IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ゼロ イー テクノロジーズ,エルエルシーの特許一覧

特許7269663電気機械の冷却および安定化システムおよび方法
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-04-26
(45)【発行日】2023-05-09
(54)【発明の名称】電気機械の冷却および安定化システムおよび方法
(51)【国際特許分類】
   H02K 9/06 20060101AFI20230427BHJP
   H02K 9/19 20060101ALI20230427BHJP
   H02K 1/32 20060101ALI20230427BHJP
   H02K 1/2706 20220101ALI20230427BHJP
【FI】
H02K9/06 B
H02K9/19 B
H02K1/32
H02K1/2706
【請求項の数】 15
(21)【出願番号】P 2020521314
(86)(22)【出願日】2018-01-12
(65)【公表番号】
(43)【公表日】2021-02-04
(86)【国際出願番号】 US2018013622
(87)【国際公開番号】W WO2019074535
(87)【国際公開日】2019-04-18
【審査請求日】2021-01-09
(31)【優先権主張番号】62/570,441
(32)【優先日】2017-10-10
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】520125874
【氏名又は名称】ゼロ イー テクノロジーズ,エルエルシー
(74)【代理人】
【識別番号】100137969
【弁理士】
【氏名又は名称】岡部 憲昭
(74)【代理人】
【識別番号】100104824
【弁理士】
【氏名又は名称】穐場 仁
(74)【代理人】
【識別番号】100121463
【弁理士】
【氏名又は名称】矢口 哲也
(72)【発明者】
【氏名】ホプキンズ,トーマス,エイチ.
(72)【発明者】
【氏名】カスティーヨ,フェリペ,ジェイ.
(72)【発明者】
【氏名】グラハム,スコット,ティー.
(72)【発明者】
【氏名】クロンツ,キース,ダブリュー.
【審査官】中島 亮
(56)【参考文献】
【文献】国際公開第2013/171839(WO,A1)
【文献】特開2011-254571(JP,A)
【文献】特表2007-532089(JP,A)
【文献】特開平11-196555(JP,A)
【文献】特開平07-177703(JP,A)
【文献】実開昭55-059568(JP,U)
【文献】特開2011-211816(JP,A)
【文献】中国特許出願公開第106300780(CN,A)
(58)【調査した分野】(Int.Cl.,DB名)
H02K 9/00 - 9/28
H02K 1/32
H02K 1/2706
(57)【特許請求の範囲】
【請求項1】
長さ方向のシャフト軸を定めるシャフトと、前記シャフトの一部分を取り囲むロータバックアセンブリと、前記ロータバックアセンブリの周りに放射状に配置された複数の永久磁石とを備えるロータと、
前記ロータの周囲に放射状に配置された複数の電磁石を備えるステータと、
前記ロータおよび前記ステータを支持する、囲まれたハウジングと、
前記ステータを通過し半径方向外側へエアギャップを超える流体の流れおよび前記ステータと前記囲まれたハウジングの間で半径方向外側へ前記エアギャップを超える流体の流れを防ぐステータ封止材と、
を備えており、
前記ロータ、前記ステータ、および前記囲まれたハウジングの一部分が、
前記ロータの一方の端部の前記ロータと前記囲まれたハウジングとの間の第1のキャビティと、
前記囲まれたハウジングと前記ロータの他方の端部との間の第2のキャビティと、
前記ロータと前記ステータとの間を前記第1のキャビティから前記第2のキャビティまで延びる前記エアギャップと、
前記ロータバックアセンブリを貫いて前記第1のキャビティから前記第2のキャビティまで延びる通気チャネルと
を定めており、
前記第1のキャビティおよび前記第2のキャビティの一方へと延びるロータファンであって、前記ロータが前記ステータに対して回転するときに前記ロータファンが流体を前記囲まれたハウジング内で連続的に循環させる、ロータファンを備えており、
前記流体は、前記第1のキャビティから前記エアギャップまたは前記通気チャネルの一方を通して前記第2のキャビティへと循環し、そして前記エアギャップまたは前記通気チャネルの他方を通して前記第1のキャビティに戻るが、前記流体は、前記ステータを通過し半径方向外側へ前記エアギャップを超えて循環せず、前記ステータとハウジングとの間でも半径方向外側へ前記エアギャップを超えて循環しない、電気機械。
【請求項2】
前記ロータファンは、前記ロータバックアセンブリの外面に形成された複数のファンブレードを備える、請求項1に記載の電気機械。
【請求項3】
前記ロータバックアセンブリおよび前記複数のファンブレードのうちの少なくとも一方は、前記第1のキャビティまたは前記第2のキャビティへの熱の放射を強化するための表面処理を備える、請求項2に記載の電気機械。
【請求項4】
前記ロータバックアセンブリは、複数の薄板を備える、請求項2に記載の電気機械。
【請求項5】
前記複数の永久磁石のうちの少なくとも1つは、複数の永久磁石薄板を備える、請求項1に記載の電気機械。
【請求項6】
前記複数の永久磁石の各々の前記エアギャップに面する外面を取り囲む保持バンドをさらに備える、請求項1に記載の電気機械。
【請求項7】
前記囲まれたハウジングに熱接触し、前記第1のキャビティへと延びている第1の熱伝達構造
をさらに備える、請求項1に記載の電気機械。
【請求項8】
前記囲まれたハウジングに熱接触し、前記第2のキャビティへと延びている第2の熱伝達構造
をさらに備える、請求項7に記載の電気機械。
【請求項9】
前記ロータは、前記第1のキャビティへと延びている第3の熱伝達構造を備える、請求項1に記載の電気機械。
【請求項10】
前記ロータは、前記第2のキャビティへと延びている第4の熱伝達構造を備える、請求項9に記載の電気機械。
【請求項11】
前記ロータは、
隣り合う永久磁石の間のギャップと、
前記隣り合う永久磁石の間の前記ギャップを埋める熱伝導材料と
をさらに備え、
前記第3の熱伝達構造は、前記熱伝導材料の第1の端部に熱的に連絡している、請求項10に記載の電気機械。
【請求項12】
前記第4の熱伝達構造は、前記熱伝導材料の第2の端部に熱的に連絡している、請求項11に記載の電気機械。
【請求項13】
前記流体は、空気および空気でない別の熱伝達流体を含む、請求項1に記載の電気機械。
【請求項14】
熱伝導性のシャフトコアをさらに備え、前記シャフトコアは、前記シャフトのうちの前記シャフトコアを取り囲む部分とは異なる組成を有する熱伝導材料を含む、請求項1に記載の電気機械。
【請求項15】
ロータを冷却する方法であって、
ロータと、ステータと、前記ステータを通過し半径方向外側へエアギャップを超える流体の流れおよび前記ステータと囲まれたハウジングの間で半径方向外側へ前記エアギャップを超える流体の流れを防ぐステータ封止材を支持する、囲まれたハウジングを備えており、前記ロータ、前記ステータ、および前記囲まれたハウジングは、
前記ロータの一方の端部の前記ロータと前記囲まれたハウジングとの間の第1のキャビティと、
前記ロータの他方の端部の前記ロータと前記囲まれたハウジングとの間の第2のキャビティと、
前記ロータと前記ステータとの間を前記第1のキャビティから前記第2のキャビティまで延びる前記エアギャップと、
ロータバックアセンブリを貫いて前記第1のキャビティから前記第2のキャビティまで延びる通気チャネルと
を定めている電気機械を用意するステップと、
前記ロータを前記ステータに対して回転させ、内部ファンを駆動するステップと、
前記ロータの回転時に前記ファンによって流体を前記囲まれたハウジング内で連続的に循環させるステップであって、前記流体は、前記第1のキャビティから前記エアギャップまたは前記通気チャネルの一方を通して前記第2のキャビティへと循環し、そして前記エアギャップまたは前記通気チャネルの他方を通して前記第1のキャビティに戻るが、前記流体は、前記ステータを通過し半径方向外側へ前記エアギャップを超えて循環せず、前記ステータとハウジングとの間でも半径方向外側へ前記エアギャップを超えて循環しない、ステップと
を含む、方法。
【発明の詳細な説明】
【技術分野】
【0001】
著作権表示
[0001]この特許文書の開示の一部には、著作権保護の対象となる資料が含まれている。著作権所有者は、特許文書または特許開示を特許商標局の特許ファイルまたは記録に見られるとおりにファクシミリ複製することを拒むものではないが、その他の点では、すべての著作権の権利を留保する。
【0002】
[0002]本開示は、一般に、例えば電動機または発電機などの電気機械を冷却し、安定化するための方法、システム、および装置に関する。本開示は、より具体的には、永久磁石(PM)電気機械の冷却および安定化に関する。
【背景技術】
【0003】
[0003]商業および工業の用途において使用される電気機械は、多くの場合、典型的には60,000時間の耐用年数にわたって該当の電力定格の100%で動作する必要がある。したがって、商業または工業の環境において使用されるモータまたは他の電気機械は、信頼性および汎用性の両方を有さなければならない。機械の信頼性および寿命は、これらに限られるわけではないが、1)熱に起因する構成要素の不具合につながる高温動作、2)振動、熱、摩擦、不釣り合いな動作、汚染、不適切な材料選択、または機械的に引き起こされる構成要素の不具合の他の原因、あるいは3)熱、不適切な材料選択、または他の原因によって引き起こされ、電気的な短絡または開路につながる絶縁不良、などの多数の要因によって損なわれる可能性がある。
【0004】
[0004]電気機械は、多くの場合に、機械のハウジングに鋳造された冷却フィンへと空気を導くように構成されたファンおよびカウリングなど、機械的な冷却システムを備える。このような装置の多くは、全閉外扇型(TEFC)として分類される。TEFCモータは、モータから出力される総出力の一部によって冷却ファンを回転させなければならず、したがって出力として利用することができないため、本質的に効率が低いという問題を抱える。例えば、コンベヤベルトに取り付けられたTEFCモータは、冷却ファンおよびコンベヤベルトの両方を動作させなければならないため、モータの出力のうちのファンを回転させるために必要な部分は、コンベヤベルトにおいて利用することができない。TEFC機械のファンおよびカウリング装置は、損傷を被りやすく、典型的な工業の環境において安全上のリスクを呈する。さらに、TEFC機械は、モータシャフトの片側で冷却ファンを駆動するため、1台のTEFCモータに2台の下流の機械を取り付けることが不可能または困難である。
【0005】
[0005]従来からの電気機械は、通常は、機械を大きくて重い構成要素で実現することによって、堅牢性および耐久性を有するように作られる。安定した長期運転を促進するために必要な大きくて重い構成要素は、機械のコストおよび重量を増加させる可能性がある。
【0006】
[0006]冷却を促進するために直接的に通気され、したがって部分的に開放されたハウジングを有している他の電気機械は、機械的な構成要素の劣化ならびに配線の絶縁または電気接続部の劣化および早期の不具合を引き起こしかねない水分および粒子状物質の進入に悩まされる可能性がある。全閉自冷型(TENV)電気機械は、TENV装置には直接的な通気または外部の冷却フィンへと空気を移動させる外部ファンが存在しないため、独特の冷却の課題を呈する。
【0007】
[0007]本明細書に開示される実施形態は、上述の問題のうちの1つ以上を最小限にするように設計される。
【発明の概要】
【課題を解決するための手段】
【0008】
[0008]本明細書に開示される実施形態は、電気機械の冷却装置および方法を含む。他の実施形態は、電気機械に堅牢性および耐久性の向上をもたらす要素を含む。本明細書において使用されるとき、電気機械と呼ばれる装置の種類には、発電機および電動機の両方が含まれる。本明細書において説明される特定の実施形態は、半径方向磁束型の構成を有する永久磁石モータである。開示される方法および装置の多くは、熱伝達の目的または部分的には堅牢性の目的で、軸方向磁束型機械、横方向磁束型機械、および直線型機械にも適用可能である。特定の方法および装置は、非回転トルクモータ、変圧器、またはインダクタに適用可能であり得る。多数の具体的な実施形態が、永久磁石モータに関して示されるが、本開示および特許請求の範囲は、いかなる特定の装置の構成にも限定されず、任意の種類の電気機械に適用可能である。
【0009】
[0009]本明細書に開示される特定の電気機械の実施形態は、永久磁石、ロータバックアセンブリ、電磁コア、または他の構造における渦電流によって引き起こされる熱の発生を最小限に抑える。さらに、機械の内部キャビティならびに構成要素またはサブシステムを通るさまざまな熱経路を利用して伝導、対流、および放射によって電気機械から熱を除去するための方法および装置が開示される。
【0010】
[0010]本明細書に開示される実施形態は、ロータ、ステータ、およびハウジングを有する電気機械である。ロータは、長さ方向の軸を定めるシャフトを含む。シャフトは、ロータバックアセンブリ(バックアイアンアセンブリとも呼ばれる)で囲まれている。さらに、ロータは、ロータバックアセンブリの周囲に配置された一連の放射状に取り付けられた永久磁石を含む。機械のステータは、ロータの周囲に放射状に配置された複数の電磁石を含み、ロータの永久磁石の外面とステータの電磁石の内面との間にエアギャップが定められる。
【0011】
[0011]ロータおよびステータは、ハウジングによって支持され、ハウジング内に収容される。特定の実施形態において、ハウジングは、全閉自冷型(TENV)ハウジングである。一実施形態において、ステータおよびハウジングは、エアギャップの内側に、ハウジングのエンドプレートまたは同様の構造によって境界付けられた実質的に円柱形のロータキャビティを定める。ロータがロータキャビティに配置されたとき、ロータキャビティは、第1および第2のキャビティにさらに分割され得る。具体的には、第1のキャビティが、ロータの一方の端部においてロータとハウジングとの間に存在し、ハウジングのエンドプレートに隣接する。第2のキャビティが、ロータの他方の端部においてロータとハウジングとの間に存在し、他方のエンドプレートに隣接する。ハウジングのエンドプレートは、ハウジングの周辺部分に取り付けられた別個のプレートであってよく、あるいは一方のエンドプレートとハウジングの周辺とが、鋳造、機械加工、あるいは他のやり方による単一または一緒に形成されたハウジング要素であってよい。
【0012】
