(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-04-26
(45)【発行日】2023-05-09
(54)【発明の名称】溶融亜鉛めっき鋼板の製造方法および溶融亜鉛めっき浴の操業方法
(51)【国際特許分類】
C23C 2/06 20060101AFI20230427BHJP
C23C 2/28 20060101ALI20230427BHJP
C23C 2/40 20060101ALI20230427BHJP
【FI】
C23C2/06
C23C2/28
C23C2/40
(21)【出願番号】P 2021514209
(86)(22)【出願日】2020-04-16
(86)【国際出願番号】 JP2020016686
(87)【国際公開番号】W WO2020213671
(87)【国際公開日】2020-10-22
【審査請求日】2021-10-01
(31)【優先権主張番号】P 2019080277
(32)【優先日】2019-04-19
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000006655
【氏名又は名称】日本製鉄株式会社
(74)【代理人】
【識別番号】100106909
【氏名又は名称】棚井 澄雄
(74)【代理人】
【識別番号】100175802
【氏名又は名称】寺本 光生
(74)【代理人】
【識別番号】100134359
【氏名又は名称】勝俣 智夫
(74)【代理人】
【識別番号】100188592
【氏名又は名称】山口 洋
(72)【発明者】
【氏名】古川 直人
(72)【発明者】
【氏名】小西 剛嗣
【審査官】祢屋 健太郎
(56)【参考文献】
【文献】特開2001-107208(JP,A)
【文献】特開平04-099258(JP,A)
【文献】特開平04-362167(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
C23C 2/00
(57)【特許請求の範囲】
【請求項1】
溶融亜鉛めっき浴に鋼板を連続的に浸漬して溶融亜鉛めっき層を形成することで溶融亜鉛めっき鋼板を製造する、溶融亜鉛めっき鋼板の製造方法であって、
溶融亜鉛めっき設備の停機時には、トップドロスが生じるように前記溶融亜鉛めっき浴の浴温TとフリーAl濃度C
Alとを設定するとともに、前記溶融亜鉛めっき浴の前記トップドロスを除去し、
前記溶融亜鉛めっき設備の稼働時には、δ1相が核生成するように前記溶融亜鉛めっき浴の前記浴温Tと前記フリーAl濃度C
Alとを設定
し、
前記溶融亜鉛めっき設備の停機時には稼働時よりも前記浴温Tを低下させて、稼働時と停機時とにおける浴温差を25℃以上とする、
ことを特徴とする溶融亜鉛めっき鋼板の製造方法。
【請求項2】
溶融亜鉛めっき浴に鋼板を連続的に浸漬して溶融亜鉛めっき層を形成することで溶融亜鉛めっき鋼板を製造する、溶融亜鉛めっき鋼板の製造方法であって、
溶融亜鉛めっき設備の停機時には、
トップドロスが生じるように前記溶融亜鉛めっき浴の
浴温Tを440~460℃の温度域に設定し、かつ前記溶融亜鉛めっき浴の質量%での
フリーAl濃度C
Alが式(1)を満足するよう設定
するとともに、前記溶融亜鉛めっき浴の前記トップドロスを除去し、
前記溶融亜鉛めっき設備の稼働時には、
δ1相が核生成するように前記溶融亜鉛めっき浴の前記浴温Tを480~490℃の温度域に設定し、かつ前記溶融亜鉛めっき浴の質量%での前記フリーAl濃度C
Alが式(2)を満足するように設定する、
ことを特徴とする
溶融亜鉛めっき鋼板の製造方法。
-2.914×10
-5×T+1.524×10
-1<C
Al<0.1427 (1)
0.1390<C
Al<2.686×10
-4×T+1.383×10
-2 (2)
【請求項3】
前記溶融亜鉛めっき層を合金化して合金化溶融亜鉛めっき層を形成する、
ことを特徴とする請求項1または2に記載の溶融亜鉛めっき鋼板の製造方法。
【請求項4】
溶融亜鉛めっき浴に鋼板を連続的に浸漬して溶融亜鉛めっき層を形成する、溶融亜鉛めっき浴の操業方法であって、
溶融亜鉛めっき設備の停機時には、トップドロスが生じるように前記溶融亜鉛めっき浴の浴温TとフリーAl濃度C
Alとを設定するとともに、前記溶融亜鉛めっき浴の前記トップドロスを除去し、
前記溶融亜鉛めっき設備の稼働時には、δ1相が核生成するように前記溶融亜鉛めっき浴の前記浴温Tと前記フリーAl濃度C
Alとを設定
し、
前記溶融亜鉛めっき設備の停機時には稼働時よりも前記浴温Tを低下させて、稼働時と停機時とにおける浴温差を25℃以上とする、
ことを特徴とする溶融亜鉛めっき浴の操業方法。
【請求項5】
溶融亜鉛めっき浴に鋼板を連続的に浸漬して溶融亜鉛めっき層を形成する、溶融亜鉛めっき浴の操業方法であって、
溶融亜鉛めっき設備の停機時には、
トップドロスが生じるように前記溶融亜鉛めっき浴の
浴温Tを440~460℃の温度域に設定し、かつ前記溶融亜鉛めっき浴の質量%での
フリーAl濃度C
Alが式(1)を満足するよう設定
するとともに、前記溶融亜鉛めっき浴の前記トップドロスを除去し、
前記溶融亜鉛めっき設備の稼働時には、
δ1相が核生成するように前記溶融亜鉛めっき浴の前記浴温Tを480~490℃の温度域に設定し、かつ前記溶融亜鉛めっき浴の質量%での前記フリーAl濃度C
Alが式(2)を満足するように設定する、
ことを特徴とする
溶融亜鉛めっき浴の操業方法。
-2.914×10
-5×T+1.524×10
-1<C
Al<0.1427 (1)
