IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ アキュレイ インコーポレイテッドの特許一覧

特許7271426体積撮像を使用する無視野視野断片間治療ターゲット動作管理
<図1A>
  • 特許-体積撮像を使用する無視野視野断片間治療ターゲット動作管理 図1A
  • 特許-体積撮像を使用する無視野視野断片間治療ターゲット動作管理 図1B
  • 特許-体積撮像を使用する無視野視野断片間治療ターゲット動作管理 図2A
  • 特許-体積撮像を使用する無視野視野断片間治療ターゲット動作管理 図2B
  • 特許-体積撮像を使用する無視野視野断片間治療ターゲット動作管理 図3A
  • 特許-体積撮像を使用する無視野視野断片間治療ターゲット動作管理 図3B
  • 特許-体積撮像を使用する無視野視野断片間治療ターゲット動作管理 図4A
  • 特許-体積撮像を使用する無視野視野断片間治療ターゲット動作管理 図4B
  • 特許-体積撮像を使用する無視野視野断片間治療ターゲット動作管理 図4C
  • 特許-体積撮像を使用する無視野視野断片間治療ターゲット動作管理 図4D
  • 特許-体積撮像を使用する無視野視野断片間治療ターゲット動作管理 図4E
  • 特許-体積撮像を使用する無視野視野断片間治療ターゲット動作管理 図5A
  • 特許-体積撮像を使用する無視野視野断片間治療ターゲット動作管理 図5B
  • 特許-体積撮像を使用する無視野視野断片間治療ターゲット動作管理 図6
  • 特許-体積撮像を使用する無視野視野断片間治療ターゲット動作管理 図7
  • 特許-体積撮像を使用する無視野視野断片間治療ターゲット動作管理 図8
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-04-28
(45)【発行日】2023-05-11
(54)【発明の名称】体積撮像を使用する無視野視野断片間治療ターゲット動作管理
(51)【国際特許分類】
   A61N 5/10 20060101AFI20230501BHJP
【FI】
A61N5/10 M
A61N5/10 F
【請求項の数】 16
(21)【出願番号】P 2019536824
(86)(22)【出願日】2018-01-05
(65)【公表番号】
(43)【公表日】2020-01-30
(86)【国際出願番号】 US2018012660
(87)【国際公開番号】W WO2018129375
(87)【国際公開日】2018-07-12
【審査請求日】2021-01-04
(31)【優先権主張番号】62/443,583
(32)【優先日】2017-01-06
(33)【優先権主張国・地域又は機関】US
(31)【優先権主張番号】15/862,449
(32)【優先日】2018-01-04
(33)【優先権主張国・地域又は機関】US
(31)【優先権主張番号】15/862,461
(32)【優先日】2018-01-04
(33)【優先権主張国・地域又は機関】US
【前置審査】
(73)【特許権者】
【識別番号】505172824
【氏名又は名称】アキュレイ インコーポレイテッド
(74)【代理人】
【識別番号】100094569
【弁理士】
【氏名又は名称】田中 伸一郎
(74)【代理人】
【識別番号】100109070
【弁理士】
【氏名又は名称】須田 洋之
(74)【代理人】
【識別番号】100067013
【弁理士】
【氏名又は名称】大塚 文昭
(74)【代理人】
【識別番号】100109335
【弁理士】
【氏名又は名称】上杉 浩
(74)【代理人】
【識別番号】100120525
【弁理士】
【氏名又は名称】近藤 直樹
(74)【代理人】
【識別番号】100139712
【弁理士】
【氏名又は名称】那須 威夫
(74)【代理人】
【識別番号】100141553
【弁理士】
【氏名又は名称】鈴木 信彦
(72)【発明者】
【氏名】ジョーダン ペトロ
(72)【発明者】
【氏名】マウラー ジュニア カルヴィン アール
【審査官】永石 哲也
(56)【参考文献】
【文献】特表2013-544137(JP,A)
【文献】特表2008-514352(JP,A)
【文献】特開2013-123528(JP,A)
【文献】国際公開第2012/058609(WO,A2)
(58)【調査した分野】(Int.Cl.,DB名)
A61N 5/10
(57)【特許請求の範囲】
【請求項1】
メモリと、
基準画像に基づいて、完全体内ターゲット体積(ITV)を定めるターゲットの完全動作範囲を識別し、
動作画像又は前記基準画像内の非ターゲット物体を識別し、
前記ITVと前記非ターゲット物体との体積位置合わせを行い、
前記体積位置合わせに基づいて非ターゲットからターゲットへの変位ベクトルを修正し、かつ
前記ターゲットを前記修正された非ターゲットからターゲットへの変位ベクトルに基づいて追跡するように、非ターゲット物体上の基準点と基準画像によって定められるターゲット中心との間の前記修正された非ターゲットからターゲットへの変位ベクトルを適用する、前記メモリと作動的に結合された処理デバイスと、
を含むことを特徴とする、解剖学的領域内のターゲットを追跡するためのシステム。
【請求項2】
前記処理デバイスは、更に、前記ITVに基づいて断片間ベースラインシフト、設定誤差、患者解剖学的構造の変化、又は断片内呼吸動作及びベースラインシフトのうちの少なくとも1つを補償するためのものであることを特徴とする請求項に記載のシステム。
【請求項3】
前記基準画像は、4次元(4D)吸入及び吐き出し計画画像であり、
前記4D吸入及び吐き出し計画画像は、キロボルトコンピュータ断層撮影(kV-CT)画像、磁気共鳴映像(MRI)画像、キロボルト円錐ビームコンピュータ断層撮影(kV-CBCT)画像、又はメガボルトコンピュータ断層撮影(MVCT)画像のうちの1つである、
ことを特徴とする請求項に記載のシステム。
【請求項4】
前記基準画像は、3次元(3D)吸入及び吐き出し計画画像であり、
前記3D吸入及び吐き出し計画画像は、キロボルトコンピュータ断層撮影(kV-CT)画像、磁気共鳴映像(MRI)画像、キロボルト円錐ビームコンピュータ断層撮影(kV-CBCT)画像、又はメガボルトコンピュータ断層撮影(MVCT)画像のうちの1つである、
ことを特徴とする請求項に記載のシステム。
【請求項5】
前記動作画像は、3次元(3D)断片内画像であり、
前記3D断片内画像は、キロボルト円錐ビームコンピュータ断層撮影(kV-CBCT)画像、メガボルト円錐ビームコンピュータ断層撮影(MV-CBCT)画像、又はメガボルトコンピュータ断層撮影(MVCT)画像のうちの1つである、
ことを特徴とする請求項に記載のシステム。
【請求項6】
前記ITVと前記非ターゲット物体との前記体積位置合わせを行うために、前記処理デバイスは、決定された見当合わせ領域(ROI)を使用して又は変形可能な見当合わせによって2つの独立剛体見当合わせを行うためのものであることを特徴とする請求項に記載のシステム。
【請求項7】
前記基準画像又は前記動作画像は、ヘリカル放射線送出システムの撮像ソースによって又は患者に対する異なる位置での1又は2以上の撮像ソースによって発生されることを特徴とする請求項に記載のシステム。
【請求項8】
解剖学的領域内のターゲットを追跡するためのシステムの処理デバイスに対する命令を含む非一時的コンピュータ可読媒体において、
前記処理デバイスによって前記命令が実行された時に、
前記処理デバイスが、
基準画像に基づいて、完全体内ターゲット体積(ITV)を定めるターゲットの完全動作範囲を識別し、
動作画像又は前記基準画像内の非ターゲット物体を識別し、
前記ITVと前記非ターゲット物体との体積位置合わせを行い、
処理デバイスにより、前記体積位置合わせに基づいて非ターゲットからターゲットへの変位ベクトルを修正し、かつ
前記処理デバイスにより、前記ターゲットを前記修正された非ターゲットからターゲットへの変位ベクトルに基づいて追跡するように、非ターゲット物体上の基準点と基準画像によって定められるターゲット中心との間の前記修正された非ターゲットからターゲットへの変位ベクトルを適用する、ようになっていることを特徴とする非一時的コンピュータ可読媒体。
【請求項9】
前記処理デバイスは、更に、前記ITVに基づいて断片間ベースラインシフト、設定誤差、患者解剖学的構造の変化、又は断片内呼吸動作及びベースラインシフトのうちの少なくとも1つを補償するためのものであることを特徴とする請求項に記載の非一時的コンピュータ可読媒体。
【請求項10】
前記基準画像は、4次元(4D)又は3次元(3D)の吸入及び吐き出し計画画像であり、
前記4D吸入及び吐き出し計画画像は、キロボルトコンピュータ断層撮影(kV-CT)画像、磁気共鳴映像(MRI)画像、キロボルト円錐ビームコンピュータ断層撮影(kV-CBCT)画像、又はメガボルトコンピュータ断層撮影(MVCT)画像のうちの1つである、
ことを特徴とする請求項に記載の非一時的コンピュータ可読媒体。
【請求項11】
前記基準画像は、3次元(3D)計画画像であり、
前記3D計画画像は、キロボルトコンピュータ断層撮影(kV-CT)画像、磁気共鳴映像(MRI)画像、キロボルト円錐ビームコンピュータ断層撮影(kV-CBCT)画像、又はメガボルトコンピュータ断層撮影(MVCT)画像のうちの1つである、
ことを特徴とする請求項に記載の非一時的コンピュータ可読媒体。
【請求項12】
前記動作画像は、3次元(3D)断片内画像であり、
前記3D断片内画像は、キロボルト円錐ビームコンピュータ断層撮影(kV-CBCT)画像、メガボルト円錐ビームコンピュータ断層撮影(MV-CBCT)画像、又はメガボルトコンピュータ断層撮影(MVCT)画像のうちの1つである、
ことを特徴とする請求項に記載の非一時的コンピュータ可読媒体。
【請求項13】
前記ITVと前記非ターゲット物体との前記体積位置合わせを行うために、前記処理デバイスは、決定された見当合わせ領域(ROI)を使用して又は変形可能な見当合わせによって2つの独立剛体見当合わせを行うためのものであることを特徴とする請求項に記載の非一時的コンピュータ可読媒体。