[0012]第1および第2のキャビティは、エアギャップを介してつながっている。加えて、第1のキャビティから第2のキャビティまで延びる1つ以上の通気チャネルを、ロータバックアセンブリを貫いて設けることができる。したがって、第1および第2のキャビティ、エアギャップ、および通気チャネルは、ロータのバックアイアンの外側を巡り、かつロータのバックアイアンを通過する流体回路を定める。さらに、ロータは、第1または第2のキャビティへと延びる内部ファンを含むことができる。内部ファンは、ロータの一部であり、あるいはロータに接続され、エアギャップまたは通気チャネルのいずれかに低圧を生じさせ、エアギャップおよび通気チャネルの他方に高圧を生じさせるように構成される。したがって、ロータが回転すると、空気あるいは空気と油の混合物などの他の流体が、一方のキャビティからエアギャップを通って他方のキャビティまで流体回路を循環し、通気チャネルを通って元のキャビティへと戻る。このようにして、動作時にロータにおいて発生した熱を、流体回路を流れる空気または他の流体へと伝達し、ロータを冷却することができる。
【0013】
[0013]ロータファンは、別個の構造であってよく、あるいはロータバックアセンブリの外面に形成されたロータファンブレードであってよい。さらに、ロータバックアセンブリ、ファンブレード、またはファンを、流体回路への熱の放射、したがって第1のキャビティまたは第2のキャビティへの熱の放射を強化するように処理することができる。適切な表面処理として、これらに限られるわけではないが、表面の粗面化または表面の陽極酸化が挙げられる。
【0014】
[0014]電気機械の動作の最中に、主として永久磁石における磁気的に誘導される渦電流ならびにロータバックアセンブリにおける磁気的に誘導される渦電流およびヒステリシスによって、ロータにおいて熱が発生する。特定の実施形態においては、永久磁石およびロータバックアセンブリの両方を一連の薄板で実現することにより、ロータにおける熱の発生を低減することができる。構造的支持および有利な熱伝達特性を、永久磁石を、エアギャップに面する磁石の外面を取り囲む保持バンドでロータバックアセンブリに結合させることによってもたらすことができる。
【0015】
[0015]ロータから流体回路への熱伝達、ならびにその後の第1および第2のキャビティから機械のハウジングへの熱伝達を、さまざまな熱伝達構造によって促進することができる。1つの種類の熱伝達構造は、第1のキャビティまたは第2のキャビティのいずれかに面するようにロータに取り付けられる。別の種類の熱伝達構造は、第1のキャビティおよび/または第2のキャビティへと面するように、典型的にはエンドプレートにおいてハウジングに取り付けることが可能である。これらの熱伝達構造のいずれも、表面積および乱流を増加させ、したがって取り付けられたロータまたはハウジング構造への効果的な熱伝達、あるいは取り付けられたロータまたはハウジング構造からの効果的な熱伝達を促進するための一連のピン、フィン、ピン/フィンの組み合わせ、あるいは他の構造を含むことができる。さらに、熱伝達構造を、比較的高い熱伝導率を有するアルミニウムまたは銅などの材料から製造することができる。熱伝達構造に、テクスチャを持たせることができ、着色を施すことができ、表面処理を施すことができ、あるいは他のやり方で流体回路への熱伝達または流体回路からの熱伝達が効果的になるように製造することができる。
【0016】
[0016]隣り合う永久磁石の間のギャップに熱伝導性の充てん材または封止材を取り入れることにより、さらなる熱を永久磁石から運び去ることができる。熱伝導性の封止材は、エポキシなどのポリマーであってよく、ロータ封止材の熱伝導率をポリマー、エポキシ、または他のロータ封止材の本来の熱伝導率よりも高くするためにポリマーマトリクス内に懸濁させた添加材を有することができる。熱伝導性の封止材は、ロータの動作の最中に永久磁石の側面から第1および第2のキャビティへと熱を導くように機能する。ロータに取り付けられた熱伝達構造を、熱伝導性の封止材の領域に熱接触させて、流体回路との熱交換を促進することができる。
【0017】
[0017]隣り合う永久磁石の間のギャップ内の熱伝導性の封止材は、ロータに構造的な剛性および堅牢性ももたらす。封止材は、永久磁石をロータバックアセンブリにさらに固定し、荷重下でのロータの周囲での磁石の滑りを防止するように機能する。いくつかの実施形態において、ロータバックアセンブリは、封止材をロータバックアセンブリにさらにしっかりと固定するように機能する固定面を、隣り合う永久磁石の間に定めることができる。固定面は、ロータバックアセンブリに形成され、あるいはロータバックアセンブリから延びる溝、突起、キー溝などであってよい。
【0018】
[0018]永久磁石またはロータバックアセンブリにおいて発生した熱の一部をシャフトへと導き、シャフトから、電気機械を駆動し、あるいは電気機械によって駆動される機器へと、導くことができる。機械のシャフトは、典型的には、あまり高い熱伝導率を持たないかもしれない鋼または他の高強度合金から製造される。機械のシャフトの熱伝導率を、シャフトに、シャフトの他の部分とは異なる組成を有し、熱伝導率がより高い銅などの材料で作られた熱伝導性のシャフトコアを設けることで、向上させることができる。
【0019】
[0019]特定の実施形態においては、ハウジングからシャフトへと熱を伝達することも可能である。シャフトは、典型的には、ロータの両端においてベアリングによって支持される。ベアリングは、ハウジングによって支持される。いくつかの実施形態においては、例えばベアリングシールなどのベアリング構造の一部分を、銅などの高い熱伝導率を有する材料から製造することができる。ベアリングフランジまたはベアリングを支持する他のハウジング要素も、高い熱伝導率を有する材料から製造することができる。そのような実施形態において、熱伝導性のシャフトコアを、シャフトとベアリングとが接触しているシャフトの周囲に向かって延びるように製作することができる。
【0020】
[0020]特定の実施形態においては、ハウジングを密閉することが有利な場合がある。例えば、内部の汚染を防ぐために、TENVモータを密閉することができる。このような実施形態において、ベアリングは、ハウジングを開くことなくベアリングを容易に取り外し、あるいは交換することができるように、ハウジングの外側からアクセス可能であってよい。
【0021】
[0021]電気機械の実施形態は、複数の放射状に配置された電磁石を有するステータをさらに含む。いくつかの実施形態において、ステータは、ステータ封止材が例えばハウジングエンドプレートなどのハウジング構造に熱接触するように封止される。いくつかの実施形態においては、ハウジングの周辺部分の全体が、ステータまたはステータ封止材に熱的に接触する。一実施形態において、ハウジングは、周辺部分と、第1のエンドプレートおよび第2のエンドプレートとを含む。エンドプレートは、別個の構造であっても、ハウジングの周辺部分と一緒に製造されてもよい。ステータ封止材は、第1のエンドプレートの中央領域、第2のエンドプレートの中央領域、および内側ステータ表面によって、囲まれた円柱形のロータキャビティが定められるように、第1のエンドプレートおよび第2のエンドプレートに接触する。いくつかの実施形態においては、内側ステータ表面、第1のエンドプレートの中央領域、および第2のエンドプレートの中央領域から周辺部分に向かって延びる空隙が実質的に存在しない。
【0022】
[0022]ステータ封止材は、装置の堅牢性およびステータからハウジングへの熱伝達を提供する。封止材の熱伝導率を、封止材の熱伝導率を高めるための添加材を封止材に混ぜることによって向上させることができる。例えば、封止材は、ポリマーまたはエポキシなどの誘電体材料であってよく、添加材は、チッ化ホウ素、炭化ケイ素、ケイ素、酸化アルミニウム、アルミニウム粉末、銅粉末、金属酸化物、セラミック、グラフェン、実質的に球状の粒子、あるいはこれらの材料または同様の材料の組み合わせであってよい。
【0023】
[0023]ステータとハウジングとの間の熱伝達および機械全体の堅牢性を、ステータをハウジングの周辺部分にぴったりと取り付けることによって向上させることができる。ステータとハウジングの周辺部分との間の熱伝達を、ステータの周辺とハウジングとの間のギャップを熱伝導性潤滑剤または封止材で満たすことによってさらに向上させることができる。
【0024】
[0024]ステータおよびハウジングによって定められたロータキャビティからの熱伝達を、ハウジングまたはエンドプレートの中央領域に熱接触する1つ以上の熱伝達構造を設けることによって促進することができる。熱伝達構造は、表面積を増やし、乱気流を増加させ、あるいは他のやり方でロータキャビティからの熱伝達を促進するために、ピン、フィン、ピン/フィンの組み合わせ、あるいはロータキャビティへと延びる他の構造を含むことができる。さらに、あらゆる熱伝達構造は、着色されてよく、陽極酸化処理されてよく、あるいは効果的な熱伝達を促進するように設計された表面処理を有することができる。
【0025】
[0025]ハウジングへと伝達された熱エネルギを、伝導、対流、または放射によって電気機械から取り除くことができる。ハウジングからの熱伝達を、ハウジングにフィン、外部の熱伝達構造、黒色陽極酸化、または他の手段を提供することによって強化することができる。さらには、ハウジングは、例えばアルミニウムなどの高い熱伝導率を有する材料から製造された足を含むことができる。熱を、足から工場の床、棚、または他の機器などの取り付け面へと伝えることができる。足から取り付け面への熱伝達を、例えばサーマルペーストまたは銅など、足と取り付け面との間に高い熱伝導率を有する境界面を用意することによって促進することができる。
【0026】
[0026]ステータの実施形態は、放射状に配置された電磁石を含む。特定の実施形態において、各々の電磁石は、歯部分およびヨーク部分を定める薄板の積層を有するコアを含む。各々の薄板の歯の一部分を取り囲む絶縁ボビンを設けることができる。次いで、導電性の巻線がボビンの一部分を取り囲む。一実施形態においては、薄板の積層における各々の薄板が、ねじ、溶接、ピン、圧着継手、接着剤、または他の固定手段を使用することなく、ボビンからの圧力のみによって隣の薄板に対して保持される。
【0027】
[0027]いくつかの実施形態においては、電磁コアからの熱伝達を、コアの薄板によって定められる平坦な面の一方または両方に熱接触する熱伝達層を設けることによって強化することができる。熱伝達層は、薄板の製造に用いられる磁石鋼よりも高い熱伝導率を有する任意の材料であってよい。代表的な熱伝達材料として、これらに限られるわけではないが、銅、ニッケル、または銀などの金属、あるいはグラフェンなどの材料が挙げられる。熱伝達材料は、関連の薄板に熱的に接触している必要があり、すなわち薄板からの熱を熱伝達材料に直接伝えることができる。熱接触は、物理的な接触であってよい。あるいは、熱接触は、サーマルペーストなどの介在の材料を介して生じてもよい。いくつかの例においては、熱伝達材料を薄板へと堆積させ、めっきし、コーティングし、あるいは他のやり方で恒久的に結合させることができる。
【0028】
[0028]さらに、電磁コアは、典型的には、薄板の間に誘電体層を含む。一実施形態において、薄板は、一方の平坦な面に適用され、あるいは接触した誘電体層と、他方の平坦な面に熱接触した熱伝達層とを有する。この実施形態において、隣り合う薄板の間の境界面は、一方の薄板からの誘電体層と、他方の薄板からの熱伝達層とを含むことになる。
【0029】
[0029]薄板の積層によって定められる円弧状のヨーク部分は、特定の実施形態において、互いに嵌合するように構成された舌構造および対向する溝構造を定めることができる。したがって、ステータを、第1の電磁石の舌構造を隣の電磁石などの溝構造に係合させ、これをステータが完成するまで続けることによって、複数の電磁石から組み立てることができる。特定の実施形態において、複数の電磁石のヨーク部分は、機械の堅牢性およびステータからハウジングへの直接の熱経路をもたらすハウジングまたはハウジングエンドプレートから延びるショルダ肩構造によって直接支持される。
【0030】
[0030]他の実施形態は、電気機械のロータを冷却する方法、電気機械のステータを冷却する方法、電気機械を冷却する方法、電気機械を製造する方法、電気機械を安定化する方法、および電気機械のための電磁石を製造する方法を含む。
【0031】
[0031]特定の実施形態の性質および利点のさらなる理解が、本明細書の残りの部分および図面を参照することによって実現可能であり、図面において、同様の参照番号は同様の構成要素を指して使用されている。場合によっては、いくつかの類似の構成要素のうちの1つを指すために、参照番号に補足標記が組み合わせられる。存在する補足標記を指定せずに参照番号を参照する場合、それは、そのようないくつかの類似の構成要素のすべてを参照することを意図している。
【図面の簡単な説明】
【0032】
図1】代表的な電気機械である全閉自冷型(TENV)永久磁石(PM)モータの斜視図である。
図2図1のモータの断面斜視図である。
図3】永久磁石および他の構造を示すロータのシャフト端部(SE)斜視図である。
図4図3のロータのシャフト他端部(OSE)斜視図である。
図5】別のロータの実施形態のシャフト他端部(OSE)斜視図である。
図6図3のロータのSE斜視図であり、ロータ構造の周囲の保持バンドを示している。
図7図6のロータのOSE斜視図である。
図8図1のモータの側面断面図である。
図9図8のモータの一部分の拡大図であり、強制流体回路を示している。
図10図1のモータのハウジングおよびステータの一部分の斜視図である。
図11図1のモータのハウジングおよびステータの一部分の斜視図であり、ステータ封止材を示している。
図12】ロータが取り除かれた状態の図1のモータの断面斜視図である。
図13図1のモータのハウジングおよびステータの一部分の斜視図であり、電磁石の一部が選択して取り除かれている。
図14A】電磁石構造の斜視図である。
図14B図14Aの電磁石構造の分解斜視図である。
図15A】層状EM薄板構造を示す概略図である。
図15B】別の層状EM薄板構造を示す概略図である。
図15C】別の層状EM薄板構造を示す概略図である。
図16図1のモータの側面断面図であり、ハウジングとステータとの間の境界面における詳細を示している。
【発明を実施するための形態】
【0033】
[0051]概要
本明細書で開示される特定の実施形態は、商業、運輸、または工業の環境において比較的メンテナンスフリーで、堅牢で、長期的かつ効率的な働きを提供するように設計された電気機械である。本明細書において使用されるとき、「電気機械」と称される装置の種類は、発電機および電気モータの両方を含む。本明細書において説明される特定の実施形態は、半径方向磁束型の構成を有する永久磁石モータである。開示される方法および装置の多くは、軸方向磁束型機械、横方向磁束型機械、および直線型機械の全体としての堅牢性および熱性能の改善にも適用可能である。特定の方法は、非回転トルクモータ、変圧器、またはインダクタの熱管理または安定性にも適用可能であり得る。多数の具体的な実施形態が、本明細書においては全閉自冷型(TENV)永久磁石モータに関して示されるが、本開示および特許請求の範囲は、いかなる特定の装置の構成にも限定されず、任意の種類の電気機械に適用可能である。
【0034】
