IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 国立大学法人群馬大学の特許一覧 ▶ 中日本高速道路株式会社の特許一覧 ▶ 能美防災株式会社の特許一覧

<>
  • 特許-変換係数算出方法 図1
  • 特許-変換係数算出方法 図2
  • 特許-変換係数算出方法 図3
  • 特許-変換係数算出方法 図4
  • 特許-変換係数算出方法 図5
  • 特許-変換係数算出方法 図6
  • 特許-変換係数算出方法 図7
  • 特許-変換係数算出方法 図8
  • 特許-変換係数算出方法 図9
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-04-27
(45)【発行日】2023-05-10
(54)【発明の名称】変換係数算出方法
(51)【国際特許分類】
   G01M 99/00 20110101AFI20230428BHJP
【FI】
G01M99/00 Z
【請求項の数】 4
(21)【出願番号】P 2019138755
(22)【出願日】2019-07-29
(65)【公開番号】P2021021649
(43)【公開日】2021-02-18
【審査請求日】2022-06-13
(73)【特許権者】
【識別番号】504145364
【氏名又は名称】国立大学法人群馬大学
(73)【特許権者】
【識別番号】505398952
【氏名又は名称】中日本高速道路株式会社
(73)【特許権者】
【識別番号】000233826
【氏名又は名称】能美防災株式会社
(74)【代理人】
【識別番号】100110423
【弁理士】
【氏名又は名称】曾我 道治
(74)【代理人】
【識別番号】100111648
【弁理士】
【氏名又は名称】梶並 順
(74)【代理人】
【識別番号】100147566
【弁理士】
【氏名又は名称】上田 俊一
(74)【代理人】
【識別番号】100161171
【弁理士】
【氏名又は名称】吉田 潤一郎
(74)【代理人】
【識別番号】100188514
【弁理士】
【氏名又は名称】松岡 隆裕
(72)【発明者】
【氏名】岩崎 篤
(72)【発明者】
【氏名】山本 浩司
(72)【発明者】
【氏名】山岸 貴俊
(72)【発明者】
【氏名】中村 洋幸
【審査官】岡村 典子
(56)【参考文献】
【文献】特開2007-205860(JP,A)
【文献】特開2017-190983(JP,A)
【文献】特開2012-103153(JP,A)
【文献】米国特許出願公開第2016/0274001(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G01M 99/00
(57)【特許請求の範囲】
【請求項1】
支柱、あるいは支柱に取り付けられた情報板に設置され、加速度情報を測定する加速度センサと、
前記加速度センサにより測定された前記加速度情報から、前記支柱へ印加される応力を推定することで、前記情報板の蓄積疲労を検出する診断部と、
前記支柱の応力が集中する部位、あるいはその近辺における歪み情報を一時的に測定する歪み測定センサと、
を備えた情報板の異常検出システムにおいて、前記診断部により、前記加速度情報から前記歪み情報へ変換する変換係数を推定するための変換係数算出方法であって、
前記加速度センサにより測定された前記加速度情報と、前記歪み測定センサにより測定された前記歪み情報とを同時刻で所定期間取得し、前記加速度情報の時系列データおよび前記歪み情報の時系列データを取得する第1ステップと、
前記加速度情報の時系列データおよび前記歪み情報の時系列データの両方に対して、前記支柱の一次共振周波数を包含する同一特性の狭帯域バンドパスフィルタ処理を施すことで、フィルタ処理後の加速度情報の時系列データおよびフィルタ処理後の歪み情報の時系列データを生成する第2ステップと、