0.1390<C
Al<2.686×10
-4×T+1.383×10
-2 (2)
【請求項6】
前記溶融亜鉛めっき層を合金化して合金化溶融亜鉛めっき層を形成する、
ことを特徴とする請求項4または5に記載の溶融亜鉛めっき浴の操業方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、溶融亜鉛めっき鋼板の製造方法および溶融亜鉛めっき浴の操業方法に関する。
本願は、2019年4月19日に、日本に出願された特願2019-080277号に基づき優先権を主張し、その内容をここに援用する。
【背景技術】
【0002】
従来、鋼板に溶融亜鉛めっき層を形成する方法として、溶融亜鉛めっき浴に鋼板を連続的に浸漬する方法が用いられている。この方法では、鋼板に対して焼鈍を施した後、上端が焼鈍炉に接続され、下端が溶融亜鉛めっき浴に浸漬されたスナウトの内部を通じて、焼鈍後の鋼板を溶融亜鉛めっき浴中に浸漬させる。溶融亜鉛めっき浴中の浸漬ロールにより、鋼板の進行方法を斜め下方から上方に変え、鋼板を引き上げる。その後、気体絞り法により鋼板の表面に付着した溶融亜鉛めっきの付着量を制御する。
【0003】
溶融亜鉛めっき浴から引き上げられた鋼板は、後段の合金化炉において合金化処理が施されれば、合金化溶融亜鉛めっき鋼板となる。(以下、合金化処理が施されたもの(合金化溶融亜鉛めっき鋼板)と、合金化処理が施されていないものとを合わせて「溶融亜鉛めっき鋼板」と言い、特に、合金化処理が施されていないものを表すときは「非合金化溶融亜鉛めっき鋼板」と表現する。)
【0004】
上記スナウト内は大気と遮断され、かつ、窒素ガス等の非酸化性雰囲気に保持されており、めっきを施す鋼板の表面の酸化汚染を防止している。ここで、鋼板から浴中に溶出した金属(例えば、鋼板から溶出したFe)と、浴中に存在するAlまたはZnと、が反応すると、めっき浴の底部に堆積するドロスが生成される。このようにして生成されたドロスは、ボトムドロスと呼ばれる。ボトムドロスは、浴中における鋼板の進行により発生する随伴流によって浴中を浮遊し、浴中に浸漬される鋼板の表面に付着して、品質不良(特に、溶融亜鉛めっき鋼板の表面の外観不良)を生じさせる原因となる。
【0005】
溶融亜鉛めっき鋼板の表面の外観不良を抑制するために、従来、様々な技術が提案されている。例えば、特許文献1では、合金化溶融亜鉛めっき鋼板を製造するに際して、溶融亜鉛浴温度をT(℃)とし、Cz=-0.0015×T+0.76という式で表される境界Al濃度をCz(wt%)としたときに、溶融亜鉛浴温度Tを435~500℃の範囲内とするとともに、浴中Al濃度をCz±0.01wt%の範囲内に保持する技術が提案されている。
【0006】
特許文献2では、合金化溶融亜鉛めっき鋼板を製造するに際して、浴中Al濃度を0.15±0.01wt%の範囲内に保持する技術が提案されている。
【0007】
溶融亜鉛めっき鋼板を製造するに際して発生し得るドロスには、Fe2Al5(いわゆる、トップドロス)、δ1相、Γ2相、およびζ相の4種類が存在することが知られている。特許文献1で提案されている技術は、ζ相が発生する条件とδ1相が発生する条件との境界の条件で操業を行うことを提案したものである。特許文献2で提案されている技術は、Fe2Al5相が発生する条件とδ1相が発生する条件との境界の条件で操業を行うことを提案したものである。
【先行技術文献】
【特許文献】
【0008】
【文献】日本国特開平11-350096号公報
【文献】日本国特開平11-350097号公報
【発明の概要】
【発明が解決しようとする課題】
【0009】
従来、溶融亜鉛めっき浴のAl濃度を高めに設定することで、溶融亜鉛めっき浴面に浮上するドロス(いわゆる「Fe-Al系トップドロス」)を形成させて、適宜Fe-Al系トップドロスを除去する操業(以下、トップドロス操業ともいう)がなされてきた。トップドロス操業と対立する操業の考え方として、ボトムドロス操業というものがある。
【0010】
溶融亜鉛めっき浴のAl濃度が低い場合、溶融亜鉛めっき浴に沈降するドロス(いわゆる「Fe-Zn系ボトムドロス」)が形成される。Fe-Zn系ボトムドロスは、溶融亜鉛めっき設備の操業中に除去することが困難なため、浴底に堆積する。浴底に堆積したボトムドロスはやがて鋼板の随伴流によって浴中にまきあげられ、鋼板および浴中のロールへ付着し、鋼板の表面に疵(以下、「ドロス疵」と記載する場合がある)が発生する原因となる。
【0011】
ボトムドロスが鋼板に付着すると、めっき表面に不均一部分が生じ、外観の品質不良が発生する。また、不均一部分が形成される結果、局部電池が形成されやすくなり、耐食性を低下させる要因となる表面欠陥が生じて、めっき鋼板の品質欠陥が生じてしまう。そのため、ボトムドロス操業において溶融亜鉛めっき鋼板の品質を維持するためには、浴底に堆積したボトムドロスを除去するため、定期的にラインを休止して浴清掃を行う必要がある。操業中にドロス除去が可能なトップドロス操業に対し、ライン停機によるドロス除去が必要となるボトムドロス操業は工数がかかる上、ライン停機による生産量の低下の問題が生じる。このため、一般的に、ボトムドロス操業は敬遠される。
【0012】
しかしながら、溶融亜鉛めっき浴に鋼板を浸漬した後に、めっき層の合金化処理がなされる場合がある。溶融亜鉛めっき層中のAl含有量が高いほど合金化しにくくなる。そのため、特に合金化処理を施す場合、高品質な合金化溶融亜鉛めっき鋼板を高効率な生産性で製造するには、溶融亜鉛めっき浴のAl濃度が低いボトムドロス操業の方が有利である。