[0052]電気機械は、動作時に熱を発生させる。熱は、適切に散らされない場合、機械の寿命を大幅に縮める可能性がある。高温での連続動作は、これらに限られるわけではないが電気絶縁、電気接点、封止材料、磁石、などの多くの機械構成要素の物理的特性に影響を及ぼす可能性がある。過度の熱により、これらの構成要素は、まず高温になったときに柔らかくなり、次いで次第に脆くなり、装置の性能に影響が及び、早期の不具合につながる可能性がある。したがって、堅牢な電気機械を設計するための2つの鍵は、機械の動作中の熱の発生を減らすこと、および機械からの放熱を増すことである。本明細書において説明される方法および装置の多くは、動作中の機械からの熱の発生の低減および効果的な放熱の一方または両方を提供する。開示される技術および構造は、まとめて熱管理方法または熱管理装置と称される。
【0035】
[0053]有利な熱管理を提供するためのいくつかの方法および装置は、一般に、機械の機械的安定性も高め、したがって機械のさらなる堅牢性および耐久性を提供する。本明細書において説明される他の方法および装置は、熱特性に悪影響を及ぼすことなく、機械の安定性および堅牢性を向上させる。
【0036】
[0054]本明細書に開示される特定のTENV機械は、熱管理および機械の堅牢性を向上させるように設計された全体的な装置の構成を特徴とする。例えば、代表的なTENV機械である図1の永久磁石モータ10は、本明細書において詳述されるとおりの熱管理の強化および全体としての機械の堅牢性を提供するために、集中された電磁石巻線、最大化されたスロット充てん率、表面に取り付けられた特大サイズの永久磁石、および他の装置を備えるパンケーキ形状を有することができる。開示される永久磁石TENVモータ10の特定の実施形態は、同じ出力定格の誘導モータと比較して、使用する銅および電気鋼が半分未満である。
【0037】
[0055]加えて、開示されるいくつかの実施形態は、積極的ではあるが受動的な冷却を利用する。内部の構造から、熱を自然対流によって周囲の空気へと逃がすことができ、放射によって周囲の物体へと逃がすことができ、伝導によって機械の取り付け面へと逃がすことができ、さらには/あるいは駆動シャフトを介した伝導によって被駆動装置(例えば、ファン、ポンプ、コンベヤベルト、ホイール、または他の装置)へと逃がすことができる外側のハウジングへの熱伝達をもたらすために、複数の熱経路が機械に設計される。
【0038】
[0056]図1は、代表的な電気機械、すなわち永久磁石TENVモータ10の外観の斜視図である。図2は、特定の内部要素を示しているモータ10の斜視断面図である。モータ10は、内部構成要素を取り囲んで支持するハウジング12と、ロータ16に接続されたシャフト14とを含む。ハウジング12は、必要に応じて提供または変更されてよい種々の支持構造に接続されてよく、あるいはそのような支持構造を含むことができる。例えば、ハウジングを、足18、吊り上げ用アイボルト20、Cフェイス、フランジ面、あるいは動作環境へのモータ10の配置および取り付けを容易にする他の支持または取り付け構造に接続することができる。
【0039】
[0057]図2に示されるように、シャフト14は、モータ10の動作時のシャフト14およびロータ16の回転の中心となる長手方向のシャフト軸22を定めるように、ロータ16に接続される。あるいは、電気機械が発電機である場合、シャフト14へと加えられる外部のトルクによって、ロータをシャフト軸22を中心にして回転させることができる。シャフト14およびロータ16は、ベアリングフランジ28および30に据えられたベアリング24および26によって支持される。図1および図2に示されている実施形態は、ロータ16の片側のみからハウジング12を通って延びるシャフト14を特徴とする。代案の実施形態は、ロータ16の両側からハウジング12を通って延びるシャフト14を含むことができる。TEFC機械においては冷却ファンゆえに実現不可能であるこのような代案の実施形態は、好都合なことに、シャフト14の各々の端部に1つずつ取り付けられた2つの下流機械を一度に駆動することができる。ロータ16の片側のみから延びるシャフト14を特徴とする実施形態においては、モータ10の両端部を、便利のために、シャフト端部「SE」およびシャフト他端部「OSE」と呼ぶことがある。したがって、本明細書において、ベアリング24およびフランジ28などの要素を、それぞれSEベアリング24およびSEベアリングフランジ28と呼ぶことができる。しかしながら、本開示が、ハウジング12の片側から延びるシャフト14、ハウジング12の両側から延びるシャフト14、またはハウジング12からまったく延出しないシャフト14を有する電気機械を明らかに包含することに、留意することが重要である。
【0040】
[0058]ロータ16は、ステータ32によって実質的に取り囲まれている。本明細書において詳しく説明されるように、ロータ16は、シャフト軸22の周囲にシャフト軸22から離して配置された一連の永久磁石34を含む。永久磁石34は、典型的には鋼または他の種類の鋼/鉄合金などの磁性材料で構成されるがゆえにバックアイアンアセンブリと呼ばれることもあるロータバックアセンブリ36によって支持される。ロータバックアセンブリ36は、シャフト14に機械的に接合され、あるいはシャフトと一緒に製造される。
【0041】
[0059]ステータ32は、ロータ16を取り囲む一連の電磁石38を含み、電磁石38および永久磁石34は、エアギャップ40によって互いに隔てられている。きわめて簡単に言えば、電磁石38の巻線42に交流が加えられ、ステータ32によって形成される磁場が変化するときに、モータの動作が生じる。変化する磁場における永久磁石34と電磁石38との間の磁力が、ロータ16をステータ32に対して回転させる。したがって、トルクを、モータにおいて典型的であるように、シャフト14に取り付けられた任意の装置に伝えることができる。代案の発電機の構成においては、シャフト14を外部のトルク源によって回転させることで、永久磁石34によって変動する磁場を形成することができる。次いで、変動する磁場が巻線42に交流電流を誘導することにより、電気を発生させることができる。
【0042】
[0060]電気機械における熱の発生
モータ10または他の電気機械が動作するとき、ロータ16およびステータ32の両方において熱が発生する。ロータ16で発生する熱の主たる原因は、永久磁石34における渦電流損失、ならびにロータバックアセンブリ36における渦電流損失またはヒステリシス損失である。ステータ32で発生する熱の主たる原因としては、巻線42における抵抗、ならびに関連の電磁石コア44における渦電流/ヒステリシス損失が挙げられる。さらに、風損とも呼ばれる抗力が、ロータ16がモータ10内で回転するときに生じる。風損は、さらなる熱を発生させる。ベアリング24および26の表面における摩擦も、ハウジング12の内部の熱を生じる。上述のように、特定の種類の電気機械は、完全に密閉されて通気されていない「TENV」機械またはモータとして説明される。TENVモータは、内部のモータ要素が外部からの汚染に対して実質的に密閉されているため、これに限られるわけではないが保守の要件が軽減されるなど、特定の利点をもたらす。しかしながら、構成要素の早期の不具合を避けるために、密閉されたTENV機械内で発生した熱を、ハウジング全体に空気を循環させる外部のファンを備えず、かつ直接的な通気のための開口部を備えずに、消散させなければならない。
【0043】
[0061]電気機械における熱管理を容易にし、したがって全体としての機械の堅牢性を向上させる本開示の装置および方法は、(a)熱の発生を最小限にするための方法および構造、または(b)熱の発生後の機械冷却を促進する方法および構造のいずれかに分類できる。本明細書に記載されるいくつかの熱管理技術は、ロータ16、ステータ32、および/またはハウジング12による熱の排出を含む。いくつかの選択肢としての熱管理戦略が、本明細書において説明される。種々の方法および装置を、個々の熱軽減の目標を達成するために、必要に応じて、任意のやり方で互いに組み合わせることができ、拡大または縮小することができ、あるいは部分的に実行することができる。
【0044】
[0062]電気機械のロータの構造
上述のように、電気機械の動作中の熱の発生は、不可避であるが、場合によっては軽減することができる。ロータ16における主要な熱発生源は、永久磁石34内の磁気的に誘導された渦電流、ならびにロータバックアセンブリ36内の磁気的に誘導された渦電流またはヒステリシス損失である。各々の種類の磁気渦電流および結果として生じる熱の発生の程度を、永久磁石34およびロータバックアセンブリ36を積層構造として実現することによって低減することができる。
【0045】
[0063]例えば、図3図5が、ロータ16の2つの選択肢としての実施形態の斜視図である。図3および図4に示されるロータ16の第1の実施形態は、図2からのロータ16である。このロータ16は、片側のみから延びるシャフト14を特徴とする。代案の実施形態は、ロータ16の両側から延びるシャフト14を含む。図3および図4のロータの実施形態は、図3のSE斜視図および図4のOSE斜視図に示されている。図5の代案のロータ16は、単一シャフトの構成または二連シャフトの構成で実現可能である。各々のロータ16は、シャフト14の一部分の周囲に機械的に接合されたロータバックアセンブリ36を特徴とする。永久磁石34が、永久磁石34がシャフト14の周りに放射状に配置され、しかしながらシャフト14から離れて位置するように、ロータバック36の周囲に、ロータバック36に接触させて取り付けられる。
【0046】
[0064]永久磁石34を、任意の数の薄板44から製造することができる。薄板44は、例えばネオジム-鉄-ホウ素磁石材料、サマリウム-コバルト磁石材料、アルニコ磁石、などの希土類磁石材料、またはフェライトセラミックなどの従来からの磁石材料であってよい永久磁石材料から製造される。1つの代表的な実施形態においては、図5に示されるように、ロータ16の永久磁石34が、24枚の薄板46を有する。各々の薄板46は、永久磁石材料の比較的薄い平坦な一部分であり、隣り合う薄板の間の境界面によって定められる平面がシャフト軸22に対しておおむね垂直になるように、複数の薄板が互いに積層されている。永久磁石34の選択肢としての実施形態は、任意の数の薄板46を含むことができ、例えば、永久磁石34は、磁気的に誘導される渦電流および熱発生の程度を軽減するために、2枚、4枚、8枚、12枚、16枚、20枚、24枚、28枚、32枚、36枚、40枚、またはさらに多くの薄板46を含むことができる。随意により、永久磁石34内の各々の薄板46を、ラッカー、ワニス、紙、または他の比較的薄い絶縁材料などの絶縁体によって、隣接する薄板46から隔ててもよい。
【0047】
[0065]ロータ16の永久磁石34には、比較的高性能の希土類磁石材料を選択することができる。希土類磁石は、他の種類の永久磁石と比べ、残留磁気がより大きく、保磁力およびエネルギ積がはるかに大きい。 したがって、希土類永久磁石34によって機械の効率を高めることができるが、希土類永久磁石34を利用する場合には、全体としての機械の堅牢性および安定性を促進するための措置を講じなければならない。
【0048】
[0066]具体的には、希土類磁石は、高温になりすぎると減磁の可能性があり、希土類磁石の磁気特性は、磁石が冷えても回復しない。したがって、最高定格出力での熱的に安定した動作において予想される永久磁石34の最高温度よりも高い温度定格を有する希土類磁石34が選択されなければならない。例えば、選択された設計において永久磁石34について予想される高温が130℃である場合、動作における余裕をもたらすように、例えば最大180℃などの(UH等級による)少なくとも35%高い温度定格の希土類磁石34を使用することが推奨される。
【0049】
[0067]また、希土類永久磁石は、ステータ巻線42内の大電流によって生じる過度の磁束によっても減磁の可能性がある。したがって、モータ10について選択される実施形態は、磁束に起因する減磁への抵抗を高めるために、大きなパーミアンス係数を生じる形状を有する永久磁石34を利用する。例えば、図3および図4に示されるように、モータ10は、シャフト軸から外向きに延びる半径線に沿って測定される半径方向の厚さ寸法wが、同じ半径線に沿って測定される磁気エアギャップ40の幅の8倍以上である希土類永久磁石34を有するロータ12を含むことができる。パーミアンス係数の大きい希土類永久磁石34を使用することで、減磁を恐れることなく、公称定格をはるかに超える条件でモータを動作させることができる。これらの条件のうちの一部として、ピークトルクでの動作、弱め界磁を利用したより広い速度範囲での動作、あるいは両者の組み合わせが挙げられる。
【0050】
[0068]ロータバックアセンブリ36も、鋼、鉄、別の鉄合金、または別の適切なロータバックアセンブリ材料の複数の薄板から組み立てることができる。図5に示される1つの代表的な実施形態において、ロータバックアセンブリ36は、6枚の薄板50を含む。各々の薄板50は、ロータバック材料の比較的薄くて平らな環状部分である。複数の薄板が、隣り合う薄板50の間の境界面によって定められる平面をシャフト軸22におおむね垂直にして、互いに積層される。ロータバックアセンブリ36の選択肢としての実施形態は、任意の数の薄板50を含むことができ、例えば、ロータバック36は、ロータバックアセンブリ36内の磁気渦電流、ヒステリシス損失、および熱の発生の程度を最小限に抑えるために、2枚、4枚、8枚、12枚、16枚、20枚、24枚、28枚、32枚、36枚、40枚、あるいはさらに多くの薄板50を含むことができる。随意により、ロータバックアセンブリ36内の各々の薄板50を、ラッカー、ワニス、紙、または他の比較的薄い絶縁材料などの絶縁体によって、隣接する薄板50から隔ててもよい。
【0051】
[0069]動作時に、ロータ16は高速で回転し、変化する磁束に曝される。したがって、永久磁石34のロータバックアセンブリ36への確実な接合を保証することが重要である。永久磁石をロータバックアセンブリ36へと接合するために、随意により、接着剤を使用してもよい。特定の実施形態においては、図6および図7に示されるように、ロータ16が、エアギャップ40およびステータ32に面するロータ16の周囲を巡る保持バンド52を含む。保持バンド52に、動作中に永久磁石34および隣接する構造を固定するために、プレストレスを与えることができる。さらに、保持バンド52を、ロータ16が回転するときの抗力を最小化することによって風損熱の発生を最小化するようにとくに構成することができる。
【0052】
[0070]特定の実施形態において、保持バンド52は、鋼またはグラフェン複合材などの磁性材料から製造される。そのような実施形態においては、バンドを、バンド52における渦電流の発生を最小化するために、複数の別個のバンドから実現してもよい。さらに、バンドに熱伝達材料を含浸させることができ、あるいはバンドを、他のやり方で永久磁石34からバンド52およびエアギャップ40の外面への熱伝達を促進するように処理してもよい。あるいは、保持バンド52の全体を、例えば銅またはアルミニウムなどの優れた熱伝達特性を有するように選択された材料から製造してもよい。あるいは、バンド52の全体を、プレストレスを与えることができ、渦電流を生じず、比較的高い熱伝導性も有する炭素繊維マットまたは炭素繊維フィラメントから製造してもよい。
