IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社豊田自動織機の特許一覧

<>
  • 特許-エンジンシステム 図1
  • 特許-エンジンシステム 図2
  • 特許-エンジンシステム 図3
  • 特許-エンジンシステム 図4
  • 特許-エンジンシステム 図5
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-04-25
(45)【発行日】2023-05-08
(54)【発明の名称】エンジンシステム
(51)【国際特許分類】
   F01N 3/08 20060101AFI20230426BHJP
   F02D 41/04 20060101ALI20230426BHJP
   F02D 17/02 20060101ALI20230426BHJP
   B01D 53/86 20060101ALI20230426BHJP
   B01D 53/94 20060101ALI20230426BHJP
【FI】
F01N3/08 A
F02D41/04
F02D17/02 F
B01D53/86 222
B01D53/94 222
【請求項の数】 2
(21)【出願番号】P 2019188543
(22)【出願日】2019-10-15
(65)【公開番号】P2021063471
(43)【公開日】2021-04-22
【審査請求日】2022-01-18
(73)【特許権者】
【識別番号】000003218
【氏名又は名称】株式会社豊田自動織機
(74)【代理人】
【識別番号】110001195
【氏名又は名称】弁理士法人深見特許事務所
(72)【発明者】
【氏名】森 護人
【審査官】稲村 正義
(56)【参考文献】
【文献】特開2000-161105(JP,A)
【文献】特開2008-38806(JP,A)
【文献】特開2010-127182(JP,A)
【文献】国際公開第2010/128562(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
F01N 3/00
F02D 41/04
F02D 17/02
B01D 53/86
B01D 53/94
(57)【特許請求の範囲】
【請求項1】
複数の気筒を有するエンジンと、
前記複数の気筒の各々に接続される排気通路と、
前記気筒に流入する新気の流量を調整可能に構成される調整弁と、
エンジン回転数を検出する検出装置と、
前記排気通路に設けられる窒素酸化物を吸蔵可能に構成される吸蔵還元触媒と、
前記複数の気筒の各々に対して燃料を噴射可能に構成される燃料噴射装置と、
前記検出装置の検出結果を用いて前記燃料噴射装置と前記調整弁とを制御する制御装置とを備え、
前記制御装置は、
前記吸蔵還元触媒における前記窒素酸化物の堆積量がしきい値を超える場合に、前記エンジン回転数と前記燃料噴射装置からの燃料噴射量とによって定まる動作点が第1領域内であると、空燃比が理論空燃比よりもリッチ側の値になるように前記燃料噴射装置を制御する第1制御を前記複数の気筒の各々に対して実行し、前記動作点が前記第1領域よりも前記燃料噴射量が少ない第2領域内であると、前記複数の気筒のうちの一部の気筒に対して前記第1制御を実行し、前記複数の気筒のうちの残りの気筒に対して前記第1制御と異なる第2制御を実行し、
前記第1制御は、前記燃料噴射量のうちのメイン噴射よりも後に噴射される燃料噴射量が前記第2制御において前記メイン噴射よりも後に噴射される燃料噴射量よりも多くなるようにする制御を含み、
前記制御装置は、前記動作点が前記第2領域よりも前記燃料噴射量が少ない第3領域内であると、前記一部の気筒において前記第1制御を実行し、前記残りの気筒に対して前記燃料噴射装置からの燃料噴射を停止する制御を実行する、エンジンシステム。
【請求項2】
前記第2制御は、前記燃料噴射装置からの燃料噴射を停止する制御を含む、請求項1に記載のエンジンシステム。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、NOx吸蔵還元触媒を備えたエンジンシステムの制御に関する。
【背景技術】
【0002】
ディーゼルエンジン等の排気を浄化するために、排気通路には、窒素酸化物(以下、「NOx」と記載する場合がある)の吸蔵還元触媒(以下、「NOx吸蔵還元触媒」と記載する場合がある)等の各種触媒が排気処理装置として設けられる。たとえば、NOx吸蔵還元触媒においては、排気中のNOxを吸蔵することによって排気が浄化される。
【0003】
このようなNOx吸蔵還元触媒に関して、たとえば、特開平11-223123号公報(特許文献1)には、エンジンの排気通路に、NOxを還元浄化するNOx還元触媒とNOxを吸蔵するNOx吸蔵触媒とを配置する場合に、それらを排ガス温度等に関連付けて配置することにより、全体としての排ガス浄化性能を向上させる技術が開示される。
【先行技術文献】
【特許文献】
【0004】
【文献】特開平11-223123号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
ところで、このようなNOx吸蔵還元触媒において吸蔵したNOxの吸蔵量(以下、堆積量と記載する場合がある)が一定以上になる場合には、浄化性能が低下するため、排気の未燃成分(たとえば、COやHC)を還元剤として吸蔵したNOxを還元することによって吸蔵還元触媒を再生することが求められる。そのため、NOx吸蔵還元触媒を再生するために、エンジンからの排気のうちのNOxの還元に用いられる未燃成分の生成量を増加させるために空燃比を理論空燃比よりもリッチ側の空燃比で燃焼させる制御が実行される場合がある。
【0006】