【請求項14】
前記非ターゲットは、患者の脊椎であり、
前記修正された非ターゲットからターゲットへの変位ベクトルに基づいて前記ターゲットを追跡するために、前記処理デバイスは、前記脊椎に対する全体的患者動作を追跡するためのものである、
ことを特徴とする請求項に記載の非一時的コンピュータ可読媒体。
【請求項15】
前記動作画像は、3次元(3D)吸入及び吐き出し断片内画像であることを特徴とする請求項に記載の非一時的コンピュータ可読媒体。
【請求項16】
前記動作画像は、4次元(4D)吸入及び吐き出し断片内画像であることを特徴とする請求項に記載の非一時的コンピュータ可読媒体。
【発明の詳細な説明】
【技術分野】
【0001】
〔関連出願主張への参照〕
この出願は、2017年1月6日出願の米国仮特許出願第62/443,583号の利益を両方共に主張する2018年1月4日出願の米国特許出願第15/862,461号及び2018年1月4日出願の米国特許出願第15/862,449号の利益を主張するものであり、これらの内容全体は、これにより引用によって組み込まれる。
【0002】
本発明の開示は、放射線治療ターゲット動作管理(radiation treatment target motion management) に関する。
【背景技術】
【0003】
治療ターゲット(treatment target) は、放射線治療(radiation treatment)のような画像誘導式治療(image guided treatment)中に移動する場合がある。そのような移動に対処するために、従来の放射線送出システムは、体内ターゲット体積(Internal Target Volume)(ITV)、すなわち、呼吸又は他の移動中のターゲットの動作の範囲全体を設定の不正確性、治療中の全体的な患者移動、及び計画と治療間の呼吸パターン又は他の動作パターンの変化を補償する拡張マージンを用いて治療する。しかし、この手法は、特に腫瘍が呼吸中に大きい偏位を被る場合に大きい正常組織体積(large volume of normal tissue) が処方線量(prescription dose) に露出されるという欠点を伴っている。
【0004】
本発明の開示は、以下に与える詳細説明から及び本発明の開示の様々な実施の添付図面からより完全に理解されるであろう。
【図面の簡単な説明】
【0005】
図1A】本明細書に説明する実施形態に従って使用することができる放射線治療システムの図である。
図1B】本明細書に説明する実施形態による放射線治療システムの断面図である。
図2A】本明細書に説明する実施形態による患者内の体内解剖学的構造を含む図1Bの撮像システムの簡略図である。
図2B】本明細書に説明する実施形態により治療中心がITVの中心を通過するように治療台が再位置決めされた後の図1Bの撮像システムの簡略図である。
図3A】本明細書に説明する実施形態による治療平面内の動作と治療平面に垂直な動作とを示すITVの拡大図である。
図3B】本明細書に説明する実施形態により治療平面に垂直な軸線上に動作を投影することによって発生された部分ITVを示すITVの別の拡大図である。
図4A】本明細書に説明する実施形態による患者の呼吸サイクル中の腫瘍の異なる位置を示す図である。
図4B】本明細書に説明する実施形態による患者の呼吸サイクル中の腫瘍の異なる位置を示す図である。
図4C】本明細書に説明する実施形態による患者の呼吸サイクル中の腫瘍の異なる位置を示す図である。
図4D】本明細書に説明する実施形態による患者の呼吸サイクル中の腫瘍の異なる位置を示す図である。
図4E】本明細書に説明する実施形態による患者の呼吸サイクル中の腫瘍の異なる位置を示す図である。
図5A】本明細書に説明する実施形態により体積撮像を使用する1-視野断片間治療ターゲット動作管理の第1の方法を示す図である。
図5B】本明細書に説明する実施形態により体積撮像を使用する1-視野断片間治療ターゲット動作管理の第2の方法を示す図である。
図6】本明細書に説明する実施形態による放射線治療の実施を発生させるのに使用することができるシステムの図である。
図7】本明細書に説明する実施形態によるガントリベースの強度変調放射線治療システムの図である。
図8】本明細書に説明する実施形態よるヘリカル放射線送出システムの図である。
【発明を実施するための形態】
【0006】
本明細書に説明するのは、放射線治療ターゲット動作管理のための方法及び装置の実施形態である。治療ターゲット動作管理は、放射線治療及び放射線手術の重要な態様である。広い意味では、動作管理は、2つのステージ:(1)ターゲットの位置の決定、及び(2)ターゲット位置に基づく治療ビームの送出を伴っている(例えば、動的ターゲット追跡、ゲイティング、治療中断、治療計画適応)。
【0007】
本発明の開示の実施形態は、断片内体積撮像を使用して断片間設定誤差及び断片間ベースラインシフトに起因する動作管理の不決定性を有意に低減する方法に関する。これらのタイプのターゲット位置変動は、肺、膵臓、肝臓、及び他の腹部治療部位における課題である。本発明の開示の実施形態は、立体X線撮像機能を含むCyberKnife(登録商標)放射線手術システムのような放射線治療送出システムと共に使用することができる。これに代えて、他のタイプの放射線治療送出システム(例えば、ガントリベース、ヘリカルベースなど)を使用することができる。
【0008】
特に肺用途では、CyberKnife(登録商標)放射線手術システムは、2-視野、1-視野、及び0-視野追跡のための軟組織追跡ソリューションを提供する。2-視野は、病巣と背景間の画像強度差を使用して基準を使用せずに直接的に肺内の腫瘍を追跡する追跡方法である。
【0009】
1-視野は、例えば、治療を中断する又は患者を移動する必要なくビーム送出を呼吸から生じるターゲットの動作と連続的と同期させるAccurayのSynchrony(登録商標)呼吸追跡システムと共に使用することができる追跡方法である。それは、ゲイティング又は息止め技術を不要にしながら臨床医が有意にマージンを低減することを可能にする。1-視野は、2つのX線投影のうちの一方で腫瘍動作を追跡し、追跡方向に放射線手術マージンを有する正確な線量送出を可能にする。このシナリオの下では、ITV拡張が、非追跡X線投影に適用される。
【0010】
一実施形態では、1-視野追跡に対して、直接ターゲット位置合わせを実行するための3D走査が治療断片の最初に取得される。この作動は、断片間ベースラインシフトを実質的に除去する。その後のターゲット動作(すなわち、呼吸動作)は、患者の下-上軸線に一致する平面内のターゲット動作が直接的に追跡される1-視野追跡を通じて管理される。動作の直交成分は追跡されない。これに代えて、4D CT(又は3D吸入/吐き出しCT対)から推定されたターゲット動作振幅に基づく部分ITVが使用される。
【0011】
0-視野追跡は、肺腫瘍がいずれのX線投影でも明確に見えない状況で適用される治療方法である。0-視野は、2つのX線投影でのITV拡張と患者位置を追跡するXsight脊椎追跡システムとを使用する。0-視野追跡の一実施形態では、治療ターゲットは、直接的に追跡されない。これに代えて、患者の脊椎のようなプロキシ構造(例えば、非ターゲット物体)が、全体的患者動作に対処するためにシステムによって追跡され、一方でターゲットの動作は間接的に管理される。ターゲット位置は、脊椎上の基準点と計画画像によって定められるターゲットの中心との間の変位ベクトルを使用して推定される。治療中に、ターゲットの位置を推定するために各脊椎追跡補正の後で同じ変位ベクトルを適用することができる。この手法は、断片内全体的患者動作を補償することができる。断片間ベースラインシフト、設定誤差、及び断片内呼吸動作及びベースラインシフトは、ITVによって対処することができ、PTV拡張を使用して上述の不決定性の原因に対処することができる。
【0012】
2-視野追跡で治療される患者では、ターゲット動作の断片間及び断片内成分が検出されて完全に補償される。1-視野追跡では、断片間及び断片内ターゲット動作は、アクティブ撮像器に直交する一平面内でのみ直接に追跡される。第3軸線動作は「見えず」、動作の断片間及び断片内成分を推定する別の方法を必要とする。例えば、CyberKnife(登録商標)放射線手術システムがLung Optimized Treatment(登録商標)(LOT)ツールと共に使用される1つの特定の実施形態では、断片内成分は、術前4D CT走査(又は他の実施形態では、吸入/吐き出しCT走査対など)から推定することができ、一方、断片間動作は、患者集団全体における予期される変動を網羅するほどに大きい計画ターゲット体積(PTV)マージンによって管理される。本発明の実施形態は、単に説明を容易にするために0-視野、1-視野、及び2-視野に関して説明し、本明細書に説明する方法及びシステムは他の追跡方式と共に使用することができることに注意しなければならない。
【0013】
図1Aに示すような放射線治療送出システム(例えば、CyberKnife(登録商標)放射線治療システム)を有する体積撮像システム(例えば、medPhotonのImagingRingシステム(IRS))の使用により、新しい画像見当合わせ及び画像追跡の機会が与えられる。注意すべきことに、本明細書に使用する用語「追跡」は、治療計画ステージで治療ターゲットを追跡すること(例えば、治療ターゲットの位置を決定すること)と治療中に治療ターゲットを追跡すること(例えば、治療ターゲットを能動的に更新すること)の両方を指す場合がある。体積撮像システム(例えば、1239)は優れた解剖学的情報とロバストな患者位置合わせとを提供することができるが、立体X線撮像システム(例えば、1210)は頻繁な断片内撮像及び追跡を可能にする。代替実施形態では、統合室内診断コンピュータ断層撮影(CT)を有する放射線治療デバイスを使用することができる。室内診断CTでは、患者は室内診断スキャナと放射線治療送出システムとの間で(例えば、ロボット寝台を使用して)物理的に移動される。
