溶融開始温度Tiよりも15℃高い温度、即ち、バインダ粒子17(バインダ樹脂7)が適切に融ける温度として、ロールプレスを行った。このため、第1ロール110の第1外周面110Gに接する集電箔2の温度TCも、第1外周面温度TR1と同程度の温度、即ち、バインダ樹脂7の溶融開始温度Tiよりも高い温度(TC≒TR1>Ti)となる。このため、未圧縮負極層13のうち、集電箔2の第2表面B付近に存在する複合粒子15のバインダ粒子17が溶融して、溶融したバインダ樹脂7を介して活物質粒子6を、集電箔2の第2表面2Bに確実に付着させることができる。
【0037】
従って、第外周面温度TRが低すぎて、バインダ粒子17は溶融はしないが、加圧によりバインダ粒子17(バインダ樹脂7)を介して活物質粒子6同士を結着させることはでき、層状(膜状)の負極層3を形成することはできる。その一方、第1外周面温度TR1が高過ぎではないので、溶融したバインダ樹脂7の粘度が低くなりすぎて、粘着力が低下し、負極層3の一部が集電箔2から剥離して第2ロール120の第2外周面120Gに付着する不具合も防止できたと考えられる。
【0038】
(調査例)
その他、本実施形態と同様にして負極シート1を形成するが、ロールプレス工程S2における第1外周面温度TR1及び第2外周面温度TR2の温度を変えた各調査例の負極シート1について、良否を確認した結果を図7に示す。図7において、前述の実施形態は、TR1=170℃、TR2=140℃の調査例に相当する。
【0039】
この図7において、○印で示す例は、負極層3の集電箔2からの剥離も第2ロール120の第2外周面120Gへの活物質粒子6等の付着もなく、負極層3の集電箔2からの剥離による浮き上がりも生じていなかった場合を示す。この○印で示す例は、形成された負極層3が集電箔2に適切に接着している一方、第2ロール120には付着し難い場合に生じると考えられる。
【0040】
一方、△印で示す例は、負極層3が集電箔2から剥離して浮き上がりを生じた場合を示す。この△印の例は、第1外周面温度TR1が低すぎて、バインダ粒子17が溶融せず、ロールプレスによりバインダ粒子17(バインダ樹脂7)を介して活物質粒子6同士を結着させることはでき、負極層3を形成することはできたが、負極層3と集電箔2との接着力が余り高くない。一方、第2外周面温度TR2も溶融開始温度Tiを下回っているため、第2ロール120側でもバインダ粒子17は溶融せず、負極層3が第2ロール120に付着する力が低い。このため、負極層3の一部が剥離して第2ロール120に付着することはないが、集電箔2から剥離して浮き上がる不具合となったと考えられる。
【0041】
他方、×印で示す例は、負極層3の一部が集電箔2から剥離して欠損する一方、第2ロール120の第2外周面120Gへの活物質粒子6等の付着が生じた場合を示す。この×印の例は、形成された負極層3が、集電箔2よりも第2ロール120に付着しやすい場合に生じると考えられる。
【0042】
この図7の結果から、先ず、第2外周面温度TR2について言うと、この第2外周面温度TR2を、第1外周面温度TR1よりも低く、かつ、バインダ樹脂7の溶融開始温度Ti+5℃以下の温度範囲内(TR2<TR1かつTR2≦Ti+5℃、本実施形態では、TR2<TR1かつTR2≦160℃)として、ロールプレスを行うと良いことが判る。
【0043】
このようにすると、ロール間隙GPにおいて、第2ロール120の第2外周面120Gに接する未圧縮負極層13の負極層外面13U(負極層3の負極層外面3U)の温度TEも、バインダ樹脂7の溶融開始温度Ti+5℃以下の温度(TE≒TR2≦Ti+5℃)となる。しかも、予備加熱をせず、シート温度TSが常温の未圧縮負極シート11を、ロール間隙GPに通して厚さ方向DTに圧縮しつつ、ロール間隙GPにおいて未圧縮負極シート11を加熱するので、加熱される期間は短い。このため、第2ロール120の第2外周面120Gに接する未圧縮負極層13の負極層外面13Uの温度TEは、バインダ樹脂7の溶融開始温度Tiに達しない(TE<Ti)か、達したとしてもその期間はごく短く、しかも高々TE≦Ti+5℃であり、バインダ樹脂7が十分には溶融しない。このため、未圧縮負極層13の負極層外面13U付近に存在する複合粒子15のバインダ粒子17が溶融して、溶融したバインダ樹脂7やバインダ樹脂を介した活物質粒子6が、第2ロール120の第2外周面120Gに付着することが抑制される。
【0044】
加えてこの図7の結果から、第1外周面温度TR1について言うと、この第1外周面温度TR1を、バインダ樹脂7の溶融開始温度Ti+5℃~溶融開始温度Ti+25℃の温度範囲内(Ti+5℃≦TR1≦Ti+25℃、本実施形態等では、160℃≦TR1≦180℃)として、ロールプレスを行うと良いことが判る。