前記フィルタ処理後の加速度情報の時系列データと、前記フィルタ処理後の歪み情報の時系列データとに基づいて、加速度情報と歪み情報との回帰直線を算出することで、前記変換係数を推定する第3ステップと、
を有する変換係数算出方法。
【請求項2】
前記第3ステップは、前記フィルタ処理後の加速度情報の時系列データに対して、前記フィルタ処理後の歪み情報の時系列データを時間方向にスライドさせて相互相関を測定し、最も相関の高い時間関係へスライドさせた条件で、加速度情報と歪み情報との回帰直線を算出することで、前記変換係数を推定する相関処理ステップ
を有する請求項1に記載の変換係数算出方法。
【請求項3】
前記第3ステップは、
前記フィルタ処理後の加速度情報の時系列データ、および前記フィルタ処理後の歪み情報の時系列データのそれぞれについてサイクルカウント処理を行うことで加速度全振幅データおよび歪み全振幅データを生成する生成ステップと、
前記歪み全振幅データの中からあらかじめ設定された範囲内のデータを歪み全振幅抽出データとして抽出し、前記歪み全振幅抽出データと、前記歪み全振幅抽出データに対応する加速度全振幅データとの回帰直線を算出することで、前記変換係数を推定する推定ステップと、
を有する請求項1に記載の変換係数算出方法。
【請求項4】
前記歪み測定センサは、圧迫による摩擦力で保持可能に設置できる
請求項1から3のいずれか1項に記載の変換係数算出方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、支柱に設置された情報板の取付状態の異常診断を行う情報板の異常検出システムに適用される変換係数算出方法に関する。
【背景技術】
【0002】
支柱に設置された情報板の取付状態を検出する方法としては、検査員による定期検査により、目視あるいは何らかの計器を用いて行われることが主流であった。また、取付状態の異常診断対象である情報板に経年的に発生する亀裂に関して、定量的な検査を、簡単かつ迅速に行う従来技術が開示されている(例えば、特許文献1参照)。
【0003】
この特許文献1では、紫外線または青色系可視光などの励起光によって発光する蛍光色素を、異常診断対象である情報板にあらかじめ混入させている。そして、この情報板に紫外線または青色系可視光などを発光する光源を照射し、目視あるいはCCDカメラ等による撮像画像の解析処理により、亀裂の発生を定量的に判断している。
【先行技術文献】
【特許文献】
【0004】
【文献】特開2013-83493号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかしながら、従来技術には、以下のような課題がある。
特許文献1では、取付状態の定量的な異常診断を可能にしてはいるものの、あくまでも、検査員による定期検査を基本としている。さらに、特許文献1は、異常診断対象の情報板に対して、蛍光色素をあらかじめ混入させておく必要があった。
【0006】
一方、近年では、情報板の取付状態の異常診断を定期検査よりも短い周期で、検査員を介さずに無人で行うことのできる異常診断システムが望まれている。また、支柱に設置された情報板の取付状態の劣化を、定量的に長期間にわたって診断する必要性も高まっている。さらに、新規の情報板だけでなく、既存の情報板に対しても、容易に対応できることが望まれる。
【0007】
情報板の蓄積疲労の検出に当たっては、情報板が取り付けられる支柱に印加される繰り返し応力を正確に測定・計数し、支柱に印加された繰り返し応力履歴分析結果から、過去の蓄積疲労、および未来の蓄積疲労の予測を行うことができる。
【0008】
支柱に印加される応力を測定するには、歪みゲージなどを用いる。しかしながら、歪みゲージは、その性質上、耐久性に乏しく、長期にわたる測定には適さない欠点がある。
【0009】
本発明は、前記のような課題を解決するためになされたものであり、加速度情報と歪み情報とを関連付ける変換係数を高精度に算出することができる変換係数算出方法を得ることを目的とする。
