(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-04-25
(45)【発行日】2023-05-08
(54)【発明の名称】しごき加工方法
(51)【国際特許分類】
B21D 37/01 20060101AFI20230426BHJP
B23C 5/16 20060101ALI20230426BHJP
B23B 27/14 20060101ALI20230426BHJP
B21D 22/28 20060101ALI20230426BHJP
B23B 27/20 20060101ALI20230426BHJP
C23C 16/26 20060101ALI20230426BHJP
C01B 32/00 20170101ALI20230426BHJP
【FI】
B21D37/01
B23C5/16
B23B27/14 A
B21D22/28 K
B21D22/28 H
B21D22/28 L
B23B27/20
C23C16/26
C01B32/00
(21)【出願番号】P 2018204935
(22)【出願日】2018-10-31
【審査請求日】2021-09-13
(73)【特許権者】
【識別番号】000003768
【氏名又は名称】東洋製罐グループホールディングス株式会社
(74)【代理人】
【識別番号】110003524
【氏名又は名称】弁理士法人愛宕綜合特許事務所
(74)【代理人】
【識別番号】100075177
【氏名又は名称】小野 尚純
(74)【代理人】
【識別番号】100113217
【氏名又は名称】奥貫 佐知子
(72)【発明者】
【氏名】島村 真広
(72)【発明者】
【氏名】城石 亮蔵
(72)【発明者】
【氏名】松本 尚也
(72)【発明者】
【氏名】熊谷 拓甫
(72)【発明者】
【氏名】小川 智裕
【審査官】永井 友子
(56)【参考文献】
【文献】国際公開第2017/033791(WO,A1)
【文献】特開平10-137861(JP,A)
【文献】特開平05-169162(JP,A)
【文献】国際公開第2018/079434(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
B21D 37/01
B23C 5/16
B23B 27/14
B21D 22/28
B23B 27/20
C23C 16/26
C01B 32/00
(57)【特許請求の範囲】
【請求項1】
剛性基材の加工面に炭素膜が形成されている
しごき加工用ダイスを用いてしごき加工を行うしごき加工方法において、
前記加工面に形成されている前記炭素膜は、下記式:
I
D/I
G
式中、
I
Dは、前記炭素膜表面のラマン分光スペクトルにおける1333±10cm
-1での最大ピーク強度であり、
I
Gは、前記炭素膜表面のラマン分光スペクトルにおける1500±100cm
-1での最大ピーク強度である、
で表される強度比が0.6を超え
且つ0.9以下であるラマン分光スペクトルを示す
と共に、
前記しごき加工を、液体環境下で行うことを特徴とする
しごき加工方法。
【請求項2】
前記炭素膜の表面は、算術平均粗さRaが
0.08μm以下の平滑面となっている請求項1に記載の
しごき加工方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、加工表面に炭素膜が形成されている機械加工用治具及び該治具を用いた機械加工方法に関するものである。
【背景技術】
【0002】
炭素の結晶であるダイヤモンド成分を含む炭素膜は、周知のように著しく硬度が高く、耐摩耗性に優れている。このため、バイト、エンドミル、やすりなどの切削用工具、パンチ、ダイスなどの塑性加工金型、バルブリフタ、軸受けなどの摺動部材の表面に炭素膜を形成することにより、加工性や機械的寿命を高めることが従来から行われている。
【0003】
上記のような炭素膜には、ダイヤモンド成分を多く含むダイヤモンド膜やグラファイト成分を多く含むDLC膜(ダイヤモンドライクカーボン膜)があり、特に切削工具や塑性加工金型に適用する炭素膜について、その組成とその特性について種々の研究がなされている。