【0014】
本明細書に使用する場合に、医療画像の「見当合わせ」(本明細書では「画像見当合わせ」とも呼ぶ)は、それらの医療画像に現れる対応する解剖学的又は他の特徴(例えば、基準)間の数学的関係の決定を指す。一実施形態では、単一方式で又は異なる方式で患者を複数回撮像することができる。画像セットを解釈して比較する時の1つの段階は、複数の画像における異なる点間の対応の確立である。画像見当合わせは、1つの画像空間の座標と別の画像空間の座標の間の写像又は変換を計算する処理である。この変換は、異なる画像セット内の同じ解剖学的点が互いに写像される結果をもたらし、診断及び治療のための複合撮像情報を使用する目的で画像セットを融合するのに使用することができる。
【0015】
画像見当合わせ及び融合は、MRからの軟組織のような相補的な構造情報をCTからの骨と組み合わせる時を含む様々な状況で有用である場合がある。画像融合はまた、機能画像化を解釈するために非常に有用である。機能的PET又はfMR画像が高解像度の解剖学的画像と融合された状態で、機能的特性は、それらが生じる解剖学的構造に関連付けることができる。
【0016】
見当合わせは、以下に限定するものではないが、医療画像の一方又は両方に適用すると対応する解剖学的特徴の重ね合わせをもたらすことになる1又は2以上の空間変換、位置合わせ変換、又は断片内変換の決定を含むことができる。空間変換、位置合わせ変換、又は断片内変換は、剛体変換及び/又は変形可能な変換を含むことができ、医療画像が異なる座標系又は基準フレームからのものである場合に、それらの座標系又は基準フレームの違いに対処することができる。
【0017】
画像見当合わせは、一般的に、計画室内画像内のターゲットの場所と治療室内画像内のターゲットの場所の間の空間変換を決定するために評価される類似度値、又は同等的に差分値(例えば、相互相関、エントロピー、相互情報量、勾配相関、パターン強度、勾配差、画像強度勾配)の計算を伴う場合がある。画像見当合わせの他の方法を利用することもできる。医療画像が同じ撮像システムを使用して取得されず、かつ同時に取得されない場合に、見当合わせ処理は、以下に限定するものではないが、異なる撮像システムの撮像方式、撮像形状、及び/又は基準フレーム間の違いに対処する第1の変換の決定と、取得時間にわたって生じた可能な身体部分における根本的な解剖学的差(例えば、位置決めの違い、全体的な移動、身体部分内の異なる構造間の相対的な移動、全体的な変形、身体部分内の局所的な変形など)に対処する第2の変換の決定とを含むことができる。
【0018】
本明細書に説明する実施形態と共に様々な画像見当合わせ方法を利用することができる。一例では、点ベースの見当合わせを使用することができる。点は、医療画像見当合わせに使用することができる単純な幾何学的特徴である。点ベースの見当合わせは、2つの画像内の対応する点の3D座標を決定し、これらの点を最も良く位置合わせする変換を計算する段階を伴う。
【0019】
別の実施形態では、面ベースの見当合わせを使用することができる。解剖学的物体又は構造の3D境界又は面は、医療画像見当合わせに使用することができる幾何学的特徴である。面ベースの画像見当合わせ方法は、2つの画像内の対応する面を決定し、これらの面を最も良く位置合わせする変換を計算する段階を伴う場合がある。点ベースの見当合わせは、一般的に少数の対応する基準点を位置合わせする段階を含むが、面ベースの見当合わせは、点対応情報が利用可能ではない一般的に遥かに多くの点を位置合わせする段階を伴う。
【0020】
別の実施形態では、強度ベースの見当合わせを使用することができる。強度ベースの見当合わせは、画像内のピクセル又はボクセルの値だけに基づく位置合わせの尺度を使用して2つの画像間の変換を計算する段階を伴う場合がある。他の実施形態では、他の画像見当合わせ方法を使用することができる。
【0021】
用語位置合わせ変換(例えば、体積位置合わせ)は、本明細書では第1の座標系(例えばかつ限定ではなく、患者の計画画像座標系)と第2の座標系(治療室内座標系)の間の変換を指し、それにより、位置合わせ変換は、例えばかつ限定ではなく、治療断片の開始前の患者設定時に第1の座標系に対する第2の座標系内のターゲットの場所を決定するものである。
【0022】
用語「断片内変換」は、本明細書では第1の座標系と第2の座標系の間の変換を指し、それにより、処置の開始後に、例えばかつ限定ではなく治療断片中に第2の座標系に対する第1の座標系内のターゲットの場所が決定されるものである。
【0023】
用語「ターゲット」は、治療区域(例えば、腫瘍)の近く(何らかの定められた近傍内)にある1又は2以上の基準を指す場合がある。別の実施形態では、ターゲットは骨構造である場合がある。更に別の実施形態では、ターゲットは患者の軟組織を指す場合がある。本明細書に説明するように、ターゲットは、識別及び追跡することができるあらゆる定められた構造又は区域である場合がある。
【0024】
1又は2以上の画像においてターゲットを位置付ける時の精度及び計算効率を高め、それにより、治療室内基準フレーム及び治療計画画像基準フレーム内のターゲット場所間の空間変換をより正確かつ効率的に決定するために画像見当合わせに改善を加える必要がある。
【0025】
図1Aは、本明細書に説明する実施形態に従って使用することができる放射線治療システム1200を示している。図示のように、図1Aは放射線治療システム1200の構成を説明している。図示の実施形態では、放射線治療システム1200は、放射線治療ソースとして機能する線形加速器(LINAC)1201を含む。LINAC1201を位置決めして多くの角度から多くの平面に患者周りの手術体積にビームを送出して病的解剖学的構造(例えば、ターゲット120)に照射するために、LINAC1201は、複数(例えば、5又は6以上)の自由度を有するロボットアーム1235の端部に取り付けられる。治療は、単一アイソセンター、複数のアイソセンターを有する、又は非アイソセントリックな進入路を有するビーム経路を伴う場合がある。これに代えて、他のタイプの画像誘導式放射線治療(IGRT)システムを使用することができる。一代替実施形態では、LINAC1201は、後述するようにガントリベースのシステムに取り付けることができる。
【0026】
LINAC1201は、ロボットアーム1235を移動することによって治療中に複数の異なるノード(LINAC1201が停止して放射線を送出することができる定められた位置)に位置決めすることができる。ノードでは、LINAC1201は1又は2以上の放射線治療ビームをターゲットに送出することができる。ノードは、患者の周りに略球状の分布に配置することができる。ノードの特定の数及び各ノードで印加される治療ビームの数は、治療する病的な解剖学的構造の場所及びタイプの関数として変えることができる。
【0027】
放射線治療システム1200は、X線ソース1203A及び1203B(すなわち、撮像ソース)とX線検出器1204A及び1204Bとに接続した処理デバイス1230を有する撮像システム1210を含む。これに代えて、X線ソース1203A、1203B及び/又はX線検出器1204A、1204Bは可動式とすることができ、その場合に、それらを再位置決めして、ターゲット120との位置合わせを維持し、又は代わりに異なる向きからターゲットを撮像し、又は多くのX線画像を取得して3次元(3D)円錐ビームCTを再構成することができる。一実施形態では、当業者には理解されるように、X線ソースは点ソースではなく、むしろX線ソースアレイである。一実施形態では、LINAC1201は撮像ソースとして機能し、その場合に、LINACの電力レベルは撮像に許容可能なレベルまで低下する。
【0028】
撮像システム1210は、円錐ビームCT又はヘリカルメガボルト演算式断層撮影(MVCT)のようなコンピュータ断層撮影(CT)を実行することができ、撮像システム1210によって発生された画像は2次元(2D)又は3次元(3D)である場合がある。2つのX線ソース1203A及び1203Bは、手術室の天井の固定位置に取り付けることができ、2つの異なる角度位置(例えば、90度離れた)からX線撮像ビームを投影して機械アイソセンター(本明細書ではアイソセンターと呼び、治療中に患者を治療台1206上に位置決めするための基準点を提供する)で交差するように、及び患者を通過した後にそれぞれの検出器1204A及び1204Bの撮像面を照射するように位置合わせすることができる。一実施形態では、撮像システム1210はターゲット及び周囲の当該体積(VOI)の立体撮像を提供する。別の実施形態では、撮像システム1210は、2よりも多いか又は少ないX線ソースと2よりも多いか又は少ない検出器とを含むことができ、検出器のいずれも固定式ではなく可動式である場合がある。更に別の実施形態では、X線ソース及び検出器の位置は入れ替えることができる。当業者には公知のように、検出器1204A及び1204Bは、X線を可視光に変換する発光物質(例えば、アモルファスシリコン)と、その光をデジタル画像に変換するCMOS(相補型金属酸化膜シリコン)又はCCD(電荷結合素子)の撮像セルのアレイとで製造することができ、そのデジタル画像は、デジタル画像の座標系を基準画像の座標系に変換する画像見当合わせ処理中に基準画像と比較することができる。基準画像は、例えば、デジタル再構成放射線画像(DRR)とすることができ、DRRは、CT画像を通した光線の投射によってX線画像形成処理を模擬することに基づいて3次元CT画像から発生される仮想的なX線画像である。
【0029】