【課題を解決するための手段】
【0010】
本発明に係る変換係数算出方法は、支柱、あるいは支柱に取り付けられた情報板に設置され、加速度情報を測定する加速度センサと、加速度センサにより測定された加速度情報から、支柱へ印加される応力を推定することで、情報板の蓄積疲労を検出する診断部と、支柱の応力が集中する部位、あるいはその近辺における歪み情報を一時的に測定する歪み測定センサと、を備えた情報板の異常検出システムにおいて、診断部により、加速度情報から歪み情報へ変換する変換係数を推定するための変換係数算出方法であって、加速度センサにより測定された加速度情報と、歪み測定センサにより測定された歪み情報とを同時刻で所定期間取得し、加速度情報の時系列データおよび歪み情報の時系列データを取得する第1ステップと、加速度情報の時系列データおよび歪み情報の時系列データの両方に対して、支柱の一次共振周波数を包含する同一特性の狭帯域バンドパスフィルタ処理を施すことで、フィルタ処理後の加速度情報の時系列データおよびフィルタ処理後の歪み情報の時系列データを生成する第2ステップと、フィルタ処理後の加速度情報の時系列データと、フィルタ処理後の歪み情報の時系列データとに基づいて、加速度情報と歪み情報との回帰直線を算出することで、変換係数を推定する第3ステップと、を有するものである。
【発明の効果】
【0011】
本発明によれば、時間ずれ、位相差の影響を除去し、設置環境に応じた変換係数を適切に算出する方法を備えている。この結果、加速度情報と歪み情報とを関連付ける変換係数を高精度に算出することができる変換係数算出方法を得ることができる。
【図面の簡単な説明】
【0012】
図1】本発明の実施の形態1において、異常診断対象である構造物を示した説明図であり、(A)が正面図、(B)が支柱の根元部分の拡大図である。
図2】本発明の実施の形態1に係る情報板の異常検出システムの構成図である。
図3】本発明の実施の形態1に係る情報板の異常検出システムにおいて実行される一連の歪みと加速度の相関関係の測定処理を示したフローチャートである。
図4】本発明の実施の形態1における加速度情報と歪み情報との相関関係の一例を示した図である。
図5】本発明の実施の形態1に係る情報板の異常検出システムにおいて実行される一連の異常検出処理を示したフローチャートである。
図6】本発明の実施の形態2における加速度と歪みの同時測定結果に基づいて、変換係数を求める第1の手法の一連処理を示したフローチャートである。
図7】本発明の実施の形態2に係る第1の手法における各段階の処理を示した説明図であり、(A)~(G)に分けて示されている。
図8】本発明の実施の形態2における加速度と歪みの同時測定結果に基づいて、変換係数を求める第2の手法の一連処理を示したフローチャートである。
図9】本発明の実施の形態2に係る第2の手法における各段階の処理を示した説明図であり、(A)~(E)に分けて示されている。
【発明を実施するための形態】
【0013】
以下、本発明の情報板の変換係数算出方法の好適な実施の形態につき、図面を用いて説明する。
本発明は、支柱に印加される応力に基づいて情報板の蓄積疲労を求めることで、情報板の取付状態の異常診断を行うシステムに適用される変換係数算出方法に関するものである。このような加速度センサを用いた情報板の疲労予測システムでは、加速度-応力の変換係数を如何に正確に算出できるかが、性能を左右する。本発明では、加速度情報と歪み(応力)情報との関係性を、誤差要因の除去後に算出しているため、極めて精度の高い変換係数を算出することができる点を技術的特徴としている。
【0014】
事前に一時的に設置した歪みゲージの測定値と、加速度情報の測定値との相関関係を正確に分析しておき、実運用中には、歪みゲージを用いることなく、加速度情報の測定値と、事前に分析した相関関係から、支柱に印加される応力を高精度に推定して蓄積疲労を求めることができる。
【0015】
実施の形態1.
