(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-04-28
(45)【発行日】2023-05-11
(54)【発明の名称】外科的脊椎矯正
(51)【国際特許分類】
A61B 34/10 20160101AFI20230501BHJP
【FI】
A61B34/10
【外国語出願】
(21)【出願番号】P 2021152874
(22)【出願日】2021-09-21
(62)【分割の表示】P 2020088231の分割
【原出願日】2014-10-09
【審査請求日】2021-09-21
(32)【優先日】2013-10-09
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】508296440
【氏名又は名称】ニューヴェイジヴ,インコーポレイテッド
(74)【代理人】
【識別番号】100107766
【氏名又は名称】伊東 忠重
(74)【代理人】
【識別番号】100070150
【氏名又は名称】伊東 忠彦
(74)【代理人】
【識別番号】100091214
【氏名又は名称】大貫 進介
(72)【発明者】
【氏名】スコール,トーマス
(72)【発明者】
【氏名】ピーターソン,マーク
(72)【発明者】
【氏名】アイザックス,ロバート
【審査官】宮崎 敏長
(56)【参考文献】
【文献】米国特許出願公開第2008/0009697(US,A1)
【文献】特表2006-518655(JP,A)
【文献】特開2000-329515(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
A61B 34/10 - A61B 34/10
A61B 17/70
A61B 90/90
(57)【特許請求の範囲】
【請求項1】
デジタイザポインタを含むシステムであって、
前記デジタイザポインタは、
第1の基準と、
少なくとも1つのシャッターと、を含み、
前記少なくとも1つのシャッターは、前記少なくとも1つのシャッターが閉鎖位置にある間に、前記第1の基準が覆い隠され、前記少なくとも1つのシャッターが開放位置にある間に、前記第1の基準が露出されるように、前記第1の基準を選択的に覆い隠すように構成され
、
前記少なくとも1つのシャッターは、
シャッターカバーと、
前記シャッターカバーに連結されるシャッターハンドルと、を含み、
前記シャッターハンドルは、前記少なくとも1つのシャッターを前記開放位置と前記閉鎖位置との間で移行させるように手動で操作可能である、
システム。
【請求項2】
前記少なくとも1つのシャッターは、第1のシャッターと、第2のシャッターとを含み、
前記第1のシャッター及び前記第2のシャッターが前記閉鎖位置にあるときに、前記第1のシャッター及び前記第2のシャッターは、協働して、前記第1の基準を覆い隠す、
請求項1に記載のシステム。
【請求項3】
前記第1のシャッターは、
第1のシャッターカバーと、
前記第1のシャッターカバーに連結され、前記第1のシャッターを前記開放位置に移行させるよう操作可能である、第1のシャッターハンドルと、を含み、
前記第2のシャッターは、
第2のシャッターカバーと、
前記第2のシャッターカバーに連結され、前記第2のシャッターを前記開放位置に移行させるよう操作可能である、第2のシャッターハンドルと、を含む、
請求項2に記載のシステム。
【請求項4】
前記デジタイザポインタは、前記第1のシャッター及び前記第2のシャッターを前記閉鎖位置に偏向させる、前記第1のシャッターと前記第2のシャッターとの間に延在するばねを更に含む、請求項3に記載のシステム。
【請求項5】
前記少なくとも1つのシャッターの初期設定位置は、閉鎖位置である、請求項1に記載のシステム。
【請求項6】
前記第1の基準は、赤外光を反射するように構成される、請求項1に記載のシステム。
【請求項7】
前記デジタイザ
ポインタは、
追跡アレイ遠位端と、前記第1の基準と、前記少なくとも1つのシャッターと、少なくとも1つの追加的な基準とを含む、追跡アレイと、
針と、を更に含み、該針は、
前記追跡アレイ遠位端と適合される針近位端と、
ねじ頭と係合するように構成される針遠位端とを有する、
請求項1に記載のシステム。
【請求項8】
チューリップ頭を有する骨ねじを更に含み、
前記針遠位端は、前記チューリップ頭と適合される、
請求項7に記載のシステム。
【請求項9】
空間追跡システムと通信する制御ユニットを更に含み、
前記制御ユニットは、前記第1の基準が前記空間追跡システムに見えるときにのみ、前記デジタイザ
ポインタを認識するように構成される、
請求項1に記載のシステム。
【請求項10】
追跡アレイを含む装置であって、
前記追跡アレイは、
筐体と、
複数のIR反射型球と、
1つ以上のシャッターと、を含
み、
前記1つ以上のシャッターのうちの少なくとも1つのシャッターは、
シャッターカバーと、
前記シャッターカバーに連結されるシャッターハンドルと、を含み、
前記シャッターハンドルは、前記少なくとも1つのシャッターを、前記複数のIR反射型球のうちの少なくとも1つを露出させる開放位置と前記複数のIR反射型球のうちの前記少なくとも1つを覆う閉鎖位置との間で移行させるように手動で操作可能である、
装置。
【請求項11】
前記筐体は、上筐体と、下筐体と、遠位端とを含み、
前記遠位端は、針と連結するように構成される、
請求項10に記載の装置。
【請求項12】
前記上筐体は、上部部分と、裏面と、1つ以上の側面とを含み、