【0013】
本発明は、上記問題に鑑みてなされたものである。本発明は、ボトムドロス操業を行った場合であっても、溶融亜鉛めっき鋼板の品質不良を抑制でき、かつ生産性の低下が抑制された溶融亜鉛めっき鋼板の製造方法、および溶融亜鉛めっき浴の操業方法を提供することを目的とする。
【課題を解決するための手段】
【0014】
上記課題を解決するために、本発明者らは、ボトムドロス操業を行う際にドロス疵が発生する原因となるボトムドロスの粒径について調査した。その結果、本発明者らは、100~300μmの粒径を有するボトムドロスが浴中に存在すると、ドロス疵が増加することを見出した。そして、100~300μmの粒径を有するボトムドロスの発生が抑制される溶融亜鉛めっき浴の条件を詳細に検討し、以下で詳述する本発明を想到した。
かかる知見に基づき完成された本発明の要旨は、以下の通りである。
【0015】
[1]本発明の一態様に係る溶融亜鉛めっき鋼板の製造方法は、溶融亜鉛めっき浴に鋼板を連続的に浸漬して溶融亜鉛めっき層を形成することで溶融亜鉛めっき鋼板を製造する、溶融亜鉛めっき鋼板の製造方法であって、
溶融亜鉛めっき設備の停機時には、トップドロスが生じるように前記溶融亜鉛めっき浴の浴温TとフリーAl濃度CAlとを設定するとともに、前記溶融亜鉛めっき浴の前記トップドロスを除去し、
前記溶融亜鉛めっき設備の稼働時には、δ1相が核生成するように前記溶融亜鉛めっき浴の前記浴温Tと前記フリーAl濃度CAlとを設定し、
前記溶融亜鉛めっき設備の停機時には稼働時よりも前記浴温Tを低下させて、稼働時と停機時とにおける浴温差を25℃以上とする。
[2]本発明の別の態様に係る溶融亜鉛めっき鋼板の製造方法は、溶融亜鉛めっき浴に鋼板を連続的に浸漬して溶融亜鉛めっき層を形成することで溶融亜鉛めっき鋼板を製造する、溶融亜鉛めっき鋼板の製造方法であって、
溶融亜鉛めっき設備の停機時には、トップドロスが生じるように前記溶融亜鉛めっき浴の浴温Tを440~460℃の温度域に設定し、かつ前記溶融亜鉛めっき浴の質量%でのフリーAl濃度CAlが式(1)を満足するよう設定するとともに、前記溶融亜鉛めっき浴の前記トップドロスを除去し、
前記溶融亜鉛めっき設備の稼働時には、δ1相が核生成するように前記溶融亜鉛めっき浴の前記浴温Tを480~490℃の温度域に設定し、かつ前記溶融亜鉛めっき浴の質量%での前記フリーAl濃度CAlが式(2)を満足するように設定する。
-2.914×10-5×T+1.524×10-1<CAl<0.1427 (1)
0.1390<CAl<2.686×10-4×T+1.383×10-2 (2)
[3]上記[1]または[2]に記載の溶融亜鉛めっき鋼板の製造方法では、前記溶融亜鉛めっき層を合金化して合金化溶融亜鉛めっき層を形成してもよい。
[4]本発明の別の態様に係る溶融亜鉛めっき浴の操業方法は、溶融亜鉛めっき浴に鋼板を連続的に浸漬して溶融亜鉛めっき層を形成する、溶融亜鉛めっき浴の操業方法であって、
溶融亜鉛めっき設備の停機時には、トップドロスが生じるように前記溶融亜鉛めっき浴の浴温TとフリーAl濃度CAlとを設定するとともに、前記溶融亜鉛めっき浴の前記トップドロスを除去し、
前記溶融亜鉛めっき設備の稼働時には、δ1相が核生成するように前記溶融亜鉛めっき浴の前記浴温Tと前記フリーAl濃度CAlとを設定し、
前記溶融亜鉛めっき設備の停機時には稼働時よりも前記浴温Tを低下させて、稼働時と停機時とにおける浴温差を25℃以上とする。
[5]本発明の別の態様に係る溶融亜鉛めっき浴の操業方法は、溶融亜鉛めっき浴に鋼板を連続的に浸漬して溶融亜鉛めっき層を形成する、溶融亜鉛めっき浴の操業方法であって、
溶融亜鉛めっき設備の停機時には、トップドロスが生じるように前記溶融亜鉛めっき浴の浴温Tを440~460℃の温度域に設定し、かつ前記溶融亜鉛めっき浴の質量%でのフリーAl濃度CAlが式(1)を満足するよう設定するとともに、前記溶融亜鉛めっき浴の前記トップドロスを除去し、
前記溶融亜鉛めっき設備の稼働時には、δ1相が核生成するように前記溶融亜鉛めっき浴の前記浴温Tを480~490℃の温度域に設定し、かつ前記溶融亜鉛めっき浴の質量%での前記フリーAl濃度CAlが式(2)を満足するように設定する。
-2.914×10-5×T+1.524×10-1<CAl<0.1427 (1)
0.1390<CAl<2.686×10-4×T+1.383×10-2 (2)
[6]上記[4]または[5]に記載の溶融亜鉛めっき浴の操業方法では、前記溶融亜鉛めっき層を合金化して合金化溶融亜鉛めっき層を形成してもよい。
【発明の効果】
【0016】
本発明に係る上記態様によれば、ボトムドロス操業を行った場合であっても、溶融亜鉛めっき鋼板の品質不良を抑制でき、かつ生産性の低下が抑制された溶融亜鉛めっき鋼板の製造方法、および溶融亜鉛めっき浴の操業方法を提供することが可能となる。
【図面の簡単な説明】
【0017】
【
図1】本実施形態において用いられ得る連続溶融亜鉛めっき設備(合金化溶融亜鉛めっき設備)の構成の一例を示す模式図である。
【
図2】溶融亜鉛めっき浴のドロス生成相を浴温T(℃)とフリーAl濃度C
Alとについて整理した準安定状態図である。
【
図3】操業10日後のめっき浴に生成したボトムドロスの形態を示す顕微鏡写真である。
【
図4】実施例の各製造条件でのドロスの粒径と個数の関係について示すグラフである。
【発明を実施するための形態】
【0018】
以下、図面を参照しながら、本発明の好適な実施形態について詳細に説明する。