図1は、本発明の実施の形態1において、異常診断対象である構造物を示した説明図であり、(A)が正面図、(B)が支柱の根元部分の拡大図である。この図1において、取付状態の診断対象である構造物は、支柱2の上方部分に情報板1が取り付けられることで構成されている。情報板1としては、例えば、道路に設置された道路情報板が挙げられ、歩行者あるいはドライバは、道路情報板を視認することで、必要な情報を取得することができる。
【0016】
支柱2の上部に情報板1が設置された構造物は、上部荷重を持つこととなる。従って、支柱2は、外力による繰り返し応力の加振により疲労が進行し、損傷に至る場合がある。支柱2の致命的損傷を防止するためには、支柱2の蓄積疲労を観測し、支柱2の寿命を知ることが重要である。
【0017】
上述したように、支柱に印加される応力を測定するには、歪みゲージを用いることが考えられる。しかしながら、歪みゲージは、その性質上、耐久性に乏しく、長期にわたる測定には適していない。そして、耐久性を考慮すると、加速度センサを代用することが考えられる。
【0018】
ここで、加速度から蓄積疲労を正確に測定するには、加速度センサにより測定された加速度情報から、支柱の応力集中部に印加される応力を正確に算出しなければならない。しかしながら、情報板1と支柱2を備えた同じような構造物でも、個体差や僅かな設計の違いによって、加速度と応力との関係性は異なってくる。
【0019】
そこで、本発明では、以下のような構成を採用することで、蓄積疲労の測定精度の向上と、センサの耐久性の向上とを兼ね備えた情報板の異常検出システムを実現している。
(構成1)通常の運用時には、加速度センサ20を用いて蓄積疲労を推定する構成を備えている。この構成により、センサの耐久性向上を図っている。
【0020】
(構成2)実運用前の事前準備段階において、蓄積疲労の測定対象である支柱の応力集中部、あるいはその近辺に対して歪み測定センサ40を設置可能とし、加速度センサ20と歪み測定センサ40とで同時測定を行うことで、両者の相関関係を正確に求める構成を備えている。この構成により、実運用中に歪み測定センサ40を用いることなく、加速度センサ20の測定結果から、支柱の応力集中部に印加される応力を正確に算出することができる。
【0021】
図1に示すように、本実施の形態1に係る情報板の異常検出システムは、支柱2の頭頂部に加速度センサ20を設置し、加速度センサ20により測定される加速度情報を中継装置30により処理することで、構成1を実現している。
【0022】
また、図1に示すように、本実施の形態1に係る情報板の異常検出システムは、支柱2の応力集中部、あるいはその近辺に歪み測定センサ40を実運用前の事前準備段階において一時的に設置する。ここで、歪み測定センサ40は、支柱2の応力集中部、あるいはその近辺において、圧迫による摩擦力で保持可能に設置できる。そして、事前準備段階において、同じタイミングで、加速度センサ20により測定される加速度情報と、歪み測定センサ40により測定される応力集中部の歪み情報とを、所定期間にわたって中継装置30に読み込み、両者の相関関係を正確に求めることで、構成2を実現している。
【0023】
次に、本実施の形態1に係る情報板の異常検出システムの構成について、図2を用いて説明する。図2は、本発明の実施の形態1に係る情報板の異常検出システムの構成図である。本実施の形態1における情報板の異常検出システムは、データ処理装置10、加速度センサ20、中継装置30、およびN個(Nは、整数)の歪み測定センサ40(1)~40(N)を備えて構成されている。
【0024】
なお、本実施の形態1における情報板の異常検出システムでは、最低限、1個の歪み測定センサ40を仮設置すれば、加速度情報と歪み情報とを相関関係を求めることが可能である。また、複数用いる場合のN個の歪み測定センサのそれぞれの機能は、全て共通である。そこで、以下の説明では、それぞれの歪み測定センサを区別する必要がない場合には、(1)~(N)の添字を用いずに、単に歪み測定センサ40と記載する。
【0025】