しかしながら、エンジンがアイドリング状態であるなどの軽負荷状態である場合には、リッチ側の空燃比にするために、新気の流入量を減少させたり、燃料噴射量を増加させるなどすると、失火が発生するなどして安定した燃焼が得られない場合がある。そのため、軽負荷状態である場合において還元制御を実行できず、NOx吸蔵還元触媒に吸蔵されたNOxを適切なタイミングで還元できない場合がある。
【0007】
本開示は、上述した課題を解決するためになされたものであって、その目的は、軽負荷状態である場合にもNOx吸蔵還元触媒の再生が可能なエンジンシステムを提供することである。
【課題を解決するための手段】
【0008】
本開示のある局面に係るエンジンシステムは、複数の気筒を有するエンジンと、複数の気筒の各々に接続される排気通路と、気筒に流入する新気の流量を調整可能に構成される調整弁と、エンジン回転数を検出する検出装置と、排気通路に設けられる窒素酸化物を吸蔵可能に構成される吸蔵還元触媒と、複数の気筒の各々に対して燃料を噴射可能に構成される燃料噴射装置と、検出装置の検出結果を用いて燃料噴射装置と調整弁とを制御する制御装置とを備える。制御装置は、吸蔵還元触媒における窒素酸化物の堆積量がしきい値を超える場合に、エンジン回転数と燃料噴射装置からの燃料噴射量とによって定まる動作点が第1領域内であると、空燃比が理論空燃比よりもリッチ側の値になるように燃料噴射装置を制御する第1制御を複数の気筒の各々に対して実行する。制御装置は、動作点が第1領域よりも燃料噴射量が少ない第2領域内であると、複数の気筒のうちの一部の気筒に対して第1制御を実行し、複数の気筒のうちの残りの気筒に対して第1制御と異なる第2制御を実行する。
【0009】
このようにすると、エンジンの動作点が第1領域よりも燃料噴射量の少ない第2領域内となるような軽負荷状態において、複数の気筒のうちの一部の気筒において第1制御が実行されることによって、空燃比が理論空燃比よりもリッチ側の値になるようにエンジンが制御されるので、NOxの還元が促進され、NOx吸蔵還元触媒の再生速度を向上させることができる。さらに、残りの気筒に対しては第1制御が実行されないため、失火の発生を抑制することができる。
【0010】
ある実施の形態において、第1制御は、燃料噴射量のうちのメイン噴射よりも後に噴射される燃料噴射量が第2制御においてメイン噴射よりも後に噴射される燃料噴射量よりも多くなるようにする制御を含む。
【0011】
このようにすると、一部の気筒において空燃比を理論空燃比よりもリッチ側の値になるようにすることができるため、NOxの還元が促進され、NOx吸蔵還元触媒の再生速度を向上させることができる。
【0012】
さらにある実施の形態において、制御装置は、動作点が第2領域よりも燃料噴射量が少ない第3領域内であると、一部の気筒において第1制御を実行し、残りの気筒に対して燃料噴射装置からの燃料噴射を停止する制御を実行する。
【0013】
このようにすると、エンジンの動作点が第2領域よりもさらに燃料噴射量が少ない第3領域である場合には、複数の気筒のうちの残りの気筒に対して燃料噴射が停止されるので、フリクションが増加するとともに、複数の気筒のうちの一部の気筒における燃焼によってエンジンの動作が維持される。そのため、複数の気筒のうちの一部の気筒に流入する空気量と気筒に供給される燃料量とを増加させることができる。その結果、一部の気筒において第1制御が実行されることよって、失火の発生を抑制しつつ、空燃比が理論空燃比よりもリッチ側の値になるようにエンジンを制御することができる。これにより、NOxの還元が促進され、NOx吸蔵還元触媒の再生速度を向上させることができる。
【0014】
さらにある実施の形態において、第2制御は、燃料噴射装置からの燃料噴射を停止する制御を含む。
【0015】
このようにすると、エンジンの運転領域が第2領域である場合には、複数の気筒のうちの残りの気筒に対して燃料噴射が停止されるので、フリクションが増加するとともに、複数の気筒のうちの一部の気筒における燃焼によってエンジンの動作が維持される。そのため、複数の気筒のうちの一部の気筒に流入する空気量と気筒に供給される燃料量とを増加させることができる。その結果、一部の気筒において第1制御が実行されることよって、失火の発生を抑制しつつ、空燃比が理論空燃比よりもリッチ側の値になるようにエンジンを制御することができる。これにより、NOxの還元が促進され、NOx吸蔵還元触媒の再生速度を向上させることができる。
【発明の効果】
【0016】
本開示によると、軽負荷状態である場合にもNOx吸蔵還元触媒の再生が可能なエンジンシステムを提供することができる。
【図面の簡単な説明】
【0017】
図1】エンジンシステムの全体構成を概略的に示した図である。
図2】制御装置で実行される処理の一例を示すフローチャートである。
図3】第1領域、第2領域および第3領域を説明するための図である。
図4】還元燃焼制御の実施可能領域について説明するための図である。
図5】還元燃焼制御の実行の有無によるNSR触媒の再生速度の違いを説明するための図である。
【発明を実施するための形態】
【0018】
以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。
【0019】
図1は、エンジンシステム10の全体構成を概略的に示した図である。図1に示すエンジンシステム10は、たとえば、車両や建設機械等の移動体の駆動源として搭載される。
【0020】
図1に示すように、エンジンシステム10は、エンジン11と、吸気通路8と、排気通路7とを含む。吸気通路8の一方端には、エアクリーナ(図示せず)が設けられる。吸気通路8の他方端は、エンジン11(より具体的には、気筒11a)に接続される。吸気通路8の一方端からEGR通路18との合流位置との間にエアフローメータ2が設けられる。
【0021】
エアフローメータ2は、吸気通路8からエンジンシステム10に導入される新気の流量(吸入空気量)を検出し、検出された吸入空気量を示す信号を制御装置100に出力する。
【0022】
