IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社豊田自動織機の特許一覧

特許7268336無人フォークリフトの走行制御装置、無人フォークリフトの走行制御方法、無人牽引車の走行制御装置、無人牽引車の走行制御方法
<>
  • 特許-無人フォークリフトの走行制御装置、無人フォークリフトの走行制御方法、無人牽引車の走行制御装置、無人牽引車の走行制御方法 図1
  • 特許-無人フォークリフトの走行制御装置、無人フォークリフトの走行制御方法、無人牽引車の走行制御装置、無人牽引車の走行制御方法 図2
  • 特許-無人フォークリフトの走行制御装置、無人フォークリフトの走行制御方法、無人牽引車の走行制御装置、無人牽引車の走行制御方法 図3
  • 特許-無人フォークリフトの走行制御装置、無人フォークリフトの走行制御方法、無人牽引車の走行制御装置、無人牽引車の走行制御方法 図4
  • 特許-無人フォークリフトの走行制御装置、無人フォークリフトの走行制御方法、無人牽引車の走行制御装置、無人牽引車の走行制御方法 図5
  • 特許-無人フォークリフトの走行制御装置、無人フォークリフトの走行制御方法、無人牽引車の走行制御装置、無人牽引車の走行制御方法 図6
  • 特許-無人フォークリフトの走行制御装置、無人フォークリフトの走行制御方法、無人牽引車の走行制御装置、無人牽引車の走行制御方法 図7
  • 特許-無人フォークリフトの走行制御装置、無人フォークリフトの走行制御方法、無人牽引車の走行制御装置、無人牽引車の走行制御方法 図8
  • 特許-無人フォークリフトの走行制御装置、無人フォークリフトの走行制御方法、無人牽引車の走行制御装置、無人牽引車の走行制御方法 図9
  • 特許-無人フォークリフトの走行制御装置、無人フォークリフトの走行制御方法、無人牽引車の走行制御装置、無人牽引車の走行制御方法 図10
  • 特許-無人フォークリフトの走行制御装置、無人フォークリフトの走行制御方法、無人牽引車の走行制御装置、無人牽引車の走行制御方法 図11
  • 特許-無人フォークリフトの走行制御装置、無人フォークリフトの走行制御方法、無人牽引車の走行制御装置、無人牽引車の走行制御方法 図12
  • 特許-無人フォークリフトの走行制御装置、無人フォークリフトの走行制御方法、無人牽引車の走行制御装置、無人牽引車の走行制御方法 図13
  • 特許-無人フォークリフトの走行制御装置、無人フォークリフトの走行制御方法、無人牽引車の走行制御装置、無人牽引車の走行制御方法 図14
  • 特許-無人フォークリフトの走行制御装置、無人フォークリフトの走行制御方法、無人牽引車の走行制御装置、無人牽引車の走行制御方法 図15
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-04-25
(45)【発行日】2023-05-08
(54)【発明の名称】無人フォークリフトの走行制御装置、無人フォークリフトの走行制御方法、無人牽引車の走行制御装置、無人牽引車の走行制御方法
(51)【国際特許分類】
   B62D 6/00 20060101AFI20230426BHJP
   B62D 5/04 20060101ALI20230426BHJP
   B66F 9/24 20060101ALI20230426BHJP
【FI】
B62D6/00
B62D5/04
B66F9/24 W
【請求項の数】 7
(21)【出願番号】P 2018218530
(22)【出願日】2018-11-21
(65)【公開番号】P2019099141
(43)【公開日】2019-06-24
【審査請求日】2021-02-16
(31)【優先権主張番号】P 2017233544
(32)【優先日】2017-12-05
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000003218
【氏名又は名称】株式会社豊田自動織機
(74)【代理人】
【識別番号】100105957
【弁理士】
【氏名又は名称】恩田 誠
(74)【代理人】
【識別番号】100068755
【弁理士】
【氏名又は名称】恩田 博宣
(72)【発明者】
【氏名】岡本 丈夫
(72)【発明者】
【氏名】開田 宏介
【審査官】田邉 学
(56)【参考文献】
【文献】特開2003-054436(JP,A)
【文献】特開2013-086627(JP,A)
【文献】特開2003-067052(JP,A)
【文献】特開平10-297515(JP,A)
【文献】特開2003-241837(JP,A)
【文献】特開平09-091040(JP,A)
【文献】特開2018-030462(JP,A)
【文献】特開2003-048554(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B62D 6/00
B62D 5/04
B66F 9/24
(57)【特許請求の範囲】
【請求項1】
機台と、
前記機台の前側に設けられた左右一対の前輪と、
前記機台の後ろ側に設けられ、走行モータにより駆動されるとともに操舵可能な単一の後輪と、
外部から目標とする操舵角である操舵指示値の指令を受けて前記後輪を操舵させるコントローラと、を備えた無人フォークリフトの走行制御装置であって、
前記後輪の操舵角を検出するポテンショメータと、
フォークリフトの速度を検出する速度検出手段と、
前記機台の姿勢角度を検出する姿勢角度検出手段と、を備え、
前記コントローラは、
前記無人フォークリフトを操舵指示値を0度として直線走行させたときに前記速度検出手段から取得した機台の移動距離、及び、前記直線走行前後における前記姿勢角度検出手段から取得した前記機台の姿勢角度の変位θr、及び、前記直線走行前後における前記ポテンショメータから取得した前記機台の操舵角を用いて算出される目標操舵角ずれによる姿勢角度の変位θeに基づいて、前記ポテンショメータの原点ずれ及びホイールアライメント誤差が原因で生じる一定の操舵角のずれ量である直進性に対する姿勢角度の変位θosを算出し、該直進性に対する姿勢角度の変位θosから前記ポテンショメータのオフセット値を算出するオフセット値算出手段と、
前記オフセット値に基づいて、操舵角の補正を行う操舵角補正手段と、
を備えることを特徴とする無人フォークリフトの走行制御装置。
【請求項2】
前記姿勢角度検出手段は、ジャイロセンサであることを特徴とする請求項1に記載の無人フォークリフトの走行制御装置。
【請求項3】
前記後輪は、車両中心を通り車両の前後方向に延びる直線に対し左右方向にずれた位置に設けられていることを特徴とする請求項1又は2に記載の無人フォークリフトの走行制御装置。
【請求項4】
機台と、
前記機台の前側に設けられた左右一対の前輪と、
前記機台の後ろ側に設けられ、走行モータにより駆動されるとともに操舵可能な単一の後輪と、
前記後輪の操舵角を検出するポテンショメータと、
外部から目標とする操舵角である操舵指示値の指令を受けて前記後輪を操舵させるコントローラと、を備えた無人フォークリフトにおいて、
当該無人フォークリフトを操舵指示値を0度として直線走行させた後において機台の姿勢角度の変位θrを求める工程と、
前記直線走行した後において前記ポテンショメータにより計測された停止時の目標操舵角のずれ量を求める工程と、
前記停止時の目標操舵角のずれ量から目標操舵角ずれによる姿勢角度の変位θeを算出する工程と、
前記目標操舵角ずれによる姿勢角度の変位θeと前記姿勢角度の変位θrから前記ポテンショメータの原点ずれ及びホイールアライメント誤差が原因で生じる一定の操舵角のずれ量である直進性に対する姿勢角度の変位θosを算出する工程と、