【0019】
<1.連続溶融亜鉛めっき設備の構成>
まず、本発明の詳細な説明に先立ち、本実施形態に係る溶融亜鉛めっき鋼板の製造方法および溶融亜鉛めっき浴の操業方法を実施可能な連続溶融亜鉛めっき設備の構成の一例について、詳細に説明する。なお、同設備は正確には合金化溶融亜鉛めっき設備である。非合金化溶融亜鉛めっき鋼板を製造する場合には合金化炉を稼働させなければよいだけであるので、以下では合金化溶融亜鉛めっき設備を例に、連続溶融亜鉛めっき設備を説明する。
【0020】
図1は、合金化溶融亜鉛めっき設備の構成の一例を示す模式図である。溶融亜鉛めっき設備10は、例えば
図1に示したように、溶融亜鉛めっき浴103(以下単に「めっき浴」ともいう)と、めっき浴103が収容されている溶融亜鉛めっき浴槽101と、スナウト105と、シンクロール107と、ガスワイピング装置109と、合金化炉111と、を備える。
【0021】
溶融亜鉛めっき設備10の前段(鋼板Sの搬送方向上流側)に設けられている焼鈍炉20は、大気雰囲気から遮断され、内部が還元性雰囲気に維持されている。また、焼鈍炉20は、連続的に搬送される鋼板Sを加熱する。焼鈍炉20によって、鋼板Sの表面が活性化され、また、鋼板Sの機械的性質が調整される。焼鈍炉20の出側端部は、ターンダウンロール30が設けられた空間を経由して、スナウト105の上流側の端部に接続されている。
【0022】
スナウト105は、上流側の端部が焼鈍炉20の端部に接続され、下流側の端部が溶融亜鉛めっき浴103中に斜め上方から浸漬されている。スナウト105の内部は、焼鈍炉20と同様、大気雰囲気から遮断され、還元性雰囲気に維持されている。
【0023】
ターンダウンロール30により搬送方向が下向きに変えられた鋼板Sは、スナウト105の内部を搬送されて、溶融亜鉛めっき浴槽101に収容されている溶融亜鉛めっき浴103へと連続的に浸漬される。溶融亜鉛めっき浴槽101の内部には、シンクロール107が設けられている。シンクロール107は、鋼板Sの板幅方向に平行な回転軸を有しており、シンクロール107の外周面の幅は、鋼板Sの板幅以上となっている。シンクロール107により、鋼板Sの搬送方向が上向きに変えられる。
【0024】
ガスワイピング装置109は、溶融亜鉛めっき浴槽101から導出される鋼板Sの両面に対してガスを吹き付けることにより、鋼板Sの表面に付着した溶融亜鉛めっきの一部を掻き落とす。これにより、鋼板Sの表面の溶融亜鉛めっきの付着量が調整される。
【0025】
その後、鋼板Sは更に垂直に引き上げられながら、合金化炉111で合金化処理される。合金化炉111は、鋼板Sの入り側から順に、加熱帯、保熱帯、および冷却帯という3つの部分から構成されている。合金化炉111では、まず、加熱帯によって鋼板Sの板温が略均一となるように加熱が行われる。次に、保熱帯にて合金化時間を確保することで、鋼板Sの表面に形成された溶融亜鉛めっき層が合金化されて合金化層(合金化溶融亜鉛めっき層)となる。その後、鋼板S(すなわち、合金化溶融亜鉛めっき鋼板)は、冷却帯にて冷却され、トップロール40によって次の工程へ搬送される。なお、非合金化溶融亜鉛めっき鋼板を製造する場合には、以上のような合金化炉111を用いた合金化処理は行われない。
【0026】
上記のような溶融亜鉛めっき設備10において、溶融亜鉛めっき浴槽101では、鋼板Sから溶出した鉄が、溶融亜鉛めっき浴103中でドロスと呼ばれる融点の高い粒子状固体合金を形成する。このドロスが鋼板Sへ付着すると、鋼板Sの表面にドロス疵が発生する。
【0027】
<2.本発明者らの検討>
ボトムドロス操業を行う際に問題となるのは、めっき浴103中の鋼板Sの随伴流に伴いボトムドロスが巻き上げられて鋼板Sに付着することである。ボトムドロス操業においてボトムドロスの発生は避けられないが、ボトムドロスの粒径が小さければ、ボトムドロスが鋼板Sに付着したとしても品質不良は生じないと考えられる。
【0028】
本発明者らは、ドロス疵発生の原因となるボトムドロスの粒径を調査した。その結果、本発明者らは、100~300μmの粒径を有するボトムドロスが浴中に存在すると、ドロス疵が多く発生することを知見した。粒径が100μm未満であるボトムドロスは十分に小さいため、鋼板Sに付着しても、ドロス疵発生の原因とならない。一方、粒径が300μm超であるボトムドロスは、重力の影響が大きく、浴底へ沈降するため鋼板Sに付着しにくい。そのため、ドロス疵の発生を抑えるためには、100~300μmの粒径を有するボトムドロスの量をできるだけ少なく抑えることが重要である。
【0029】
一方、本発明者らは、ボトムドロスの粒径の成長速度について調査した。その結果、めっき浴103の浴温が低いとボトムドロスの粒径の成長速度が早く、めっき浴103の浴温が高いとボトムドロスの粒径の成長速度が遅いことを知見した。これは、低浴温(455~460℃の温度域以下、すなわち455℃以下)で安定のΓ2相の成長速度が、高浴温(455~460℃の温度域以上、すなわち460℃以上)で安定のδ1相の成長速度と比較して速いことに起因すると推測される。
【0030】
溶融亜鉛めっき設備10の操業時は、溶融亜鉛めっき浴槽101に鋼板Sが連続的に通板されるため、局所的な核生成は不可避的に生じる。そのため、操業中はあえてδ1相の核生成領域でボトムドロスを成長させ、鋼板Sから溶出したFeが微細なボトムドロスとなるように誘導する。具体的には、ボトムドロスの粒径の成長速度が遅い高浴温域(δ1相の核生成領域)で操業し、操業中に新たに核生成した微細なボトムドロスの粒径が100μm以上となることを防止する。これにより、ドロス疵の発生を抑制することができる。