エアフローメータ2よりも下流の位置には、吸気絞り弁16が設けられる。吸気絞り弁16には、吸気絞り弁16の開度を検出する開度センサ17が設けられる。開度センサ17は、検出された吸気絞り弁16の開度を示す信号を制御装置100に出力する。吸気絞り弁16は、制御装置100からの制御信号によって開閉動作を行なう。
【0023】
エンジン11は、ディーゼルエンジン等の内燃機関である。エンジン11は、複数の気筒11aと複数のピストン11bとを含む。たとえば、エンジン11が4気筒エンジンである場合には、エンジン11には、4つの気筒11aが設けられる。なお、図1においては、複数の気筒11aのうちの1つの構成を例示的に示しており、他の気筒についても同様の構成を有する。そのため、その詳細な説明については繰り返さない。
【0024】
気筒11aの頂部には燃料噴射装置13が設けられる。燃料噴射装置13は、たとえば、噴孔が形成されたボディと、ボディ内部に設けられ、噴孔を開閉するニードルとを有するインジェクタとによって構成される。燃料噴射装置13は、コモンレール15を介して燃料ポンプ14および燃料タンク12に接続される。燃料ポンプ14は、制御装置100からの制御信号に応じて、コモンレール15内の燃料の圧力が所定の圧力になるように燃料タンク12内の燃料をコモンレール15に供給する。燃料噴射装置13は、制御装置100からの制御信号に応じてニードルを動作させて、噴孔を開状態(すなわち、噴孔とコモンレール15とを連通状態)にすることによってコモンレール15内の燃料を気筒11a内の燃焼室に供給する。
【0025】
制御装置100は、燃料噴射装置13において1サイクル中に噴射される燃料噴射量Qに対応する制御指令値を決定する。制御装置100は、決定された制御指令値に基づいて燃料噴射装置13を制御する。制御指令値は、たとえば、燃料噴射装置13からの燃料の噴射時間(噴射の開時間)あるいは噴射量を示す値である。
【0026】
なお、制御装置100は、たとえば、エンジン11の運転中において、予め定められた条件が成立する場合には、複数の気筒のうちの一部の気筒に対して燃焼制御を実行し、残りの気筒に対して燃料噴射を停止する気筒停止制御を実行可能とする。なお、エンジン11は、気筒停止制御を実行している間には、気筒11aの頂部に設けられる吸気バルブおよび排気バルブ(いずれも図示せず)を閉じ状態に維持可能な構成を有していてもよい。
【0027】
さらに、制御装置100は、たとえば、1サイクル中に噴射される燃料噴射量Qを複数回に分けて噴射する。制御装置100は、たとえば、1サイクル中にパイロット噴射と、メイン噴射と、プレポスト噴射と、アフター噴射と、ポスト噴射とが実行されるように燃料噴射装置13を制御する。パイロット噴射は、たとえば、燃焼音や燃焼圧の発生を抑制するために実行される。メイン噴射は、たとえば、エンジン11に要求されたトルクを実現するために実行される。ポスト噴射は、たとえば、空燃比を調整するために実行される。アフター噴射は、たとえば、スモークなどの発生を抑制するために実行される。そして、ポスト噴射は、排気(すなわち、PM除去フィルタ4)を昇温するために実行される。
【0028】
ピストン11bは、出力軸であるクランク軸(図示せず)に接続されており、クランク軸には、クランク軸の回転数(以下、エンジン回転数Neと記載する)を検出するエンジン回転数センサ20が設けられる。エンジン回転数センサ20は、制御装置100に接続され、検出されたエンジン回転数Neを示す信号を制御装置100に送信する。
【0029】
排気通路7の一方端は、エンジン11(より具体的には、気筒11a)に接続される。排気通路7の途中には、排気処理装置1が設けられる。排気処理装置1は、排気中のPMの除去が可能なPM除去フィルタ4とNSR(NOx Storage-Reduction)触媒9とを含む。排気通路7の他方端は、排気処理装置1と異なる排気処理装置(たとえば、SCR(Selective Catalytic Reduction)等)に接続される。
【0030】
排気通路7は、第1通路7aと、第2通路7bと、第3通路7cと、第4通路7dとを含み、第1通路7a、第2通路7b、第3通路7c、および、第4通路7dの順で接続されて構成される。
【0031】
PM除去フィルタ4は、第3通路7cに収納され、排気の通過を許容しつつ、通過する排気から粒子状物質(PM(Particulate Matter))を捕集する。PM除去フィルタ4は、たとえば、セラミックまたはステンレス等から形成される。
【0032】
NSR触媒9は、たとえば、カリウム(K)やリチウム(Li)のようなアルカリ金属や、バリウムBaのようなアルカリ土類等がNOx吸蔵材として担持されることによって構成される。
【0033】
NSR触媒9は、排気中に多量の酸素が存在している状態においてはNOxを吸収し、排気中の酸素濃度が低く、かつ還元剤(たとえば燃料の未燃成分(HCやCO))が多量に存在している状態においてはNOxをNOもしくはNOに還元して放出する。NOやNOとして放出されたNOxは、排気中のHCやCOと速やかに反応することによってさらに還元されてNとなる。ちなみにHCやCOは、NOやNOを還元することで、自身は酸化されてHOやCOとなる。すなわち、NSR触媒9に導入される排気中の酸素濃度やHC成分やCO成分を適宜調整すれば、排気中のHC、CO、NOxを浄化することができることになる。NSR触媒9の構成については公知の構成が用いられればよくその詳細な説明については行なわない。
【0034】
空燃比センサ3は、第1通路7aに設けられ、第1通路7a内を通過する排気中の酸素濃度および未燃燃料の濃度の比である空燃比を検出する。空燃比センサ3は、検出された空燃比を示す信号を制御装置100に送信する。制御装置100は、空燃比センサ3の検出結果に基づいて複数の気筒11aの各々における空燃比を算出する。制御装置100は、複数の気筒11aの各々における空燃比がエンジン11の運転状態に応じて設定される目標空燃比になるように各気筒の燃料噴射装置13から噴射される燃料の噴射量をフィードバック制御等によって調整する。