加速度センサ20は、センサ部21と、加速度情報出力部22を有しており、支柱2の頭頂部に設置されている。なお、加速度センサ20の設置位置は、支柱2の頭頂部には限定されず、支柱2の頭頂部以外の位置、あるいは支柱2に取り付けられている情報板1に設置することも可能である。
【0026】
一般的に、加速度センサ20は、歪み測定センサ40と比較して長寿命であり、実運用時における異常判定は、加速度センサ20により測定される加速度情報のみを用いて行われる。
【0027】
センサ部21は、例えば、薄膜の水晶振動子を用いる3軸加速度センサである。また、加速度情報出力部22は、支柱2の頭頂部における3軸の加速度に関するアナログ信号を、所定のサンプリングレート(例えば、50Hzのサンプリングレート)でデジタル信号に変換し、加速度情報として中継装置30へ送信する。
【0028】
一方、歪み測定センサ40は、異常検出装置の運転を開始する前に、支柱2の応力集中部、あるいは、その近辺において一時的に保持可能に設置されている。なお、応力集中部とは、応力が集中する部位あるいはその近傍を含む位置の総称である。さらに、歪み測定センサ40は、中継装置30と接続可能となっている。
【0029】
センサ部41は、例えば、摩擦型歪みゲージを用いた応力測定を可能とする。また、歪み情報出力部42は、センサ部41で検出されたアナログ信号を、所定のサンプリングレート(例えば、50Hzのサンプリングレート)でデジタル信号に変換し、歪み情報として中継装置30へ送信する。
【0030】
中継装置30は、図1に示したように、支柱2に取り付けられている。そして、中継装置30は、加速度センサ20内の加速度情報出力部22から受信した加速度情報、および歪み測定センサ40内の歪み情報出力部42から受信した歪み情報に基づいて、加速度情報と歪み情報とを相関関係を求める。
【0031】
より具体的には、中継装置30は、歪み測定センサ40が一時的に設置された状態において、加速度センサ20により測定された加速度情報と、歪み測定センサ40により測定された歪み情報とを同時刻で取得し、加速度情報と歪み情報との相関関係を算出する。ここでの相関関係とは、加速度情報から歪み情報へ変換する変換式または変換係数のことである。
【0032】
なお、図1に示したように、応力集中部に複数の歪み測定センサ40を設置した場合には、それぞれの設置場所に応じた適切な相関関係を求めることができる。
【0033】
中継装置30は、事前に算出した相関関係を用いることで、歪み測定センサ40が取り除かれた後は、加速度センサにより測定された加速度情報を歪み情報に変換することができる。そして、中継装置30は、変換して生成した歪み情報を、加速度情報を取得した時間情報とともに記憶部に順次記憶させる。また、中継装置30は、歪み情報を生成するごとに、歪み情報および時間情報をデータ処理装置10に送信する。
【0034】
データ処理装置10内の診断部11は、中継装置30から受信した歪み情報および時間情報に基づいて、診断対象である支柱2の蓄積疲労を推定し、正常であるか異常であるかを判断する。また、データ処理装置10は、歪み情報および測定時間情報を長期にわたって保存する必要がある場合には、大容量の記憶部に保存させておくことも可能である。
【0035】
このように、中継装置30は、異常検出装置の運転を開始する前に、加速度情報と歪み情報を一定時間、同時測定して、両者の対応関係を分析することで、加速度から応力へ変換するための変換式あるいは変換係数を、設置環境に応じた適切な値として算出することができる。この結果、構造物の個体差による加速度と応力との関係を吸収し、安定した診断性能を発揮できる情報板の異常検出システムを実現できる。
【0036】
このような蓄積疲労に基づく一連の異常診断手法を、図3図5に基づいて、以下に説明する。図3は、本発明の実施の形態1に係る情報板の異常検出システムにおいて実行される一連の歪みと加速度との相関関係の測定処理を示したフローチャートである。また、図4は、本発明の実施の形態1における加速度情報と歪み情報との相関関係の一例を示した図である。また、図5は、本発明の実施の形態1に係る情報板の異常検出システムにおいて実行される一連の異常検出処理を示したフローチャートである。