【0031】
ただし、長期間ボトムドロス操業を続けた場合、ボトムドロスが、低速ではあるものの、徐々に成長して100~300μmの粒径まで成長してしまう場合がある。このようにボトムドロスが成長する現象は、結晶学においてオストワルド成長と呼ばれる。様々な粒径のボトムドロスが存在するめっき浴103で長時間操業を続けると、相対的に小さい粒径のボトムドロスから相対的に大きいボトムドロスへの物質移動が起こり、小さい粒径のボトムドロスはさらに小さく、大きい粒径のボトムドロスはさらに大きくなる。
【0032】
そのため、ボトムドロスを除去した状態からボトムドロス操業を開始して、ボトムドロスが生成してもボトムドロスの粒径に大きな差異がでないように操業を行う。これにより、オストワルド成長を起こりにくくする。また、オストワルド成長によりボトムドロスの粒径が大きくなったとしても、100μm以上の粒径にボトムドロスが成長する前にボトムドロスを除去すれば、ドロス疵の発生を抑制することができる。具体的には、溶融亜鉛めっき設備10の停機時(オフライン時)には、トップドロスが生じるようにめっき浴103の浴温およびフリーAl濃度を設定し、めっき浴103中のドロスをめっき浴面に浮上させるとともに、浮上させたドロスをトップドロスとして除去する。
【0033】
このように操業時と停機時とでめっき浴103の条件を変えることにより、操業中に新たに微細なボトムドロスが核生成しても、そのボトムドロスが大きく成長する前にめっき浴103中のボトムドロスをトップドロスとして除去することができ、ドロス疵の発生を抑制することができる。
【0034】
<3.溶融亜鉛めっき鋼板の製造方法および溶融亜鉛めっき浴の操業方法>
上記知見に基づき完成された、本実施形態に係る溶融亜鉛めっき鋼板の製造方法および溶融亜鉛めっき浴の操業方法について説明する。なお、以下の説明においては、本実施形態に係る溶融亜鉛めっき鋼板の製造方法および溶融亜鉛めっき浴の操業方法を、
図1に示す溶融亜鉛めっき設備10を用いて実施されるものとして説明するが、本発明はこれに限定されない。
【0035】
本実施形態に係る溶融亜鉛めっき鋼板の製造方法は、溶融亜鉛めっき浴103に鋼板Sを連続的に浸漬して溶融亜鉛めっき層を形成することで溶融亜鉛めっき鋼板を製造する、溶融亜鉛めっき鋼板の製造方法である。本実施形態では、溶融亜鉛めっき層を形成した後、鋼板Sを加熱して溶融亜鉛めっき層を合金化することで、合金化溶融亜鉛めっき層を形成してもよい。本実施形態に係る溶融亜鉛めっき鋼板の製造方法は、後述するようにボトムドロス条件下においてめっき浴103を操業するため、溶融亜鉛めっき層中のAl含有量が抑制されており、合金化が容易である。この結果、高品質な合金化溶融亜鉛めっき鋼板を製造することが可能である。
【0036】
また、本実施形態に係る溶融亜鉛めっき浴の操業方法は、上記溶融亜鉛めっき鋼板の製造方法に好適に用いられる方法である。そして、上述したように本実施形態に係る溶融亜鉛めっき浴の操業方法は、溶融亜鉛めっき層を合金化して合金化溶融亜鉛めっき鋼板とする場合に、特に好適に適用される。
【0037】
なお、本実施形態に係る溶融亜鉛めっき鋼板の製造方法に用いられる鋼板(母材鋼板)Sについては、特に限定されるものではなく、製造する溶融亜鉛めっき鋼板に求められる各種特性(例えば、鋼板に求められる引張強度および各種強度など)に応じて、公知の鋼板を適宜利用すればよく、自動車外板に用いられる鋼板を利用することも可能である。
【0038】
本実施形態に係る溶融亜鉛めっき鋼板の製造方法および溶融亜鉛めっき浴の操業方法においては、溶融亜鉛めっき設備10の停機時には、めっき浴103の浴温TとフリーAl濃度CAlとがトップドロス領域となる条件に設定するとともに、トップドロスを除去し、溶融亜鉛めっき設備10の稼働時(オンライン時)にはめっき浴103の浴温TとフリーAl濃度CAlとがδ1相の核生成領域となる条件に設定する。すなわち、溶融亜鉛めっき設備の停機時には、トップドロスが生じるように溶融亜鉛めっき浴の浴温TとフリーAl濃度CAlとを設定するとともに、溶融亜鉛めっき浴のトップドロスを除去し、溶融亜鉛めっき設備の稼働時には、δ1相が核生成するように溶融亜鉛めっき浴の浴温TとフリーAl濃度CAlとを設定する。
【0039】
これにより、めっき浴103中の粒径が100~300μmであるボトムドロスの量を低減させることが可能となる。すなわち、溶融亜鉛めっき設備10の停機時には、めっき浴103の浴温TとフリーAl濃度CAlとがトップドロス領域となる条件に設定することにより、めっき浴103面に浮上するトップドロスを回収して、ドロス疵の原因となりうる粗大なドロスを除去する。一方で、溶融亜鉛めっき設備10の稼働時においては、めっき浴103の浴温TとフリーAl濃度CAlとがδ1相の核生成領域となる条件に設定し、あえてδ1相の核生成領域での操業を行い、鋼板Sから溶出したFeが微細なボトムドロスとなるように誘導する。
【0040】
通常、溶融亜鉛めっき設備10を長時間稼働させると、オストワルド成長により、生成したボトムドロスの粒径が増大する。しかし、δ1相の核生成領域での操業におけるボトムドロスの成長速度は遅く、オストワルド成長が起こりづらい。このため、ある程度長時間、溶融亜鉛めっき設備10を稼働させないと、ボトムドロスの粒径が100μm以上にまで成長することはない。ボトムドロスの粒径が100μm以上に成長する前に、溶融亜鉛めっき設備10を停機し、めっき浴103の浴温TとフリーAl濃度CAlとがトップドロス領域となる条件に設定し、トップドロスとしてドロスを除去すれば、ドロス疵の発生を抑制することができる。