【0035】
排気通路7の第2通路7bの入口には、燃料供給弁5が設けられる。燃料供給弁5は、制御装置100からの制御信号によって動作し、燃料ポンプ14からの燃料を第2通路7b内に供給可能に構成される。
【0036】
エンジン11には、さらにEGR(排気再循環)システムが設けられる。EGRシステムは、EGR通路18とEGR弁19とを含む。EGR通路18は、気筒11aを経由しないで排気通路7と吸気通路8とを連通して、排気通路7に排出された排気の一部を吸気通路8に戻す。EGR弁19は、制御装置100からの制御信号に応じて、EGR通路18によって循環するガス流量を調整する。制御装置100は、エンジン11の運転状態に基づいてEGR弁19の開度を制御する。
【0037】
具体的には、制御装置100は、たとえば、燃料噴射量Qとエンジン回転数Neとに基づいてEGR率の目標値を設定する。制御装置100の後述するメモリ150には、たとえば、燃料噴射量Qとエンジン回転数NeとEGR率の目標値との関係を示すマップが記憶される。制御装置100は、制御指令値に対応する燃料噴射量Qとエンジン回転数Neと上述したマップとからEGR率の目標値を設定する。制御装置100は、EGR率が目標値になるようにEGR弁19の開度を制御する。
【0038】
さらにエンジン11には、排気通路7を流通する排気エネルギーを用いて吸気通路8内の空気を過給する過給機(図示せず)が設けられる。過給機は、たとえば、排気通路7に設けられ、タービンブレードを収納するタービンと、吸気通路8に設けられ、コンプレッサブレードを収納するコンプレッサと、タービンブレードとコンプレッサブレードとを連結するシャフトとを含む。排気通路7に流通する排気によってタービン内のタービンブレードが回転すると、タービンブレードに連結されたシャフトおよびコンプレッサブレードが一体的に回転し、コンプレッサから気筒に空気が圧送されることによって過給が行なわれる。また、タービン内のタービンブレードの周囲には、排気のタービンブレードへの流入速度を変化可能に構成される複数のベーンが設けられる。複数のベーンは、アクチュエータによって動作する。制御装置100は、エンジン11の運転状態に基づいてベーン間の開度を制御する。
【0039】
制御装置100は、各種処理を行なうCPU(Central Processing Unit)(図示せず)と、プログラムおよびデータを記憶するROM(Read Only Memory)およびCPUの処理結果等を記憶するRAM(Random Access Memory)を含むメモリ150と、制御装置100の外部の機器と情報のやり取りを行なうための入力ポートおよび出力ポート(いずれも図示せず)とを含む。入力ポートには、エアフローメータ2、空燃比センサ3、開度センサ17およびエンジン回転数センサ20等が接続される。
【0040】
制御装置100は、入力ポートに接続された各機器から信号を受信し、受信した信号に基づいて出力ポートに接続された燃料供給弁5、吸気絞り弁16、燃料噴射装置13、燃料ポンプ14、EGR弁19等を制御する。
【0041】
以上のような構成を有するエンジンシステム10において、エンジン11からの排気に含まれるNOxはNSR触媒9において吸蔵され、堆積していく。NSR触媒9に吸蔵されたNOxの吸蔵量(以下、堆積量とも記載する)がしきい値S(0)を超える場合には、NSR触媒9に吸蔵されたNOxを還元する還元制御モードに移行される。還元制御モードに移行されると、制御装置100は、たとえば、複数の気筒11aの各々において空燃比が理論空燃比よりもリッチ側の所定の空燃比になるように燃料供給弁5、燃料噴射装置13、吸気絞り弁16およびEGR弁19のうちの少なくともいずれかを動作させる制御を実行する。
【0042】
制御装置100は、還元制御モードに移行されると、たとえば、EGR弁19の開度を還元制御モードでない場合にエンジン11の運転状態に基づいて設定される開度よりも大きくして排気を気筒11aに導入することによって気筒11a内の温度を上昇させたり、吸気絞り弁16の開度を還元制御モードでない場合にエンジン11の運転状態に基づいて設定される開度よりも小さくして新気の導入量を制限したりする制御を実行する。
【0043】
さらに制御装置100は、還元制御モードに移行されると、たとえば、上述した1サイクル中に行なわれる各種噴射のうちのメイン噴射よりも後の噴射(すなわち、プレポスト噴射、アフター噴射およびポスト噴射のうちの少なくともいずれか)の燃料噴射量を還元制御モードでない場合にエンジン11の運転状態に基づいて設定される噴射量よりも多くする制御を実行する。
【0044】
なお、制御装置100は、1サイクルにおける燃料噴射量を維持しつつ、メイン噴射よりも後の噴射の燃料噴射量を基準値よりも増加させるようにしてもよいし、あるいは、メイン噴射よりも後の噴射の燃料噴射量を還元制御モードでない場合よりも増加させることで1サイクルにおける燃料噴射量を増加させてもよい。
【0045】
さらに制御装置100は、還元制御モードに移行されたときに、上述の制御によって還元剤が不足する場合には燃料供給弁5から供給される燃料で補うように燃料供給弁5を制御してもよい。
【0046】
制御装置100は、NOxの堆積量がしきい値S(1)以下になる場合に、還元制御モードを終了する。
【0047】
このようにNSR触媒9におけるNOxの堆積量がしきい値S(0)を超える場合には、還元制御モードに移行されることによって、排気に含まれる還元剤によってNSR触媒9に吸蔵されたNOxが還元され、NSR触媒9を再生することができる。
【0048】