IGRT送出システム1200はまた、2次撮像システム1239を含む。撮像システム1239は、円錐ビーム演算式断層撮影(CBCT)撮像システム、例えば、medPhotonのImagingRingシステムである。これに代えて、他のタイプの体積撮像システムを使用することができる。2次撮像システム1239は、ロボットアーム(図示せず)に取り付けられた回転式ガントリ1240(例えば、リング)と、1又は2以上の軸線に沿って(例えば、治療台1206の頭部から脚部に延びる軸線に沿って)回転式ガントリ1240を移動することができるレールシステムとを含むことができる。撮像ソース1245及び検出器1250は、回転式ガントリ1240に取り付けられる。回転式ガントリ1240は、治療台の頭部から脚部まで延びる軸線の周りに360度回転することができる。従って、撮像ソース1245及び検出器1250は、多くの異なる角度に位置決めすることができる。一実施形態では、撮像ソース1245はX線ソースであり、検出器1250はX線検出器である。一実施形態では、2次撮像システム1239は、別々に回転可能な2つのリングを含む。撮像ソース1245は、第1のリングに取り付けることができ、検出器1250は、第2のリングに取り付けることができる。一実施形態では、回転式ガントリ1240は、ロボットアーム1202との衝突を回避するために放射線治療送出中は治療台の脚部に静止する。
【0030】
図1Aに示すように、画像誘導式放射線治療システム1200は、更に、治療送出ワークステーション150に関連付けることができる。治療送出ワークステーションは、放射線治療システム1200から離れて、放射線治療システム1200及び患者が位置する治療室とは異なる部屋に位置することができる。治療送出ワークステーション150は、本明細書に説明するように、1又は2以上の画像見当合わせに基づくターゲット動作の検出に基づいて患者1225への治療送出を修正する処理デバイス(処理デバイス1230又は他の処理デバイスである場合がある)及びメモリを含むことができる。
【0031】
一部の実施形態では、ヘリカル送出を有するガントリシステムを使用して、撮像システム1210を回転させることができる。例えば、ガントリシステムを使用して、異なる角度で2、3、又は4以上の画像(例えば、X線画像)を取得することができる。放射線治療送出システムはまた、患者の周囲に配置された回転撮像システム109を含むことができる。
【0032】
一実施では、システム1200は、フレームレスロボット放射線手術システム(例えば、CyberKnife(登録商標)治療送出システム)を含む。別の実施では、システム1200はガントリベースのLINAC治療システムに結合され、その場合に、例えば、LINAC1201がガントリベースのシステムのガントリに結合される。これに代えて、システム1200は、他のタイプの放射線治療システム、例えば、以下に説明するようなヘリカル送出システムと共に使用することができる。
【0033】
図1Bは、画像誘導式放射線治療(IGRT)システム700の構成を示している。一般的に、IGRTシステム700は、図1Aの放射線治療システム1200に対応することができる。
【0034】
図1Bに示すように、IGRTシステム700はキロボルト(kV)撮像ソース702A及び702Bを含むことができ、それらは、手術室の天井720の軌道722A及び722Bに取り付けることができ、2つの異なる位置から撮像X線ビームビーム704A及び704Bを投影してビーム704Aの光線712Aが撮像中心726(すなわち、アイソセンター)でビーム704Bの光線712Bと交差するように位置合わせすることができ、このアイソセンターは、治療中に治療ビーム716A、716B、及び716Cを発生させるLINAC708と治療台714上の患者710とを位置決めするための基準点を提供する。患者710を通過した後で、撮像X線ビーム704A及び704BはX線検出器724A及び724Bのそれぞれの撮像面を照射することができ、それらのX線検出器は、手術室の床718又はその近くに取り付けられ、互いに実質的に平行(例えば、5度以内)とすることができる。kV撮像ソース702A及び702Bは、それらの撮像面が単一撮像面を形成するように実質的に同一平面上にあるものとすることができる。一実施形態では、kV撮像ソース702A及び702Bは、単一kV撮像ソースで置換することができる。患者710のX線画像が発生された状態で、LINAC708は回転して、異なる角度から治療ビーム716を発生させることができる。LINAC708が異なる角度へ回転する間に、kV撮像ソース702A及び702Bは軌道722A及び722Bに沿って移動して新しい角度から患者710のX線画像を発生させることができる。
【0035】
図2Aは、本明細書に説明する実施形態に従って患者108の体内の内部解剖学的構造を含む図1Bの撮像システム700の簡略図200を示している。図2Aは、脊椎205、腫瘍210、及びITV215を識別するキー202を含む。一実施形態では、ITVは、ターゲットがその完全動作範囲にわたって移動する時にターゲットによって定められる体積である。この実施形態に示すように、患者の脊椎205は、アイソセンター(例えば、撮像軸線の交点)に位置合わせされる。これは、患者108を保持する治療台714を位置決めすることによって実行することができる。システムは両検出器104A及び104Bで脊椎205を見る。従って、本発明のシステムは、当業者に理解されるように、検出器104A、104Bによって撮影された立体X線画像を断片内画像(例えば、3D動作画像)から発生されたDRRに対して見当合わせすることにより、脊椎205を3次元(3D)空間内で位置合わせする。
【0036】
治療平面220は、脊椎205と交差して示されている。治療平面220は、追跡に使用される検出器(例えば、検出器104B)の撮像面と平行であり、かつアイソセンターを通る平面である。1-視野追跡モードを使用してターゲットを追跡する場合に、システムは、利用可能な1-視野から追跡に使用される検出器(例えば、検出器104B)の撮像面の2次元でのターゲットVOI位置を決定する。2D位置データを治療平面の上に投影して、2D位置データから3D座標位置を与えることができる。
【0037】
一実施形態では、システムが脊椎(又は別の基準になる非ターゲット構造)をアイソセンターに位置合わせした状態で、システムは、アイソセンターがITV215の中心を通過するように患者を保持する治療台を再位置決めする。一実施形態では、治療計画によって与えられたように、治療台714は、脊椎205とITV215の中心の間の予め決められたオフセットに基づいて移動される。
【0038】
図2Bは、本明細書に説明する実施形態に従ってアイソセンターがITV215の中心を通過するように治療台714が再位置決めされた後の図1Bの撮像システム700の簡略図を示している。治療台714が予め決められたオフセットに基づいて移動された後で、ユーザ(例えば、医師又は技師)は、治療台714の位置を調整して位置合わせ補正をすることができる。一実施形態では、初期オフセット動作の後で、治療台714の位置は厳密に制御される。一実施形態では、治療平面220から外への位置合わせ動作は許されない。例えば、図2Bはx軸線とy軸線を示している。ユーザは、y軸線だけ又はx軸線だけに沿って調整を行うことが許されず、それは、治療平面220の外側への動作を生じる可能性があるからである。従って、x軸線でのいずれの調整も、対応するy軸線での調整を伴うと考えられる。同様に、y軸線でのいずれの調整も、対応するx軸線での調整を伴うと考えられる。それにより、治療平面220に垂直な軸線における脊椎206とITV215の中心の間のオフセットが変化しないことが保証される。
【0039】
図3Aは、本明細書に説明する実施形態による治療平面内の動作301と治療平面に垂直な動作303とを示すITV215の拡大図300である。
【0040】
一実施形態では、1-視野追跡モードでは、治療平面220内の動作301は追跡されるが、治療平面220に垂直な動作303は追跡されない。別の実施形態では、0-視野追跡モードでは、治療平面220内の動作301も治療平面220に垂直な動作303も追跡されない。
【0041】
図3BはITV215の別の拡大図350を示し、本明細書に説明する実施形態による治療平面220と垂直な軸線上に動作を投影することによって発生された部分ITVを示している。これは、例えば、ITVを3次元ベクトルとして表現し、3次元ベクトルを治療平面に垂直な軸線上に投影することによって実行することができる。これは、治療平面220と垂直な軸線に沿った腫瘍210の動作成分を与える。腫瘍210及び部分ITV305は、第1の位置(位置I)及び第5の位置(位置V)に示されている。図示のように、腫瘍210の位置が変化すると、部分ITV305は治療平面220の内部で移動する。しかし、部分ITV305は、治療平面220に垂直な軸線に沿って移動しない。
【0042】
図4A~4Eは、本明細書に説明する実施形態による患者の呼吸サイクル中の腫瘍210の異なる位置(例えば、位置I~V)を示している。治療平面220内の腫瘍の移動は、検出器104Bを使用して追跡することができる。他方の検出器は腫瘍を見ることができないので、治療平面の外側、すなわち、治療平面と垂直な移動は追跡することができない。システムは、部分ITV305を治療することによって治療平面220の外側へのターゲットVOI動作に対処し、システムは治療平面内の動作を追跡してそれに対処する。
【0043】
一実施形態では、システムは放射線治療ビームを使用して診断画像を発生させる。この実施形態では、システムは、電子ポータル撮像デバイス(EPID)と呼ばれるデバイスを含む。EPIDは、患者を通過した放射線治療ソースによって発生された放射線ビームを受け入れるように位置決めされる。EPIDは放射線治療ビーム自体を使用して、ターゲットVOIの場所を決定するのに使用することができるポータル画像を発生させる。一実施形態では、EPIDは2次元区域検出器を含み、それによって撮像面内のターゲットVOI位置を検出することができる。そのようなEPIDの場合に、上述の1-視野追跡モードを使用してターゲットVOI場所を追跡することができる。例えば、システムは、上述のように、EPID撮像面と垂直な軸線の上にITVを投影することによって部分ITVを発生させることができる。