前記直進性に対する姿勢角度の変位θosから前記ポテンショメータのオフセット値を算出する工程と、
前記オフセット値に基づいて、操舵角の補正を行う工程と、
を有することを特徴とする無人フォークリフトの走行制御方法。
【請求項5】
機台と、
前記機台の後ろ側に設けられ、走行モータにより駆動される左右一対の後輪と、
前記機台の前側に設けられ、操舵可能な単一の前輪と、
外部から目標とする操舵角である操舵指示値の指令を受けて前記前輪を操舵させるコントローラと、を備えた無人牽引車の走行制御装置であって、
前記前輪の操舵角を検出するポテンショメータと、
車両の速度を検出する速度検出手段と、
前記機台の姿勢角度を検出する姿勢角度検出手段と、を備え、
前記コントローラは、
前記無人牽引車を操舵指示値を0度として直線走行させたときに前記速度検出手段から取得した機台の移動距離、及び、前記直線走行前後における前記姿勢角度検出手段から取得した前記機台の姿勢角度の変位θr、及び、前記直線走行前後における前記ポテンショメータから取得した前記機台の操舵角を用いて算出される目標操舵角ずれによる姿勢角度の変位θeに基づいて、前記ポテンショメータの原点ずれ及びホイールアライメント誤差が原因で生じる一定の操舵角のずれ量である直進性に対する姿勢角度の変位θosを算出し、該直進性に対する姿勢角度の変位θosから前記ポテンショメータのオフセット値を算出するオフセット値算出手段と、
前記オフセット値に基づいて、操舵角の補正を行う操舵角補正手段と、
を備えることを特徴とする無人牽引車の走行制御装置。
【請求項6】
前記姿勢角度検出手段は、ジャイロセンサであることを特徴とする請求項5に記載の無人牽引車の走行制御装置。
【請求項7】
機台と、
前記機台の後ろ側に設けられ、走行モータにより駆動される左右一対の後輪と、
前記機台の前側に設けられ、操舵可能な単一の前輪と、
前記前輪の操舵角を検出するポテンショメータと、
外部から目標とする操舵角である操舵指示値の指令を受けて前記後輪を操舵させるコントローラと、を備えた無人牽引車において、
当該無人牽引車を操舵指示値を0度として直線走行した後において機台の姿勢角度の変位を求める工程と、
前記直線走行した後において前記ポテンショメータにより計測された停止時の目標操舵角のずれ量を求める工程と、
前記停止時の目標操舵角のずれ量から目標操舵角ずれによる姿勢角度の変位θeを算出する工程と、
前記目標操舵角ずれによる姿勢角度の変位θeと前記姿勢角度の変位θrから前記ポテンショメータの原点ずれ及びホイールアライメント誤差が原因で生じる一定の操舵角のずれ量である直進性に対する姿勢角度の変位θosを算出する工程と、
前記直進性に対する姿勢角度の変位θosから前記ポテンショメータのオフセット値を算出する工程と、
前記オフセット値に基づいて、操舵角の補正を行う工程と、
を有することを特徴とする無人牽引車の走行制御方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、無人フォークリフトの走行制御装置、無人フォークリフトの走行制御方法、無人牽引車の走行制御装置、無人牽引車の走行制御方法に関するものである。
【背景技術】
【0002】
ポテンショメータにより車輪の操舵角を検出するようにした産業車両が知られている。例えば、特許文献1に開示のリーチ型フォークリフトの制御装置においては、駆動輪の操舵角を検出するポテンショメータと、両前輪の回転速度をそれぞれ検出する左、右前輪速度検出部を備え、両前輪速度検出部によりそれぞれ検出される両前輪の回転速度に基づき、操舵角の推定値を導出すると共にポテンショメータのオフセット値を導出している。
【先行技術文献】
【特許文献】
【0003】
【文献】特開2003-54436号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
ところが、左右前輪に車輪速度検出部(エンコーダ)が取り付けられていない無人フォークリフトもあり、その場合には左右前輪速度を求めることができずポテンショメータのオフセット値を導出できない。また、無人フォークリフトにおいては、外部からの指令により目標とする操舵角(操舵指示値)をコントローラに与えて駆動輪を操舵しようとすると、制御的な収束により(指令値に対しオーバーシュート等により偏差が残存する等)、操舵指示値と実際に操舵された角度の間には誤差(目標操舵角ずれ)が生じることがある。そのため、全体の操舵角誤差は、ポテンショメータのオフセット値(原点ずれ)と、目標操舵角ずれとの和となり、ポテンショメータのオフセット値を算出する際には、目標操舵角ずれを考慮する必要がある。また、無人フォークリフトが直進の経路に沿って直進走行する直進性を考えた場合には、操舵角誤差による要因だけではなく、無人フォークリフトのその他の機械的要因も考慮する必要がある。なお、目標操舵角ずれやその他の機械的要因はその状況によりさまざまであり一定値ではない。
【0005】
図13(a),(b)、図14(a),(b)及び図15(a),(b)を用いて直進性誤差について言及する。
図13(a)、図14(a)及び図15(a)において、フォークリフト200は、機台201と、操舵輪及び駆動輪となる後輪202と、左右一対の前輪203を有する。
【0006】
操舵角を0度(0deg)で指示したとき、ある程度走行させた結果の機台201の傾きを直進性誤差とすると、直進性誤差は、「ポテンショメータの組み付け誤差」と「その他機械的要因」との和(直進性誤差=ポテンショメータの組み付け誤差+その他機械的要因)となる。「その他機械的要因」とは、例えば、前輪のホイールアライメントのずれである。
【0007】
図13(b)、図14(b)及び図15(b)は、誤差の要因として、ポテンショメータの誤差の有無、及び、例として前輪のホイールアライメントの誤差の有無により直進性の誤差がどうなるかを示した図である。
【0008】
図13(a),(b)においては、ポテンショメータの組み付け誤差のみがある場合には、ポテンショメータの誤差が2度(2deg)であり、前輪203のホイールアライメントの誤差が0度(0deg)であり、0度を指示しても後輪202が2度ずれてしまい直進性の誤差が2度となる。
【0009】
図14(a),(b)においては、ポンテショメータ組み付け誤差はないが、ホイールアライメント誤差がある場合には、ポテンショメータの誤差が0度(0deg)であり、ホイールアライメントの誤差が2度(2deg)であり、前輪203のホイールアライメントずれにより2度ずれ、0度を指示すれば後輪202が0度になり、直進性の誤差が2度となる。
【0010】
図15(a),(b)においては、ポテンショメータ組み付け誤差があり、かつ、ホイールアライメント誤差がある場合には、ポテンショメータの誤差が2度(2deg)であり、ホイールアライメントの誤差が2度であり、前輪203がホイールアライメントずれにより2度ずれるとともに0度(0deg)を指示しても後輪202が2度ずれ、直進性の誤差が4度(4deg)となる。
【0011】
本発明の目的は、左右一対で設けられた車輪の車輪速度を検出することなく直進性を向上することができる無人フォークリフトの走行制御装置、無人フォークリフトの走行制御方法、無人牽引車の走行制御装置、無人牽引車の走行制御方法を提供することにある。
【課題を解決するための手段】
【0012】