【0053】
[0071]ロータの冷却方法および装置
動作中の電気機械のロータにおける熱の発生は、上述の技術を使用して減らすことが可能であるが、或る程度の熱の発生は不可避である。したがって、電気機械のロータを冷却するためのいくつかの装置および方法が、本明細書において開示される。とくにはモータ10などのTENV機械におけるロータ16が、機械のハウジング12内に実質的または完全に収容され、ステータ32によって囲まれることに、留意することが重要である。したがって、ロータ12の冷却は、多くの場合、モータ10からの熱の放出に先立って、別のモータ構造への熱伝達を必要とする。特定の例において、本明細書において説明されるロータ冷却方法および装置は、モータ10、ステータ32、および/またはハウジング12の他の部分を冷却するための方法および装置と共に動作する。
【0054】
[0072]A.ロータの強制流体回路
図8が、図2に示したモータ10の側面断面図である。図9が、図8に示したロータ16、ハウジング12、およびステータ32の一部分の拡大図である。動作時に、ロータ16は、ステータ32およびハウジング12の内側で自由に回転できなければならない。したがって、ロータ16、ステータ32、およびハウジング12が協働して、ロータ16が動作する特定のキャビティを定める。例えば、図1および図2ならびに図8および図9のハウジング12は、ステータ32を取り囲み、したがってシャフト軸22を取り囲む周辺部分54を含む。ハウジング12の周辺部分54は、1つ以上の密閉されたシャフト開口部を除いて、周辺部分54の各々の端部の第1のエンドプレート56および反対側のエンドプレート58によって実質的に閉じられている。したがって、周辺部分54、第1のエンドプレート56、および反対側のエンドプレート58は、モータ10の全体としてのパンケーキ形状を定める。周辺部分54、第1のエンドプレート56、および第2のエンドプレート58は、互いに接合されてハウジング12を形成する別個の構造であってよい。あるいは、周辺部分54ならびに一方のエンドプレート56、58または他のハウジング構造を、鋳造、機械加工、または他のやり方で単一の部品として形成することができ、周辺部分54ならびにエンドプレート56または58は、単一のハウジング構造の異なる領域を特定するように機能する。
【0055】
[0073]図10および図11に最もよく見られるように、ステータ32のうちのエアギャップ40に面する部分、およびエンドプレート56、58が、実質的に円柱形のロータキャビティ60を定める。モータ10の特定の実施形態は、以下で説明されるように、全体としての円柱形のロータキャビティ60の種々の別個の領域の間で空気を強制的に循環させるように設計された装置を含む。
【0056】
[0074]具体的には、ロータ16の一方の端部62とハウジング12の隣接部分との間の開放空間が、円柱形のロータキャビティ60内に実質的に環状の第1のキャビティ64を定める。同様に、ロータ16の反対側の端部66とハウジング12の隣接部分との間の開放空間が、円柱形のロータキャビティ60内に実質的に環状の第2のキャビティ68を定める。さらに、比較的薄いエアギャップ40が、ロータ16の外周とステータ32の内向きの表面との間に延びて、円柱形のロータキャビティ60を完成させる。図8および図9に最もよく示されているように、空気、空気/油の混合物、他の気体、液体、または混合流体を、ロータ16に内部ファン70などの内部ファン表面およびステータ32を貫く1つ以上の通気チャネル72を設けることによって、一方のキャビティ64、68から他方のキャビティ64、68へとエアギャップ40を通って循環させることができる。
【0057】
[0075]具体的には、一連の通気チャネル72を、図3および図4に最もよく示されているように、ロータバックアセンブリ36を貫いて設けることができる。図示の実施形態において、各々の通気チャネル72は、シャフト軸22の周囲の円弧の一部分を定め、ロータバックアセンブリ36の各々の薄板50を貫いて延びる開口部を構成する。通気チャネル72の他の形状および構成も、各々の通気チャネル72が第1のキャビティ64および第2のキャビティ68に流体連通する開口部を有するという条件で、本開示の範囲内である。
【0058】
[0076]第1のキャビティ64、第2のキャビティ68、エアギャップ40、および各々の通気チャネル72は、ロータ16を部分的に取り囲みかつロータ16を通って延びる内部強制流体回路74を協働して定める。空気、他の流体、あるいは以下で説明されるような空気と油の混合物を、内部ファン70によって内部強制流体回路74を通って循環させることができる。ファン70は、ロータ16の一部であってよく、ロータ16に取り付けられてよく、あるいはロータ16によって駆動されてよく、空気または他の流体を内部強制流体回路74において循環させることができる。具体的には、ファン70は、ロータ16が図4において見たときに時計回りの方向に回転するとき、エアギャップ40における比較的低圧のゾーンと、第2のキャビティ68においてシャフト14へと向かう比較的高圧のゾーンとを生じさせるように構成された複数のファンブレード76を含む。
【0059】
[0077]この圧力差が、空気または他の流体を第2のキャビティ68から通気チャネル72を通って第1のキャビティ64へと循環させる。同時に、空気または他の流体は、第1のキャビティ64からエアギャップ40を通って第2のキャビティ68へと循環させられ、強制流体回路74を完成させる。別のファン構成または別の回転方向が、空気または他の流体を反対方向に循環させることができる。
【0060】
[0078]図4の実施形態において、ファン70は、第2のキャビティ68へと延びている。他の実施形態においては、ファン70が第1のキャビティ64へと延びてよく、あるいは別々のファンがキャビティ64および68の両方へと延びてよい。特定の実施形態において、ファン70および/またはファンブレード76は、ロータ16に取り付けられ、あるいはロータ16によって駆動される別個の構造である。別の実施形態において、ファン70は、ロータバックアセンブリ36に形成され、シャフト14の一部分に形成され、あるいは他のやり方でロータ16に取り付けられた複数のファンブレード76を備えることができる。任意の実施形態において、ファン70は、ロータが回転するときに、空気または他の流体をロータ16を巡り、さらにはロータ16を通って循環させ、強制流体回路74を完成させる。
【0061】
[0079]強制流体回路74内を循環する空気または他の流体は、上述のようにロータ16内で発生した熱によって加熱され、したがってロータ16を冷却する。加熱された流体は、この熱を別の構造へと伝達して、最終的にモータ10を冷却することができる。ロータ16から強制流体回路74への熱伝達および強制流体回路74からのさらなる熱伝達を促進するさまざまな構造が、以下で説明される。さらに、ロータに関連する種々の構造が、ロータ16から強制流体回路74への効率的な熱伝達を促進するように設計された表面処理を有することができる。例えば、これらに限られるわけではないがファン70、ファンブレード76、シャフト14、ロータバックアセンブリ36、保持バンド52、または他の構造などの任意のロータ構造を、ロータと強制流体回路74との間の熱伝達を促進するために、表面積を増やすように粗面化でき、あるいは例えば黒色陽極酸化で処理することができる。
【0062】
[0080]ロータ16から強制流体回路74への熱伝達、または強制流体回路74からハウジング12などの他のモータ構造への熱伝達、ならびに最終的なモータ10からの熱伝達を、補足的な熱伝達構造によって促進することができる。例えば、図5に示されるように、ロータバックアセンブリ36または別のロータ構造を、例えば図5図8、および図9に示されるSE熱伝達構造78およびOSE熱伝達構造80などの1つ以上の熱伝達構造に、熱接触させることができる。本明細書において定義されるとき、「熱接触」は、2つ以上の構造の間の接触であって、熱エネルギが或る構造から別の構造へと流れることができるような接触を意味する。互いに直接的に熱接触している構造は、物理的にも互いに接触している。あるいは、熱接触は、サーマルペーストなどの介在の材料を介して生じてもよい。SE熱伝達構造78およびOSE熱伝達構造80は、ロータ12に取り付けることができ、ロータ12に形成することができ、あるいは他の方法でロータに熱接触させることができる熱伝達構造の任意の数の種類または構成の単なる代表例にすぎない。いずれの場合も、ロータ熱伝達構造78または80は、片側においてロータに接触し、第1のキャビティ64または第2のキャビティ68のいずれかへと延びて、ロータ16と強制流体回路74との間の熱伝達を促進する。
【0063】
[0081]他の熱伝達構造を、強制流体回路74からハウジング12への熱伝達、およびその後の熱放射、伝導、または対流によるモータ10からの熱伝達を促進するために、ハウジング12へと接合でき、あるいはハウジング12に熱接触させて形成することができる。例えば、図2図8図9、および図10に示されるように、ロータ12に向かって第1のキャビティ64または第2のキャビティ68へと延びる1つ、2つ、またはさらに多くの熱伝達構造を、ハウジング12に取り付けることができる。これに限られるわけではないが、図に示されている代表的な例において、モータ10は、第1のキャビティ64および第2のキャビティ68へとそれぞれ延びるSEハウジング熱伝達構造82およびOSEハウジング熱伝達構造84を含む。熱伝達構造82、84の各々は、実質的に環状であるものとして図示されているが、他の形状および構成も本開示の範囲内である。
【0064】
[0082]SEハウジング熱伝達構造82およびOSEハウジング熱伝達構造84は、ハウジング12に取り付けられ、ハウジング12に形成され、あるいは他のやり方でハウジング12に熱接触させることができる任意の数の熱伝達構造の種類または構成の単なる代表例にすぎない。いずれの場合も、ハウジング熱伝達構造82または84は、片側においてハウジング12に接触し、第1のキャビティ64または第2のキャビティ68のいずれかへと延びて、強制流体回路74からハウジング12への熱伝達を促進する。
【0065】
[0083]図示の実施形態のいくつかにおいては、熱伝達構造78、80、82、または84を、いくつかのピン、フィン、ピン/フィンの組み合わせ86、あるいは表面積および乱流を増やすように設計された他の構造を有して形成することができる。ピン/フィン86は、ハウジング12またはステータ32から遠ざかるように隣接するキャビティ64または68へと延びる。熱伝達構造78、80、82、または84を、熱伝達構造および強制流体回路74への熱伝達、あるいは熱伝達構造および強制流体回路74からの熱伝達を促進するために、表面積を増やすように粗面化でき、あるいは例えば黒色陽極酸化によって処理することができる。さらに、1つ以上の熱伝達構造78、80、82、または84を、高い熱伝導率を有する銅またはアルミニウムなどの材料から製造することができる。熱伝達構造78、80、82、または84を、熱伝達構造78、80、82、または84から強制流体回路74への効果的な熱伝達あるいは強制流体回路74からの効果的な熱伝達を促進する熱伝達ペーストまたは他の境界面を使用して、隣接するロータまたはハウジング構造へと接合することができる。
【0066】
[0084]B.ロータの封止および安定化
特定の実施形態においては、例えば図5に示されるように、隣り合う永久磁石34がギャップ88によって隔てられる。ロータ16からのさらなる熱伝達、とりわけ各々の永久磁石34の側面からのさらなる熱伝達を、ギャップ88のすべてまたは一部を熱伝導性ロータ封止材90で満たすことによってもたらすことができる。以下で詳述されるように、熱伝導性封止材90は、風損も低減し、ロータ16に機械的安定性をもたらす。熱伝導性ロータ封止材90の代表的な例として、これらに限られるわけではないが、エポキシ、人工高分子、ポリエステル、ポリウレタン、シリコーン、または他のプラスチック、あるいはギャップ88の充てんに適した流動性または成形性材料が挙げられる。熱の管理を、熱伝導性ロータ封止材90に添加剤をもたらし、封止材の熱伝導率を変更のない封止材の本来の熱伝導率を上回るように高めることによって、向上させることができる。熱伝導率を高めるための代表的な添加剤として、これらに限られるわけではないが、チッ化ホウ素、炭化ケイ素、シリカ、酸化アルミニウム、アルミニウム、銅、他の金属、他の金属酸化物、セラミック、グラフェン、などの懸濁粒子が挙げられる。懸濁粒子が球状であり、半径方向を向いた繊維を有し、あるいは熱伝導を促進するように設計された他の形状または配向を有する場合、封止材90の熱伝導率をさらに高めることができる。
【0067】
[0085]あるいは、熱伝導性ロータ封止材の90の特定の部分または領域を、比較的高い熱透過率を有する物質から製造することができる。例えば、ギャップ88を、例えば銅またはアルミニウムシェルなどの金属シェル92内に拘束されたエポキシまたは他のポリマーで満たすことができ、ここでシェルは、ポリマーよりも高い熱伝導率を有する。別の実施形態においては、ギャップ88を、封止材を介して永久磁石34、ロータバックアセンブリ36、および/または強制流体回路74に接触したアルミニウムまたは銅コアなどのより高い熱伝導性のコアを囲むエポキシまたは他のポリマーで満たすことができる。任意の実施形態において、熱伝導性ロータ封止材は、予想されるモータ動作温度よりも大幅に高いガラス転移温度および最大動作温度を有するべきである。
【0068】
[0086]さらに、熱伝導性のロータ封止材90は、ロータ12に機械的強度をもたらし、したがってモータ10の全体的な堅牢性を向上させる役に立つ。例えば、熱伝導性ロータ封止材90を、永久磁石34を機械的に固定し、大荷重において永久磁石34がロータバックアセンブリ36の周囲で円周方向に滑ることを防ぐために、隣り合う永久磁石34の間でロータバックアセンブリ36に接触させ、かつ/あるいはロータバックアセンブリ36へと接合することができる。熱伝導性ロータ封止材90とロータバックアセンブリ36との間の接合を、ロータバックアセンブリ36と熱伝導性ロータ封止材90の表面との間の境界面においてロータバックアセンブリ36にスロット94、溝、キー溝、粗面、穴、突起、または他の構造を設けることにより、機械的に強化することができる。
【0069】
[0087]図3および図4に最もよく示されているように、熱伝導性ロータ封止材90を、一端または両端において、1つ以上のロータ側補助熱伝達構造に接触させることができる。図3および図4の特定の実施形態は、熱伝導性ロータ封止材90に熱接触し、第1のキャビティ64へと延びている一連のSE熱伝達要素78を含む。さらに、図3および図4の実施形態は、熱伝導性ロータ封止材90の他端に熱接触し、第2のキャビティ68へと延びている一連のOSE熱伝達要素80を含む。
【0070】