【0044】
一実施形態では、EPIDは1次元走査検出器を含む。1次元走査検出器は撮像軸線内のターゲットVOI位置を検出する。1次元走査検出器を含むEPIDを使用する場合に、システムは、撮像軸線がそれに対して垂直である平面の上にITVを投影することによって部分ITVを発生させることができる。従って、部分ITVは、撮像軸線外へのターゲットVOI動作に対処することができる。
【0045】
一実施形態では、システムはゲイティングと呼ぶ(本明細書ではゲート式治療モードとも呼ぶ)技術を実行する。ゲート式治療モードでは、治療ビームは、推定されたターゲット場所が予め定められた範囲にある時に有効にされ、推定されたターゲット場所がこの範囲外にある時に無効にされる。ターゲット場所の推定は、直接測定によって(例えば、ターゲットを1又は2以上のX線画像内に位置付けることにより)行うことができ、又は代替測定によって(例えば、患者胸部の外側に取り付けられた光学マーカを追跡することにより)行うことができる。ゲート式治療モードの場合に、部分ITVによって含まれる動作範囲は、治療ビームがオンにされることになる位置を張ることができる。例えば、腫瘍が完全吐き出し腫瘍位置の5mm以内にあると推定される間、治療ビームを作動させることができる。部分ITVは、その5mm以内の腫瘍の動作範囲を含むことができる。ゲイティングを使用して、呼吸動作又は心臓動作のような循環的な患者の動作を受け入れることができる。一実施形態では、ゲイティングは、1-視野追跡又はEPIDを使用する追跡と組み合わされる。そのような実施形態では、部分ITVは、(例えば、患者の呼吸サイクルの特定フェーズ中に)予め決められた治療ゾーン内で発生する非追跡平面又は軸線内でのターゲットVOIの動作を網羅することができる。ゲイティングシステムと併せて部分ITVを使用し、ゲイティングシステムの許容動作範囲を使用して部分ITVを定めることの利点は、治療計画段階で表示される線量分布が、治療送出中に放射線に露出される組織の量を正確に反映するということである。
【0046】
図5Aは、本明細書に説明する実施形態により体積撮像を使用する1-視野断片間治療ターゲット動作管理の第1の方法500を示している。一般的に、方法500は、ハードウエア(例えば、処理デバイス、回路、専用論理部、プログラマブル論理部、マイクロコード、デバイスのハードウエアなど)、ソフトウエア(例えば、処理デバイス上で稼働又は実行される命令)、又はその組合せを含むことができる処理論理部によって実行することができる。一部の実施形態では、方法500は、図1の放射線治療システム1200の処理論理部によって実行することができる。一実施形態では、方法500の作動は、1-視野追跡に適用することができる。
【0047】
図5に示すように、方法500は、基準画像(例えば、3D計画画像)に基づいてターゲットの完全動作範囲を識別する処理論理部で開始することができる(502)。一実施形態では、基準画像は、直接ターゲット位置合わせを実行するために治療断片(例えば、セッション)の最初に取得された3D走査の結果である。基準画像は、4次元(4D)計画画像とすることができる。4D計画画像は、キロボルトコンピュータ断層撮影(kV-CT)画像、磁気共鳴映像(MRI)画像、キロボルト円錐ビームコンピュータ断層撮影(kV-CBCT)画像、メガボルトコンピュータ断層撮影(MVCT)画像、又はあらゆる他の4D画像のうちの1つである場合がある。別の実施形態では、基準画像は3次元(3D)吸入及び吐き出し計画画像である。3D吸入及び吐き出し計画画像は、キロボルトコンピュータ断層撮影(kV-CT)画像、磁気共鳴映像(MRI)画像、キロボルト円錐ビームコンピュータ断層撮影(kV-CBCT)画像、メガボルトコンピュータ断層撮影(MVCT)画像、又はあらゆる他の3D画像のうちの1つである場合がある。この段階は断片間ベースラインシフトを除去することができる。一実施形態では、ターゲットの完全動作範囲が完全ITVを定める。
【0048】
処理論理部は、ブロック504では、動作画像(例えば、3D断片内画像)に基づいてターゲットの部分動作範囲を決定することができる。一実施形態では、動作画像は3次元(3D)断片内画像である。3D断片内画像は、キロボルト円錐ビームコンピュータ断層撮影(kV-CBCT)画像、メガボルト円錐ビームコンピュータ断層撮影(MV-CBCT)画像、メガボルトコンピュータ断層撮影(MVCT)画像、又はあらゆる他の3D画像のうちの1つである場合がある。一実施形態では、基準画像及び動作画像は、本明細書に説明するように、ヘリカル放射線送出システムの撮像ソースによって又は患者に対する異なる位置での1又は2以上の撮像ソースによって発生されるものとすることができる。
【0049】
一実施形態では、部分動作範囲は、ターゲットの完全動作範囲のうちの非追跡部分である。部分動作範囲は、非追跡平面又は非追跡軸線のうちの1つを含むことができる。ブロック506では、処理論理部は、処理デバイスにより、ターゲットの部分動作範囲に基づいて部分ITVを発生させることができる。一実施形態では、部分ITVは、ターゲットが部分動作範囲を移動する時にターゲットによって掃引される体積である。一実施形態では、部分ITVは完全ITVよりも小さい。
【0050】
ブロック508では、処理論理部は、ターゲットの追跡を支援するために部分ITVを提供することができる。具体的には、その後のターゲット動作(すなわち、呼吸動作)を1-視野追跡を通じて管理することができ、そこでは患者の下-上軸線と一致する平面内のターゲット動作が直接的に追跡される。部分ITVを使用して、非追跡の平面又は軸線を補償することができる。
【0051】
一実施形態では、処理論理部は、ターゲットに関連付けられたベースラインシフト及び設定誤差を低減するために部分ITVを完全ITVに体積的に位置合わせすることができる(ブロック510)。別の実施形態では、処理論理部は、2次元動作X線画像を使用してターゲットの動作を追跡することができる。
【0052】
図5Bは、本明細書に説明する実施形態により体積撮像を使用する1-視野断片間治療ターゲット動作管理の第2の方法501を示している。一般的に、方法501は、ハードウエア(例えば、処理デバイス、回路、専用論理部、プログラマブル論理部、マイクロコード、デバイスのハードウエアなど)、ソフトウエア(例えば、処理デバイス上で稼働又は実行される命令)、又はその組合せを含むことができる処理論理部によって実行することができる。一部の実施形態では、方法501は、図1の放射線治療システム1200の処理論理部によって実行することができる。一実施形態では、方法501の作動は、0-視野追跡に適用することができる。
【0053】
ブロック503では、処理論理部は、基準画像に基づいてターゲットの完全動作範囲を識別することによって開始する。一実施形態では、ターゲットの完全動作範囲は完全ITVを定める。本明細書に説明するように、基準画像は、直接ターゲット位置合わせを実行するために治療断片(例えば、セッション)の最初に取得された3D走査の結果である場合がある。基準画像は、4次元(4D)計画画像とすることができる。4D計画画像は、キロボルトコンピュータ断層撮影(kV-CT)画像、磁気共鳴映像(MRI)画像、キロボルト円錐ビームコンピュータ断層撮影(kV-CBCT)画像、メガボルトコンピュータ断層撮影(MVCT)画像、又はあらゆる他の4D画像のうちの1つである場合がある。別の実施形態では、基準画像は3次元(3D)吸入及び吐き出し計画画像である。3D吸入及び吐き出し計画画像は、キロボルトコンピュータ断層撮影(kV-CT)画像、磁気共鳴映像(MRI)画像、キロボルト円錐ビームコンピュータ断層撮影(kV-CBCT)画像、メガボルトコンピュータ断層撮影(MVCT)画像、又はあらゆる他の3D画像のうちの1つである場合がある。この段階は、断片間ベースラインシフトを除去することができる。
【0054】
ブロック505では、処理論理部は、動作画像及び/又は基準画像内の非ターゲット物体を識別する。本明細書に説明するように、非ターゲット物体は、骨構造、軟組織、又は基準、又は直接追跡されないあらゆる他の物体を含むことができる。一実施形態では、非ターゲット物体は患者の脊椎である。動作画像は、キロボルト円錐ビームコンピュータ断層撮影(kV-CBCT)画像、メガボルト円錐ビームコンピュータ断層撮影(MV-CBCT)画像、メガボルトコンピュータ断層撮影(MVCT)画像、又はあらゆる他の3D画像を含む3次元(3D)断片内画像とすることができる。
【0055】
ブロック507では、処理論理部は、ITVと非ターゲット物体との体積位置合わせを行う。一実施形態では、体積位置合わせは、ターゲットに関連付けられたベースラインシフト及び設定誤差を低減することができる。一実施形態では、ITVと非ターゲット物体との体積位置合わせを行う段階は、決定された当該見当合わせ領域(ROI)を使用して又は変形可能な見当合わせによって2つの独立剛体見当合わせを行う段階を含む。
【0056】
ブロック509では、処理論理部は、処理デバイスにより、体積位置合わせに基づいて非ターゲットからターゲットへの変位ベクトルを修正する。非ターゲット変位ベクトルは、非ターゲット物体上の基準点と基準画像によって定められるターゲット中心との間である場合がある。
【0057】
ブロック511では、処理論理部は、処理デバイスにより、修正された非ターゲットからターゲットへの変位ベクトルに基づいてターゲットを追跡する。治療中に、ターゲットの場所を推定するために、各非ターゲット物体追跡補正の後で同じ非ターゲット変位ベクトルを適用することができる。ブロック513では、処理論理部は、ITVに基づいて、断片間ベースラインシフト、設定誤差、患者解剖学的構造の変化、又は断片内呼吸動作及びベースラインシフトのうちの少なくとも1つを補償することができる。一実施形態では、患者解剖学的構造の変化は、ターゲットに対する定められた近接度閾値未満の物体(例えば、非ターゲット臓器又は他の物体)の変化を含むことができる。一実施形態では、基準画像及び動作画像は、本明細書に説明するように、ヘリカル放射線送出システムの撮像ソースによって又は患者に対する異なる位置での1又は2以上の撮像ソースによって発生されるものとすることができる。