請求項1に記載の発明では、機台と、前記機台の前側に設けられた左右一対の前輪と、前記機台の後ろ側に設けられ、走行モータにより駆動されるとともに操舵可能な単一の後輪と、外部から目標とする操舵角である操舵指示値の指令を受けて前記後輪を操舵させるコントローラと、を備えた無人フォークリフトの走行制御装置であって、前記後輪の操舵角を検出するポテンショメータと、フォークリフトの速度を検出する速度検出手段と、前記機台の姿勢角度を検出する姿勢角度検出手段と、を備え、前記コントローラは、前記無人フォークリフトを操舵指示値を0度として直線走行させたときに前記速度検出手段から取得した機台の移動距離、及び、前記直線走行前後における前記姿勢角度検出手段から取得した前記機台の姿勢角度の変位θr、及び、前記直線走行前後における前記ポテンショメータから取得した前記機台の操舵角を用いて算出される目標操舵角ずれによる姿勢角度の変位θeに基づいて、前記ポテンショメータの原点ずれ及びホイールアライメント誤差が原因で生じる一定の操舵角のずれ量である直進性に対する姿勢角度の変位θosを算出し、該直進性に対する姿勢角度の変位θosから前記ポテンショメータのオフセット値を算出するオフセット値算出手段と、前記オフセット値に基づいて、操舵角の補正を行う操舵角補正手段と、を備えることを要旨とする。
【0013】
請求項1に記載の発明によれば、後輪の操舵角がポテンショメータで検出される。オフセット値算出手段により、直線走行前後における速度検出手段から取得した機台の移動距離、及び、直線走行前後における姿勢角度検出手段から取得した機台の姿勢角度の変位、及び、直線走行前後におけるポテンショメータから取得した機台の操舵角を用いて算出される目標操舵角ずれによる姿勢角度の変位に基づいて、目標操舵角ずれを除いたポテンショメータのオフセット値が算出される。操舵角補正手段により、オフセット値に基づいて、操舵角の補正が行われる。よって、車輪速度を検出することなく無人フォークリフトの直進性を向上することができる。
【0014】
請求項2に記載のように、請求項1に記載の無人フォークリフトの走行制御装置において、前記姿勢角度検出手段は、ジャイロセンサであるとよい。
請求項3に記載のように、請求項1又は2に記載の無人フォークリフトの走行制御装置において、前記後輪は、車両中心を通り車両の前後方向に延びる直線に対し左右方向にずれた位置に設けられていてもよい。
【0015】
請求項4に記載の発明では、機台と、前記機台の前側に設けられた左右一対の前輪と、前記機台の後ろ側に設けられ、走行モータにより駆動されるとともに操舵可能な単一の後輪と、前記後輪の操舵角を検出するポテンショメータと、外部から目標とする操舵角である操舵指示値の指令を受けて前記後輪を操舵させるコントローラと、を備えた無人フォークリフトにおいて、当該無人フォークリフトを操舵指示値を0度として直線走行させた後において機台の姿勢角度の変位θrを求める工程と、前記直線走行した後において前記ポテンショメータにより計測された停止時の目標操舵角のずれ量を求める工程と、前記停止時の目標操舵角のずれ量から目標操舵角ずれによる姿勢角度の変位θeを算出する工程と、前記目標操舵角ずれによる姿勢角度の変位θeと前記姿勢角度の変位θrから前記ポテンショメータの原点ずれ及びホイールアライメント誤差が原因で生じる一定の操舵角のずれ量である直進性に対する姿勢角度の変位θosを算出する工程と、前記直進性に対する姿勢角度の変位θosから前記ポテンショメータのオフセット値を算出する工程と、前記オフセット値に基づいて、操舵角の補正を行う工程と、を有することを要旨とする。
【0016】
請求項4に記載の発明によれば、直線走行した後において機台の姿勢角度の変位が求められ、直線走行した後においてポテンショメータにより計測された停止時の目標操舵角のずれ量が求められる。停止時の目標操舵角のずれ量から目標操舵角ずれによる姿勢角度の変位が算出され、目標操舵角ずれによる姿勢角度の変位と姿勢角度の変位からポテンショメータのオフセットによる姿勢角度変位が算出され、オフセットによる姿勢角度変位からポテンショメータのオフセット値が算出される。そして、オフセット値に基づいて、操舵角の補正が行われる。よって、車輪速度を検出することなく無人フォークリフトの直進性を向上することができる。
【0017】
請求項5に記載の発明では、機台と、前記機台の後ろ側に設けられ、走行モータにより駆動される左右一対の後輪と、前記機台の前側に設けられ、操舵可能な単一の前輪と、外部から目標とする操舵角である操舵指示値の指令を受けて前記前輪を操舵させるコントローラと、を備えた無人牽引車の走行制御装置であって、前記前輪の操舵角を検出するポテンショメータと、車両の速度を検出する速度検出手段と、前記機台の姿勢角度を検出する姿勢角度検出手段と、を備え、前記コントローラは、前記無人牽引車を操舵指示値を0度として直線走行させたときに前記速度検出手段から取得した機台の移動距離、及び、前記直線走行前後における前記姿勢角度検出手段から取得した前記機台の姿勢角度の変位θr、及び、前記直線走行前後における前記ポテンショメータから取得した前記機台の操舵角を用いて算出される目標操舵角ずれによる姿勢角度の変位θeに基づいて、前記ポテンショメータの原点ずれ及びホイールアライメント誤差が原因で生じる一定の操舵角のずれ量である直進性に対する姿勢角度の変位θosを算出し、該直進性に対する姿勢角度の変位θosから前記ポテンショメータのオフセット値を算出するオフセット値算出手段と、前記オフセット値に基づいて、操舵角の補正を行う操舵角補正手段と、を備えることを要旨とする。
【0018】
請求項5に記載の発明によれば、前輪の操舵角がポテンショメータで検出される。オフセット値算出手段により、直線走行前後における速度検出手段から取得した機台の移動距離、及び、直線走行前後における姿勢角度検出手段から取得した機台の姿勢角度の変位、及び、直線走行前後におけるポテンショメータから取得した機台の操舵角を用いて算出される目標操舵角ずれによる姿勢角度の変位に基づいて、目標操舵角ずれを除いたポテンショメータのオフセット値が算出される。操舵角補正手段により、オフセット値に基づいて、操舵角の補正が行われる。よって、車輪速度を検出することなく無人牽引車の直進性を向上することができる。
【0019】
請求項6に記載のように、請求項5に記載の無人牽引車の走行制御装置において、前記姿勢角度検出手段は、ジャイロセンサであるとよい。
請求項7に記載の発明では、機台と、前記機台の後ろ側に設けられ、走行モータにより駆動される左右一対の後輪と、前記機台の前側に設けられ、操舵可能な単一の前輪と、前記前輪の操舵角を検出するポテンショメータと、外部から目標とする操舵角である操舵指示値の指令を受けて前記後輪を操舵させるコントローラと、を備えた無人牽引車において、当該無人牽引車を操舵指示値を0度として直線走行した後において機台の姿勢角度の変位を求める工程と、前記直線走行した後において前記ポテンショメータにより計測された停止時の目標操舵角のずれ量を求める工程と、前記停止時の目標操舵角のずれ量から目標操舵角ずれによる姿勢角度の変位θeを算出する工程と、前記目標操舵角ずれによる姿勢角度の変位θeと前記姿勢角度の変位θrから前記ポテンショメータの原点ずれ及びホイールアライメント誤差が原因で生じる一定の操舵角のずれ量である直進性に対する姿勢角度の変位θosを算出する工程と、前記直進性に対する姿勢角度の変位θosから前記ポテンショメータのオフセット値を算出する工程と、前記オフセット値に基づいて、操舵角の補正を行う工程と、を有することを要旨とする。
【0020】