[0088]熱伝達構造78および80は、熱伝導性ロータ封止材90の一端または他端に取り付けることができ、熱伝導性ロータ封止材90の一端または他端に形成することができ、あるいは熱伝導性ロータ封止材90の一端または他端に他のやり方で熱接触させることができる任意の数の熱伝達構造の単なる代表例にすぎない。いずれの場合も、熱伝達構造78、80は、第1のキャビティ64または第2のキャビティ68のいずれかへと延びて、ロータ16と強制流体回路74との間の熱伝達を促進する。
【0071】
[0089]別の実施形態においては、熱伝達構造78、80、82、または84のうちの1つ以上を、ファン70として機能するように形成してもよい。例えば、図5の熱伝達構造78のピン/フィンの組み合わせ86を斜めにし、あるいは他のやり方で強制流体回路74を通る流体の循環を引き起こす圧力勾配を生じさせるように形成することができる。
【0072】
[0090]C.伝熱油
特定の実施形態において、モータ10内の熱伝達の効率を、熱伝達流体を空気と組み合わせて利用し、あるいは空気の代わりに利用することによって、向上させることができる。例えば、或る量の変圧器油または別の熱伝達流体を、第1のキャビティ64および/または第2のキャビティ68に追加することができる。モータが動作していないとき、油は各々のキャビティ64、68の底部に溜まり、例えばエアギャップ40の下部4分の1を満たす。ロータ16が回転すると、永久磁石34が順次に油槽に沈み、永久磁石34および保持バンド52のすべての露出面から熱を奪うことができる。
【0073】
[0091]以下で詳しく説明されるように、部分的には内部キャビティ64、68へと加えられた油がロータ16に接触した状態で溜まることを確実にするために、ステータ封止材をステータ32とハウジング12との間に加えることができる。例えば、図11のステータ封止材96を参照されたい。エアギャップ40、ならびに/あるいは熱伝達構造伝熱構造78、80、82、84または他の熱伝達構造のうちの1つ以上の熱伝達構造の沈んだ部分を覆うように、充分な油をキャビティ64、68に加えることができる。キャビティ64、68およびエアギャップ40は、ロータキャビティ60の相互接続された領域である。したがって、1つのキャビティに追加された熱伝達流体は、他のキャビティへと流れる。キャビティ64、68に加えられる油または他の熱伝達流体の量は、キャビティ64および68の総体積の50%以下、キャビティ64および68の総体積の25%以下、または他の適切な体積であってよい。
【0074】
[0092]ロータ16が比較的高速で回転するとき、ロータ16および/または熱伝達構造78、80の動きによって油または他の熱伝達流体をはね散らして霧状にすることで、強制流体回路74の熱特性を改善することができる。ロータ16が油槽を通って移動するときに乱流および低い抗力を保証するために、保持バンド52に有孔コーティングまたは薄いメッシュ表面を取り付けてもよい。
【0075】
[0093]D.ロータバックアセンブリの熱の排出
一般的に上述したとおり、ロータバックアセンブリ36は、シャフト軸22に面する永久磁石34のエッジから熱を導くとともに、ロータバックアセンブリ36自身における渦電流およびヒステリシス損失によっていくらかの熱を発生させる。ロータバックアセンブリ36へと導かれた熱またはロータバックアセンブリ36内で発生した熱を、通気チャネル72へと半径方向に導くことができる。あるいは、ロータバックアセンブリ36へと導かれた熱またはロータバックアセンブリ36内で発生した熱を、SE熱伝達構造78、OSE熱伝達構造80、他の熱伝達構造、またはファン70へと軸方向に導くことができ、そこから強制流体回路74へと熱を移すことができる。キャビティ64、68に面するロータバックアセンブリ36の表面を、ロータ16から強制流体回路74、ステータ32、ハウジング12、または熱を環境へと消散させることができる他の構造への熱の移動を強化するように、構造化し、テクスチャを持たせ、陽極酸化処理し、あるいは他のやり方で処理することができる。
【0076】
[0094]これに限られるわけではないが通気チャネル72、熱伝達構造78、80、および熱伝導性ロータ封止材90を含む本明細書に開示の装置および方法は、モータの動作時にロータバックアセンブリ36が永久磁石34よりも比較的低温であることを保証する。この温度勾配が、熱を永久磁石34からロータバックアセンブリ36へと流し、シャフト14、強制流体回路74、およびハウジング12、あるいは本明細書で説明される他の排出経路を通って、モータの外へと流す。
【0077】
[0095]E.シャフトの熱の排出
ロータからの熱伝達のための別の経路は、シャフト14を利用する。シャフト14は、通常は金属同士の接触により、ロータバックアセンブリ36に堅固に接続されている。したがって、永久磁石34、ロータバックアセンブリ36、または他のロータ構造からの熱を、シャフト14へと導くことができる。シャフト14を介した熱の放出を、シャフト14に熱伝導性が比較的高いコア98、あるいは周囲の鋼であるシャフト材料と比べたときにアルミニウムまたは銅などの比較的高い熱伝導率を有する材料で作られた他のシャフト構造を設けることによって、向上させることができる。シャフト14は、例えばファン、ポンプ、駆動ローラ、または材料加工機などの被駆動機器の本体へと接続される。したがって、シャフト14は、とくには熱伝導性のコア98が設けられている場合に、熱を被駆動機械へと導くことができ、被駆動機械において熱を対流、伝導、または放射によって消散させることができる。
【0078】
[0096]ステータの冷却方法および装置
ステータ32における主要な熱発生源は、電磁石38の金属コア44内の磁気的に誘導された渦電流、および巻線42における抵抗損失である。ステータ32において生じる熱の量を、スロット充てん率を最大化し、AC抵抗損失を低減するように、巻線42の線番を最大化することによって低減することができる。さらに、巻線42に矩形のワイヤを使用して、スロット充てん率を高め、抵抗損失を減らすことができる。鋼製の電磁石コア44内の磁気的に誘導された渦電流を、以下で詳しく説明されるように、電気的に絶縁された薄板から各コアを製造することによって最小化することができる。
【0079】
[0097]電気機械のステータを冷却し、機械から熱を消散させるためのいくつかの装置および方法が開示される。とくにはTENV機械におけるステータ32が、機械のハウジング12内に完全に囲まれていることに、留意することが重要である。したがって、ステータ32の冷却は、多くの場合に、モータ10からの放熱に先立って、例えばハウジング12またはシャフト14などの別のモータ構造へと熱を移すことを必要とする。特定の例において、本明細書において説明されるステータ冷却方法および装置は、モータ10、ロータ16、および/またはハウジング12の他の部分を冷却するための方法および装置と共に動作する。さまざまな熱管理の方法および装置を、任意のやり方で組み合わせ、拡大縮小し、あるいは部分的に実施して、所望の熱管理および機械の耐久性の目標を達成することができる。
【0080】
[0098]A.電磁石の構造
図10図13、および図14に示されるように、代表的な電気機械のステータ32は、例えばモータ10などの機械のシャフト軸の周囲に放射状に配置された複数の電磁石38を含む。図14Aおよび分解図である図14Bにおいて最もよく見られるように、電磁石38は、典型的には鋼合金である磁性金属のコア44を含む。磁気的に誘導される渦電流を、同様または同一の形状の比較的薄い薄板46の積層からコア44を製造することによって低減することができる。図15に示される特定の薄板形状は、歯部分100およびヨーク部分102を含む。複数の薄板46を積層して電磁石コア44を形成したとき、歯部分100が巻線42を直接的または間接的に支持する一方で、ヨーク部分102がステータ32への構造、ステータ32の外部への熱伝達経路、および追加の磁気コア塊をもたらす。
【0081】
[0099]コア44に磁気的に誘導される渦電流を低減するために、隣り合う薄板46の間に電気的絶縁をもたらす必要がある。したがって、各々の薄板46の平坦な両面を、ラッカー、エポキシ、プラスチック、絶縁塗料、紙、あるいは別の誘電体層またはコーティングで覆い、複数の薄板を積層して電磁石コア44を製造するときに、隣り合う薄板46の間に電気的絶縁をもたらすことができる。従来からの薄板絶縁方法は、各々の薄板を熱的にも絶縁し、コア44または周囲の巻線42のいずれかにおいて生じた熱の流れを制限する傾向がある。
【0082】
[0100]コア薄板46に使用される磁性鋼合金は、典型的には、熱伝導率が比較的低い。電磁コア44の熱的性能、したがって電気機械の熱的性能を、磁性鋼の薄板46に磁石鋼よりも比較的高い熱伝導率を有する材料をコーティングし、あるいは他のやり方で組み合わせることによって、向上させることができる。例えば、鋼製の薄板46の外面の一部または全体に、ニッケル、ニッケルシルバー、銅、またはアルミニウムなどの金属、グラフェン、あるいは鋼製の薄板の内部よりも高い熱伝導率を有する他の材料の比較的薄い熱伝達層104をコーティングし、めっきし、堆積させ、あるいは他のやり方で組み合わせることができる。薄板46が動作可能な構成へと積層されるときに、渦電流を最小化するために、熱伝達層104上に電気絶縁層106を追加することができる。特定の実施形態においては、1つの層が、選択された材料が誘電体材料であり、かつ薄板に使用される磁性鋼よりも高い熱伝導率を有するという条件で、絶縁体および熱伝達層の両方として機能することができる。例えば、さまざまな酸化グラフェンが、熱伝達の向上および電気的絶縁の両方をもたらす単一の層として機能することができる。
【0083】
[0101]単純な絶縁された鋼製の薄板よりも高い熱伝導率を有する層状の薄板の構成の一例が、図15Aに示されている。この実施形態において、鋼製の薄板46は、最初に、下方に位置する薄板46の鋼よりも高い熱伝導率を有する熱伝達層104でコーティングされる。次いで、熱伝達層104に誘電絶縁層106をコーティングし、あるいは他のやり方で組み合わせることができる。
【0084】
[0102]あるいは、図15Bに示されるように、薄板46の一方の平坦な表面だけに誘電絶縁層106をコーティングし、あるいは他のやり方で絶縁することができる。この薄板46の他方の平坦な表面に、電磁コア44からの熱伝達を促進するように選択された材料の熱伝達層104をコーティングし、接触させ、接合し、めっきし、あるいは他のやり方で組み合わせることができる。コア44がこのやり方で準備された複数の薄板46から製造される場合、各々の薄板が図15Bに示されるとおりに同じ向きで配置される限りにおいて、すぐ隣の薄板46の誘電絶縁層106が両方の薄板を互いに電気的に絶縁するがゆえに、熱伝達層104は電気的絶縁をもたらす必要はない。
【0085】
[0103]熱伝達層104は、例えば、薄板46上に配置された鋼よりも大幅に高い熱伝導率を有する金属であってよい。鋼よりも高い熱伝導率を有する代表的な金属として、これらに限られるわけではないが、銅、ニッケル、金、銀、またはアルミニウムが挙げられる。例えばグラフェンまたは酸化グラフィングなどの他の材料を、薄板46上に熱伝達層104として堆積させてもよい。上述の材料の組み合わせも使用可能である。例えば、図15Cに示されるように、コア44を、薄板46の一方の表面に誘電体コーティング106が堆積させられ、あるいは他のやり方で組み合わせられており、他方の表面にニッケルシルバーなどの金属104aがコーティングされ、その後にグラフェン層104bがコーティングされている内側の鋼製の薄板46を積層して製造することができる。このパターンが積層の全体にわたって繰り返されるとき、各々の薄板46は隣の薄板から絶縁されるが、依然として各々の薄板はコア44からの熱の排出をもたらす1つ以上の熱伝導性伝達層104にも接触している。
【0086】
[0104]電磁コア44を形成する積層された薄板46を、組み立て時および動作時に一体に保持し、巻線42から絶縁しなければならない。従来からの電磁コアは、多くの場合、接着剤、ラッカー、ねじ、ボルト、ピン、圧着面、その他の留め具、溶接継手、または他の手段によって一体に保持される。絶縁を、接着剤またはラッカー、テープまたは紙などの補足的な構造、あるいは単に巻線の絶縁体によってもたらすことができる。本開示の実施形態を、上述の組み立ておよび絶縁技術のいずれかによって実現することができる。あるいは、図14に示されるように、薄板46の積層、および薄板のコーティング104、106を、コア44内の各々の薄板46の歯部分100の上部、下部、および側面を囲む誘電体ボビン108によって互いにきつく押し合わせて、優れた熱特性を有するコア44とすることができる。誘電体ボビン108を、例えばプラスチック、ナイロン、または同様の材料から、射出成形によって製造することができる。薄板の面同士を押し合わせる手段としてボビン108を利用すると、これらに限られるわけではないが薄板の各々の面の間の接着剤またはラッカー、隣り合う薄板を貫くボルトまたはねじ、薄板の積層の1つ以上の側面に沿って位置する溶接継手、薄板間の機械的な圧着接続、切り欠き、または他の固定方法などの他の薄板取り付け方法を使用すると危うくなりかねない熱伝達層104の使用が、容易になる。
【0087】
[0105]具体的には、ボビン108は、電磁コア44内の各々の薄板46の歯部分100の全体にわたって一定の均一に分布した圧力を保証する。均等に分布した圧力は、薄板46または層104、106の間のギャップを最小限に抑え、したがって各々の薄板46から関連の熱伝達層104への熱伝達を促進する。さらに、ボビン108を使用して薄板46および関連の層104、106を押し付けてコア44を形成すると、1つ以上の薄板46の間の短絡を引き起こし、したがってコア44の電磁特性を損なうボルト、ねじ、圧着、溶接、または他の機械的な留め具の可能性が回避される。特定の実施形態において、ボビン108は、隣り合う薄板を一体に保持する唯一の構造である。
【0088】
[0106]図14にも示されるとおり、ボビン108は巻線42を支持する。巻線42の特定の部分は、隣接する電磁コア44の間のスロットを通って延びる。巻線42の他の部分は、各々の電磁コア44を横切って隣り合うスロットを橋渡しするエンドターン109である。
【0089】
[0107]図14に示されるように、各々の薄板のヨーク部分102を、対向する雄および雌の蟻継ぎ、舌および溝、または他の嵌合する構造110および112へと形成することができる。したがって、図13に最もよく示されているように、一連の電磁石38がステータに組み込まれると、隣接する雄および雌の舌110および溝112の構造が、ステータ32に機械的支持を提供する。さらに、各々の歯100、ボビン108、および巻線42の先細りの形状は、スロットの形状へと先細りになる集中巻線コイルを生み出し、高いスロット充てん率をもたらす。高いスロット充てん率は、電気抵抗の低減をもたらし、したがって損失が減少し、熱の発生が減少する。
【0090】
[0108]B.ステータ/ハウジングの境界面