【0004】
例えば、特許文献1には、ダイヤモンドと非晶質炭素とからなり、表面粗さRmaxが2μm以下であって、ラマン分光スペクトル分析において1333±10cm-1に存在する最大のピークの強度をID、1500±100cm-1に存在する最大のピークの強度をIGとしたとき、強度比IG/IDが0.2~20(ID/IG=0.05~5)である硬質炭素膜が、被加工金属との摺動面に形成されている金属加工用治具が提案されている。この金属加工用治具は、具体的には、絞り加工に用いられるダイスやパンチ、伸線に用いられる引き抜きダイスである。
また、特許文献2には、基材上に形成される切削工具用ダイヤモンド皮膜であって、この皮膜は複数の皮膜層から形成されており、ラマン分光スペクトル分析による強度比(ID/IGあるいはIG/ID)により皮膜層の機械的特性を制御することが提案されている。
【0005】
上記のラマン分光スペクトル分析での1333cm-1前後の領域でのピークは、ダイヤモンド成分に由来するものであり、1500cm-1前後の領域でのピークは、グラファイト成分に由来するものである。従って、強度比(ID/IG)が大きいほどダイヤモンド成分を多く含み、グラファイト成分量が少なく、この炭素膜が高純度のダイヤモンドであり、すなわち高硬度であることを示している。
【0006】
上記の特許文献1,2において、ラマン分光分析における強度比(IG/ID或いはID/IG)を一定の範囲に設定しているのは、何れも耐摩耗性を向上させ、膜寿命を長くするためである。
【0007】
ところで、金属の塑性加工は、通常、プレス加工により行われ、代表的な手法として、絞り加工及びしごき加工がある。例えば、アルミニウム缶等の金属缶は、平板状の金属板を所定の大きさの円板形状に打ち抜いた後、絞り加工を行って、ハイトが低い絞り缶を成形した後、しごき加工を行い、薄肉化され、ハイトが高い金属缶基体とする成形工程を経て製造される。
【0008】
上記のようなプレス加工において、特に絞り加工では、金型に炭素膜を形成することで無潤滑での成形をおこなうことがある。例えば、特許文献3には、潤滑材を用いなくてもアルミニウムの絞り加工を行い得る金型が開示されており、この金型表面には膜厚が0.5μm~5μmのダイヤモンドライクカーボン膜を設けることが開示されている。
【0009】
しかしながら、しごき加工は、用いる治具の被加工材に対する摺動が大きな過酷な成形であり、特にダイスの加工面には、しごき率が大きくなるほど、被加工材の加工硬化の影響を受け、また、しごき加工(薄肉化)が進むにつれ、大きな面圧が加わる。このため、上記のような従来公知の炭素膜を設けたのでは、成形限界が低く、しごき率の大きなしごき加工に耐えられないという問題がある。例えば、しごき率が40%以上のしごき加工では、治具と被加工材との摺動抵抗が大きくなり、薄肉化によって、許容応力を超える引張応力が被加工材に加わり、結果として成形不良を生じてしまう。
尚、しごき率は、板厚減少率であり、しごき加工前の板厚t0、加工後の板厚をt1としたとき、下記式で表され、しごき率が大きいほど、ダイスに加わる面圧が大きく、過酷な成形となる。
しごき率(%)=100×(t0-t1)/t0
【0010】
ところで、特許文献4には、ラマン分光スペクトル測定において、強度比(ID/IG)が1.0以上、特に1.2以上の炭素膜が加工面に形成されているしごき加工用ダイスが本出願人により提案されている。このしごき加工用ダイスは、ダイヤモンド純度が高い炭素膜が加工面に形成されているというものであり、しごき加工性に優れ、ドライプロセスによりしごき率が40%を超える過酷なしごき加工においても、成形不良を生じることなく、鏡面或いは鏡面に近いレベルの平滑な成形品を得ることが可能となっている。
【0011】
しかしながら、上記のような炭素膜は、確かに過酷な条件での加工に際しても優れた加工性を示すのであるが、耐衝撃性が低いという点で、さらなる改善が必要となっている。即ち、機械加工用治具は、所謂超硬合金などの剛性基材から形成されているが、炭素膜は、このような剛性基材の加工面(機械加工に際して、金属乃至合金等の被加工物と接触する面)に蒸着等により成膜されるものであるが、このような治具を用いて機械加工を行ったとき、少ない加工サイクルで膜剥がれを生じていたのである。しかも、このような膜剥がれは、ドライプロセスに限らず、液体環境下での加工(潤滑剤を用いたウエットプロセスでの加工)においても問題となっている。