請求項7に記載の発明によれば、直線走行した後において機台の姿勢角度の変位が求められ、直線走行した後においてポテンショメータにより計測された停止時の目標操舵角のずれ量が求められる。停止時の目標操舵角のずれ量から目標操舵角ずれによる姿勢角度の変位が算出され、目標操舵角ずれによる姿勢角度の変位と姿勢角度の変位からポテンショメータのオフセットによる姿勢角度変位が算出され、オフセットによる姿勢角度変位からポテンショメータのオフセット値が算出される。そして、オフセット値に基づいて、操舵角の補正が行われる。よって、車輪速度を検出することなく無人牽引車の直進性を向上することができる。
【発明の効果】
【0021】
本発明によれば、車輪速度を検出することなく直進性を向上することができる。
【図面の簡単な説明】
【0022】
図1】第1の実施形態における無人フォークリフトを示す概略側面図。
図2】無人フォークリフトにおける駆動輪である後輪と中央輪を説明するための平面図。
図3】無人フォークリフトにおけるコントローラを中心とする電気的概略構成図。
図4】後輪用ポテンショメータの出力特性図。
図5】作用を説明するためのフローチャート。
図6】無人フォークリフトを模式的に示す平面図。
図7】(a),(b)は無人フォークリフトにおける姿勢角度及び走行方向を説明するための平面図。
図8】無人フォークリフトにおける姿勢角度と操舵角の関係を説明するための平面図。
図9】第2の実施形態における無人牽引車の平面図。
図10】無人牽引車におけるコントローラを中心とする電気的概略構成図。
図11】作用を説明するためのフローチャート。
図12】(a),(b)は無人牽引車における姿勢角度及び走行方向を説明するための平面図。
図13】(a)は無人フォークリフトにおける直進性誤差を説明するための平面図、(b)は誤差の要因と角度の関係を説明するための図。
図14】(a)は無人フォークリフトにおける直進性誤差を説明するための平面図、(b)は誤差の要因と角度の関係を説明するための図。
図15】(a)は無人フォークリフトにおける直進性誤差を説明するための平面図、(b)は誤差の要因と角度の関係を説明するための図。
【発明を実施するための形態】
【0023】
(第1の実施形態)
以下、本発明を具体化した一実施形態を図面に従って説明する。なお、無人フォークリフトは、リーチ式の無人フォークリフトを例として説明する。
【0024】
図1に示すように、無人フォークリフト10の機台11は前方に延出している一対のリーチレグ13を備える。各リーチレグ13にはそれぞれ前輪14が設けられている。つまり、機台11の前側に左右一対の前輪14が設けられている。また、機台11の後ろ側に後輪15が設けられている。本実施形態では、後輪15が、操舵輪及び駆動輪となる。
【0025】
機台11は荷役装置12を有し、荷役装置12は、2段式のマスト16を備える。マスト16は、アウタマスト17と、インナマスト18とを備える。荷役装置12は、インナマスト18に連結されたリフトシリンダ19を備える。荷役装置12は、マスト16に連結されたリーチシリンダ20を備える。インナマスト18は、リフトシリンダ19への作動油の給排によって昇降する。マスト16は、リーチシリンダ20への作動油の給排によってリーチレグ13に沿って移動する。
【0026】
無人フォークリフト10は、一対のフォーク21と、フォーク21をマスト16に固定するリフトブラケット22とを備える。フォーク21及びリフトブラケット22は、インナマスト18の昇降とともに昇降する。
【0027】
無人フォークリフト10は、後輪15を駆動させる走行モータ23を備える。無人フォークリフト10は、機台11に搭載されたコントローラ24を備える。コントローラ24は、無人フォークリフト10を制御するためのプログラムなどが記憶された記憶部25を備える。無人フォークリフト10は、図示しない上位制御装置からの指令や記憶部25に記憶されたプログラムに基づき走行動作及び荷役動作を行う。詳しくは、無人フォークリフト10は、図6に示すように床に埋設された誘導線(例えば磁気式誘導線)100をセンサ(例えば磁気センサ)101で検出しながら走行して、床に描画されたマークを検出して旋回等を行う。
【0028】
図2の平面図で示すように、無人フォークリフト10は駆動輪である後輪15が、仮想線(二点鎖線)で示す車両の中心ではなく、図2において実線で示すように車両の中心からずれた位置に設けられている。つまり、後輪15は、進行方向における機台中心を通る直線に対し左右方向にずれた位置に設けられている。
【0029】
図2において、δcが中央輪操舵角であり、δdが駆動輪操舵角である。中央輪操舵角δcと駆動輪操舵角δdには、次の式(1)の関係がある。ここで、車両中心から前後方向に延びる延長線をLaとする。延長線は、仮想後輪の操舵軸を通る。また、同様に後輪からの前後方向に延び、Laと平行な延長線をLbとする。Llは延長線Laにおける、前輪と後輪との距離であり、Lwは後輪と車両中心、すなわち、LaとLbとの距離である。
【0030】
【数1】
・・・(1)
図3に示すように、無人フォークリフト10は、マークセンサ30、後輪用ポテンショメータ31、後輪用エンコーダ32、ジャイロセンサ33、後輪操舵モータ34、走行モータ23を備える。コントローラ24には、マークセンサ30、後輪用ポテンショメータ31、後輪用エンコーダ32、ジャイロセンサ33、後輪操舵モータ34、走行モータ23が接続されている。操舵可能な後輪15は後輪操舵モータ34により操舵角を調整することができる。走行モータ23により駆動輪である後輪15が回転駆動される。
【0031】
マークセンサ30は、床面に描画されたマークを検出してその結果がコントローラ24で検知される。後輪用ポテンショメータ31は後輪15の操舵角を検出するためのものである。コントローラ24は、後輪用ポテンショメータ31からの信号を入力する。後輪用エンコーダ32は後輪15に設けられている。コントローラ24は後輪用エンコーダ32からの信号を入力する。ジャイロセンサ33は機台11の姿勢角度を検出するためのものである。ジャイロセンサ33からの信号によりコントローラ24において姿勢角度が検知される。コントローラ24は、後輪操舵モータ34を駆動して操舵輪である後輪15の向きを制御する。コントローラ24は走行モータ23を制御することで駆動輪である後輪15の回転を制御する。
【0032】
図4に示すように、後輪用ポテンショメータ31は組み付け時の精度によって出力特性として原点ずれを有してしまうことがある。図4において横軸に角度θをとり、縦軸に出力電圧をとっている。図4において特性線L200は原点からずれており、出力電圧にオフセット値δosを有している。このオフセット値は機台ごとに異なる。
【0033】
次に、作用について説明する。
図5には、オフセット値を有するポテンショメータ31に対するコントローラ24が実行する直進性補正の走行制御の処理を示す。なお、この実施形態では、後輪用ポテンショメータ以外は直進性に及ぼす機械的な要因は存在していない場合とする。
【0034】
コントローラ24は、ステップS100~ステップS109の処理を実行する。
ステップS100~ステップS108の処理においては、図2に示すように、仮想的に駆動輪である後輪15が車両の中心となるよう各種の演算を行っている。そして、ステップS109において、図2において実線で示すように駆動輪である後輪15は車両の中心からずれた位置に設けられていることから、後輪15が車両の中心からずれていることの変換を行う。つまり、車両中心に後輪15がある場合の操舵角δcと、後輪15が車両中心からずれた位置にある場合の操舵角δdとの関係式は、上述した式(1)となるので、車両の中心に後輪15がある場合に対し車両の中心からずれた位置に後輪15がある場合へ変換することになる。
【0035】