複数のヨーク部分102の積層された外向きの表面が、ステータ32の外面114を定める。図13に示されるように、外側ステータ表面114は、ハウジング12の周辺部分54の内側にぴったりと適合する。とくには上述のように薄板46の表面または薄板46の間に熱伝達層104が設けられている場合、熱は各々のコア44内を外側ステータ表面114へと流れることができる。外側ステータ表面114からハウジング12の周辺部分54への熱の伝達、およびその後の外部環境への熱の伝達を、外側ステータ表面114とハウジング12の周辺部分54の内面116との間に熱伝導性潤滑剤を用意することによって促進することができる。代表的な熱伝導性潤滑剤として、これらに限られるわけではないが、熱グリース、グラフェン、またはチッ化ホウ素粉末が挙げられる。
【0091】
[0109]ステータ32をハウジング12に注意深く結合させることにより、全体としての機械の堅牢性および熱性能もさらに向上する。例えば、図12図13、および図16に示されるように、1つ以上のエンドプレート56、58が、ヨーク部分102と接触するエンドプレート56、58上のリップおよびショルダ構造を定めることができる。リップ/ショルダ構造120は、各々の電磁コア44をエンドプレート56、58の残りの部分からいくらか離すように、各々の電磁コア44のヨーク部分102と係合する。したがって、リップ/ショルダ構造120は、エンドプレート内にポケットを生み出し、巻線42のエンドターン109のためのクリアランスを提供する。リップ/ショルダ構造120の高さ(図16に(h)と標記されている)を、エンドターン109からエンドプレート56、58までの距離を減らして熱伝達を促進するように選択することができる。以下で詳しく説明されるように、残りのギャップを、熱伝導性の封止材あるいは熱伝達を促進するための他の構造または材料で満たすことができる。さらに、リップ/ショルダ構造120の高さhを、エンドプレート56、58における磁気的に乱された電流の形成を最小にするために、必要に応じて増加させることができる。
【0092】
[0110]さらなる機械の堅牢性を、選択された電磁石コア44の外面114に係合構造122を設けることによって高めることができる。ハウジング12が、係合構造122に対向する嵌合係合構造124を含むことができる。係合構造122および124は、ステータ32の外面114をハウジング12の内面116に機械的に嵌合させるように構成された任意の形状またはサイズであってよく、したがって荷重のもとでのステータ32の回転または他の運動を防止することができる。図13に示される係合構造122、124の特定の実施形態は、電磁石コア44に形成された丸みを帯びたスロット、およびハウジング12の周辺部分54に形成された対応する丸みを帯びたスロットを含む。各々のスロットを、ステータ32をハウジング12へと迎えるためのピンに係合させることができる。ステータ32の外面114をハウジング12の内面116にしっかりとはめ込むことで、ケースを強固にし、電磁石38を衝撃、振動、または他の力から保護することにより、さらなる堅牢性がもたらされる。
【0093】
[0111]C.ステータの封止および安定化
ステータ32または他の機械構造の各部分からのさらなる熱伝達ならびにステータの堅牢性の向上を、熱伝導性ステータ封止材、熱伝達構造、またはポッティング材料によってもたらすことができる。例えば、特定の実施形態は、ステータ構造の大部分を封止する熱伝導性ステータ封止材96を含むことができる。図11の特定の実施形態において、熱伝導性ステータ封止材96は、外側ステータ表面114ならびに一部またはすべての磁気コア44のエアギャップに面する内面126を除き、電磁石アセンブリ38の全体を封止する。さらに、熱伝導性ステータ封止材96は、一方または両方のハウジングエンドプレート56、58あるいは他のハウジング構造に直接接触し、ステータ32からハウジング12への直接の熱経路を提供する。
【0094】
[0112]代案の構造を、完全または部分的なステータの封止に代え、あるいは完全または部分的なステータの封止と組み合わせて使用することができる。これらの代案の構造は、本開示の範囲内である。例えば、ステータからの熱伝達を、例えばステータ32およびハウジング12の何らかの部分に接触させて配置され、あるいはステータ封止材96の一部分とハウジング12との間に配置される熱伝導性の圧縮可能または従順な固体材料など、別個の熱接触構造によってもたらすことができる。熱接触構造は、実質的に中実であってよく、あるいはハニカム構造、ウェーブワッシャ構造、などを有することができる。熱接触構造を、熱伝導性のフェルト、発泡体、金属、コーティングされた金属、従順なエポキシ、例えばアルミナ充てん材を含むシリコン系パッドなどの複合材、あるいは任意の他の適切な熱伝導性の化合物、材料、または材料の組み合わせで製造することができる。
【0095】
[0113]例えばステータ封止材96がハウジング12の周辺部分を実質的に満たす実施形態など、ステータ32とハウジング12との間のギャップがステータ封止材96で部分的または実質的に満たされる実施形態においては、熱管理の他に構造上の利点ももたらされる。ステータ封止材96で電磁石38を封止することで、水分または粒子状物質による電磁石38の汚染が物理的に防止される。このような汚染は、絶縁劣化を引き起こし、最終的には隣接する配線間の短絡を引き起こす可能性がある。さらに、誘電性封止材96は、配線の絶縁の製造欠陥に対する保護を強化する。したがって、封止材96は、巻線間の短絡に対する冗長保護を提供し、巻線42の絶縁を補うことができる。特定の実施形態において、封止材96は、コイル相の電気接続も封止し、したがって相間短絡ならびに配線または電気接続部の製造欠陥に対するさらなる保護をもたらす。
【0096】
[0114]さらに、封止材96は、ステータ32内の配線の振動も低減する。振動は、巻線42の完全性および寿命を低下させる可能性がある。したがって、ステータ封止材96は、熱管理の改善および機械の堅牢性の向上をもたらす。これらに限られるわけではないが1つ以上の熱および振動センサなどの種々のセンサ85をステータ封止材96に埋め込んで、温度の上昇あるいはステータまたはロータの振動の増加を検出することができる。センサ85は、有線、無線、モノのインターネット(IoT)、または他の種類の監視センサ、あるいは別の適切な種類のセンサであってよい。1つ以上のセンサによって電気機械の動作を監視することにより、機械の性能低下をリモートで検出し、予防措置を講じることができる。
【0097】
[0115]一実施形態において、ステータ封止材96は、ステータ構造全体を取り囲み、以下で説明されるようにハウジングに接触する比較的堅固な外側部分を含む。しかしながら、図10に示されるように、隣り合う電磁石38の巻線42の間には比較的小さな空間が存在し、したがってステータ32の内部を比較的流動性の内部ポッティング材料で埋めることが有利であり得る。以下で詳しく説明されるように、任意の適切な粘度を有する任意の種類のステータ封止材96を、ステータ32からハウジング12への熱の放出を促進する高い熱伝導率を有するように処理することができる。
【0098】
[0116]上述のように、図1および図2ならびに図8図13のハウジングは、ステータ32を取り囲む周辺部分54を含む。ステータ32からハウジング12への熱伝達を、ステータ封止材96をエンドプレート56および58の一方または両方に物理的に接触させることによって促進することができる。図8の特定の実施形態において、ステータ封止材96は、各々のエンドプレート56および58の環状の内面の全体に接触する。
【0099】
[0117]ハウジング12は、互いに接合されてハウジング12を形成する別個の周辺部分54、別個の第1のエンドプレート56、および別個の第2のエンドプレート58を含むことができる。しかしながら、ハウジングを別の方法によって形成してもよいことに、注意することが重要である。例えば、別の実施形態においては、周辺部分54および一方のエンドプレート56、58を、単一の部品として鋳造、機械加工、または他のやり方で形成することができる。したがって、いくつかの実施形態において、エンドプレートおよび周辺部分は、一体化された構造であってよい。そのような実施形態において、ステータ封止材96は、一体化されたハウジング構造のエンドプレート領域に直接的または間接的に熱接触することができる。
【0100】
[0118]図11に示される構成において、ステータ封止材96および特定の電磁石コア44の内面126は、エアギャップ40に面する実質的に円柱形の内側ステータ表面128を定め、内側ステータ表面128の各々の端部は、第1および第2のエンドプレート56および58の中央部分によって境界付けられる。エンドプレートおよび内側ステータ表面128が共同で、閉じた円柱形のロータキャビティ60を定める。特定の実施形態において、モータ10は、任意のステータ構造とハウジングとの間にステータ封止材96で満たされていない最小限の空隙を含む。
【0101】
[0119]したがって、ステータ封止材96は、ステータ114の外面およびハウジングの周辺部分の内面116に接触する熱伝導性潤滑剤と併せて、潜在的にエアギャップ40に位置する内側ステータ表面128を除くステータ32のすべての表面を、ハウジング12の1つ以上の部分に直接熱接触させる。
【0102】
[0120]ステータ封止材96の熱伝導率を、特定の材料を封止材のマトリクスに含ませることによって高めることができる。これらの材料を、封止材が実質的に剛体の外側封止材であっても、比較的流動性のある内部ポッティング材料であっても含ませることができる。例えば、ステータ封止材96は、ロータキャビティ60の外側の実質的にすべての空隙を埋めるために液体の状態で適用される誘電体材料であってよい。特定の実施形態において、液体として適用された材料は、おおむね剛体のステータ封止材96へと完全に硬化または或る程度硬化する。ステータ封止材を熱的に向上させるために好適な代表的な誘電体材料として、これらに限られるわけではないが、チッ化ホウ素、炭化ケイ素、シリカ、酸化アルミニウム、アルミニウム、銅、他の金属、他の金属酸化物、セラミック、グラフェン、などの懸濁粒子が挙げられる。懸濁粒子が球状であり、半径方向を向いた繊維を有し、あるいは熱伝導を促進するように設計された他の形状または配向を有する場合、封止材96の熱伝導率をさらに高めることができる。
【0103】
[0121]あるいは、懸濁粒子の使用に代え、あるいは懸濁粒子の使用と併せて、より大規模な構造をステータ封止材96に組み合わせて、封止材の熱伝導率を高めることができる。例えば、封止材よりも高い熱伝導率を有する金属またはセラミックリングなどの固体部品を封止材に埋め込んで、単独の封止材よりも高い熱伝導率を有する複合体を生み出すことができる。
【0104】
[0122]上述のように、ロータに面する電磁コア面126およびステータ封止材96の内面は、エアギャップ40に露出される。これらの構造は、エンドプレート56、58とともに、囲まれたロータキャビティ60を定める。ステータ32からロータキャビティ60へと運ばれた熱は、まだ機械から排出されていない。さらに、機械のロータ16が、ロータキャビティ60内で動作して、この空間にさらなる熱を加える。熱を、ロータキャビティ60からハウジングエンドプレート56、58を介して外部環境へと伝達することができる。ロータキャビティ60からエンドプレートへの熱伝達を、一方または両方のエンドプレート56、58の中央領域をロータキャビティ60へと延びる1つ以上の熱伝達構造と一緒に製造し、あるいはそのような熱伝達構造に接触させることによって促進できる。
【0105】
[0123]例えば、図2図8、および図10図13に示されるように、各々のエンドプレート56、58の中央部分を、それぞれ熱伝達構造82および84に熱接触させることができる。熱伝達構造82および84の構成は、エンドプレート56、58に取り付けることができ、エンドプレート56、58に形成することができ、あるいは他の方法でエンドプレート56、58に熱接触させることができる熱伝達構造の任意の数の種類または構成の代表例である。いずれの場合も、熱伝達構造82または84は、片側でエンドプレートに接触し、反対側でロータキャビティ60へと延びる。
【0106】
[0124]熱伝達構造82または84を、いくつかのピン、フィン、ピン/フィンの組み合わせ86、あるいは表面積を増やし、熱伝達を促進するように設計された他の構造を有して形成することができる。ピンフィン86は、エンドプレート56、58から遠ざかるようにロータキャビティ60へと延びる。さらに、熱伝達構造82または84の内面を、熱伝達を促進するために、表面積を増やすように粗面化でき、あるいは例えば黒色陽極酸化によって処理することができる。加えて、熱伝達構造82または84を、高い熱伝導率を有する銅またはアルミニウムなどの材料から製造することができる。熱伝達構造82または84を、熱伝達ペーストまたは効果的な熱伝達を促進する別の方法を使用して、エンドプレート56、58または他のハウジング構造に接合することができる。熱伝達構造82、84の各々は、実質的に環状であるものとして図示されているが、他の形状および構成も本開示の範囲内である。
【0107】
[0125]ハウジングからの熱の排出
ハウジング12から外部環境への熱の排出を、ハウジングに足18あるいはハウジングから建物の床、建物の壁、取り付けブラケット、機械部品、またはモータ10の取り付け先の他の外部構造への熱伝達を促進する別の構造を設けることによって、強化することができる。足18を介した熱の排出を、足を例えばアルミニウム、銅、熱透過性複合材、などの高い熱伝導率を有する材料から製造することによって強化することができる。さらに、足18と外部構造との間の境界面130を、足18から外部構造への熱エネルギの伝導を強化する材料に接触させ、あるいはそのような材料で覆うことができる。例えば、境界面130を、熱伝導ペーストまたは銅などの足18よりも高い熱伝導率を有する他の材料で覆うことができる。
【0108】
[0126]ハウジングからのさらなる熱の排出を、ハウジング12の外側部分にフィン、ピン、または他の熱伝達構造を設けることによって促すことができる。ハウジング12のいくつかの部分を、熱伝達を促進するために、表面積を増やすように粗面化でき、あるいは例えば黒色陽極酸化または熱伝導塗料によって処理することができる。さらに、ハウジング12を、比較的高い熱伝導率を有するアルミニウムなどの材料から製造することができる。
【0109】
[0127]シャフトを介したステータからの熱の排出
上述のように、ロータ16から熱を運び去るための1つの経路は、シャフト14を利用する。さらに、ステータ32からハウジングエンドプレート56、58または他のモータ構造へと伝えられた熱が、シャフト14へと伝わり得る。シャフト14を介した熱の放出を、シャフト14に熱伝導性コア98、あるいはアルミニウムまたは銅などの比較的高い熱伝導率を有する材料で作られた他のシャフト構造を設けることによって、向上させることができる。シャフト14は、例えばファン、ポンプ、駆動ローラ、または材料加工機などといったシャフト14によって駆動される機器の本体へと接続される。したがって、シャフト14は、とくには熱伝導性のコア94が設けられている場合に、熱を被駆動機器へと導くことができ、被駆動機器において熱を対流、伝導、または放射によって消散させることができる。
【0110】