【0058】
本明細書に説明する実施形態は、診断のためのkV-CT、MRI、kV-CBCT、及びMVCTを含む様々なタイプの計画画像と共に使用することができることに注意しなければならない。本明細書で説明する方法は、(例えば、CTが治療計画に使用されない又は利用可能でない場合に)MRベースの計画と共に使用することができる。本明細書で説明する実施形態はまた、kV-CBCT、MVCT、MVCBCT、及び室内ヘリカル/診断kV-CTを含む様々なタイプの断片内3D画像と共に使用することができる。本明細書で説明する実施形態は、立体X線対、回転式平面2DX線撮像器、及びCアーム術中撮像システム(外科及び介入的誘導用途に使用される)を含む様々なタイプの断片内2D撮像システムと共に使用することができる。時にロボット手術システムに関連して実施形態を説明するが、別の実施形態では、本明細書で説明する方法は、ヘリカル送出システム及びガントリベースのシステムのような他のタイプの治療送出システムと共に使用することができる。更に、時にmedPhotonのImagingRingシステム(IRS)に関連して実施形態を説明するが、別の実施形態では、本方法は、他のタイプの体積撮像システムと共に使用することができる。
【0059】
図6は、本明細書で議論する方法のうちのいずれか1又は2以上を機械に実行させるための命令セットを実行することができるコンピュータシステム600の例示的機械を示している。代替実施では、この機械は、LAN、イントラネット、エクストラネット、及び/又はインターネットで他の機械に接続(例えば、ネットワーク接続)することができる。この機械は、クライアントサーバネットワーク環境のサーバ又はクライアント機械の機能で、ピアツーピア(又は分散型)ネットワーク環境のピア機械として、又はクラウドコンピュータインフラストラクチャ又は環境のサーバ又はクライアント機械として作動させることができる。
【0060】
機械は、パーソナルコンピュータ(PC)、タブレットPC、セットトップボックス(STB)、携帯情報端末(PDA)、携帯電話、ウェブ機器、サーバ、ネットワークルータ、スイッチ又はブリッジ、又は機械が行う作動を指定する(順次的な又は別な方法の)命令セットを実行することができるあらゆる機械である場合がある。更に、単一機械を示しているが、用語「機械」はまた、本明細書で議論する方法のうちのいずれか1又は2以上を実行するために1つ(又は複数)の命令セットを個々に又は共同で実行する機械のあらゆる集合を含むものと見なさなければならない。
【0061】
例示的コンピュータシステム600は、処理デバイス602、主メモリ604(例えば、読取専用メモリ(ROM)、フラッシュメモリ、同期DRAM(SDRAM)、又はRambusDRAM(RDRAM)といった動的ランダムアクセスメモリ(DRAM)など)、静的メモリ606(例えば、フラッシュメモリ、静的ランダムアクセスメモリ(SRAM)など)、及びデータストレージデバイス618を含み、これらはバス630を通して互いに通信する。
【0062】
処理デバイス602は、マイクロプロセッサ又は中央演算処理装置などのような1又は2以上の汎用処理デバイスを表している。より具体的には、処理デバイスは、複合命令セットコンピュータ(CISC)マイクロプロセッサ、縮小命令セットコンピュータ(RISC)マイクロプロセッサ、超長命令語(VLIW)マイクロプロセッサ、又は他の命令セットを実行するプロセッサ、又は命令セットの組合せを実行するプロセッサとすることができる。処理デバイス602はまた、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)、デジタル信号プロセッサ(DSP)、又はネットワークプロセッサなどのような1又は2以上の専用処理デバイスとすることができる。処理デバイス602は、本明細書で説明した作動及び段階を行うための命令626を実行するように構成される。
【0063】
コンピュータシステム600は、ネットワーク620を通して通信するためのネットワークインタフェースデバイス608を更に含むことができる。コンピュータシステム600はまた、ビデオ表示ユニット610(例えば、液晶ディスプレイ(LCD)又はブラウン管(CRT))、英数字入力デバイス612(例えば、キーボード)、カーソル制御デバイス614(例えば、マウス)、グラフィック処理ユニット622、信号発生デバイス616(例えば、スピーカ)、グラフィック処理ユニット622、ビデオ処理ユニット628、及び音声処理ユニット632を含むことができる。
【0064】
データストレージデバイス618は、本明細書に説明する方法又は機能のうちのいずれか1又は2以上を具現化する1又は2以上の命令セット又はソフトウエア626を格納する機械可読ストレージ媒体624(コンピュータ可読媒体としても公知)を含むことができる。命令626はまた、コンピュータシステム600によるその実行中に主メモリ604内及び/又は処理装置602内に完全に又は少なくとも部分的に存在することができ、主メモリ604及び処理デバイス602も機械可読ストレージ媒体を構成する。
【0065】
一実施では、命令626は、本明細書の開示に対応する機能を実施するためのX線動作成分699を含む。例示的態様では機械可読ストレージ媒体624を単一媒体であるように示すが、用語「機械可読ストレージ媒体」は、1又は2以上の命令セットを格納する単一媒体又は複数の媒体(例えば、集中型又は分散型のデータベース、及び/又は関連のキャッシュ及びサーバ)を含むものと見なさなければならない。用語「機械可読ストレージ媒体」はまた、機械による実行のために命令セットを格納又は符号化することができ、かつ本発明の開示の方法のうちのいずれか1又は2以上を機械に実行させるあらゆる媒体を含むものと見なさなければならない。従って、用語「機械可読ストレージ媒体」は、以下に限定するものではないが、半導体メモリ、光学媒体、及び磁気媒体を含むものと見なさなければならない。
【0066】
図7は、本発明の開示の実施によるガントリベースの強度変調放射線治療(IMRT)システム709を示している。ガントリベースのシステム709では、ヘッドアセンブリ701を有する放射線ソース(例えば、LINAC1201)がガントリ703に取り付けられる。一実施形態では、放射線ビーム160は、円形の回転面上の(例えば、回転軸線の周りの)いくつかの位置から送出することができる。一実施形態では、システム709は、kV撮像ソース705とX線検出器707とを含むことができる治療撮像システムを含む。kV撮像ソース705を使用して、一連のX線ビームをROIに向けることによって患者のROIのX線画像を発生させることができ、この一連のX線ビームは、kV撮像ソース705に対向するX線検出器707に入射し、設定のために患者を撮像して治療時画像を発生させる。得られるシステムは、アイソセンターで互いに交差する任意形状の放射線ビーム760を発生して線量分布をターゲット場所に送出する。一実施では、ガントリベースのシステム700は、Cアームベースのシステムとすることができる。
【0067】
図8は、本発明の開示の実施形態によるヘリカル放射線送出システム800を示している。ヘリカル放射線送出システム800は、リングガントリ820に取り付けられた線形加速器(LINAC)810を含むことができる。LINAC810を使用して、電子ビームをX線放出ターゲットに向けることによって細い強度変調ペンシルビーム(すなわち、治療ビーム)を発生させることができる。治療ビームは、ターゲット区域(すなわち、腫瘍)に放射線を送出することができる。リングガントリ820は一般的にトロイダル形状を有し、そこでは患者830がそのリング/トロイドの穴を通って延び、LINAC810はリングの周囲に取り付けられ、その中心を通る軸線の周りを回転し、患者周りの1又は2以上の角度から送出されるビームでターゲット区域を照射する。治療中に、治療台840上のガントリの穴を通して患者830を同時に移動することができる。
【0068】
ヘリカル放射線送出システム800は、kV撮像ソース850とX線検出器870とを含むことができる治療撮像システムを含む。kV撮像ソース850を使用して、一連のX線ビームをROIに向けることによって患者830の当該区域(ROI)のX線画像を発生させることができ、この一連のX線ビームは、kV撮像ソース850に対向するX線検出器870に入射し、設定のために患者830を撮像して治療時画像を発生させる。治療撮像システムは、コリメータ860を更に含むことができる。一実施形態では、コリメータ860は可変開口コリメータである場合がある。別の実施形態では、コリメータ860はマルチリーフコリメータ(MLC)とすることができる。MLCは、MLCの開口を調整して撮像X線ビームの成形を可能にするために可動である複数のリーフを収容するハウジングを含む。別の実施形態では、可変開口コリメータ860は、撮像X線ビームの成形を可能にする可変サイズの開口を発生させるために、カメラ絞りと同様な方法でフレームに沿って移動する台形ブロックを収容する絞りコリメータである場合がある。kV撮像ソース850及びX線検出器870は、リングガントリ820上にLINAC810に対して直交方向に(例えば、90度だけ離れて)取り付けることができ、ターゲット区域に撮像X線ビームを投影するようにかつ患者130を通過した後に検出器870の撮像面を照射するように位置合わせすることができる。一部の実施形態では、LINAC810及び/又はkV撮像ソース850は、片持ち式の方式でCアームガントリに取り付けることができ、それにより、アイソセンターを通る軸線の周りにLINAC810及びkV撮像ソース850が回転する。本発明の開示の態様は、更に、ガントリベースのLINACシステム、放射線治療及び放射線手術に関連付けられた静的撮像システム、統合画像誘導を使用する陽子線療法システム、介入的画像診断及び術中X線撮像システムのような他のシステムに使用することができる。