【0037】
なお、図3に示したステップS301~ステップS308は、いずれも実運用前の事前準備段階で行われるステップであり、オペレータによる処理と、異常検出システムで実行される処理の両方が含まれている。
【0038】
ステップS301において、オペレータは、歪み測定センサ40を応力集中部、あるいはその近辺に設置する。さらに、ステップS302において、オペレータは、歪み測定センサを中継装置30に接続する。この結果、ステップS303において、コネクションが確立し、中継装置30は、一時的に設置された歪み測定センサ40から出力される歪み情報を読み取ることができるようになる。
【0039】
次に、ステップS304において、中継装置30は、加速度情報と歪み情報を同時測定し、測定結果を記憶部に順次記憶させる。なお、このステップS304における同時測定に当たって、オペレータは、意図的に支柱2を加振してもよい。そして、ステップS305において、中継装置30は、所定時間が経過することで、同時測定を終了する。
【0040】
次に、ステップS306において、中継装置30は、ステップS304における測定結果を分析することで、加速度情報と歪み情報との相関関係を示す変換係数を算出する。なお、ステップS304で得られた測定結果は、横軸を加速度、縦軸を歪みとした平面にプロットすると、一例として、図4のような関係が得られる。従って、中継装置30は、ステップS304で得られた測定結果から、加速度を歪みに変換するための変換係数を算出することができる。
【0041】
次に、ステップS307において、オペレータは、一時的に接続した中継装置30と歪み測定センサ40とのコネクションを解除する。さらに、ステップS308において、オペレータは、変換係数を算出するために一時的に設置していた歪み測定センサ40を支柱2から取り外し、一連処理を終了する。
【0042】
なお、上述した図3のフローチャートの説明では、歪み情報を取得した中継装置30が、変換係数を算出する構成であった。しかしながら、本発明は、このような構成に限定されるものではない。一時的に設置する歪み測定センサ40側に演算処理部を設け、中継装置30を介して加速度情報を取得することで、演算処理部内で変換係数を算出し、算出した変換係数を中継装置30に返送する構成とすることも可能である。
【0043】
また、中継装置30は、変換式または変換係数を算出するに当たり、以下のようなフィルタリング処理を実施することも可能である。すなわち、中継装置30は、取得した加速度情報および歪み情報に対して、不要な高周波成分、および誤差要因となる低周波成分を除去するフィルタリング処理を実行した後に、両者の相関関係の算出結果を用いて、変換式または変換係数を推定することができる。このようなフィルタリング処理を行うことで、相関関係をより高精度に算出することが可能となる。
【0044】
次に、図5のフローチャートを用いて、一連の異常検出処理の流れを説明する。ステップS501において、中継装置30は、加速度センサ20から加速度情報を取得する。次に、ステップS502において、中継装置30は、事前に求めておいた変換係数を用いて、ステップS501で取得した加速度情報を歪みに変換する。
【0045】
そして、ステップS503において、中継装置30は、変換された歪みに基づいて、情報板1および支柱2からなる構造物の蓄積疲労を算出することで、情報板の異常診断を行う。
【0046】
以上のように、実施の形態1によれば、長期にわたる測定には適さない歪み測定センサを一時的に設置し、加速度から歪みに変換するための変換係数を算出し、実運用中には、加速度センサから取得した加速度情報を、事前に算出した変換係数を用いて歪みに変換できる構成を備えている。この結果、長期にわたる測定に適した加速度センサを用いた上で、診断対象である構造物の蓄積疲労を正確に算出することができる。換言すると、支柱に印加される応力に基づいて、情報板の蓄積疲労を、長期間にわたり、検査員よる定期検査を必要とせずに、定量的に診断することのできる情報板の異常診断システムを実現できる。
【0047】
実施の形態2.