【先行技術文献】
【特許文献】
【0012】
【文献】特開平5-169162号公報
【文献】特開平6-297207号
【文献】特開平8-90092号
【文献】WO2017/033791号
【発明の概要】
【発明が解決しようとする課題】
【0013】
従って、本発明の目的は、耐衝撃性に優れた炭素膜を加工面に備えたしごき加工用ダイスを用いたしごき加工方法を提供することにある。
【課題を解決するための手段】
【0014】
本発明によれば、剛性基材の加工面に炭素膜が形成されているしごき加工用ダイスを用いてしごき加工を行うしごき加工方法において、
前記加工面に形成されている前記炭素膜は、下記式:
ID/IG
式中、
IDは、前記炭素膜表面のラマン分光スペクトルにおける1333±10cm-1での最大ピーク強度であり、
IGは、前記炭素膜表面のラマン分光スペクトルにおける1500±100cm-1での最大ピーク強度である、
で表される強度比が0.6を超え且つ0.9以下であるラマン分光スペクトルを示すと共に、
前記しごき加工を、液体環境下で行うことを特徴とするしごき加工方法が提供される。
【0015】
本発明で用いるしごき加工用ダイスにおいては、
(1)前記炭素膜の表面は、算術平均粗さRaが0.08μm以下の平滑面となっていること、
が好適である。
【発明の効果】
【0017】
本発明で用いるしごき加工用ダイスの加工面に設けられている炭素膜は、ラマン分光スペクトル測定において、強度比ID/IGが0.6を超え且つ0.9以下の範囲にあるという点に重要な特徴を有するものである。即ち、従来の公知の技術では、炭素膜の強度比ID/IGを大きくする程(ダイヤモンド純度が高くする程)、優れた加工性が発揮されるのであるが、本発明者等の検討では、耐衝撃性を高めるには、これとは逆に、強度比ID/IGを小さくし、ダイヤモンド純度が低い方が有利という結果を得たのである。例えば、後述する実施例に示されているように、径が1/2インチの超硬合金製のボール(球体)を200Nの荷重で繰り返し炭素膜表面に衝突させたとき(400ショット/分)、強度比ID/IGが1.1を超えるものでは、100000から200000ショットの間で膜剥がれが観察されたのに対し、本発明にしたがい、特に強度比ID/IGが1.0未満(例えば0.9)のものでは、400000回のショット数を超えた場合にも、膜剥がれが観測されていない。
このように、本発明にしたがい、強度比ID/IGの小さな炭素膜を設けることにより、耐衝撃性を高め、炭素膜の膜剥がれを有効に防止することができる。
【0018】
このように本発明で用いるしごき加工用ダイスは、その表面に形成されている炭素膜が耐衝撃性に優れており、機械加工を多数回繰り返した場合にも膜剥がれを生じることがなく、安定して機械加工を行うことができるのであるが、このようなしごき加工用ダイスの炭素膜の優れた耐衝撃性を最大限に発揮させるためには、液体環境下で機械加工を行うべきである。
即ち、本発明で用いるしごき加工用ダイスの加工面に設けられている炭素膜は、強度比ID/IGが小さい範囲にあり、ダイヤモンド純度が低いため、ドライプロセスのような潤滑剤を使用しない過酷な加工を行った場合には、得られる被加工物の成形加工面は、粗くなってしまう傾向があるかもしくは成形不良が生じる。しかるに、液体環境下での加工、即ち、クーラントを用いたウエットプロセスでの加工に上記のしごき加工用ダイスを適用した場合には、平滑度の高い成形加工面を得ることができる。
【図面の簡単な説明】
【0019】
【
図1】本発明
で用いるしごき加工用ダイスの要部を示す概略側断面図。
【
図2】炭素膜表面のラマン分光スペクトルの一例を示す図
【
図3】しごき加工を利用したプレス成形プロセスの一例を示す図。
【
図4】本発明が適用された環状しごき加工用ダイスの概略部分側面図。
【