【0069】
ヘリカル放射線送出システム800はまた、2次撮像システム801を含む。撮像システム801はCBCT撮像システム、例えば、medPhotonのImagingRingシステムである。これに代えて、他のタイプの体積撮像システムを使用することができる。2次撮像システム801はアーム及びレールシステム(図示せず)に取り付けられた回転式ガントリ807(例えば、リング)を含み、そのアーム及びレールシステムは、回転式ガントリ807を1又は2以上の軸線に沿って(例えば、治療台の頭部から脚部まで延びる軸線に沿って)移動する。撮像ソース803及び検出器805は、回転式ガントリ807に取り付けられる。回転式ガントリ807は、治療台の頭部から脚部まで延びる軸線の周りに360度回転することができる。従って、撮像ソース803及び検出器805は、多くの異なる角度に位置決めすることができる。一実施形態では、撮像ソース803はX線ソースであり、検出器805はX線検出器である。一実施形態では、2次撮像システム1239は、別々に回転可能な2つのリングを含む。撮像ソース803は、第1のリングに取り付けることができ、検出器805は、第2のリングに取り付けることができる。
【0070】
以上の説明から、本発明の開示の態様は、少なくとも部分的にソフトウエアに具現化することができることは明らかであろう。すなわち、本発明の技術は、処理デバイス625、640、又は602(図6参照)に応答してコンピュータシステム又は他のデータ処理システムで実行することができ、例えば、メモリに収容された命令シーケンスを実行する。様々な実施形態では、ハードウエア回路をソフトウエア命令と共に使用して本発明の開示を実施することができる。従って、本発明の技術は、ハードウエア回路とソフトウエアのいずれかを特定の組合せに限定せず、又はデータ処理システムによって実行される命令のいずれかを特定ソースに限定しない。更に、この説明全体を通して説明を簡単にするために、様々な機能及び作動は、ソフトウエアコードによって実行される又は引き起こされるものとして説明することができる。しかし、そのような表現で示すのはそれらの機能が処理デバイス625、640、又は602によるコードの実行から生じるということであることは当業者は認識するであろう。
【0071】
汎用又は専用データ処理システムによって実行された時にそのシステムに本発明の開示の様々な方法を実行させるソフトウエア及びデータを格納するために機械可読媒体を使用することができる。この実行可能ソフトウエア及びデータは、例えば、システムメモリ及びストレージ又はソフトウエアプログラム又はデータのうちの少なくとも1つを格納することができるあらゆる他のデバイスを含む様々な場所に格納することができる。従って、機械可読媒体は、機械(例えば、コンピュータ、ネットワークデバイス、携帯情報端末、製造のためのツール、1又は2以上のプロセッサの組を有するあらゆるデバイスなど)によってアクセス可能な形式で情報を提供する(すなわち、格納する)あらゆる機構を含む。例えば、機械可読媒体は、読取専用メモリ(ROM)、ランダムアクセスメモリ(RAM)、磁気ディスクストレージ媒体、光ストレージ媒体、フラッシュメモリデバイスのような記録可能/記録不能な媒体を含む。機械可読媒体は、非一時的コンピュータ可読ストレージ媒体である場合がある。
【0072】
特に明記しない限り、以上の説明から明らかであるように、「受け入れる」、「位置決めする」、「放出する」、又は「引き起こす」などのような用語は、コンピュータシステムのレジスタ及びメモリ内の物理的な(例えば、電子的な)量として表されるデータを操作してコンピュータシステムのメモリ又はレジスタ又は他のそのような情報ストレージ又は表示デバイスのうちの物理量として同様に表される別データに変換するコンピュータシステム又は類似の電子コンピュータデバイスのアクション及び処理を指す場合があることは認められるであろう。本明細書に説明する方法の実施は、コンピュータソフトウエアを使用して実施することができる。公認規格に準拠するプログラミング言語で書かれている場合に、本方法を実施するように設計された命令シーケンスは、様々なハードウエアプラットフォーム上で実行するために及び様々なオペレーティングシステムとのインタフェースのためにコンパイルすることができる。これに加えて、本発明の開示の実施は、いずれかの特定のプログラミング言語に関連して説明されるものではない。様々なプログラミング言語を使用して本発明の開示の実施を実施することができることは認められるであろう。
【0073】
本明細書に説明する方法及び装置は、医療診断撮像及び治療での使用だけに限定されないことに注意しなければならない。代替実施では、本明細書の方法及び装置は、工業用撮像及び材料の非破壊検査のような医療技術分野以外の用途に使用することができる。そのような用途では、例えば、「治療」は、一般的にビーム(例えば、放射線、音響など)の印加のような治療計画システムによって制御される作動の達成を指す場合があり、「ターゲット」は、非解剖学的な物体又は区域を指す場合がある。
【0074】
以上の明細書では、本発明の開示は、その特定の例示的実施に関連して説明した。しかし、特許請求の範囲に説明される本発明の開示のより広範な精神及び範囲から逸脱することなく様々な修正及び変更をそれらに加えることができることは明らかであろう。従って、本明細書及び図面は、限定的な意味ではなく例示的意味で考えるべきである。
【0075】
条項
【0076】
部分視野
1.基準画像に基づいて完全体内ターゲット体積(ITV)を定めるターゲットの完全動作範囲を識別する段階と、動作画像に基づいて非追跡平面又は非追跡軸線のうちの1つを有するターゲットの完全動作範囲のうちの非追跡部分であるターゲットの部分動作範囲を決定する段階と、処理デバイスにより、ターゲットの部分動作範囲に基づいてターゲットが部分動作範囲を移動する時にターゲットによって掃引される体積でありかつ完全ITVよりも小さい部分ITVを発生させる段階と、ターゲットの追跡を支援するために部分ITVを提供する段階とを含む方法。
2.ターゲットに関連付けられたベースラインシフト及び設定誤差を低減するために部分ITVを完全ITVに体積的に位置合わせする段階を更に含む請求項1の方法。
3.基準画像が4次元(4D)吸入及び吐き出し計画画像であり、4D吸入及び吐き出し計画画像がキロボルトコンピュータ断層撮影(kV-CT)画像、磁気共鳴映像(MRI)画像、キロボルト円錐ビームコンピュータ断層撮影(kV-CBCT)画像、メガボルトコンピュータ断層撮影(MVCT)画像のうちの1つである請求項1の方法。
4.基準画像が3次元(3D)吸入及び吐き出し計画画像であり、3D吸入及び吐き出し計画画像がキロボルトコンピュータ断層撮影(kV-CT)画像、磁気共鳴映像(MRI)画像、キロボルト円錐ビームコンピュータ断層撮影(kV-CBCT)画像、又はメガボルトコンピュータ断層撮影(MVCT)画像のうちの1つである請求項1の方法。
5.動作画像が3次元(3D)断片内画像であり、3D断片内画像がキロボルト円錐ビームコンピュータ断層撮影(kV-CBCT)画像、メガボルト円錐ビームコンピュータ断層撮影(MV-CBCT)画像、又はメガボルトコンピュータ断層撮影(MVCT)画像のうちの1つである請求項1の方法。
6.2次元動作X線画像を使用してターゲットの動作を追跡する段階を更に含む請求項1の方法。
7.基準画像又は動作画像がヘリカル放射線送出システムの撮像ソースによって又は患者に対する異なる位置での1又は2以上の撮像ソースによって発生される請求項1の方法。
8.メモリと、基準画像に基づいて完全体内ターゲット体積(ITV)を定めるターゲットの完全動作範囲を識別し、動作画像に基づいて非追跡平面又は非追跡軸線のうちの1つを有するターゲットの完全動作範囲のうちの非追跡部分であるターゲットの部分動作範囲を決定し、ターゲットの部分動作範囲に基づいてターゲットが部分動作範囲を移動する時にターゲットによって掃引される体積でありかつ完全ITVよりも小さい部分ITVを発生させ、かつターゲットの追跡を支援するために部分ITVを提供するようにメモリと作動的に結合された処理デバイスとを含むシステム。
9.処理デバイスが、更に、ターゲットに関連付けられたベースラインシフト及び設定誤差を低減するために部分ITVを完全ITVに体積的に位置合わせするためのものである請求項8のシステム。
10.基準画像が4次元(4D)吸入及び吐き出し計画画像であり、4D吸入及び吐き出し計画画像がキロボルトコンピュータ断層撮影(kV-CT)画像、磁気共鳴映像(MRI)画像、キロボルト円錐ビームコンピュータ断層撮影(kV-CBCT)画像、又はメガボルトコンピュータ断層撮影(MVCT)画像のうちの1つである請求項8のシステム。
11.基準画像が3次元(3D)吸入及び吐き出し計画画像であり、3D吸入及び吐き出し計画画像がキロボルトコンピュータ断層撮影(kV-CT)画像、磁気共鳴映像(MRI)画像、キロボルト円錐ビームコンピュータ断層撮影(kV-CBCT)画像、又はメガボルトコンピュータ断層撮影(MVCT)画像のうちの1つである請求項8のシステム。
12.動作画像が3次元(3D)断片内画像であり、3D断片内画像がキロボルト円錐ビームコンピュータ断層撮影(kV-CBCT)画像、メガボルト円錐ビームコンピュータ断層撮影(MV-CBCT)画像、又はメガボルトコンピュータ断層撮影(MVCT)画像のうちの1つである請求項8のシステム。
13.処理デバイスが、更に、2次元動作X線画像を使用してターゲットの動作を追跡するためのものである請求項8のシステム。
14.基準画像又は動作画像がヘリカル放射線送出システムの撮像ソースによって又は患者に対する異なる位置での1又は2以上の撮像ソースによって発生される請求項8のシステム。