コントローラ24は、外部装置からの走行指令を受ける。例えば3m走行する旨の指示を受ける。そして、コントローラ24は、図5のステップS100において走行開始前の車両の姿勢角度θsを、ジャイロセンサ33により取得する。そして、コントローラ24は、ステップS101において直線走行、即ち、操舵指示角=0での走行を開始し、ステップS102において走行を停止する。そして、次の式(2)により、走行開始から走行停止まで車速vsを積分して走行距離L(d)を得る。車速vsは後輪用エンコーダ32からの信号により求められる。このようにして、直線走行前後における後輪用エンコーダ32から取得した機台11の移動距離が求められる。
【0036】
【数2】
・・・(2)
コントローラ24は、ステップS103において停止時の姿勢角度θfを取得する。姿勢角度θfはジャイロセンサ33により取得する。
【0037】
さらに、コントローラ24は、ステップS104において車両の姿勢角度の変位θrを、次の式(3)により求める。θfは、停止時の姿勢角度であり、θsは、走行開始前の車両の姿勢角度である。このようにして、直線走行前後におけるジャイロセンサ33から取得した機台11の姿勢角度の変位が求められる。
【0038】
【数3】
・・・(3)
そして、コントローラ24は、ステップS105において停止時の目標操舵角ずれδeを後輪用ポテンショメータ31より取得する。停止時の目標操舵角ずれδeは操舵指示を0度とした際の目標操舵角ずれである。
【0039】
コントローラ24は、ステップS106において停止時の目標操舵角ずれδeから、式(2)の演算結果及び前輪と後輪の距離Lを用いて次の式(4)により、目標操舵角ずれによる姿勢角度の変位θeを算出する。
【0040】
【数4】
・・・(4)
コントローラ24は、ステップS107において目標操舵角ずれによる姿勢角度の変位θe及び車両の姿勢角度の変位θrから、次の式(5)を用いて、直進性に対する姿勢角度の変位θosを算出する。
【0041】
【数5】
・・・(5)
コントローラ24は、ステップS108において直進性に対する姿勢角度の変位θos(=θr-θe)から、次の式(6)により、後輪用ポテンショメータ31のオフセット値δosを算出する。このようにして、目標操舵角ずれを除いたポテンショメータ31のオフセット値が算出される。
【0042】
【数6】
・・・(6)
そして、コントローラ24は、ステップS109において後輪用ポテンショメータ31のオフセット値δosを用いて、前述の式(1)により、駆動輪である後輪15が車両中心からずれている分の補正を行う。このとき、式(1)のδc値として、式(6)で得たオフセット値δosを用いる(代入する)。
【0043】
この値が記憶部25に記憶されて補正に用いられることになる。つまり、図4において特性線L200では原点が合っていなかったがオフセット値δosを用いて原点を通る特性線L100を得て制御に反映する。
【0044】
以下、詳しく説明する。
駆動輪である後輪15に搭載した後輪用エンコーダ32から取得した移動距離と、ジャイロセンサ33から取得した姿勢角度の2つの値を用いることで、目標操舵角ずれを除いた、後輪用ポテンショメータ31のオフセット値が算出できる。
【0045】
つまり、車両の操舵角を検出する後輪用ポテンショメータ31は、組付誤差等により原点ずれがあり、組付誤差による原点ずれ等が原因で、一定の操舵角のずれ(オフセット値)を有する。そこで、無人フォークリフト10を操舵指示値=0度として一定距離走行させ、停止後の車両の姿勢角度を利用することで、オフセット値を自動的に算出する。この時、目標操舵角ずれの影響を取り除いたオフセット値を算出する。
【0046】
そのために、図7(a)及び図7(b)に示すように、ある位置における車両中心から延長線Laを引く。一定距離走行後、延長線Laに対する車両の傾きを姿勢角度θとする。つまり、一定距離走行後に延長線Laに対し車両は組付誤差等によりある程度傾いてしまうが、その姿勢角度の変位をθrとする。即ち、図7(a)に示すように、操舵角指示値=0度で一定距離走行後の図7(b)に示すように後輪用ポテンショメータ31のオフセット値と目標操舵角ずれにより車両の姿勢角度の変位θrが発生する。
【0047】
幾何的関係として、姿勢角度と操舵角の関係については、図8における、駆動輪である後輪の操舵角δと、車両の時間当たりの姿勢角度の変化量(角速度)には、次の式(7)の関係がある。
【0048】
【数7】
・・・(7)
ただし、vsは駆動輪である後輪15の速度、Lは前輪14と後輪15との間の長さ(ホイールベース)である。
【0049】
式(7)を、積分及び式変形すると、式(8)及び式(9)が得られる。式中での積分値は走行距離である。
【0050】
【数8】
・・・(8)
【0051】
【数9】
・・・(9)
ポテンショメータ31のオフセット値を取得するための手順について言及する。
【0052】
上記を踏まえ、後輪用ポテンショメータ31のオフセット値を次の3ステップにて取得する。
第1ステップにおいては、車両を操舵指示値=0度の状態で一定距離走行させ、停止後の車両の姿勢角度の変位θrをジャイロセンサ33により取得する。即ち、図7(a),(b)に示すように操舵指示角=0で一定距離走行した後においては後輪用ポテンショメータ31のオフセット値と目標操舵角ずれにより車両の姿勢角度の変位θrが生じる。
【0053】
第2ステップにおいては、操舵指示値=0度として走行させたが、上述した通り実際には目標操舵角ずれδeが存在するため、操舵角をゼロと指示しても実際にはゼロでない状態で走行してしまう(操舵角度≠0度の状態で走行する)。即ち、走行させた後の車両の姿勢角度の変位θrは目標操舵角ずれδeによる変位θeと、ポテンショメータ31の組付誤差によるオフセット値δosによる変位θosを含む(式(5)参照)。
【0054】
車両の姿勢角度の変位θrは上記の式(5)で表されるが、θeの算出のため、操舵指示値=0度とした際、後輪用ポテンショメータ31により計測された操舵角δeを取得する。δ=δeとして式(8)へ代入し、式(4)のように目標操舵角ずれによる変位θeを算出する。
【0055】
そして、式(5)よりオフセットによる変位θosを算出する。
第3ステップにおいては、第2ステップにて算出したオフセットによる変位θosを、式(9)においてθ=θosとして代入し、式(6)のように後輪用ポテンショメータ31のオフセット値δosを求める。
【0056】
このようにして、両前輪にエンコーダが搭載されていない機種でも後輪用ポテンショメータ31のオフセット値が求められる。目標とする操舵角を与え、その操舵角に追従して操舵するような車両(自動で自律走行する車両)には目標操舵角ずれが存在するが、本実施形態では、目標操舵角ずれのある車両であっても、後輪用ポテンショメータ31のオフセット値を求められる。
【0057】
つまり、前輪に速度センサが無い車両であっても後輪操舵角検出用のポテンショメータ31の原点ずれ量を検出できる(前輪用エンコーダを不要にしてポテンショメータ31のオフセット値を算出可能となる)。特に、無人フォークリフトにおいて目標操舵角にずれがある車両であっても後輪操舵角検出用のポテンショメータ31のオフセット値(原点ずれ量)を検出できる。
【0058】
そして、コントローラ24は、図5のステップS110において、検出したポテンショメータのオフセット値に基づいて、操舵指示値を与える際に、補正値を加算して操舵指示値を与えることにより補正する。つまり、オフセット値に基づいて、操舵角の補正を行う。
【0059】
このようにして、無人フォークリフトの走行制御がされる。