【0041】
具体的には、めっき浴103の条件は、例えば、めっき浴103の組成および温度により制御可能である。以下、
図2を参照しつつ、めっき浴103の好ましい組成および温度について説明する。
図2は、溶融亜鉛めっき浴のドロス生成相を浴温T(℃)と浴中フリーAl濃度C
Alとについて整理した準安定状態図である。
図2中、「C
Al」は、めっき浴103中の浴中フリーAl濃度(質量%)を示す。なお、「浴中フリーAl濃度」とは、めっき浴103の液相中に含まれるAl濃度を意味し、ドロスおよび液相の双方の平均的なAl濃度を意味するめっき浴103の全Al濃度とは区別して用いられる。
【0042】
めっき浴103中のフリーAl濃度CAlは以下の方法により測定する。溶融亜鉛めっき浴槽101からめっき浴液を汲み取り、このめっき浴液を鋳型に注ぎ、凝固させてインゴットを作成する。ドリルを用いて、このインゴットから切粉を適量削り出し、切粉の一部を塩酸および硝酸で溶かして溶液とする。この溶液と、ICP発光分光分析器と、予め算出した検量線とを用いて、Al濃度(質量%)を算出する。これにより、めっき浴103中のフリーAl濃度CAlを得る。
また、めっき浴103の浴温Tは、浴温が安定する位置において、温度計を用いて測定すればよい。
【0043】
本実施形態では、めっき浴103のフリーAl濃度C
Alおよび浴温Tを、
図2において、稼働時には「δ1核生成」領域内に設定し、停機時には「トップドロス」領域に設定する。
図2の「δ1核生成」領域は、上述したδ1相の核生成領域である。めっき浴103のフリーAl濃度C
Alおよび浴温Tが「δ1核生成」領域内に含まれる場合、めっき浴103ではδ1相が核生成する。また、
図2の「トップドロス」領域は、上述したトップドロス領域である。めっき浴103のフリーAl濃度C
Alおよび浴温Tが「トップドロス」領域内に含まれる場合、めっき浴103ではトップドロスが生じる。
さらに、本実施形態では、
図2において、めっき浴103のフリーAl濃度C
Alおよび浴温Tを、稼働時には「δ1核生成」領域の鎖線で囲まれる領域の条件に設定し、停機時には「トップドロス」領域の鎖線で囲まれる領域の条件に設定することが好ましい。
【0044】
すなわち、溶融亜鉛めっき設備10の停機時には、溶融亜鉛めっき浴103の浴温T(℃)を440~460℃の温度域に設定し、かつ溶融亜鉛めっき浴103中のフリーAl濃度CAl(質量%)が式(1)を満足するよう設定し、溶融亜鉛めっき設備10の稼働時には、溶融亜鉛めっき浴103の浴温T(℃)を480~490℃の温度域に設定し、かつ溶融亜鉛めっき浴103中のフリーAl濃度CAl(質量%)が式(2)を満足するように設定することが好ましい。
-2.914×10-5×T+1.524×10-1<CAl<0.1427 (1)
0.1390<CAl<2.686×10-4×T+1.383×10-2 (2)
【0045】
溶融亜鉛めっき設備10の停機時に、めっき浴103中のフリーAl濃度CAlが、浴温Tとの関係で、(-2.914×10-5×T+1.524×10-1)質量%以下となると、トップドロス領域から外れ、粗大なボトムドロスが浴底に残存してしまう場合がある。停機時に、めっき浴103中のフリーAl濃度CAlが0.1427質量%以上であると、稼働時の温度条件等によっては、停機時から稼働時に移行する際にフリーAl濃度CAlを下げる必要がある。めっき浴103中のフリーAl濃度CAlの調整は、鋼板Sを通板しながら行うこととなるため、操業が煩雑になる場合がある。溶融亜鉛めっき設備10の停機時においては、めっき浴103中のフリーAl濃度CAlは、上記式(1)を満足することが好ましいが、0.1400~0.1420質量%とすることがより好ましい。
【0046】
また、溶融亜鉛めっき設備10の停機時のめっき浴103の浴温が440℃未満であると、めっき浴103の組成によっては、反応性が低くなりδ1ドロスからトップドロスへの変態が十分に起こらないため、δ1ドロスを除去することができない。また、停機時のめっき浴103の浴温が460℃超であると、停機時にトップドロス領域から外れてボトムドロス領域に入りやすくなる。これにより、めっき浴103中のドロスを十分除去し切れず、粗大なボトムドロスが浴底に残存してしまう場合がある。停機時のめっき浴103の浴温は、上述したように440~460℃とすることが好ましいが、450~460℃とすることがより好ましい。
【0047】
溶融亜鉛めっき設備10の稼働時に、めっき浴103中のフリーAl濃度CAlが0.1390質量%以下であると、稼働時にフリーAl濃度CAlを下げる必要がある。めっき浴103中のフリーAl濃度CAlの調整は、鋼板Sを通板しながら行うこととなるため、操業が煩雑になる場合がある。めっき浴103中のフリーAl濃度CAlが、浴温Tとの関係で、(2.686×10-4×T+1.383×10-2)質量%以上であると、稼働時のめっき浴103の浴温によっては、トップドロス領域に近づく。これにより、Alの合金化抑制効果が過度に働き、鋼板Sを安定して合金化することが難しくなる場合がある。溶融亜鉛めっき設備10の稼働時においては、めっき浴103中のフリーAl濃度CAlは、上記式(2)を満足することが好ましいが、0.1400~0.1420質量%とすることがより好ましい。
【0048】