本実施の形態2では、加速度と歪みの同時測定結果に基づいて、変換係数を求める2つの具体的な手法について説明する。なお、それぞれの手法に共通する前処理として、測定対象物の共振周波数近辺の成分のみを、ディジタルフィルタにより抽出している。
【0048】
<第1の手法>
第1の手法について、図6図7を用いて説明する。図6は、本発明の実施の形態2における加速度と歪みの同時測定結果に基づいて、変換係数を求める第1の手法の一連処理を示したフローチャートである。また、図7は、本発明の実施の形態2に係る第1の手法における各段階の処理を示した説明図であり、(A)~(G)に分けて示されている。
【0049】
ステップS601において、中継装置30は、加速度と歪みの同時測定を、所定時間実施する。この処理は、先の図3におけるステップS304およびステップS305の処理に相当する。同時に取得した生波形の例が、図7(A)に示されている。
【0050】
次に、ステップS602において、中継装置30は、FFT処理を実行することで、加速度と歪みに関する共振周波数を取得する。共振周波数を求めた波形の例が、図7(B)に示されている。
【0051】
次に、ステップS603において、中継装置30は、ステップS602で求めた共振周波数が明らかに異なっている場合には、測定失敗と判断し、ステップS601およびステップS602の処理をやり直すこととなる。
【0052】
次に、ステップS604において、中継装置30は、加速度の時系列データおよび歪みの時系列データのそれぞれに対して、ディジタルフィルタによるバンドパスフィルタ処理を行い、共振周波数周辺の成分のみを抽出する。ここで、加速度の時系列データおよび歪みの時系列データのそれぞれに対して施すバンドパスフィルタ処理は、支柱2の一次共振周波数を包含する同一特性の狭帯域バンドパスフィルタ処理に相当する。共振周波数周辺の成分のみを抽出した波形の例が、図7(C)に示されている。
【0053】
次に、ステップS605において、中継装置30は、バンドパスフィルタ処理を施した後の加速度の時系列データに対して、バンドパスフィルタ処理を施した後の歪みの時系列データを、時間方向に所定期間の範囲で1サンプリングずつずらし、相互相関係数を算出する。時間方向にずらしていく状態の例が、図7(D)に示されており、相互相関係数が最も高くなった状態の例が、図7(E)に示されている。
【0054】
次に、ステップS606において、中継装置30は、所定範囲内で1サンプリングごとにずらした全範囲での相互相関係数をプロットすることで、相互相関関数を取得する。取得した相互相関関数の例が、図7(F)に示されている。
【0055】
次に、ステップS607において、中継装置30は、図7(F)に示した相互相関関数が最大値をとる時間ずれを取得する。
【0056】
次に、ステップS608において、中継装置30は、ステップS607で得られた時間ずれの関係を考慮した上で、同時刻の加速度データ(X)と歪みデータ(Y)とを、XY平面にプロットし、散布図を作成する。作成された散布図の例が、図7(G)に示されている。
【0057】
次に、ステップS609において、中継装置30は、散布図を構成するデータの中から、特異な外れ値を除去する。
【0058】
次に、ステップS610において、中継装置30は、散布図に基づいて回帰直線を算出し、回帰直線の傾き値を取得する。
【0059】
最後に、ステップS611において、中継装置30は、取得した傾き値に対して、材料依存の歪みに応じた変換パラメータを乗算することで、変換係数を取得し、一連処理を終了する。このような第1の手法を適用することで、変換係数を得ることができる。
【0060】
すなわち、中継装置30は、上述した一連処理により、フィルタ処理後の加速度情報の時系列データに対して、フィルタ処理後の歪み情報の時系列データを時間方向にスライドさせて相互相関を測定し、最も相関の高い時間関係へスライドさせた条件で、加速度情報と歪み情報との回帰直線を算出することで、変換係数を推定することができる。
【0061】
<第2の手法>
第2の手法について、図8図9を用いて説明する。図8は、本発明の実施の形態2における加速度と歪みの同時測定結果に基づいて、変換係数を求める第2の手法の一連処理を示したフローチャートである。また、図9は、本発明の実施の形態2に係る第2の手法における各段階の処理を示した説明図であり、(A)~(E)に分けて示されている。
【0062】
ステップS801において、中継装置30は、加速度と歪みの同時測定を、所定時間実施する。この処理は、先の図3におけるステップS304およびステップS305の処理に相当する。同時に取得した生波形の例が、図9(A)に示されている。
【0063】
次に、ステップS802において、中継装置30は、FFT処理を実行することで、加速度と歪みに関する共振周波数を取得する。共振周波数を求めた波形の例が、図9(B)に示されている。