上記実施形態によれば、以下のような効果を得ることができる。
(1)無人フォークリフト10の構成として、機台11と、機台11の前側に設けられた左右一対の前輪14と、機台11の後ろ側に設けられ、走行モータ23により駆動されるとともに操舵可能な後輪15を備える。この無人フォークリフト10の走行制御装置の構成として、後輪15の操舵角を検出するポテンショメータ31と、フォークリフトの速度を検出する速度検出手段としての後輪15に設けられたエンコーダ32と、機台11の姿勢角度を検出する姿勢角度検出手段としてのジャイロセンサ33を備える。エンコーダ32は、フォークリフトの速度を検出する速度検出手段として機能する。直線走行前後におけるエンコーダ32から取得した機台11の移動距離、及び、直線走行前後におけるジャイロセンサ33から取得した機台11の姿勢角度の変位に基づいて、目標操舵角ずれを除いたポテンショメータ31のオフセット値を算出するオフセット値算出手段としてのコントローラ24を備える。さらに、操舵角補正手段としてのコントローラ24はオフセット値に基づいて、操舵角の補正を行う。よって、前輪14の車輪速度を検出することなく目標操舵角にずれがある場合でも後輪用ポテンショメータ31のオフセット値を算出することができる。詳しくは、後輪用エンコーダ(後輪操舵角検出用エンコーダ)32を用いて目標操舵角にずれがある場合であっても後輪用ポテンショメータ31のオフセット値を求めることができる。その結果、前輪の車輪速度を検出することなく無人フォークリフトの直進性を向上することができる。
【0060】
(2)姿勢角度検出手段は、ジャイロセンサ33であるので、実用的である。
(3)後輪15は、進行方向における機台中心を通る直線に対し左右方向にずれた位置に設けられている場合においても、後輪用ポテンショメータ31のオフセット値を算出することができる。
【0061】
(4)機台11と、機台11の前側に設けられた左右一対の前輪14と、機台11の後ろ側に設けられ、走行モータ23により駆動されるとともに操舵可能な後輪15と、後輪15の操舵角を検出するポテンショメータ31と、を備えた無人フォークリフトの走行制御方法として、次のようにする。直線走行した後において機台11の姿勢角度の変位を求める工程(図5のステップS104)を有する。直線走行した後においてポテンショメータ31により計測された停止時の目標操舵角のずれ量を求める工程(図5のステップS105)を有する。停止時の目標操舵角のずれ量から目標操舵角ずれによる姿勢角度の変位を算出する工程(図5のステップS106)を有する。目標操舵角ずれによる姿勢角度の変位と姿勢角度の変位からポテンショメータ31のオフセットによる姿勢角度変位を算出する工程(図5のステップS107)を有する。オフセットによる姿勢角度変位からポテンショメータ31のオフセット値を算出する工程(図5のステップS108)を有する。オフセット値に基づいて、操舵角の補正を行う工程(図5のステップS110)を有する。よって、前輪14の車輪速度を検出することなく目標操舵角にずれがある場合でも後輪用ポテンショメータ31のオフセット値を算出することができる。その結果、前輪の車輪速度を検出することなく無人フォークリフトの直進性を向上することができる。
【0062】
(第2の実施形態)
次に、第2の実施形態を図9図12(a)及び図12(b)に従って説明する。
第1の実施形態では後輪操舵の無人フォークリフトに具体化したが、本実施形態では、前輪操舵の無人牽引車に具体化している。無人牽引車は、荷を積載した台車を牽引する。
【0063】
図9に示すように、無人牽引車40は、機台41と、機台41の後ろ側に設けられた左右一対の後輪42と、機台41の前側の中央部に設けられ、操舵可能な前輪43と、を備える。後輪42は駆動輪であり、走行モータ57(図10参照)により駆動される。機台41の後ろ側には、荷を積載するための台車を牽引する牽引機構が設けられており、牽引機構により無人牽引車40は後方に1台以上の台車を牽引して走行することができるようになっている。無人牽引車40は図示しない上位制御装置からの指令や記憶部51に記憶されたプログラムに基づき走行動作を行う。
【0064】
図10に示すように、無人牽引車40は、ガイドセンサ52、前輪用ポテンショメータ53、前輪用エンコーダ54、ジャイロセンサ55、前輪操舵モータ56、走行モータ57を備える。コントローラ50には、ガイドセンサ52、前輪用ポテンショメータ53、前輪用エンコーダ54、ジャイロセンサ55、前輪操舵モータ56、走行モータ57が接続されている。操舵可能な前輪43は前輪操舵モータ56により操舵角を調整することができる。走行モータ57により駆動輪である後輪42が回転駆動される。
【0065】
前輪用ポテンショメータ53は前輪43の操舵角を検出するためのものである。コントローラ50は、前輪用ポテンショメータ53からの信号を入力する。前輪用エンコーダ54は前輪43に設けられている。コントローラ50は前輪用エンコーダ54からの信号を入力する。ジャイロセンサ55は機台41の姿勢角度を検出するためのものである。ジャイロセンサ55からの信号によりコントローラ50において姿勢角度が検知される。コントローラ50は、前輪操舵モータ56を駆動して操舵輪である前輪43の向きを制御する。コントローラ50は走行モータ57を制御することで駆動輪である後輪42の回転を制御する。
【0066】
ガイドセンサ52は、無人牽引車40の走行経路に敷設されたガイド部材としてのガイドテープの位置を検出する。ガイドセンサ52の検出信号に基づいてコントローラ50が前輪操舵モータ56を制御して前輪43の操舵が行われる。
【0067】
前輪用ポテンショメータ53は、図4に示したように、組み付け時の精度によって出力特性として原点ずれを有してしまうことがあり、特性線L200が原点からずれ、出力電圧にオフセット値δosを有している。このオフセット値は機台ごとに異なる。
【0068】
次に、作用について説明する。
図11には、オフセット値を有するポテンショメータ53に対するコントローラ50が実行する直進性補正の走行制御の処理を示す。なお、この実施形態では、前輪用ポテンショメータ以外は直進性に及ぼす機械的な要因は存在していない場合とする。
【0069】
コントローラ50は、ステップS200において走行開始前の車両の姿勢角度θsを、ジャイロセンサ55により取得する。そして、コントローラ50は、ステップS201において、例えば3mの直線走行、即ち、操舵指示角=0での走行を開始し、ステップS202において走行を停止する。そして、次の式(10)により、走行開始から走行停止まで車速vsを積分して走行距離L(d)を得る。車速vsは前輪用エンコーダ54からの信号により求められる。このようにして、直線走行前後における前輪用エンコーダ54から取得した機台41の移動距離が求められる。
【0070】
【数10】
・・・(10)
コントローラ50は、ステップS203において停止時の姿勢角度θfを取得する。姿勢角度θfはジャイロセンサ55により取得する。
【0071】
さらに、コントローラ50は、ステップS204において車両の姿勢角度の変位θrを、次の式(11)により求める。θfは、停止時の姿勢角度であり、θsは、走行開始前の車両の姿勢角度である。このようにして、直線走行前後におけるジャイロセンサ55から取得した機台41の姿勢角度の変位が求められる。
【0072】
【数11】
・・・(11)
そして、コントローラ50は、ステップS205において停止時の目標操舵角ずれδeを前輪用ポテンショメータ53より取得する。停止時の目標操舵角ずれδeは操舵指示を0度とした際の目標操舵角ずれである。