しかしながら、エンジン11がアイドリング状態であるなどの軽負荷状態である場合には、リッチ側の空燃比にするために、新気の流入量を減少させたり、メイン噴射よりも後の燃料噴射量を増加させるなどすると、失火が発生するなどして安定した燃焼が得られない場合がある。そのため、軽負荷状態である場合において還元制御モードに移行できない場合がある。その結果、NSR触媒9に吸蔵されたNOxを適切なタイミングで還元できない場合がある。
【0049】
そこで、本実施の形態においては、制御装置100は、NSR触媒9におけるNOxの堆積量がしきい値S(0)を超える場合に、エンジン回転数Neと燃料噴射量Qとによって定まるエンジン11の動作点が第1領域内であると、空燃比が理論空燃比よりもリッチ側の値になるように燃料噴射装置13を制御する還元燃焼制御を複数の気筒11aの各々に対して実行する。さらに、制御装置100は、エンジン11の動作点が第1領域よりも燃料噴射量が少ない第2領域内であると、複数の気筒11aのうちの半数の気筒において上述の第1制御を実行し、複数の気筒11aのうちの残りの半数の気筒に対して還元燃焼制御と異なる非還元燃焼制御を実行するものとする。
【0050】
このようにすると、エンジン11の動作点が第1領域よりも燃料噴射量の少ない第2領域内となるような軽負荷状態において、複数の気筒11aのうちの一部の気筒において還元燃焼制御が実行されることによって、空燃比が理論空燃比よりもリッチ側の値になるようにエンジン11が制御されるので、NOxの還元が促進され、NSR触媒9の再生が可能となる。さらに、残りの気筒に対して還元燃焼制御が実行されないため、失火の発生を抑制することができる。
【0051】
以下、図2を参照して、制御装置100で実行される処理について説明する。図2は、制御装置100で実行される処理の一例を示すフローチャートである。このフローチャートに示される一連の処理は、制御装置100により、所定の制御周期毎に繰り返し実行される。
【0052】
ステップ(以下、ステップをSと記載する)100にて、制御装置100は、NSR触媒9におけるNOxの堆積量を推定する。制御装置100は、たとえば、前回の計算における堆積量(前回値)の推定時点から現在までのNSR触媒9におけるNOxの堆積量の変化量をエンジン11の運転状態(たとえば、エンジン回転数Neおよび燃料噴射量Q)から推定し、推定された変化量を前回値に加算することによって今回の計算における堆積量(今回値)を推定してもよい。制御装置100は、たとえば、エンジン回転数Neと燃料噴射量Qと、堆積量の変化量との関係を示すマップを用いてNSR触媒9におけるNOxの堆積量の変化量を算出してもよい。なお、マップの作成には、たとえば、機械学習やディープラーニング等を含むAI(Artificial Intelligence)等が利用されてもよい。
【0053】
S102にて、制御装置100は、NSR触媒9におけるNOxの堆積量がしきい値S(0)よりも大きいか否かを判定する。しきい値S(0)は、実験等によって適合される予め定められた値であって、たとえば、NSR触媒9の吸蔵可能なNOx量の上限値等によって定められる。NSR触媒9におけるNOxの堆積量がしきい値S(0)よりも大きいと判定される場合(S102にてYES)、処理はS104に移される。なお、NSR触媒9における堆積量がしきい値S(0)以下であると判定される場合(S102にてNO)、この処理は終了される。
【0054】
S104にて、制御装置100は、エンジン回転数Neおよび燃料噴射量Qを取得する。制御装置100は、たとえば、エンジン回転数センサ20によって検出されるエンジン回転数Neを取得するとともに、燃料噴射装置13に対して出力される制御指令値から燃料噴射量Qを取得してもよい。
【0055】
S106にて、制御装置100は、還元制御モードに移行する。制御装置100は、還元制御モードに移行すると、還元制御モードが実行中であることを示すフラグをオン状態にしてもよい。制御装置100は、上述した還元制御モードに対応した吸気絞り弁16およびEGR弁19の制御を実行してもよい。
【0056】
S108にて、制御装置100は、エンジン11の動作点が第1領域内であるか否かを判定する。エンジン11の動作点は、エンジン回転数Neと燃料噴射量Qとによって定まる。
【0057】
図3は、第1領域、第2領域および第3領域を説明するための図である。図3の横軸は、エンジン回転数Neを示す。図3の縦軸は、燃料噴射量Qを示す。上述の第1領域と、以下に説明する第2領域および第3領域は、エンジン回転数Neと燃料噴射量Qとの座標平面上に設定される。
【0058】
第1領域は、たとえば、図3に示すように、A点と、B点と、C点と、D点と、E点とを直線で結んで形成された領域である。A点は、エンジン回転数NeがNe(0)となり、燃料噴射量QがQ(4)となる位置である。B点は、エンジン回転数NeがNe(1)(>Ne(0))となり、燃料噴射量QがQ(4)となる位置である。C点は、エンジン回転数NeがNe(2)(>Ne(1))となり、燃料噴射量QがQ(3)(<Q(4))となる位置である。D点は、エンジン回転数NeがNe(2)となり、燃料噴射量QがQ(2)(<Q(3))となる位置である。E点は、エンジン回転数がNe(0)となり、燃料噴射量QがQ(2)となる位置である。第1領域は、全気筒に対して上述のメイン噴射よりも後の噴射における燃料噴射量を増加させる制御(以下、還元燃焼制御と記載する)が実行可能な運転領域を示す。
【0059】
制御装置100は、S104にて取得されたエンジン回転数Neと燃料噴射量Qとによって図3に示す座標平面上に特定される動作点が第1領域内の位置であるか否かを判定する。エンジン11の動作点が第1領域内であると判定される場合(S108にてYES)、処理はS110に移される。
【0060】
S110にて、制御装置100は、還元燃焼制御を全気筒に対して実施するように燃料噴射装置13を制御する。その後処理はS120に移される。なお、エンジン11の動作点が第1領域内でないと判定される場合(S108にてNO)、処理はS112に移される。