【0064】
次に、ステップS803において、中継装置30は、ステップS802で求めた共振周波数が明らかに異なっている場合には、測定失敗と判断し、ステップS801およびステップS802の処理をやり直すこととなる。
【0065】
次に、ステップS804において、中継装置30は、加速度の時系列データおよび歪みの時系列データのそれぞれに対して、ディジタルフィルタによるバンドパスフィルタ処理を行い、共振周波数周辺の成分のみを抽出する。ここで、加速度の時系列データおよび歪みの時系列データのそれぞれに対して施すバンドパスフィルタ処理は、支柱2の一次共振周波数を包含する同一特性の狭帯域バンドパスフィルタ処理に相当する。共振周波数周辺の成分のみを抽出した波形の例が、図9(C)に示されている。
【0066】
なお、ステップS801~ステップS804の処理は、第1の手法におけるステップS601~ステップS604と同一である。
【0067】
次に、ステップS805において、中継装置30は、レインフロー法による加速度データのサイクルカウント処理を実施し、全振幅データを取得する。同様に、ステップS806において、中継装置30は、レインフロー法による歪みデータのサイクルカウント処理を実施し、全振幅データを取得する。加速度データおよび歪みデータに対してサイクルカウント処理を実施した結果が、図9(D)に示されている。なお、ここではサイクルカウント処理にレインフロー法を用いたが、サイクルカウント処理の方法は、これに限るものではない。
【0068】
次に、ステップS807において、中継装置30は、加速度全振幅データを降順にソートする。同様に、ステップS808において、中継装置30は、歪み全振幅データを降順にソートする。
【0069】
次に、ステップS809において、中継装置30は、ソートされた加速度全振幅データ(X)と、ソートされた歪み全振幅データ(Y)とを、XY平面へプロットし、散布図を作成する。作成された散布図の例が、図9(E)に示されている。
【0070】
次に、ステップS810において、中継装置30は、散布図を構成するデータの中から、所定値以下の歪み全振幅データと、その歪み全振幅データに対応する加速度全振幅データを除去するとともに、特異な外れ値を除去する。
【0071】
次に、ステップS811において、中継装置30は、散布図に基づいて回帰直線を算出し、回帰直線の傾き値を取得する。
【0072】
最後に、ステップS812において、中継装置30は、取得した傾き値に対して、材料依存の歪みに応じた変換パラメータを乗算することで、変換係数を取得し、一連処理を終了する。このような第2の手法を適用することで、変換係数を得ることができる。
【0073】
すなわち、中継装置30は、上述した一連処理により、フィルタ処理後の加速度情報の時系列データ、およびフィルタ処理後の歪み情報の時系列データのそれぞれについてサイクルカウント処理を行うことで加速度全振幅データおよび歪み全振幅データを生成し、歪み全振幅データの中からあらかじめ設定された範囲内のデータを歪み全振幅抽出データとして抽出し、歪み全振幅抽出データと、歪み全振幅抽出データに対応する加速度全振幅データとの回帰直線を算出することで、変換係数を推定することができる。
【0074】
なお、ステップS811、ステップS812の処理は、第1の手法におけるステップS610、ステップS611と同一である。
【0075】
以上のように、実施の形態2によれば、加速度データと歪みデータとの回帰直線を求め、回帰直線の傾きから、加速度データを歪みデータに変換するための変換係数を求める具体的な処理構成を備えている。加速度データと歪みデータとは、通信処理などのオーバーヘッドによる時間ズレの影響があり、また、両者の測定波形には、位相差が発生する。従って、単純に加速度データと歪みデータの波形を測定するだけでは、変換係数を算出することは困難である。
【0076】
そこで、本実施の形態2では、上述したような第1の手法および第2の手法を適用することにより、時間ずれ、位相差の影響を除去し、変換係数を高精度に算出することを可能としている。この結果、長期にわたる測定に適した加速度センサを用いた上で、診断対象である構造物の蓄積疲労を正確に算出することができる。換言すると、支柱に印加される応力に基づいて、情報板の蓄積疲労を、長期間にわたり、検査員よる定期検査を必要とせずに、定量的に診断することのできる情報板の異常診断システムを実現できる。
【符号の説明】
【0077】
1 情報板、2 支柱、10 データ処理装置、11 診断部、20 加速度センサ、21 センサ部、22 加速度情報出力部、30 中継装置、40 歪み測定センサ、41 センサ部、42 歪み情報出力部。
図1
図2
図3
図4
図5
図6
図7
図8
図9