15.処理デバイスによって実行された時に処理デバイスに基準画像に基づいて完全体内ターゲット体積(ITV)を定めるターゲットの完全動作範囲を識別させ、動作画像に基づいて非追跡平面又は非追跡軸線のうちの1つを有するターゲットの完全動作範囲のうちの非追跡部分であるターゲットの部分動作範囲を決定させ、処理デバイスによりターゲットの部分動作範囲に基づいてターゲットが部分動作範囲を移動する時にターゲットによって掃引される体積でありかつ部分ITVは完全ITVよりも小さい部分ITVを発生させ、かつターゲットの追跡を支援するために部分ITVを提供させる命令を含む非一時的コンピュータ可読媒体。
16.処理デバイスが、更に、ターゲットに関連付けられたベースラインシフト及び設定誤差を低減するために部分ITVを完全ITVに体積的に位置合わせするためのものである請求項15の非一時的コンピュータ可読媒体。
17.基準画像が4次元(4D)又は3次元(3D)の吸入及び吐き出し計画画像であり、4D吸入及び吐き出し計画画像がキロボルトコンピュータ断層撮影(kV-CT)画像、磁気共鳴映像(MRI)画像、キロボルト円錐ビームコンピュータ断層撮影(kV-CBCT)画像、又はメガボルトコンピュータ断層撮影(MVCT)画像のうちの1つである請求項15の非一時的コンピュータ可読媒体。
18.基準画像が3次元(3D)計画画像であり、3D計画画像がキロボルトコンピュータ断層撮影(kV-CT)画像、磁気共鳴映像(MRI)画像、キロボルト円錐ビームコンピュータ断層撮影(kV-CBCT)画像、又はメガボルトコンピュータ断層撮影(MVCT)画像のうちの1つである請求項15の非一時的コンピュータ可読媒体。
19.動作画像が3次元(3D)断片内画像であり、3D断片内画像がキロボルト円錐ビームコンピュータ断層撮影(kV-CBCT)画像、メガボルト円錐ビームコンピュータ断層撮影(MV-CBCT)画像、又はメガボルトコンピュータ断層撮影(MVCT)画像のうちの1つである請求項15の非一時的コンピュータ可読媒体。
20.処理デバイスが、更に、2次元動作X線画像を使用してターゲットの動作を追跡するためのものである請求項15の非一時的コンピュータ可読媒体。
21.処理デバイスが、部分ITVを発生させるためにITVを部分ITVに投影するためのものである請求項15の非一時的コンピュータ可読媒体。
22.動作画像が3次元(3D)吸入及び吐き出し断片内画像である請求項15の非一時的コンピュータ可読媒体。
22.動作画像が4次元(4D)吸入及び吐き出し断片内画像である請求項15の非一時的コンピュータ可読媒体。
【0077】
無視野
1.基準画像に基づいて、完全体内ターゲット体積(ITV)を定めるターゲットの完全動作範囲を識別する段階と、動作画像又は基準画像内の非ターゲット物体を識別する段階と、ITVと非ターゲット物体との体積位置合わせを行う段階と、処理デバイスにより、体積位置合わせに基づいて非ターゲットからターゲットへの変位ベクトルを修正する段階と、処理デバイスにより、修正された非ターゲットからターゲットへの変位ベクトルに基づいてターゲットを追跡する段階とを含む方法。
2.ITVに基づいて断片間ベースラインシフト、設定誤差、患者解剖学的構造の変化、又は断片内呼吸動作及びベースラインシフトのうちの少なくとも1つを補償する段階を更に含む請求項1の方法。
3.基準画像が4次元(4D)吸入及び吐き出し計画画像であり、4D吸入及び吐き出し計画画像がキロボルトコンピュータ断層撮影(kV-CT)画像、磁気共鳴映像(MRI)画像、キロボルト円錐ビームコンピュータ断層撮影(kV-CBCT)画像、メガボルトコンピュータ断層撮影(MVCT)画像のうちの1つである請求項1の方法。
4.基準画像が3次元(3D)吸入及び吐き出し計画画像であり、3D吸入及び吐き出し計画画像がキロボルトコンピュータ断層撮影(kV-CT)画像、磁気共鳴映像(MRI)画像、キロボルト円錐ビームコンピュータ断層撮影(kV-CBCT)画像、又はメガボルトコンピュータ断層撮影(MVCT)画像のうちの1つである請求項1の方法。
5.動作画像が3次元(3D)断片内画像であり、3D断片内画像がキロボルト円錐ビームコンピュータ断層撮影(kV-CBCT)画像、メガボルト円錐ビームコンピュータ断層撮影(MV-CBCT)画像、又はメガボルトコンピュータ断層撮影(MVCT)画像のうちの1つである請求項1の方法。
6.ITVと非ターゲット物体との体積位置合わせを行う段階が、決定された当該見当合わせ領域(ROI)を使用して又は変形可能な見当合わせによって2つの独立剛体見当合わせを行う段階を含む請求項1の方法。
7.基準画像又は動作画像がヘリカル放射線送出システムの撮像ソースによって又は患者に対する異なる位置での1又は2以上の撮像ソースによって発生される請求項1の方法。
8.メモリと、基準画像に基づいて完全体内ターゲット体積(ITV)を定めるターゲットの完全動作範囲を識別し、動作画像又は基準画像内の非ターゲット物体を識別し、ITV及び非ターゲット物体の体積位置合わせを実行し、体積位置合わせに基づいて非ターゲットからターゲットへの変位ベクトルを修正し、かつ修正された非ターゲットからターゲットへの変位ベクトルに基づいてターゲットを追跡するようにメモリと作動的に結合された処理デバイスとを含むシステム。
9.処理デバイスが、更に、ITVに基づいて断片間ベースラインシフト、設定誤差、患者解剖学的構造の変化、又は断片内呼吸動作及びベースラインシフトのうちの少なくとも1つを補償するためのものである請求項8のシステム。
10.基準画像が4次元(4D)吸入及び吐き出し計画画像であり、4D吸入及び吐き出し計画画像がキロボルトコンピュータ断層撮影(kV-CT)画像、磁気共鳴映像(MRI)画像、キロボルト円錐ビームコンピュータ断層撮影(kV-CBCT)画像、又はメガボルトコンピュータ断層撮影(MVCT)画像のうちの1つである請求項8のシステム。
11.基準画像が3次元(3D)吸入及び吐き出し計画画像であり、3D吸入及び吐き出し計画画像がキロボルトコンピュータ断層撮影(kV-CT)画像、磁気共鳴映像(MRI)画像、キロボルト円錐ビームコンピュータ断層撮影(kV-CBCT)画像、又はメガボルトコンピュータ断層撮影(MVCT)画像のうちの1つである請求項8のシステム。
12.動作画像が3次元(3D)断片内画像であり、3D断片内画像がキロボルト円錐ビームコンピュータ断層撮影(kV-CBCT)画像、メガボルト円錐ビームコンピュータ断層撮影(MV-CBCT)画像、又はメガボルトコンピュータ断層撮影(MVCT)画像のうちの1つである請求項8のシステム。
13.ITVと非ターゲット物体との体積位置合わせを行うために、処理デバイスが、決定された当該見当合わせ領域(ROI)を使用して又は変形可能な見当合わせによって2つの独立剛体見当合わせを行うためのものである請求項8のシステム。
14.基準画像又は動作画像がヘリカル放射線送出システムの撮像ソースによって又は患者に対する異なる位置での1又は2以上の撮像ソースによって発生される請求項8のシステム。
15.処理デバイスによって実行された時に処理デバイスに基準画像に基づいて完全体内ターゲット体積(ITV)を定めるターゲットの完全動作範囲を識別させ、動作画像又は基準画像内の非ターゲット物体を識別させ、ITVと非ターゲット物体との体積位置合わせを行わせ、処理デバイスにより、体積位置合わせに基づいて非ターゲットからターゲットへの変位ベクトルを修正させ、かつ処理デバイスにより、修正された非ターゲットからターゲットへの変位ベクトルに基づいてターゲットを追跡させる命令を含む非一時的コンピュータ可読媒体。
16.処理デバイスが、更に、ITVに基づいて断片間ベースラインシフト、設定誤差、患者解剖学的構造の変化、又は断片内呼吸動作及びベースラインシフトのうちの少なくとも1つを補償するためのものである請求項15の非一時的コンピュータ可読媒体。
17.基準画像が4次元(4D)又は3次元(3D)の吸入及び吐き出し計画画像であり、4D吸入及び吐き出し計画画像がキロボルトコンピュータ断層撮影(kV-CT)画像、磁気共鳴映像(MRI)画像、キロボルト円錐ビームコンピュータ断層撮影(kV-CBCT)画像、又はメガボルトコンピュータ断層撮影(MVCT)画像のうちの1つである請求項15の非一時的コンピュータ可読媒体。
18.基準画像が3次元(3D)計画画像であり、3D計画画像がキロボルトコンピュータ断層撮影(kV-CT)画像、磁気共鳴映像(MRI)画像、キロボルト円錐ビームコンピュータ断層撮影(kV-CBCT)画像、又はメガボルトコンピュータ断層撮影(MVCT)画像のうちの1つである請求項15の非一時的コンピュータ可読媒体。
19.動作画像が3次元(3D)断片内画像であり、3D断片内画像がキロボルト円錐ビームコンピュータ断層撮影(kV-CBCT)画像、メガボルト円錐ビームコンピュータ断層撮影(MV-CBCT)画像、又はメガボルトコンピュータ断層撮影(MVCT)画像のうちの1つである請求項15の非一時的コンピュータ可読媒体。
20.ITVと非ターゲット物体との体積位置合わせを行うために、処理デバイスが、決定された当該見当合わせ領域(ROI)を使用して又は変形可能な見当合わせによって2つの独立剛体見当合わせを行うためのものである請求項15の非一時的コンピュータ可読媒体。
21.非ターゲットが患者の脊椎であり、処理デバイスが、修正された非ターゲットからターゲットへの変位ベクトルに基づいてターゲットを追跡するために脊椎に関して全体的患者動作を追跡するためのものである請求項15の非一時的コンピュータ可読媒体。
22.動作画像が3次元(3D)吸入及び吐き出し断片内画像である請求項15の非一時的コンピュータ可読媒体。
23.動作画像が4次元(4D)吸入及び吐き出し断片内画像である請求項15の非一時的コンピュータ可読媒体。
【符号の説明】
【0078】
108 患者
200 撮像システム
205 脊椎
210 腫瘍
220 治療平面
図1A
図1B
図2A
図2B
図3A
図3B
図4A
図4B
図4C
図4D
図4E
図5A
図5B
図6
図7
図8