溶融亜鉛めっき設備10の稼働時のめっき浴103の浴温が480℃未満であると、めっき浴103の組成によっては、トップドロス領域に近づく。これにより、Alの合金化抑制効果が過度に働き、鋼板Sを安定して合金化することが難しくなる場合がある。また、稼働時のめっき浴103の浴温が490℃超であると、めっき浴103の組成によっては、鋼板Sの表面へ形成される溶融亜鉛めっきを合金化した際、合金化が過度に進行し、合金化層(合金化溶融亜鉛めっき層)の密着性が低下し、合金化層が剥離しやすくなる場合がある。稼働時のめっき浴103の浴温は、上述したように480~490℃であることが好ましい。
【0049】
従来法では、溶融亜鉛めっき設備10の稼働時に、めっき浴103の浴温TとフリーAl濃度CAlとがδ1の核生成領域となる条件に設定して操業を行う場合には、停機時もめっき浴103の浴温をできるだけ低下させないように操業していた。停機時にめっき浴103の浴温を低下させると、ボトムドロスが浮遊してドロス疵発生の原因となるためである。しかし、上述したように本実施形態では、めっき浴103の浴温は、稼働時には480~490℃とし、停機時には稼働時よりも浴温を低下させて440~460℃とすることが好ましい。
【0050】
本実施形態では、溶融亜鉛めっき設備10の稼働時のめっき浴103の浴温と、停機時のめっき浴103の浴温との差を25℃以上とすることが好ましい。稼働時と停機時とにおける浴温差を25℃以上とすることで、より安定して、溶融亜鉛めっき鋼板の品質不良および生産性低下を抑制することができる。
【0051】
めっき浴103は、液相成分として、Znを主成分とし、Al、Feおよび不純物を含有し得る。Feは、めっき浴103中に含まれる場合、例えば0.02~0.1質量%程度の濃度で含まれ得る。めっき浴103中のFeは、鋼板S由来であってもよいし、別途めっき浴103に添加されたものであってもよい。不純物とは、原料その他の要因により混入する成分であって、本実施形態に係る溶融亜鉛めっき鋼板の製造方法および溶融亜鉛めっき浴の操業方法に悪影響を与えない範囲で許容されるものを意味する。
【0052】
溶融亜鉛めっき設備10の停機時におけるトップドロスの除去方法は特に限定されず、公知の方法を採用することができる。具体的には、例えば網杓子状の治具を用いて、人力または機械によりトップドロスを掬い取ることによりトップドロスを除去する方法が挙げられる。
【0053】
ドロスの粒径分布については、以下のようにして計測することが可能である。
溶融亜鉛めっき浴103から300gのめっき浴液を採取し、採取しためっき浴液を急冷して固化させたものを所定の厚み(例えば、0.5mm程度)だけ研磨して、計測サンプルとする。得られた計測サンプルを所定倍率の光学顕微鏡又は走査型電子顕微鏡を用いて複数視野(例えば、5視野程度)観察し、各視野について、ドロスの粒径および個数を、公知の画像処理方法に則して測定する。
【0054】
以上、本実施形態に係る溶融亜鉛めっき鋼板の製造方法および溶融亜鉛めっき浴の操業方法について、詳細に説明した。本実施形態によれば、溶融亜鉛めっき設備10の停機時においては、めっき浴103の浴温TとフリーAl濃度CAlとがトップドロス領域となる条件に設定してドロスを回収することで粗大なドロスを除去することができる。そして、溶融亜鉛めっき設備10の稼働時においては、微細なボトムドロスは発生するが、ボトムドロスが粒成長しにくい領域(δ1相の核生成領域)で稼働させることで、ボトムドロスが溶融亜鉛めっき鋼板の品質に影響を及ぼすことがない。したがって、ボトムドロス領域において、溶融亜鉛めっき鋼板の品質不良を抑制し、生産性を低下させることなく、溶融亜鉛めっき鋼板を製造することができる。そして、トップドロス操業と比較して合金化に有利なボトムドロス操業を行った場合であっても、最終的に得られる溶融亜鉛めっき鋼板の品質を向上させることができる。
【実施例】
【0055】
続いて、本発明例および比較例を示しながら、本発明に係る溶融亜鉛めっき浴の操業方法および溶融亜鉛めっき鋼板の製造方法について、具体的に説明する。なお、以下に示す実施例は、本発明に係る溶融亜鉛めっき浴の操業方法および溶融亜鉛めっき鋼板の製造方法のあくまでも一例であって、本発明に係る溶融亜鉛めっき浴の操業方法および溶融亜鉛めっき鋼板の製造方法が以下の例に限定されるものではない。
【0056】
<1.予備試験>
実験用の連続溶融亜鉛めっき設備のめっき浴のフリーAl濃度CAlを0.1400%とし、停機時のめっき浴の浴温を455℃とし、浮上したトップドロスを完全に除去した上で、めっき浴の浴温を455℃、485℃にそれぞれ設定し、10日間操業を行った。
【0057】
図3に、操業開始後10日後のめっき浴の浴底に生成したボトムドロスの形態を示す。
図3に示すように、めっき浴の浴温が455℃であった場合、粗大なΓ2相のボトムドロスが発生した。これより、めっき浴の浴温が455℃であると、トップドロス領域となる条件で操業を行っても浴底にはΓ2相のボトムドロスが生成してしまうこと、および比較的短期間で粗大化することが判明した。
【0058】
一方、めっき浴の浴温が485℃であった場合、
図3に示すように、微細なδ1相のドロスが生成した。これより、めっき浴の浴温が485℃である場合においても、浴底にボトムドロスが生成するが、ボトムドロスの相がδ1相となること、およびδ1相においてはボトムドロスの粒径の成長速度が遅いことが判明した。
【0059】
以上の結果は