【0061】
S112にて、制御装置100は、エンジン11の動作点が第2領域内であるか否かを判定する。
【0062】
第2領域は、たとえば、図3に示すように、D点と、E点と、F点と、G点とを直線で結んで形成された領域であって、第1領域よりも燃料噴射量が少ない領域である。また、第2領域は、第1領域と隣接した位置に設定される。F点は、エンジン回転数NeがNe(0)となり、燃料噴射量QがQ(1)(<Q(2))となる位置である。G点は、エンジン回転数NeがNe(2)となり、燃料噴射量QがQ(1)となる位置である。第2領域は、全気筒に対する還元燃焼制御が実行可能な第1領域よりも燃料噴射量の少ない、エンジン11が軽負荷状態となり得る領域であって、実験等によって適合されて設定される。
【0063】
制御装置100は、S104にて取得されたエンジン回転数Neと燃料噴射量Qとによって図3に示す座標平面上に特定される動作点が第2領域内の位置であるか否かを判定する。エンジン11の動作点が第2領域内であると判定される場合(S112にてYES)、処理はS114に移される。
【0064】
S114にて、制御装置100は、複数の気筒11aのうちの半数の気筒に対して還元燃焼制御を実行し、残りの半数の気筒に対して非還元燃焼制御を実行する。たとえば、エンジン11が4気筒エンジンである場合には、制御装置100は、2気筒に対して還元燃焼制御を実行し、残りの2気筒に対して非還元燃焼制御を実行する。非還元燃焼制御としては、たとえば、還元制御モードが選択されている場合よりもメイン噴射よりも後の噴射の燃料噴射量が少ない制御であって、たとえば、NSR触媒9に堆積したNOxの還元を目的としない、エンジン11の運転状態に基づいて行なわれる燃料噴射制御を含む。また、還元燃焼制御については、上述したとおりであるため、その詳細な説明は繰り返さない。
【0065】
還元燃焼制御の実行対象となる気筒は、予め定められた気筒であってもよいし、あるいは、非還元燃焼制御の実行対象となる気筒と適宜入れ替えてもよいし、複数の予め定められた組み合わせの中から選択されてもよい。
【0066】
その後処理はS120に移される。なお、エンジン11の動作点が第2領域内でないと判定される場合(S112にてNO)、処理はS116に移される。
【0067】
S116にて、制御装置100は、エンジン11の動作点が第3領域内であるか否かを判定する。
【0068】
第3領域は、たとえば、図3に示すように、F点と、G点と、H点と、I点とを直線で結んで形成された領域であって、第2領域よりも燃料噴射量が少ない領域である。また、第3領域は、第2領域と隣接した位置に設定される。H点は、エンジン回転数NeがNe(2)となり、燃料噴射量QがQ(0)(<Q(1))となる位置である。I点は、エンジン回転数NeがNe(0)となり、燃料噴射量QがQ(1)となる位置である。第3領域は、第2領域よりも燃料噴射量の少ない、エンジン11がさらに軽負荷状態となり得る領域であって、実験等によって適合されて設定される。
【0069】
制御装置100は、S104にて取得されたエンジン回転数Neと燃料噴射量Qとによって図3に示す座標平面上に特定される動作点が第3領域内の位置であるか否かを判定する。エンジン11の動作点が第3領域内であると判定される場合(S116にてYES)、処理はS118に移される。
【0070】
S118にて、制御装置100は、複数の気筒11aのうちの半数の気筒に対して気筒停止制御を実行し、残りの半数の気筒に対して還元燃焼制御を実行する。たとえば、エンジン11が4気筒エンジンである場合には、制御装置100は、2気筒に対して気筒停止制御を実行し、残りの2気筒に対して非還元燃焼制御を実行する。気筒停止制御および還元燃焼制御については、上述したとおりであるため、その詳細な説明は繰り返さない。
【0071】
気筒停止制御の実行対象となる気筒は、予め定められた気筒であってもよいし、あるいは、還元燃焼制御の実行対象となる気筒と適宜入れ替えてもよいし、複数の予め定められた組み合わせの中から選択されてもよい。その後処理はS120に移される。
【0072】
S120にて、制御装置100は、NSR触媒9におけるNOxの堆積量がしきい値S(1)以下であるか否かを判定する。しきい値S(1)は、しきい値S(0)よりも小さい値であって、予め定められた値である。しきい値S(1)は、NSR触媒9においてNOxの還元が十分に行なわれたことを判定するためのしきい値であって、実験等によって適合される。NSR触媒9におけるNOxの堆積量がしきい値S(1)以下であると判定される場合(S120にてYES)、処理はS122に移される。
【0073】
S122にて、制御装置100は、還元制御を終了する。制御装置100は、たとえば、還元制御を終了する場合に、還元制御モードが実行中であることを示すフラグをオフ状態にしてもよい。制御装置100は、上述した還元制御モードに対応した吸気絞り弁16およびEGR弁19の制御を終了してもよい。
【0074】
なお、エンジン11の動作点が第3領域内でないと判定される場合(S116にてNO)、処理はS122に移される。さらに、NSR触媒9における堆積量がしきい値S(1)よりも大きいと判定される場合(S120にてNO)、処理はS104に戻される。
【0075】
以上のような構造およびフローチャートに基づく本実施の形態に係るエンジンシステム10の動作について説明する。
【0076】
エンジン11の運転中において、NSR触媒9におけるNOxの堆積量が推定され(S100)、推定されたNOxの堆積量がしきい値S(0)よりも大きいと(S102にてYES)、エンジン回転数Neおよび燃料噴射量が取得され(S104)、還元制御モードに移行される(S106)。
【0077】
<エンジン11の動作点が第1領域内である場合>