図5】機械加工用治具の加工面に形成されている炭素膜の耐衝撃性を測定するための試験機の概略側断面図。
【発明を実施するための形態】
【0020】
本発明の機械加工用治具は、例えば各種金属ないし合金などの硬質材料に対する機械加工、例えば、絞り加工、しごき加工、絞り-しごき加工、切削加工などの過酷な機械加工に使用されるものであり、
図1の概略図に示されているように、剛性基材1と剛性基材1の表面に設けられた炭素膜3とを備えている。
【0021】
剛性基材1は、過酷な機械加工に耐え得る剛性を有し、且つ炭素膜3の成膜時の高温加熱に耐える耐熱性を有する材料からなるものである。このような剛性と耐熱性とを兼ね備えた材料としては、タングステンカーバイド(WC)とコバルトなどの金属バインダーとの混合物を焼結して得られる所謂超硬合金や、炭化チタン(TiC)などの金属炭化物や炭窒化チタン(TiCN)などのチタン化合物とニッケルやコバルトなどの金属バインダーとの混合物を焼結して得られるサーメット、あるいは炭化ケイ素(SiC)や窒化ケイ素(Si3N4)、アルミナ(Al2O3)、ジルコニア(ZrO2)といった硬質セラミックスなどが代表的である。
【0022】
炭素膜3は、下記式(1):
ID/IG (1)
式中、
IDは、炭素膜3の表面のラマン分光スペクトルにおける1333±10cm-1での最大ピーク強度であり、
IGは、炭素膜3の表面のラマン分光スペクトルにおける1500±100cm-1での最大ピーク強度である、
で表される強度比が0.6を超え、好ましくは1.1以下、より好ましくは1.0未満、さらに好ましくは0.9以下の範囲にある。
【0023】
後述する実験例で形成された炭素膜のラマン分光スペクトルを示す
図2を参照して、1333±10cm
-1での最大ピーク強度I
Dは、膜中のダイヤモンド成分に由来するものであり、1500±100cm
-1での最大ピーク強度I
Gは、膜中のグラファイト成分に由来する。従って、上記のピーク強度比が小さい程、グラファイトの含有率が多く、ピーク強度比が大きい程、よりダイヤモンド結晶に近い膜であること示す。例えば、上記強度比が0.6以下の炭素膜は、ダイヤモンド膜ではなく、ダイヤモンドライクカーボン(DLC膜)と呼ばれるものである。このことから理解されるように、本発明における炭素膜3は、上記強度比を満足するようにグラファイト成分を含有していることが大きな特徴であり、ピーク強度比が大きく設定され、ある程度以上のダイヤモンド結晶を含有していることが要求される従来の炭素膜と異なっている。
【0024】
本発明においては、炭素膜3が上記のような強度比を満足し、グラファイト成分を多く含んでいるため、ダイヤモンドの粒径が小さく結晶界面の面積が大きくなり、優れた耐衝撃性が発揮される。例えば耐衝撃性試験に供したとき、400000回のショット数を超えた場合にも、膜剥がれが有効に抑制され、過酷な機械加工を繰り返し行うことが可能となる。即ち、グラファイト成分を多く含む炭素膜3は、下地の剛性基材1に対しての追随性が高く、この結果、高い衝撃性を示し、膜剥がれが有効に防止されるものと考えられる。
【0025】
また、本発明において、上記の炭素膜3は、その表面粗さRa(JIS B-0601-1994)が0.12μm以下、特に0.08μm以下であることが好適である。即ち、炭素膜3は、高硬度のダイヤモンド結晶を含んでいるため、その表面が粗くなる傾向がある。このため、成膜後、研磨処理に供することにより、上記のような粗さの平滑面とすることが好適である。特に、このような炭素膜3を備えた治具を用いてしごき加工を行う場合、加工に際して被加工物との間に大きな面圧が加わるため、しごき加工に際しての被加工物との滑り性を高め、被加工物の表面を鏡面に近い平滑面とする上で、炭素膜3の表面粗さが上記のような範囲に設定されていることが好適となる。
【0026】
本発明において、上述した炭素膜3は、熱フィラメントCVD法、プラズマCVD法、例えばマイクロ波プラズマCVD、高周波プラズマCVD、熱プラズマCVD等の公知の方法で剛性基材1の表面に成膜し、次いで表面研磨することにより作製される。
【0027】