[0128]さらに、シャフト14は、ベアリングフランジ28、30に支持されたベアリング24、26によって支持される。ハウジング12からシャフト14への熱伝達を、ベアリング24、26および/またはベアリングフランジ28、30のうちの1つ以上の一部分を例えば銅またはアルミニウムなどの比較的高い熱伝導率を有する材料で実現することによって促進することができる。1つの特定の実施形態において、ベアリング24、26は、ハウジング12からシャフト14への熱伝達を促進するために銅から製造されたベアリングシール132、134を含む。ベアリングフランジ28、30も、銅または比較的高い熱透過率を有する他の材料から製造することができる。さらに、熱伝導性コア98を、シャフト14がベアリング24および/または26あるいはベアリングシール132、134と接触する領域において、シャフト表面またはシャフト表面の近くまで横方向に延ばすことができる。
【0111】
[0129]特定の実施形態においては、ハウジング54の周辺部分、第1のエンドプレート56、および第2のエンドプレート58を、一緒に製造でき、一体に溶接でき、あるいは他のやり方でハウジングへの進入を防止するように製造することができる。したがって、ベアリングフランジ28、30、または別のハウジング構造が、ハウジングの外側から交換できるベアリング24、26を備えたベアリングカートリッジを支持することができる。したがって、モータ10の他の可動部品と比較して機械的摩耗が速く進行するベアリング24、26を、ハウジング12の内部にアクセスすることなく交換することができ、したがって全体的な機械の堅牢性が向上する。
【0112】
[0130]方法
他の実施形態は、これらに限られるわけではないが、電気機械のロータを冷却する方法、電気機械のステータを冷却する方法、電気機械を冷却する方法、電気機械または電気機械の部品を製造する方法、電気機械を安定化する方法、および電気機械のための電磁石を製造する方法を含む。本明細書に開示の装置に完全に基づいて、さまざまな方法が当業者にとって明らかであろう。
【0113】
[0131]代表的な方法は、ロータ16を冷却する方法、またはロータ16およびステータ32を有する電気機械10を冷却する方法を含む。この方法は、ロータ16をステータ32に対して回転させて内部ファン70を駆動することを含む。内部ファン70は、例えば空気または空気と油の混合物などの流体を、ロータ16に隣接する第1のキャビティ64と第2のキャビティ68との間の流体回路74において循環させて、ロータ16を冷却する。流体回路74へと伝達された熱を、その後に機械のハウジング12へと伝達し、次いで機械10から運び去ることができる。
【0114】
[0132]別の代表的な実施形態は、ステータ封止材96をステータ32ならびに第1のエンドプレート56または第2のエンドプレート58などの機械のハウジング領域12に熱接触させることにより、ステータ32または電気機械10を冷却する方法である。ステータ封止材96の熱伝導率を、添加材を封止材96に混ぜて熱伝導率を高めることによって強化することができる。このようにして、ステータ32で発生した熱を、ステータ32から封止材96を介してハウジング12へと導くことができる。
【0115】
[0133]別の代表的な実施形態は、電磁石コア44を備えた複数の電磁石38を有するステータ32または電気機械10を製造する方法である。複数の電磁石コア44を、歯部分100およびヨーク部分102を定める薄板46の積層を含むように形成することができる。各々のヨーク部分は、舌構造110および対向する溝構造112も定めることができる。電磁石38を、各々の電磁石38の舌構造110および溝構造112を、隣接する電磁石38の対応する舌構造110および溝構造112に嵌合させることによって組み立て、ステータ32とすることができる。このように電磁石が組み立てられた後に、ステータ32を、熱伝導性封止材96で封止することができる。
【0116】
[0134]別の代表的な実施形態は、電気機械10を安定させる方法である。この方法は、隣接する永久磁石34と接触する熱伝導性誘電体ロータ封止材90でロータ16を安定化し、隣接する電磁石38と接触する熱伝導性誘電体ステータ封止材96でステータ32を安定化することを含む。
【0117】
[0135]本発明の範囲から逸脱することなく、上述した実施形態についてさまざまな修正および追加を行うことができる。例えば、上述の実施形態は特定の特徴に言及しているが、本発明の範囲は、特徴の異なる組み合わせを有する実施形態および上述の特徴をすべては含まない実施形態も含む。
【0118】
[0136]さらに、本明細書に記載の方法およびプロセスの手順は、説明を容易にするために特定の順序で説明されているが、文脈からそのようでないことが明らかでない限り、種々の手順をさまざまな実施形態に従って並べ替え、追加し、さらには/あるいは省略することが可能である。さらに、或る1つの方法またはプロセスに関して説明された手順を、説明された他の方法またはプロセスに取り入れることが可能であり、同様に、特定の構造アーキテクチャに従って説明され、さらには/あるいは或る1つのシステムに関して説明されたシステム構成要素を、別の構造アーキテクチャに編成し、さらには/あるいは説明された他のシステムに組み込むことが可能である。したがって、種々の実施形態を、説明を容易にするため、およびそれらの実施形態の典型的な態様を例示するために、特定の特徴を備え、あるいは特定の特徴を備えずに説明したが、特定の実施形態に関して本明細書で説明した種々の構成要素および/または特徴を、文脈からそのようでないことが明らかでない限り、他の説明された実施形態において置き換え、追加し、かつ/または取り去ることが可能である。したがって、いくつかの典型的な実施形態を上述したが、本発明が、以下の特許請求範囲の技術的範囲に含まれるすべての変更および均等物を包含するように意図されていることを、理解できるであろう。
(条項1)
長さ方向のシャフト軸を定めるシャフトと、前記シャフトの一部分を取り囲むロータバックアセンブリと、前記ロータバックアセンブリの周りに放射状に配置された複数の永久磁石とを備えるロータと、
前記ロータの周囲に放射状に配置された複数の電磁石を備えるステータと、
前記ロータおよび前記ステータを支持するハウジングと
を備えており、
前記ロータ、前記ステータ、および前記ハウジングの一部分が、
前記ロータの一方の端部の前記ロータと前記ハウジングとの間の第1のキャビティと、
前記ハウジングと前記ロータの他方の端部との間の第2のキャビティと、
前記ロータと前記ステータとの間を前記第1のキャビティから前記第2のキャビティまで延びるエアギャップと、
前記ロータバックアセンブリを貫いて前記第1のキャビティから前記第2のキャビティまで延びる通気チャネルと
を定めており、
ロータファンが、前記第1のキャビティおよび前記第2のキャビティの一方へと延びており、前記ロータが前記ステータに対して回転するときに流体を前記第1のキャビティと前記第2のキャビティとの間で前記通気チャネルおよび前記エアギャップを通して循環させる、電気機械。
(条項2)
前記ロータファンは、前記ロータバックアセンブリの外面に形成された複数のファンブレードを備える、条項1に記載の電気機械。
(条項3)
前記ロータバックアセンブリおよび前記複数のファンブレードのうちの少なくとも一方は、前記第1のキャビティまたは前記第2のキャビティへの熱の放射を強化するための表面処理を備える、条項2に記載の電気機械。
(条項4)
前記ロータバックアセンブリは、複数の薄板を備える、条項2に記載の電気機械。
(条項5)
前記複数の永久磁石のうちの少なくとも1つは、複数の永久磁石薄板を備える、条項1に記載の電気機械。
(条項6)
前記複数の永久磁石の各々の前記エアギャップに面する外面を取り囲む保持バンドをさらに備える、条項1に記載の電気機械。
(条項7)
前記ハウジングに熱接触し、前記第1のキャビティへと延びている第1の熱伝達構造
をさらに備える、条項1に記載の電気機械。
(条項8)
前記ハウジングに熱接触し、前記第2のキャビティへと延びている第2の熱伝達構造
をさらに備える、条項7に記載の電気機械。
(条項9)
前記ロータは、前記第1のキャビティへと延びている第3の熱伝達構造を備える、条項1に記載の電気機械。
(条項10)
前記ロータは、前記第2のキャビティへと延びている第4の熱伝達構造を備える、条項9に記載の電気機械。
(条項11)
前記ロータは、
隣り合う永久磁石の間のギャップと、
前記隣り合う永久磁石の間の前記ギャップを埋める熱伝導材料と
をさらに備え、
前記第3の熱伝達構造は、前記熱伝導材料の第1の端部に熱的に連絡している、条項10に記載の電気機械。
(条項12)
前記第4の熱伝達構造は、前記熱伝導材料の第2の端部に熱的に連絡している、条項11に記載の電気機械。
(条項13)
前記流体は、空気および空気でない別の熱伝達流体を含む、条項1に記載の電気機械。
(条項14)
熱伝導性のシャフトコアをさらに備え、前記シャフトコアは、前記シャフトのうちの前記シャフトコアを取り囲む部分とは異なる組成を有する熱伝導材料を含む、条項1に記載の電気機械。
(条項15)
長さ方向のシャフト軸を定めるシャフトと、前記シャフトの一部分を取り囲むロータバックアセンブリと、前記ロータバックアセンブリの周りに放射状に配置された複数の永久磁石とを備えるロータと、
前記ロータの周囲に放射状に配置された複数の電磁石を備えるステータと、
前記ロータおよび前記ステータを支持するハウジングと
を備えており、
前記ロータ、前記ステータ、および前記ハウジングの一部分が、
前記ロータと前記ハウジングとの間の第1のキャビティと、
前記ハウジングと前記ロータの他方の端部との間の第2のキャビティと
を定めており、
隣り合う永久磁石の間のギャップが、熱伝導率を高めるように添加材でドープされたポリマーを含む熱伝導材料で満たされ、前記熱伝導材料は、前記第1のキャビティおよび前記第2のキャビティの少なくとも一方まで延びている、電気機械。
(条項16)
前記添加材は、チッ化ホウ素、炭化ケイ素、アルミニウム粉末、酸化アルミニウム粉末、銅粉末、およびグラフェンのうちの1つ以上を含む、条項15に記載の電気機械。
(条項17)
前記熱伝導材料と、前記第1のキャビティおよび前記第2のキャビティの少なくとも一方とに熱的に連絡した熱伝達構造
をさらに備える、条項15に記載の電気機械。
(条項18)
長さ方向のシャフト軸を定めているシャフトであって、熱伝導性のシャフトコアを備えており、前記シャフトコアは前記シャフトのうちの前記シャフトコアを取り囲む部分とは異なる組成を有する熱伝導材料を含んでいる、シャフトと、
前記シャフトの一部分を取り囲むロータバックアセンブリと、
前記ロータバックアセンブリの周りに放射状に配置された複数の永久磁石と
を備える、電気機械のロータ。
(条項19)
前記ロータバックアセンブリの外面に形成された複数のファンブレードを備えるロータファンと、
前記ロータバックアセンブリを貫いて延びる1つ以上の通気チャネルと
をさらに備える、条項18に記載の電気機械のロータ。
(条項20)
前記ロータバックアセンブリは、複数の薄板を備える、条項18に記載の電気機械のロータ。
(条項21)
前記複数の永久磁石のうちの少なくとも1つは、複数の永久磁石薄板を備える、条項18に記載の電気機械のロータ。
(条項22)
隣り合う永久磁石の間のギャップと、
前記隣り合う永久磁石の間のギャップを埋める熱伝導率を高めるように添加材でドープされたポリマーを含む熱伝導材料と
をさらに備える、条項18に記載の電気機械のロータ。
(条項23)
前記添加材は、チッ化ホウ素、炭化ケイ素、アルミニウム粉末、酸化アルミニウム粉末、銅粉末、およびグラフェンのうちの1つ以上を含む、条項22に記載の電気機械のロータ。
(条項24)
前記熱伝導材料に熱的に連絡した熱伝達構造
をさらに備える、条項22に記載の電気機械のロータ。
(条項25)
ロータを冷却する方法であって、
ロータおよびステータを支持するハウジングを備えており、前記ロータ、前記ステータ、および前記ハウジングは、
前記ロータの一方の端部の前記ロータと前記ハウジングとの間の第1のキャビティと、
前記ロータの他方の端部の前記ロータと前記ハウジングとの間の第2のキャビティと、
前記ロータと前記ステータとの間を前記第1のキャビティから前記第2のキャビティまで延びるエアギャップと、
ロータバックアセンブリを貫いて前記第1のキャビティから前記第2のキャビティまで延びる通気チャネルと
を定めている電気機械を用意するステップと、
前記ロータを前記ステータに対して回転させ、内部ファンを駆動するステップと、
前記ロータの回転時に前記ファンによって流体を前記第1のキャビティと前記第2のキャビティとの間で前記通気チャネルおよび前記エアギャップを通して循環させるステップと
を含む、方法。
(条項26)
前記ハウジングに熱接触し、前記第1のキャビティおよび前記第2のキャビティのうちの一方へと延びる第1の熱伝達構造を用意するステップと、
前記第1のキャビティと前記第2のキャビティとの間を前記ファンによって循環させられる前記流体から、前記第1の熱伝達構造へと熱を移動させるステップと、
前記第1の熱伝達構造から前記ハウジングへと熱を移動させるステップと
をさらに含む、条項25に記載の方法。
(条項27)
前記ロータに熱接触し、前記第1のキャビティおよび前記第2のキャビティのうちの一方へと延びる第2の熱伝達構造を用意するステップと、
前記ロータから前記第2の熱伝達構造へと熱を移動させるステップと、
前記第2の熱伝達構造から前記第1のキャビティと前記第2のキャビティとの間を前記ファンによって循環させられる前記流体へと熱を移動させるステップと
をさらに含む、条項26に記載の方法。
(条項28)
前記ロータバックアセンブリの周りに放射状に配置された複数の永久磁石であって、隣り合う永久磁石の間のギャップによって隔てられている複数の永久磁石を、前記ロータに設けるステップと、
前記隣り合う永久磁石の間のギャップの一部分を、熱伝導率を高めるように添加材でドープされたポリマーを含む熱伝導材料で満たすステップと
をさらに含む、条項25に記載の方法。
(条項29)
前記添加材は、チッ化ホウ素、炭化ケイ素、アルミニウム粉末、酸化アルミニウム粉末、銅粉末、およびグラフェンのうちの1つ以上を含む、条項28に記載の電気機械のロータ。
(条項30)
ロータと、
複数の放射状に配置された電磁石と、前記電磁石を封止するステータ封止材とを備えるステータと、
前記ロータおよび前記ステータを支持するハウジングと
を備えており、
前記ハウジングは、
周辺部分と、
前記周辺部分の一方の端部に位置する第1のエンドプレートと、
前記周辺部分の他方の端部に位置する第2のエンドプレートと
を備えており、
前記ステータ封止材は、前記第1のエンドプレートおよび前記第2のエンドプレートに熱接触している、電気機械。
(条項31)
前記ステータ封止材は、前記第1のエンドプレートの中央領域、前記第2のエンドプレートの中央領域、および内側ステータ表面によって、前記内側ステータ表面、前記第1のエンドプレートの前記中央領域、および前記第2のエンドプレートの前記中央領域から前記周辺部分に向かって延びる空隙が実質的に存在しない囲まれた円柱形のロータキャビティが定められるように、前記第1のエンドプレートおよび前記第2のエンドプレートに接触している、条項30に記載の電気機械。
(条項32)