【0073】
コントローラ50は、ステップS206において停止時の目標操舵角ずれδeから、式(10)の演算結果及び前輪と後輪の距離Lを用いて次の式(12)により、目標操舵角ずれによる姿勢角度の変位θeを算出する。
【0074】
【数12】
・・・(12)
コントローラ50は、ステップS207において目標操舵角ずれによる姿勢角度の変位θe及び車両の姿勢角度の変位θrから、次の式(13)を用いて、直進性に対する姿勢角度の変位θosを算出する。
【0075】
【数13】
・・・(13)
コントローラ50は、ステップS208において直進性に対する姿勢角度の変位θos(=θr-θe)から、次の式(14)により、前輪用ポテンショメータ53のオフセット値δosを算出する。このようにして、目標操舵角ずれを除いたポテンショメータ53のオフセット値が算出される。
【0076】
【数14】
・・・(14)
この値が記憶部51に記憶されて補正に用いられることになる。つまり、図4において特性線L200では原点が合っていなかったがオフセット値δosを用いて原点を通る特性線L100を得て制御に反映する。
【0077】
以下、詳しく説明する。
前輪用エンコーダ54から取得した移動距離と、ジャイロセンサ55から取得した姿勢角度の2つの値を用いることで、目標操舵角ずれを除いた、前輪用ポテンショメータ53のオフセット値が算出できる。
【0078】
つまり、車両の操舵角を検出する前輪用ポテンショメータ53は、組付誤差等により原点ずれがあり、組付誤差による原点ずれ等が原因で、一定の操舵角のずれ(オフセット値)を有する。そこで、無人牽引車40を操舵指示値=0度として一定距離走行させ、停止後の車両の姿勢角度を利用することで、オフセット値を自動的に算出する。この時、目標操舵角ずれの影響を取り除いたオフセット値を算出する。
【0079】
そのために、図12(a)及び図12(b)に示すように、ある位置における車両中心から延長線Laを引く。一定距離走行後、延長線Laに対する車両の傾きを姿勢角度θとする。つまり、一定距離走行後に延長線Laに対し車両は組付誤差等によりある程度傾いてしまうが、その姿勢角度の変位をθrとする。即ち、図12(a)に示すように、操舵角指示値=0度で一定距離走行後の図12(b)に示すように前輪用ポテンショメータ53のオフセット値と目標操舵角ずれにより車両の姿勢角度の変位θrが発生する。
【0080】
幾何的関係として、姿勢角度と操舵角の関係については、前輪の操舵角δと、車両の時間当たりの姿勢角度の変化量(角速度)には、次の式(15)の関係がある。
【0081】
【数15】
・・・(15)
ただし、vsは前輪の速度、Lは前輪43と後輪42との間の長さ(ホイールベース)である。
【0082】
式(15)を、積分及び式変形すると、式(16)及び式(17)が得られる。式中での積分値は走行距離である。
【0083】
【数16】
・・・(16)
【0084】
【数17】
・・・(17)
ポテンショメータ53のオフセット値を取得するための手順について言及する。
【0085】
上記を踏まえ、前輪用ポテンショメータ53のオフセット値を次の3ステップにて取得する。
第1ステップにおいては、車両を操舵指示値=0度の状態で一定距離走行させ、停止後の車両の姿勢角度の変位θrをジャイロセンサ55により取得する。即ち、図12(a),(b)に示すように操舵指示角=0で一定距離走行した後においては前輪用ポテンショメータ53のオフセット値と目標操舵角ずれにより車両の姿勢角度の変位θrが生じる。
【0086】
第2ステップにおいては、操舵指示値=0度として走行させたが、上述した通り実際には目標操舵角ずれδeが存在するため、操舵角をゼロと指示しても実際にはゼロでない状態で走行してしまう(操舵角度≠0度の状態で走行する)。即ち、走行させた後の車両の姿勢角度の変位θrは目標操舵角ずれδeによる変位θeと、ポテンショメータ53の組付誤差によるオフセット値δosによる変位θosを含む(式(13)参照)。
【0087】
車両の姿勢角度の変位θrは上記の式(13)で表されるが、θeの算出のため、操舵指示値=0度とした際、前輪用ポテンショメータ53により計測された操舵角δeを取得する。δ=δeとして式(16)へ代入し、式(12)のように目標操舵角ずれによる変位θeを算出する。
【0088】
そして、式(13)よりオフセットによる変位θosを算出する。
第3ステップにおいては、第2ステップにて算出したオフセットによる変位θosを、式(17)においてθ=θosとして代入し、式(14)のように前輪用ポテンショメータ53のオフセット値δosを求める。
【0089】
コントローラ50は、図11のステップS209において、検出したポテンショメータのオフセット値に基づいて、操舵指示値を与える際に、補正値を加算して操舵指示値を与えることにより補正する。つまり、オフセット値に基づいて、操舵角の補正を行う。
【0090】
このようにして、無人牽引車の走行制御がされる。
上記実施形態によれば、以下のような効果を得ることができる。
(5)無人牽引車40の構成として、機台41と、機台41の後ろ側に設けられ、走行モータ57により駆動される左右一対の後輪42と、機台41の前側に設けられ、操舵可能な前輪43を備える。この無人牽引車40の走行制御装置の構成として、前輪43の操舵角を検出するポテンショメータ53と、車両の速度を検出する速度検出手段としての前輪43に設けられたエンコーダ54と、機台41の姿勢角度を検出する姿勢角度検出手段としてのジャイロセンサ55を備える。エンコーダ54は、車両の速度を検出する速度検出手段として機能する。直線走行前後におけるエンコーダ54から取得した機台41の移動距離、及び、直線走行前後におけるジャイロセンサ55から取得した機台41の姿勢角度の変位に基づいて、目標操舵角ずれを除いたポテンショメータ53のオフセット値を算出するオフセット値算出手段としてのコントローラ50を備える。さらに、操舵角補正手段としてのコントローラ50はオフセット値に基づいて、操舵角の補正を行う。よって、車輪速度を検出することなく目標操舵角にずれがある場合でも前輪用ポテンショメータ53のオフセット値を算出することができる。詳しくは、前輪用エンコーダ54を用いて目標操舵角にずれがある場合であっても前輪用ポテンショメータ53のオフセット値を求めることができる。その結果、車輪速度を検出することなく無人牽引車の直進性を向上することができる。
【0091】
(6)姿勢角度検出手段は、ジャイロセンサ55であるので、実用的である。
(7)機台41と、機台41の後ろ側に設けられ、走行モータ57により駆動される左右一対の後輪42と、機台41の前側に設けられ、操舵可能な前輪43と、前輪43の操舵角を検出するポテンショメータ53と、を備えた無人牽引車40の走行制御方法として、次のようにする。直線走行した後において機台41の姿勢角度の変位を求める工程(図11のステップS204)を有する。直線走行した後においてポテンショメータ53により計測された停止時の目標操舵角のずれ量を求める工程(図11のステップS205)を有する。停止時の目標操舵角のずれ量から目標操舵角ずれによる姿勢角度の変位を算出する工程(図11のステップS206)を有する。目標操舵角ずれによる姿勢角度の変位と姿勢角度の変位からポテンショメータ53のオフセットによる姿勢角度変位を算出する工程(図11のステップS207)を有する。オフセットによる姿勢角度変位からポテンショメータ53のオフセット値を算出する工程(図11のステップS208)を有する。オフセット値に基づいて、操舵角の補正を行う工程(図11のステップS209)を有する。よって、車輪速度を検出することなく目標操舵角にずれがある場合でも前輪用ポテンショメータ53のオフセット値を算出することができる。その結果、車輪速度を検出することなく無人牽引車の直進性を向上することができる。