尚、成膜に際しては、原料ガスとして、一般に、メタン、エタン、プロパン、アセチレン等の炭化水素ガスを水素ガスで1%程度に希釈したガスが使用され、この原料ガスには、膜質や成膜速度の調製のために、適宜、酸素、一酸化炭素、二酸化炭素等のガスが少量混合されることもある。
上記の原料ガスを使用し、上記剛性基材1を700~1000℃の高温に加熱し、マイクロ波や高周波等によりプラズマを発生させ、プラズマ中で原料ガスを分解して活性種を生成せしめ、剛性基材1上でダイヤモンド結晶を成長させることにより成膜が行われる。かかる成膜に際しては、プラズマ中で解離した水素原子が、剛性基材1上に生成したグラファイトやアモルファスカーボンを選択的にエッチングし、これにより、ダイヤモンド成分が多く、膜のラマン分光スペクトルのピーク強度比を前述した範囲内とすることができる。
【0028】
しかるに、上記で形成された炭素膜の表面は、成膜に際してグラファイトやアモルファスカーボンのエッチングを伴うため、ダイヤモンド結晶が成長しやすく、その表面粗さRaが前述した範囲よりも大きな粗面となってしまう。このため、本発明では、成膜条件を制御し、例えば成膜時間を短時間とし、ダイヤモンド結晶の生成を抑制し、さらに、研磨加工を行うことにより、行って、前述したラマン分光スペクトルのピーク強度比及び表面粗さRaの何れもが前述した範囲内にある炭素膜3を剛性基材1上に形成することができる。
【0029】
尚、蒸着により形成された炭素膜3の表面研磨は、それ自体公知の方法で行うことができる。例えば、ダイヤモンド砥粒(砥石)を用いて、炭素膜の共削り加工を行う機械的な研磨方法でもよいし、化学作用を利用した研磨方法でもよい。これらの機械的および化学的手法を複合した研磨方法でもよい。これらの研磨方法により、膜の表面粗さRaを前述した範囲に調整することができる。
【0030】
本発明において、上述した炭素膜3を備えた機械加工用治具は、バイト、エンドミル、やすりなどの切削用工具、パンチ、ダイスなどの塑性加工金型などとして好適に使用されるが、特に、しごき加工用ダイスとして、過酷な加工であるしごき加工に好適に適用され、さらにはクーラントを用いたウエット加工に適用することが、炭素膜3の優れた耐衝撃性を最大限に発揮させる上で最適である。
【0031】
図3には、本発明の機械加工用治具をしごき加工用ダイスとして用いたプレス加工により金属缶の製造プロセスを示したものである。
【0032】
この
図3において、金属缶の成形に用いる素板(例えばアルミニウム板)11は、先ず、打ち抜き加工に付せられ、これにより、金属缶用の円板13が得られる(
図3(a)参照)。
かかる打ち抜き加工では、円板13の直径に相当する外径を有する打ち抜き用パンチ15と、素板11を保持し且つ円板13の直径に相当する開口を有するダイ17が使用される。即ち、パンチ15によりダイ17上に保持された素板11を打ち抜くことにより、所定の大きさの円板13が得られる。
尚、かかる製造プロセスで製造する成形物の形態によっては、素板11は、他の形状(例えば矩形状)に打ち抜かれることもある。
【0033】
上記のようにして得られた円板13は、絞り加工に付せられ、これにより、ハイトの低い絞り缶(有底筒状体)19が得られる(
図3(b)参照)。
かかる絞り加工においては、ダイ21上に打ち抜かれた円板13が保持され、この円板13の周囲はしわ押え用の治具23によって保持されている。ダイ21には、開口が形成されており、絞り用のパンチ25を用いてダイ21の開口内に円板13を押し込むことにより、絞り缶19が得られることとなる。
尚、このダイ21の開口の上端のコーナー部(円板13を保持している側)にアール(曲率部)が形成されており、円板13が速やかに且つ折れることなく、ダイ21の開口内に押し込まれるようになっており、パンチ25の外径は、円板13のほぼ厚みに相当する分だけ、ダイ21の開口の径よりも小さく設定されている。即ち、この絞り加工では、薄肉化はほとんど行われない。尚、絞り加工は成形品の形状に応じて複数回行う場合もある。
【0034】
次いで、上記で得られた絞り缶19は、しごき加工に付せられ、これにより、ハイトが高く且つ薄肉化された金属缶基体(絞りしごき缶)27が成形される(