エンジン11の動作点が第1領域内であると(S108にてYES)、エンジン11の全気筒に対して還元燃焼制御が実行される(S110)。その結果、全気筒において空燃比が理論空燃比よりもリッチ側の所定の空燃比となるように燃料噴射装置13、吸気絞り弁16、および、EGR弁19が制御される。そのため、還元剤であるHCやCOなどの未燃成分の生成量が増加し、NSR触媒9におけるNOxの還元が促進される。
【0078】
そして、NSR触媒9におけるNOxの堆積量がしきい値S(1)以下となる場合には、還元制御が終了される(S122)。
【0079】
<エンジン11の動作点が第2領域内である場合>
エンジン11が第1領域よりも軽負荷運転状態であり、エンジン11の動作点が第1領域内でなく(S108にてNO)、第2領域内であると(S112にてYES)、エンジン11の半数の気筒に対して還元燃焼制御が実行されるとともに、残りの半数の気筒に対して非還元燃焼制御が実行される(S114)。
【0080】
その結果、空燃比が理論空燃比よりもリッチ側の所定の空燃比となるように半数の気筒における燃料噴射装置13が制御されるとともに吸気絞り弁16、および、EGR弁19が制御される。そのため、還元剤であるHCやCOなどの未燃成分の生成量が増加し、NSR触媒9におけるNOxの還元が促進される。さらに、残りの半数の気筒においては、非還元燃焼制御が実行され、エンジン11の運転状態に基づいて設定される燃料噴射量になるように燃料噴射装置13が制御されるため、失火等の不安定な燃焼の発生が抑制される。
【0081】
そして、NSR触媒9におけるNOxの堆積量がしきい値S(1)以下となる場合には、還元制御が終了される(S122)。
【0082】
<エンジン11の動作点が第3領域内である場合>
エンジン11が第2領域よりも軽負荷運転状態であり、エンジン11の動作点が第1領域内でも第2領域内でもなく(S108にてNO,S112にてNO)、第3領域内であると(S116にてYES)、エンジン11の半数の気筒に対して還元燃焼制御が実行されるとともに、残りの半数の気筒に対して気筒停止制御が実行される(S118)。
【0083】
その結果、半数の気筒に対しては、空燃比が理論空燃比よりもリッチ側の所定の空燃比となるように燃料噴射装置13、吸気絞り弁16、および、EGR弁19が制御される。そのため、還元剤であるHCやCOなどの未燃成分の生成量が増加し、NSR触媒9におけるNOxの還元が促進される。さらに残りの半数の気筒に対して気筒停止制御が実行されるため、還元燃焼制御が実行される半数の気筒において空気量と燃料噴射量とが増加するため、失火等の不安定な燃焼の発生が抑制される。
【0084】
そして、NSR触媒9におけるNOxの堆積量がしきい値S(1)以下となる場合には、還元制御が終了される(S122)。
【0085】
以上のようにして、本実施の形態に係るエンジンシステム10によると、エンジン11の動作点が第1領域よりも軽負荷状態になり得る燃料噴射量の少ない第2領域内または第3領域内となる場合に、複数の気筒11aのうちの半数の気筒において還元燃焼制御が実行されることによって、還元剤であるHCやCOなどの未燃成分の生成量が増加するようにエンジン11を制御することができる。
【0086】
図4は、還元燃焼制御の実施可能領域について説明するための図である。図4の横軸は、エンジン回転数Neを示す。図4の縦軸は、燃料噴射量Qを示す。図4に示すように、全気筒に対して還元燃焼制御を実行するとした場合に、還元燃焼制御が実施可能な領域が図4の斜線部分に示す第1領域に限定されるのに対して、半数の気筒に対する還元燃焼制御を実行可能とする場合には、還元燃焼制御が実施可能な領域を、第2領域および第3領域まで拡張することが可能となる。すなわち、エンジン11の動作点が第2領域内あるいは第3領域内である場合などの軽負荷状態において還元燃焼制御が実行されることによって、NSR触媒9におけるNOxの還元を促進することが可能となる。そのため、還元燃焼制御が実行されない場合と比較してNOx吸蔵還元触媒の再生速度を向上させることができる。
【0087】
図5は、還元燃焼制御の実行の有無によるNSR触媒9の再生速度の違いを説明するための図である。図5の横軸は、NSR触媒9におけるNOxの堆積量を示す。図5の縦軸は、再生速度(すなわち、予め定められた時間当たりのNOxの還元量)を示す。
【0088】
また、図5のLN1(実線)は、第2領域または第3領域において半数の気筒に対して還元燃焼制御が実行される場合におけるNOxの堆積量の変化に対する再生速度の変化を示している。図5のLN2(破線)は、第2領域または第3領域においていずれの気筒に対しても還元燃焼制御が実行されない場合におけるNOxの堆積量の変化に対する再生速度の変化を示している。
【0089】
図5に示すように、たとえば、NSR触媒9におけるNOxの堆積量がA(0)である場合、半数の気筒に対して還元燃焼制御が実行されることによって図5のLN1に示すように再生速度はC(0)となるのに対して、いずれの気筒に対しても還元燃焼制御が実行されないと図5のLN2に示すように再生速度はC(0)よりも小さいB(0)となる。このように、半数の気筒に対して還元燃焼制御が実行されることによって、NSR触媒9におけるNOxの還元が促進され、再生速度を向上させることができる。
【0090】
さらに、残りの半数の気筒においては非還元燃焼制御や気筒停止制御が実行されるので、全気筒に対して還元燃焼制御が実行される場合よりも失火の発生を抑制することができる。
【0091】