図2に示した溶融亜鉛めっき浴のFe-Al液相界面状態図から推定されるドロスの相とよい相関を示す。これより、溶融亜鉛めっき設備の操業および停機時におけるめっき浴の浴温を適切に制御することで、ボトムドロスの粒径の制御が可能であることが判明した。
【0060】
<2.実機試験>
実機の溶融亜鉛めっき設備のめっき浴のフリーAl濃度CAlを0.1300~0.1425質量%の範囲内で変動させるとともに、停機時および稼働時のめっき浴の浴温Tを440~489℃の範囲内で調整して、鋼帯を溶融亜鉛めっき設備に通板させて合金化溶融亜鉛めっき鋼板を製造した。溶融亜鉛めっき設備の停機時に溶融亜鉛めっき浴の浴温TとフリーAl濃度CAlとがトップドロス領域となる条件に設定した場合には、停機時にトップドロスを除去した。製造された合金化溶融亜鉛めっき鋼板の表面を目視で観察して、ドロス疵の有無を調査した。
【0061】
表1に、合金化溶融亜鉛めっき鋼板の製造時のめっき浴の操業条件および鋼板表面の評価結果を示す。鋼板表面の評価結果は、ドロス疵が見られなかったものを「A」、ドロス疵がわずかに見られたものを「B」、ドロス疵が多かったものを「C」として評価した。
【0062】
表1から分かるように、溶融亜鉛めっき設備の稼働時に、溶融亜鉛めっき浴の浴温TとフリーAl濃度CAlとがδ1相の核生成領域(表1では「δ1核生成」)となる条件であった場合には、ドロス疵が無い、または少なかった(評価Aまたは評価Bであった)。一方、溶融亜鉛めっき設備の稼働時に、溶融亜鉛めっき浴の浴温TとフリーAl濃度CAlとがΓ2相の粒成長領域(表1では「Γ2粒成長」)またはδ1相の粒成長領域(表1では「δ1粒成長」)となる条件であった場合には、ドロス疵が発生した(評価Cまたは評価Bであった)。
【0063】
特に、溶融亜鉛めっき設備の稼働時に、溶融亜鉛めっき浴の浴温TとフリーAl濃度CAlとがδ1相の核生成領域となる条件であった場合に着目すると、溶融亜鉛めっき設備の停機時に、溶融亜鉛めっき浴の浴温TとフリーAl濃度CAlとがトップドロス領域(表1では「トップドロス」)となる条件であった場合には、ドロス疵が発生しなかった(評価Aであった)。また、溶融亜鉛めっき設備の稼働時に、溶融亜鉛めっき浴の浴温TとフリーAl濃度CAlとがδ1相の核生成領域となる条件であり、且つ溶融亜鉛めっき設備の停機時に、溶融亜鉛めっき浴の浴温TとフリーAl濃度CAlとがδ1相の粒成長領域またはΓ2相の粒成長領域となる条件であった場合には、ドロス疵が発生した(評価Bまたは評価Cであった)。なお、溶融亜鉛めっき設備の停機時および稼働時に溶融亜鉛めっき浴の浴温TとフリーAl濃度CAlとがトップドロス領域となる条件であった場合には、ドロス疵が発生しなかった(評価Aであった)が、合金化不良が発生した。
【0064】
【0065】
溶融亜鉛めっき設備の稼働時にドロス疵が発生する原因を調査するため、めっき浴のフリーAl濃度C
Alを0.1410%に固定し、めっき浴の浴温を常時455℃(比較例1)、常時485℃(比較例2)または停機時:455℃および稼働時:485℃(本発明例)に制御し、溶融亜鉛めっき設備を稼働させた。溶融亜鉛めっき設備の稼働後、めっき浴面から深さ300mmの位置からめっき浴液を掬い出した。そのめっき浴液を銅の鋳型に入れ、急冷凝固させて試料を得た。次に、試料の最表面を鏡面研磨した後、レーザー顕微鏡を用いて20mm×20mmの範囲内に含まれるドロスの粒径および個数を調査した。なお、サンプリングしためっき浴液はめっき浴面から深さ300mmの位置のものであるため、トップドロスおよびめっき浴底に沈降した粗大なボトムドロスの個数については、調査結果に反映されていない。
図4に、各製造条件でのドロスの粒径と個数との関係について示す。
【0066】
めっき浴温を常時455℃(トップドロス領域、比較例1)で操業した場合、めっき浴面にトップドロスは生じるが、めっき浴面から深さ300mmの位置におけるドロスの生成は極めて少なかった。しかしながら、この場合、従来から問題とされているように、溶融亜鉛めっき層が合金化しにくくなるという問題が生じる。
また、めっき浴温を常時485℃(δ1相の核生成領域、比較例2)とすると、微細なドロスの割合が多くなった。粒径が100μmを超えるドロスも見られ、これがドロス疵の原因になると考えられる。
【0067】
一方、めっき浴温を停機時に455℃(トップドロス領域)とし、稼働時に485℃(δ1相の核生成領域)とした場合(本発明例)、粒径が100μm以上であるドロスの数が著しく減少した。
以上から、めっき浴温を停機時にトップドロス領域とし、トップドロスを除去するとともに、稼働時にδ1相の核生成領域として操業した場合には、ドロス疵となりえるドロス径の大きいドロスでも比較的小さめのドロス(ドロス径100~150μm)までその生成を抑制できることから、確実に微小なドロス疵の発生を抑えることができることがわかった。
【0068】
以上の知見の下、めっき浴の浴温TとフリーAl濃度CAlとを停機時にトップドロス領域、稼働時にδ1相の核生成領域として溶融亜鉛めっき浴の操業を継続したところ、合金化が行いにくいために生産性の落ちるトップドロス操業を避けながらも、ドロス疵が問題とならない高品質な鋼板を製造することが可能となった。
【0069】
以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。
【符号の説明】
【0070】
10 溶融亜鉛めっき設備
101 溶融亜鉛めっき浴槽
103 溶融亜鉛めっき浴
105 スナウト
107 シンクロール
109 ガスワイピング装置
111 合金化炉