図3(c)参照)。
このしごき加工では、上記の絞り加工により得られた絞り缶19の内部にしごき用のパンチ29を挿入し、環状のしごき加工用ダイス31の内面に該筒状体19の外面を圧接しながら、パンチ29を降下させることにより、ダイス31により、筒状体19の側壁が薄肉化されていくこととなる。これにより、薄肉化され、且つ薄肉化の程度に応じてハイトが高くなった金属缶基体27が得られることとなる。
【0035】
図3から理解されるように、この打ち抜き加工、絞り加工及びしごき加工の一連の工程において、打ち抜き加工では、摺動性は不要であるが、絞り加工からしごき加工になるほど、用いる金型と被加工物との間の摺動性を要する。特にしごき加工では、被加工物の降伏応力を超える面圧が加わるため、最も摺動性を要する。
【0036】
本発明では、この環状のしごき加工用ダイス31として、前述した炭素膜3を備えた機械効用治具が使用される。
【0037】
即ち、上述した
図3(特に
図3(c))と共に、上記ダイス31の部分側面を示す
図4を参照して、このしごき加工用ダイス31は、しごき加工に際して、被加工物(筒体)19の加工方向上流側に位置している傾斜面33と、加工方向下流側に位置している傾斜面35と、その間のフラットな面37とを有しており、被加工物19と接触する領域が加工面41となっており、これらの面33、35、37を含む全面に前述した炭素膜3が形成されている。
【0038】
ところで、
図3に示されているしごき加工用ダイス31においては、炭素膜3は、少なくとも上記の加工面41(即ち、しごき加工に際して面圧が加わる面)に形成されていればよいが、好ましくは、炭素膜3の両端部が、加工面41から離れた位置に存在していることが、過酷なしごき加工に際して、膜剥がれをより確実に防止する上で好ましく、このような観点から、炭素膜3は、通常、剛性基材1の全面(
図3での上面を除く)に形成される。
また、図では示されていないが、剛性基材1の内部には、冷却管などが通され、しごき加工に際しての加工面41の温度上昇を抑制するように構成されていることが好適である。
【0039】
さらに、
図3の例では、一つの環状しごき加工用ダイス31が配置されているが、このような環状しごき加工用ダイス31を、加工方向に対して、適当な間隔をおいて複数配置することも可能である。この場合、加工方向下流側に配置されるダイス31の空隙Dが小さくなり、これにより、徐々に薄肉化されることとなる。
【0040】
本発明においては、上述した炭素膜3を備えたしごき加工用ダイス31を用いてのしごき加工は、液体環境下で行う所謂ウエット加工が最も好適である。即ち、上記の炭素膜3は、耐衝撃性に優れているが、ダイヤモンド結晶の含有率が少なく、それに伴い、硬度が低く、滑り性が劣っている。このため、所謂無潤滑方式のドライ加工に適用した場合、限界しごき率が小さくなり、しごき率を高くした場合、表面荒れ等を生じ易くなり、場合によっては成形不良が生じる。しかるに、液体環境下でしごき加工を行うウエット加工では、ダイス31の加工面41(炭素膜3)と被加工物19の成形面との間に液体が介在するため、限界しごき率を高め、高いしごき率でのしごき加工が可能となり、耐衝撃性に優れ、膜剥がれを生じることなく繰り返し加工を行い得るという本発明の利点を最大限に発揮することができる。
【0041】
このようなウエット加工でのしごき加工において、用いる液体は、クーラントと呼ばれ、水、及び鉱物油や油脂類(菜種油など)を基油として各種の添加剤を加えて水に溶解乃至分散させたものが使用されるが、特に油分を含まないクーラントでもよく、例えば純粋な水などが、冷却作用と共に、ダイス31の加工面41と被加工物19の成形加工面との間の潤滑性を高めるという点で、好適に使用される。このようなクーラントの使用により、限界しごき率を高めることができる。例えば、アルミニウム板のしごき加工に対しては、限界しごき率を40%以上に高めることができる。
【0042】