特に、エンジン11の運転領域が第3領域である場合には、複数の気筒11aのうちの残りの半数の気筒に対して気筒停止制御が実行されるので、気筒停止によりエンジン11の出力軸に作用するフリクションが増加するとともに、複数の気筒のうちの半数の気筒における燃焼によってエンジン11の動作が維持される。そのため、複数の気筒11aのうちの燃焼が継続する半数の気筒に流入する空気量と当該半数の気筒に供給される燃料量とが増加することになる。その結果、半数の気筒において還元燃焼制御が実行されることよって、失火の発生を抑制しつつ、空燃比が理論空燃比よりもリッチ側の値になるようにエンジンを制御することができる。これにより、還元剤である未燃成分の生成量が増加し、NOxの還元が促進され、NOx吸蔵還元触媒の再生速度を向上させることができる。したがって、軽負荷状態である場合にもNOx吸蔵還元触媒の再生が可能なエンジンシステムを提供することができる。
【0092】
さらに上述したようにエンジン11が軽負荷状態である場合にNSR触媒9の再生が可能となるため、第1領域内である場合にのみNSR触媒9の再生を実施する場合と比較して低車速域でのNSR触媒9の再生が可能となるため、NSR触媒9の再生機会を増やすことが可能となる。
【0093】
さらに上述のNSR触媒9においては、NOxの他に燃料に由来する排ガス中の硫黄成分が堆積する場合がある。その結果、NSR触媒9において本来吸蔵可能なNOxの量が減少する可能性がある。このようなNDR触媒9に堆積する硫黄成分は、たとえば、600℃以上の高温雰囲気に曝されるとNSR触媒9から脱離させることが可能となる。そのため、たとえば、還元制御を実行する場合には、排気温度を600℃以上に加熱する制御を併せて実行することによって、NOxの還元とともに硫黄成分の脱離を行なうことができる。
【0094】
以下、変形例について記載する。
【0095】
上述の実施の形態において、エンジン11に形成される気筒数が4つである場合を一例として説明したが、気筒数は、4つに限定されるものではなく、5つ以上であってもよいし、2つまた3つであってもよい。
【0096】
なお、本実施の形態においては、エンジン11の動作点が第2領域内であると、複数の気筒11aのうちの半数の気筒に対して還元燃焼制御を実行し、残りの半数の気筒に対して非還元燃焼制御または気筒停止制御を実行するものとして説明するが、特に全気筒数を同数に分ける必要はなく、たとえば、エンジン11が4気筒エンジンである場合に、1気筒のみ還元燃焼制御を実行し、3気筒に対して非還元燃焼制御または気筒停止制御を実行してもよいし、逆に1気筒のみ非還元燃焼制御または気筒停止制御を実行し、3気筒に対して還元燃焼制御を実行してもよい。また、還元燃焼制御を実行する気筒数をエンジン11の負荷に応じて設定してもよい。たとえば、エンジン11の負荷が軽くなるほど還元燃焼制御を実行する気筒数を減少させてもよい。エンジン11の負荷が重くなるほど(動作点が第1領域に近づくほど)還元燃焼制御を実行する気筒数を増加させてもよい。
【0097】
さらに上述の実施の形態において、エンジン11の動作点が第2領域内である場合には、半数の気筒において還元燃焼制御が実行され、残りの半数の気筒において非還元燃焼制御が実行されるものとして説明したが、非還元燃焼制御に代えて、空燃比をリッチ側の空燃比にすることを目的としつつ、メイン噴射よりも後に噴射される燃料噴射量が上述した還元燃焼制御よりも少ない制御を実行してもよい。
【0098】
さらに上述の実施の形態において、NSR触媒9におけるNOxの堆積量としては、エンジン回転数Neおよび燃料噴射量Qからマップ等を用いて算出する場合を一例として説明したが、たとえば、排気通路7の所定の位置にNOxの量を検出可能なNOxセンサを設け、NOxセンサの検出結果を用いてNOxの堆積量を算出してもよい。
【0099】
さらに上述の実施の形態において、還元燃焼制御がNSR触媒9におけるNOxの堆積量がしきい値S(1)以下になるまで継続される場合を一例として説明したが、たとえば、還元燃焼制御の実行時間が予め定められた時間を経過すると還元燃焼制御を終了してもよい。
【0100】
さらに上述の実施の形態において、エンジン11の動作点が第2領域内であると、半数の気筒に対して還元燃焼制御が実行され、残りの半数の気筒に対して非還元燃焼制御が実行されるものとして説明したが、たとえば、エンジン11の動作点が第2領域内である場合でも、第3領域内である場合と同様に、半数の気筒に対して還元燃焼制御が実行され、残りの半数の気筒に対して気筒停止制御を実行してもよい。
【0101】
さらに上述の実施の形態において、NSR触媒9におけるNOxエンジン11の動作点が第1領域、第2領域および第3領域のうちの少なくともいずれかの領域内である場合に、少なくとも半数の気筒に対して還元燃焼制御を実行するものとして説明したが、たとえば、還元燃焼制御を実行するときに、過給機のベーン機構におけるベーン開度を大きくするなどして過給圧の上昇を抑制してもよい。
【0102】
さらに上述の実施の形態においては、第2領域および第3領域の形状がいずれも矩形形状である場合を一例として説明したが、少なくとも第2領域が第1領域よりも燃料噴射量が少ない領域であって、かつ、第3領域が第2領域よりも燃料噴射量が少ない領域であればよく、特に矩形形状にすることに限定されるものではない。
【0103】
なお、上記した変形例は、その全部または一部を適宜組み合わせて実施してもよい。
【0104】
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
【符号の説明】
【0105】
1 排気処理装置、2 エアフローメータ、3 空燃比センサ、4 PM除去フィルタ、5 燃料供給弁、7 排気通路、7a 第1通路、7b 第2通路、7c 第3通路、7d 第4通路、8 吸気通路、9 NSR触媒、10 エンジンシステム、11 エンジン、11a 気筒、11b ピストン、12 燃料タンク、13 燃料噴射装置、14 燃料ポンプ、15 コモンレール、16 吸気絞り弁、19 EGR弁、17 開度センサ、18 EGR通路、20 エンジン回転数センサ、100 制御装置、150 メモリ。
図1
図2
図3
図4
図5