【0045】
ロールプレス工程において、第1外周面温度TR1をバインダ樹脂7の溶融開始温度Ti+5℃以上(Ti+5℃≦TR1,本実施形態等では160℃≦TR1)として、ロールプレスを行うと、第1ロール110の第1外周面110Gに接する集電箔2の温度TCも、バインダ樹脂7の溶融開始温度Ti+5℃以上の温度(Ti+5℃≦TC≒TR1、本実施形態等では160℃以上の温度)となる。このため、未圧縮負極層13のうち、集電箔2の第2表面2B付近に存在する複合粒子15のバインダ粒子17が溶融して、溶融したバインダ樹脂7を介して活物質粒子6を、集電箔2の第2表面2Bに確実に付着させることができる。
【0046】
加えて、第1外周面温度TR1を、溶融開始温度Ti+25℃以下の温度(TR1≦Ti+25℃,本実施形態等ではTR1≦180℃)とするので、第1ロール110の第1外周面110Gに接する集電箔2の温度TCも、バインダ樹脂7の溶融開始温度Ti+25℃以下の温度(TC≒TR1≦Ti+25℃,本実施形態等ではTC≒TR1≦180℃)にできる。このため、未圧縮負極層13のうち、集電箔2の第2表面2B付近に存在する複合粒子15のバインダ粒子17が溶融したバインダ樹脂7の粘度が低下することで粘着力が低下するが、粘着力が低下し過ぎることが無く、集電箔2の第2表面2Bに一旦付着したバインダ樹脂7及び活物質粒子6が、即ち、圧縮直後の負極層3が、集電箔2の第2表面2Bから剥がれて第2ロール120の第2外周面120Gに付着することが防止できる。
【0047】
なおさらに、ロールプレス工程S2は、第2外周面温度TR2を、第1外周面温度TR1より10℃以上低く、かつ、バインダ樹脂7の溶融開始温度Ti+5℃以下の温度範囲内(TR2≦TR1-10℃かつTR2≦Ti+5℃、本実施形態等では、TR2≦TR1-10℃かつTR2≦160℃)として行うと良い。
【0048】
このように、第2外周面温度TR2を第1外周面温度TR1に比して十分低くすることで、バインダ樹脂7及び活物質粒子6が、第2ロール120の第2外周面120Gに付着するのを確実に抑制することができる。
【0049】
特に、本実施形態及び各調査例では、活物質粒子6として黒鉛粒子を用い、バインダ樹脂7としてPVDFを用いている。このため、適切に負極シート1を製造することができる。
【0050】
以上において、本発明を実施形態及び各調査例に即して説明したが、本発明は上述の実施形態等に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることは言うまでもない。
例えば、未圧縮負極シート11の未圧縮負極層13を形成するに当たり、上述の実施形態では、複合粒子15を一旦磁性キャリア粒子に吸着させ、マグネットロールで成膜領域まで複合粒子15を搬送した上で、静電気力によって複合粒子15を集電箔2に向けて飛翔させて、集電箔2上に複合粒子15を堆積させて未圧縮負極層13を形成する堆積装置DPを用いた。
しかし、集電箔2上に複合粒子15が堆積した未圧縮負極層13を有する未圧縮負極シート11を形成すれば良く、例えば、外周面に凹凸形状を設けたグラビアロール(図示ししない)を用い、このグラビアロールの凹部に複合粒子15を充填し、静電気力で、凹部内の複合粒子15を集電箔2の第2表面2Bに連続的に移動させ、集電箔2上に複合粒子15を堆積させて未圧縮負極層13を形成する堆積装置DPを用いるようにしても良い。
また、静電気力を用いることなく、集電箔2の第2表面2B上に複合粒子15を散布し堆積させて、未圧縮負極層13を形成する堆積装置DPを用いても良い。
【0051】
【符号の説明】
【0052】
1 負極シート(電極シート)
2 集電箔
2A (集電箔の)第1表面
2B (集電箔の)第2表面
3 負極層(電極層)
3U (負極層の)負極層外面
6 活物質粒子
7 バインダ樹脂
11 未圧縮負極シート(未圧縮電極シート)
13 未圧縮負極層(未圧縮電極層)
13U (未圧縮負極層の)負極層外面(電極層外面)
15 複合粒子
17 バインダ粒子
DL (負極シート、未圧縮負極シートの)長手方向
110 第1ロール
110G (第1ロールの)第1外周面
120 第2ロール
120G (第2ロールの)第2外周面
GP ロール間隙
TR1 第1外周面温度
TR2 第2外周面温度
T 温度
Ti (バインダ樹脂の)溶融開始温度
Tm (バインダ樹脂の)融点
TS (負極シート、未圧縮負極シートの)シート温度
TC (集電箔の)集電箔温度
TE (負極層、未圧縮負極層の負極層外面の)外面温度
S2 ロールプレス工程
図1
図2
図3
図4
図5
図6
図7