前記第1のエンドプレートおよび前記周辺部分は、一体化されたハウジングユニットを備える、条項30に記載の電気機械。
(条項33)
前記ステータ封止材は、誘電体材料と、前記封止材の熱伝導率を高めるための添加材とを含む、条項30に記載の電気機械。
(条項34)
前記誘電体材料はポリマーを含み、前記添加材は、チッ化ホウ素、炭化ケイ素、ケイ素、酸化アルミニウム、アルミニウム粉末、銅粉末、金属酸化物、セラミック、グラフェン、および実質的に球状の粒子のうちの1つ以上を含む、条項33に記載の電気機械。
(条項35)
前記ハウジングの前記周辺部分の内面と外側ステータ表面との間の境界面が、熱伝導性潤滑剤を含む、条項30に記載の電気機械。
(条項36)
前記第1のエンドプレートの前記中央領域および前記第2のエンドプレートの前記中央領域のうちの一方に熱接触した第1の熱伝達構造
をさらに備え、
前記第1の熱伝達構造は、前記ロータキャビティへと延びている、条項30に記載の電気機械。
(条項37)
前記第1のエンドプレートの前記中央領域および前記第2のエンドプレートの前記中央領域のうちの他方に熱接触した第2の熱伝達構造
をさらに備え、
前記第2の熱伝達構造は、前記ロータキャビティへと延びている、条項36に記載の電気機械。
(条項38)
前記第1の熱伝達構造および前記第2の熱伝達構造のうちの少なくとも一方は、複数のピンまたはフィンを備える、条項37に記載の電気機械。
(条項39)
前記第1の熱伝達構造および前記第2の熱伝達構造のうちの少なくとも一方は、前記ロータキャビティからの熱の移動を促進する表面処理を備える、条項37に記載の電気機械。
(条項40)
前記ハウジングは、前記周辺部分に取り付けられた1つ以上の熱伝導性の足を備える、条項30に記載の電気機械。
(条項41)
前記熱伝導性の足は、前記足と取り付け面との間に配置された別個の熱伝達材料を備える、条項40に記載の電気機械。
(条項42)
電磁石が、歯およびヨーク部分を定める薄板の積層を備えるコアと、各々の薄板の前記歯の一部分を取り囲む絶縁ボビンと、前記ボビンの一部分を取り囲む導電性の巻線とを備え、
前記薄板の積層における各々の薄板は、前記ボビンによって隣の薄板に対して保持される、条項30に記載の電気機械。
(条項43)
複数の電磁石の前記ヨーク部分は、前記第1のエンドプレートから延びるショルダ構造に直接物理的に接触し、前記ショルダ構造は、あらゆる電磁石の前記巻線と前記第1のエンドプレートとの間の物理的な接触が存在しないように、各々の電磁石を選択された距離だけ前記第1のエンドプレートから離して支持する、条項42に記載の電気機械。
(条項44)
前記薄板の積層における個々の薄板は、
反対向きの第1および第2の平坦な面と、
前記第1および第2の平坦な面の少なくとも一方に熱接触した熱伝達層と
を備える、条項43に記載の電気機械。
(条項45)
前記薄板の積層における個々の薄板は、
反対向きの第1および第2の平坦な面と、
前記第1および第2の平坦な面のうちの一方に物理的に接触した誘電体層と。
前記第1および第2の平坦な面のうちの他方に熱接触した前記誘電体層とは異なる熱伝達層と
を備え、
前記薄板の積層における隣り合う薄板の間の境界面が、或る1つの薄板の前記誘電体層と、隣接する薄板の前記熱伝達層とを備える、条項43に記載の電気機械。
(条項46)
前記熱伝達層は、グラフェンを含む、条項45に記載の電気機械。
(条項47)
薄板の積層によって定められた前記ヨーク部分は、舌構造および反対側の溝構造をさらに定め、前記舌構造および前記反対側の溝構造は、隣の電磁石の前記薄板の積層の舌構造および溝構造と嵌合する、条項43に記載の電気機械。
(条項48)
前記ロータから前記第1のエンドプレートおよび前記第2のエンドプレートの一方または両方を貫いて延びるシャフトと、
前記第1のエンドプレートおよび前記第2のエンドプレートの一方に取り付けられ、前記シャフトを支持するシャフトベアリングと、
前記シャフトベアリングに取り付けられたベアリングシールと
をさらに備え、
前記ベアリングシールは、前記シャフトベアリングよりも大きい熱伝導率を有する材料を含む、条項30に記載の電気機械。
(条項49)
前記シャフトは、熱伝導性のシャフトコアを備え、前記コアは、前記シャフトのうちの前記シャフトコアを取り囲む部分とは異なる組成を有する熱伝導材料を含む、条項48に記載の電気機械。
(条項50)
前記熱伝導性のシャフトコアは、前記シャフトのうちの前記シャフトが前記シャフトベアリングに接触する外面に向かって延びている、条項49に記載の電気機械。
(条項51)
電気機械のための電磁石であって、
歯およびヨーク部分を定める薄板の積層と、
各々の薄板の前記歯の一部分を取り囲み、各々の薄板を隣の薄板に対して保持する絶縁ボビンと、
前記ボビンの一部分を取り囲む導電性の巻線と、
前記ボビンおよび巻線を完全に封止する封止材と
を備えており、
前記封止材は、誘電体材料と、前記封止材の熱伝導率を高めるための添加材とを含む、電磁石。
(条項52)
前記誘電体材料はポリマーを含み、前記添加材は、チッ化ホウ素、炭化ケイ素、ケイ素、アルミニウム粉末、銅粉末、金属酸化物、セラミック、およびグラフェンのうちの1つ以上を含む、条項51に記載の電磁石。
(条項53)
前記薄板の積層における個々の薄板は、
反対向きの第1および第2の平坦な面と、
前記第1および第2の平坦な面の少なくとも一方に熱接触した熱伝達層と
を備える、条項51に記載の電磁石。
(条項54)
前記薄板の積層における個々の薄板は、前記熱伝達層の反対側で前記第1および第2の平坦な面のうちの一方に物理的に接触した誘電体層をさらに備える、条項53に記載の電磁石。
(条項55)
ステータを冷却する方法であって、
ロータと、
複数の放射状に配置された電磁石と、前記電磁石を封止するステータ封止材とを備えるステータと、
前記ロータおよび前記ステータを支持するハウジングと
を備えており、
前記ハウジングは、
周辺部分と、
前記周辺部分の一方の端部に位置する第1のエンドプレートと、
前記周辺部分の他方の端部に位置する第2のエンドプレートと
を備えている電気機械を用意するステップと、
前記ステータ封止材を前記第1のエンドプレートおよび前記第2のエンドプレートに熱接触させるステップと、
前記ステータ封止材から前記第1のエンドプレートおよび前記第2のエンドプレートへと熱を導くステップと
を含む、方法。
(条項56)
前記第1のエンドプレートの中央領域、前記第2のエンドプレートの中央領域、および内側ステータ表面によって囲まれた円柱形のロータキャビティが定められるように、前記ステータ封止材を前記第1のエンドプレートおよび前記第2のエンドプレートに熱接触させるステップと、
前記第1のエンドプレートの前記中央領域および前記第2のエンドプレートの前記中央領域のうちの一方に熱接触し、前記ロータキャビティへと延びる熱伝達構造を設けるステップと、
前記ロータキャビティから前記第1のエンドプレートまたは前記第2のエンドプレートへと前記熱伝達構造を介して熱を伝えるステップと
をさらに含む、条項55に記載の方法。
(条項57)
ステータを製造する方法であって、
歯およびヨーク部分を定めており、前記ヨーク部分は、舌構造および反対側の溝構造をさらに定めている薄板の積層と、
各々の薄板の前記歯の一部分を取り囲み、各々の薄板を隣の薄板に対して保持する絶縁ボビンと、
前記ボビンの一部分を取り囲む導電性の巻線と
を各々が備えている複数の電磁石コアを用意するステップと、
各々の電磁石の前記舌構造および前記溝構造を、隣接する電磁石の対応する前記舌構造および前記溝構造に嵌合させることによって、前記複数の電磁石をステータへと組み立てるステップと、
前記組み立てられたステータを、熱伝導性の封止材で封止するステップと
を含む、方法。
(条項58)
前記封止材に添加材を追加して前記封止材の熱伝導率を高めるステップ
をさらに含む、条項57に記載の方法。
(条項59)
選択された電磁石の選択された薄板の少なくとも1つの平坦な面に熱伝達層を熱接触させるステップ
をさらに含む、条項57に記載の方法。
(条項60)
長さ方向のシャフト軸を定めるシャフトと、
前記シャフトの一部分を取り囲むロータバックアセンブリと、
前記ロータバックアセンブリの周りに放射状に配置された複数の永久磁石と、
隣り合う永久磁石に接触した第1の熱伝導性誘電体封止材と
を備えるロータと、
前記ロータの周囲に放射状に配置され、磁気エアギャップによって前記ロータの外面から隔てられた複数の電磁石と、
隣り合う電磁石に接触した第2の熱伝導性誘電体封止材と
を備えるステータと、
前記ロータおよび前記ステータを支持するハウジングと
を備える電気機械。
(条項61)
前記ハウジングは、全閉自冷型(TENV)ハウジングを備える、条項60に記載の電気機械。
(条項62)
前記第1の熱伝導性誘電体封止材は、前記隣り合う永久磁石の間で前記ロータバックアセンブリに接触している、条項60に記載の電気機械。
(条項63)
前記ロータバックアセンブリは、前記隣り合う永久磁石の間に固定用表面を定め、前記第1の熱伝導性誘電体封止材は、前記固定用表面に接触している、条項62に記載の電気機械。
(条項64)
前記固定用表面は、前記隣り合う永久磁石の間において前記ロータバックアセンブリに形成された溝を備える、条項63に記載の電気機械。
(条項65)
前記複数の永久磁石の各々の前記エアギャップに面する外面を取り囲むプレストレスが与えられた保持バンド
をさらに備える、条項60に記載の電気機械。
(条項66)
前記シャフト軸から半径方向外向きに延びる半径線に沿って測定される前記複数の永久磁石の各々の半径方向厚さ寸法が、前記半径線に沿って測定される前記磁気エアギャップの幅の8倍以上である、条項60に記載の電気機械。
(条項67)
前記第1の熱伝導性誘電体封止材および前記第2の熱伝導性誘電体封止材の少なくとも一方が、ポリマーと、前記ポリマーの熱伝導率を高めるための添加材とを含む、条項60に記載の電気機械。
(条項68)
前記第2の熱伝導性誘電体封止材は、ポリマーと、前記ポリマーに埋め込まれ、前記ポリマーよりも高い熱伝導率を有している熱伝達要素とを含む、条項60に記載の電気機械。
(条項69)
前記第2の熱伝導性誘電体封止材は、前記ハウジングに接触している、条項60に記載の電気機械。
(条項70)
前記第2の熱伝導性誘電体封止材は、前記ハウジングの周辺部分を実質的に満たす、条項69に記載の電気機械。
(条項71)
前記第2の熱伝導性誘電体封止材に埋め込まれた1つ以上のセンサ
をさらに備える、条項60に記載の電気機械。
(条項72)
前記第2の熱伝導性誘電体封止材に埋め込まれた熱センサおよび振動センサ
をさらに備える、条項60に記載の電気機械。
(条項73)
前記ロータを支持する前記ハウジングに接触した第1のベアリングと、
前記ロータの他端を支持する前記ハウジングに接触した第2のベアリングと
をさらに備え、
前記第1のベアリングおよび前記第2のベアリングは、前記ハウジングを開くことなく前記ハウジングの外面から取り外すことができる、条項60に記載の電気機械。
(条項74)
長さ方向のシャフト軸を定めるシャフトと、
前記シャフトの一部分を取り囲むロータバックアセンブリと、
前記ロータバックアセンブリの周りに放射状に配置された複数の永久磁石と
隣り合う永久磁石に接触した第1の熱伝導性誘電体封止材と
を備えるロータと、
前記ロータの周囲に放射状に配置され、磁気エアギャップによって前記ロータの外面から隔てられた複数の電磁石を備えるステータと
を備えており、
前記シャフト軸から半径方向外向きに延びる半径線に沿って測定される前記複数の永久磁石の各々の半径方向厚さ寸法が、前記半径線に沿って測定される前記磁気エアギャップの幅の8倍以上である、電気機械。
(条項75)
隣り合う永久磁石に接触し、前記ロータバックアセンブリにさらに接触した第1の熱伝導性誘電体封止材
をさらに備える、条項74に記載の電気機械。
(条項76)
電気機械を安定させる方法であって、
長さ方向のシャフト軸を定めるシャフトと、
前記シャフトの一部分を取り囲むロータバックアセンブリと、
前記ロータバックアセンブリの周りに放射状に配置された複数の永久磁石と
を備えるロータと、
前記ロータの周囲に放射状に配置され、磁気エアギャップによって前記ロータの外面から隔てられた複数の電磁石を備えるステータと
を備える電気機械を用意するステップと、
前記ステータおよび前記ロータをハウジングによって支持するステップと、
第1の熱伝導性誘電体封止材を隣り合う永久磁石に接触させて設けることにより、前記ロータを安定させるステップと、
第2の熱伝導性誘電体封止材を隣り合う電磁石に接触させて設けることにより、前記ステータを安定させるステップと
を含む、方法。
(条項77)
前記ロータおよびステータを全閉自冷型(TENV)ハウジング内に囲むステップ
をさらに含む、条項76に記載の方法。
(条項78)
前記第1の熱伝導性誘電体封止材を前記隣り合う永久磁石の間で前記ロータバックアセンブリに接触させるステップ
をさらに含む、条項76に記載の方法。
(条項79)
前記隣り合う永久磁石の間において前記ロータバックアセンブリに固定用表面を設けるステップと、
前記第1の熱伝導性誘電体封止材を前記固定用表面に取り付けるステップと
をさらに含む、条項78に記載の方法。
(条項80)
前記固定用表面は、前記隣り合う永久磁石の間において前記ロータバックアセンブリに形成された溝を備える、条項79に記載の方法。
(条項81)
前記複数の永久磁石の各々の前記エアギャップに面する外面を、プレストレスが与えられた保持バンドで取り囲むステップ
をさらに含む、条項76に記載の方法。
(条項82)
前記永久磁石に、前記シャフト軸から半径方向外向きに延びる半径線に沿って測定される半径方向厚さ寸法であって、前記半径線に沿って測定される前記磁気エアギャップの幅の少なくとも8倍大きい半径方向厚さ寸法を持たせるステップ
をさらに含む、条項76に記載の方法。
(条項83)
前記第1の熱伝導性誘電体封止材および前記第2の熱伝導性誘電体封止材の少なくとも一方が、ポリマーと、前記ポリマーに埋め込まれ、前記ポリマーよりも高い熱伝導率を有している熱伝達要素とを含む、条項76に記載の方法。
(条項84)
前記第2の熱伝導性誘電体封止材を前記ハウジングに接触させるステップ
をさらに含む、条項76に記載の方法。
(条項85)
前記第2の熱伝導性誘電体封止材で前記ハウジングの周辺部分を実質的に満たすステップ
をさらに含む、条項84に記載の方法。
(条項86)
1つ以上のセンサを前記第2の熱伝導性誘電体封止材に埋め込むステップ
をさらに含む、条項76に記載の方法。
(条項87)
熱センサおよび振動センサを前記第2の熱伝導性誘電体封止材に埋め込むステップ
をさらに含む、条項86に記載の方法。
(条項88)
前記ロータを支持する前記ハウジングに接触した第1のベアリングを設けるステップと、
前記ロータの他端を支持する前記ハウジングに接触した第2のベアリングを設けるステップと
をさらに含み、
前記第1のベアリングおよび前記第2のベアリングは、前記ハウジングを開くことなく前記ハウジングの外面から取り外すことができる、条項76に記載の方法。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14A
図14B
図15A
図15B
図15C
図16