【0092】
実施形態は前記に限定されるものではなく、例えば、次のように具体化してもよい。
○ 第1の実施形態での図5を用いた説明においては、図13(a),(b)で説明したごとく、ポテンショメータの組み付け誤差のみある場合を想定している。図7(a)に示すように、操舵角指示値=0度で一定距離走行後の図7(b)に示すように後輪用ポテンショメータ31のオフセット値と目標操舵角ずれにより車両の姿勢角度の変位θrとしてポテンショメータの誤差が発生する場合に適用した。そして、図5のステップS104では車両の姿勢角度の変位θrはポテンショメータの誤差の結果である。ステップS107では目標操舵角ずれによる姿勢角度の変位θe及び車両の姿勢角度の変位θrから直進性に対する姿勢角度の変位θosを算出し、ステップS108では直進性に対する姿勢角度の変位θosから後輪用ポテンショメータ31のオフセット値δosを算出した。
【0093】
これに代わり、図14(a),(b)で説明したごとく、ポンテショメータ組み付け誤差はないが、前輪のホイールアライメント誤差がある場合に適用してもよい。この場合は、図7(a)に示すように、操舵角指示値=0度で一定距離走行後の図7(b)に示すように車両の姿勢角度の変位θrとして前輪のホイールアライメントなどの誤差が発生する。この場合には、図5のステップS104において車両の姿勢角度の変位θrは前輪のホイールアライメントなどの誤差の結果であり、ステップS107においては目標操舵角ずれによる姿勢角度の変位θe及び車両の姿勢角度の変位θrから誤差の結果として直進性に対する姿勢角度の変位θosを算出する。また、ステップS108では直進性に対する姿勢角度の変位θosから直進性の補正値として後輪用ポテンショメータ31のオフセット値δosを算出する。そして、オフセット値に基づいて、操舵角の補正を行う。つまり、操舵角を0度で指示しても前輪のホイールアライメントずれ等のその他機械的要因により斜めに走行することになるが、そのような場合であってもポテンショメータのずれという形に置き換えて、それを補正することにより真っ直ぐに走行することができる。
【0094】
同様に第2の実施形態において、ポンテショメータ組み付け誤差はないが、後輪42のホイールアライメント誤差がある場合に適用してもよい。この場合は、図12(a)に示すように、操舵角指示値=0度で一定距離走行後の図12(b)に示すように車両の姿勢角度の変位θrとして後輪42のホイールアライメントなどの誤差が発生する。この場合には、図11のステップS204において車両の姿勢角度の変位θrは後輪42のホイールアライメントなどの誤差の結果であり、ステップS207においては目標操舵角ずれによる姿勢角度の変位θe及び車両の姿勢角度の変位θrから誤差の結果として直進性に対する姿勢角度の変位θosを算出する。また、ステップS208では直進性に対する姿勢角度の変位θosから直進性の補正値として前輪用ポテンショメータ53のオフセット値δosを算出する。そして、オフセット値に基づいて、操舵角の補正を行う。つまり、操舵角を0度で指示しても後輪42のホイールアライメントずれ等のその他機械的要因により斜めに走行することになるが、そのような場合であってもポテンショメータのずれという形に置き換えて、それを補正することにより真っ直ぐに走行することができる。
【0095】
他にも、図15(a),(b)で説明したごとく、ポテンショメータ組み付け誤差があり、かつ、前輪のホイールアライメント誤差がある場合に適用してもよい。この場合は、図7(a)に示すように、操舵角指示値=0度で一定距離走行後の図7(b)に示すように車両の姿勢角度の変位θrとしてポテンショメータの誤差及び前輪のホイールアライメントなどの誤差が発生する。この場合には、図5のステップS104において車両の姿勢角度の変位θrはポテンショメータ組み付け誤差及び前輪のホイールアライメントなどの誤差の結果であり、ステップS107においては目標操舵角ずれによる姿勢角度の変位θe及び車両の姿勢角度の変位θrから誤差の結果として直進性に対する姿勢角度の変位θosを算出する。また、ステップS108では直進性に対する姿勢角度の変位θosから直進性の補正値として後輪用ポテンショメータ31のオフセット値δosを算出する。そして、オフセット値に基づいて、操舵角の補正を行う。つまり、操舵角を0度で指示してもポテンショメータの組み付け誤差及び前輪のホイールアライメントずれ等のその他機械的要因により斜めに走行することになるが、そのような場合であってもポテンショメータのずれという形に置き換えて、それを補正することにより真っ直ぐに走行することができる。
【0096】
同様に第2の実施形態において、ポテンショメータ組み付け誤差があり、かつ、後輪42のホイールアライメント誤差がある場合に適用してもよい。この場合は、図12(a)に示すように、操舵角指示値=0度で一定距離走行後の図12(b)に示すように車両の姿勢角度の変位θrとしてポテンショメータの誤差及び後輪42のホイールアライメントなどの誤差が発生する。この場合には、図11のステップS204において車両の姿勢角度の変位θrはポテンショメータ組み付け誤差及び後輪42のホイールアライメントなどの誤差の結果であり、ステップS207においては目標操舵角ずれによる姿勢角度の変位θe及び車両の姿勢角度の変位θrから誤差の結果として直進性に対する姿勢角度の変位θosを算出する。また、ステップS208では直進性に対する姿勢角度の変位θosから直進性の補正値として前輪用ポテンショメータ53のオフセット値δosを算出する。そして、オフセット値に基づいて、操舵角の補正を行う。つまり、操舵角を0度で指示してもポテンショメータの組み付け誤差及び後輪42のホイールアライメントずれ等のその他機械的要因により斜めに走行することになるが、そのような場合であってもポテンショメータのずれという形に置き換えて、それを補正することにより真っ直ぐに走行することができる。
【0097】
○ 姿勢角度検出手段は、ジャイロセンサ33,55に限ることなく他のセンサでもよい。つまり、姿勢角度の取得はジャイロセンサ33,55を用いて行ったが、他のセンサ、例えばガイドセンサ等の姿勢角を検出できるセンサ等を用いてもよい。
【0098】
○ 速度検出手段は、フォークリフトの後輪に設けられたエンコーダや前輪用エンコーダ54に限ることなく他のセンサを用いてもよい。例えば、ジャイロセンサにおいて、走行方向に平行な加速度成分を積分して速度を検出する方法もある。
【0099】
○ 第1の実施形態では、リーチ式の無人フォークリフトで説明したが、リーチ機能を有しないフォークリフトであってもよい。また、カウンターバランスタイプであってもよい。カウンターバランスタイプの2つの後輪で操舵されるフォークリフト(前後4輪)であれば、後輪の左右いずれか片方にポテンショメータが取り付けられている機台であれば、適用可能である。
【符号の説明】
【0100】
10…無人フォークリフト、11…機台、14…前輪、15…後輪、24…コントローラ、31…後輪用ポテンショメータ、32…後輪用エンコーダ、33…ジャイロセンサ、40…無人牽引車、41…機台、42…後輪、43…前輪、50…コントローラ、53…前輪用ポテンショメータ、54…前輪用エンコーダ、54…ジャイロセンサ。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15