また、本発明において、上述した炭素膜3を備えたしごき加工用ダイス31を用いてのしごき加工は、種々の金属ないし合金材に適用することができる。例えば、アルミニウム、銅、鉄或いは、これらの金属を含む合金、さらにはブリキなどの錫めっき鋼板や化成処理を施したアルミニウム板などの表面処理鋼板、少なくとも一面に有機被膜をもつプレコート金属板などについても、しごき率の高い過酷なしごき加工を繰り返し行うことができる。
特に、管状のしごき加工用ダイス31を用いてのウエット加工によるしごき加工は、前述した
図2に示すプロセスで金属缶基体を製造する際のしごき加工に好適に使用することができ、中でも、アルミニウム缶の製造に最も好適に適用される。
【実施例】
【0043】
本発明を次の実験例で説明する。
尚、以下の実験例において、表面粗さの測定、ラマン分光スペクトルにおけるピーク強度の算出及び耐衝撃性試験は、以下の方法により実施した。
【0044】
表面粗さ:
(株)東京精密製表面粗さ計(サーフコム2000SD3)を使用し、JIS-B-0601に準拠し、算術平均粗さRaを測定した。
【0045】
ラマン分光スペクトルにおけるピーク強度:
サーモフィッシャーサイエンティフィック(株)製ラマン分光装置(DXR Raman Microscope)を使用し、ラマン分光スペクトルを測定した。その際の、ラマン分光スペクトルの一例が
図2に示されている。1333cm
-1近傍に鋭いピークI
Dと、1500cm
-1近傍になだらかなピークI
Gが検出されていることがわかる。得られたラマン分光スペクトルの曲線を二次多項式にて近似し、これをベースラインとして、ラマン分光スペクトルを補正し、任意区間に存在するピークのうち最も高いピーク強度を取得した。
【0046】
耐衝撃性試験;
図5に示す試験機を用いて行った。
即ち、剛性基材の表面に炭素膜を備えた試料板をバネで保持して荷重を加え、回転板に装着された圧子の先端に超硬合金製の硬球を取り付け、回転板の回転により圧子を摺動させることにより、硬球を繰り返し叩き付け、膜剥がれが生じるまでのショット数を測定し、このショット数により耐衝撃性を評価した。
硬球:1/2インチ径の超硬合金製
荷重:200N(ヘルツ接触応力 5GPa)
摺動速度:400ショット/min
評価基準は、以下のとおりである。
◎:膜剥がれまでのショット数が40万回以上
○:膜剥がれまでのショット数が20万回以上、40万回未満
△:膜剥がれまでのショット数が10万回以上、20万回未満
×:膜剥がれまでのショット数が10万回未満
【0047】
<実験例1>
表1に示すID/IG強度比のラマン分光スペクトルを示す炭素膜を超硬基板に形成し、耐衝撃性試験を行い、耐衝撃性(膜剥がれ)の評価を行った。その結果を表1に示した。
【0048】
【0049】
<実験例2>
表2に示すID/IG強度比のラマン分光スペクトルを示す炭素膜が表面に形成されたダイスを用いて、アルミニウム板のしごき加工成形試験を行った。尚、炭素膜表面の算術平均粗さRaは0.12μmとなるように研磨を行った。
尚、アルミニウム板は、A3104材を板厚0.29mmに圧延したものを打ち抜き、外径Φ66mmのパンチを速度200spmにて移動させ、まず絞り加工を行い、Φ66mmの筒状体(カップ)を成形し、このカップの外面を脱脂してしごき加工成形試験に供した。
成形試験は、表2に示すしごき率で行い、潤滑剤として水を用いてのウエット成形或いは潤滑剤を使用しないドライ成形でしごき加工を行った。
各しごき加工での成形可否の結果を表2に示した。
【0050】
【0051】
上記の実験No.2-2で用いたしごきダイスの表面炭素膜(ID/IG=0.9)について更に研磨を行い、算術平均粗さRaを、0.10μm、0.08μm及び0.05μmとした。このしごきダイスを用いて、水を潤滑剤として用いてしごき率50%でしごき加工を行い、成形体表面を観察した。算術平均粗さRaが0.12μm及び0.10μmの時には、表面に若干の傷が観察されたが、算術平均粗さRaが0.08μm及び0.05μmのときには、傷は観察されず、鏡面が得られた。なお、算術平均粗さRaが0.12μmより大きい0.14μm及び0.20μmのときは成形不可であった。
【0052】
1:剛性基材
3:炭素膜
19:被加工物(筒体)
31:しごき加工用ダイス
41:加工面