前記上部部分及び前記裏面は、協働して、複数の球開口部を画定し、
前記複数のIR反射型球の各々は、前記複数の球開口部のそれぞれ1つの球開口部内に配置される、
請求項11に記載の装置。
【請求項13】
前記下筐体は、第1の面と、第2の面とを含み、
前記第1の面は、入れ子式プラットフォームと、支柱とを含む、
請求項12に記載の装置。
【請求項14】
前記1つ以上のシャッターの各シャッターは、
ハンドルと、
カバーと、
タングと、
1つ以上の歯車の歯と、
前記支柱の1つを受け入れるチャネルと、を含む、
請求項13に記載の装置。
【請求項15】
前記シャッターを前記複数のIR反射型球のうちの少なくとも1つを覆う閉鎖位置に偏向させる、前記シャッターの間に延在するばねを更に含む、請求項14に記載の装置。
【請求項16】
前記1つ以上の側面は、それぞれ、前記シャッターのうちの1つのシャッターの前記タングを受け入れるように構成される少なくとも1つの切欠きを画定する、請求項15に記載の装置。
【請求項17】
追跡アレイと、
骨ねじ頭を有する骨ねじと、
前記追跡アレイに連結される近位端と、前記骨ねじ頭と接触する遠位端とを有する、針とを含む、
装置であって、
前記追跡アレイは、
第1の基準と、
1つ以上の追加的な基準と、
前記第1の基準を露出させる開放位置にある少なくとも1つのシャッターと、
前記開放位置にある前記少なくとも1つのシャッターに抗する圧縮ばねと、を含
み、
前記少なくとも1つのシャッターは、
シャッターカバーと、
前記シャッターカバーに連結されるシャッターハンドルと、を含み、
前記シャッターハンドルは、前記少なくとも1つのシャッターを前記開放位置と前記第1の基準を覆う閉鎖位置との間で移行させるように手動で操作可能である、
装置。
【請求項18】
前記少なくとも1つのシャッターは、
第1のシャッターと、
第2のシャッターと、を含み、
前記第1のシャッターは、
第1のシャッターカバーと、
前記第1のシャッターカバーに連結され、前記第1のシャッターを前記開放位置に移行させるよう操作可能である、第1のシャッターハンドルと、を含み、
前記第2のシャッターは、
第2のシャッターカバーと、
前記第2のシャッターカバーに連結され、前記第2のシャッターを前記開放位置に移行させるよう操作可能である、第2のシャッターハンドルと、を含み、
前記ばねは、前記第1のシャッターハンドルと前記第2のシャッターハンドルとの間に延在する、
請求項17に記載の装置。
【発明の詳細な説明】
【技術分野】
【0001】
本出願は、脊柱手術に関する。より具体的には、本出願は、脊椎の外科的処置中の脊柱に対する外科的矯正の計画、実施、及び評価に関連するシステム及び方法に関する。
【0002】
(関連出願の相互参照)
本出願は、「Systems and Methods for Performing Spine Surgery」と題され、2013年10月9日に出願された、共同所有され、同時係属の米国仮特許出願第61/888,990号の優先権の利益を主張する国際特許出願であり、その全体の内容は、参照により、その全体が本明細書に記載されるかのように本開示に明確に組み込まれる。
【背景技術】
【0003】
脊柱は、身体への支持を提供し、繊細な脊髄及び神経を保護する骨及び結合組織の極めて複雑なシステムである。脊柱は、互いの上に積み重なった一連の椎体を含み、各椎体は、比較的弱い海面骨の内側または中心部分と比較的強い皮質骨の外側部分とを含む。各椎体の間には、脊柱にかかる圧縮力を緩和及び抑制する椎間板がある。脊髄を含有する脊柱管は、椎体の後ろにある。脊柱は、上部及び下部椎骨の終板が互いに向かって傾斜するように自然な弯曲(即ち、腰部及び頸部領域における脊柱前弯及び胸部領域における脊柱後弯)を有する。
【0004】
脊柱側弯(脊柱の異常な側方弯曲)、過剰な脊柱後弯(脊柱の異常な前方弯曲)、過剰な脊柱前弯(脊柱の異常な後方弯曲)、脊椎すべり症(ある椎骨の別の椎骨上への前方変位)、及び異常、疾患、または外傷によって引き起こされる他の障害(断裂または破裂した椎間板、変性円板疾患、骨折した椎骨等)を含む、多数の種類の脊柱障害が存在する。そのような病態に罹患している患者は、極度の消耗性の痛み、及び神経機能の低下を経験することが多い。脊椎癒合、減圧、変形、及び他の再建のための後方固定が、これらの患者を治療するために実施される。腰部、胸部、及び頸部の処置における後方固定の目的は、脊椎分節を安定させる、多軸整列を矯正する、及び脊髄及び神経の長期的な健康の最適化を助けることである。
【0005】
脊椎変形は、脊柱の正常な整列への構造的な変化の結果であり、通常は少なくとも1つの不安定な運動分節に起因する。脊椎変形の定義及び範囲、ならびに治療選択は、進化し続けている。脊椎変形矯正の外科的目的は、弯曲矯正、さらなる変形の防止、神経機能の改善または保存、ならびに矢状及び冠状均衡の復元を含む。成人脊椎変形(ASD)の事例における矢状面の整列及びパラメータは、健康に関連した生活の質スコア(HRQOL)と相関性があると次第に認識されるようになっている。文献では、HRQOLスコアとX線学的パラメータ、例えば、矢状垂直軸(SVA)、骨盤傾斜(PT)、及び骨盤形態角(pelvic incidence)と腰椎前弯との間の不一致等との間に著しい相関がある。
【0006】
ASDのSRS-Schwab分類は、外科医がASDを分類し、X線学的分析の方法を提供するための方法を助けるために開発された。この分類システムは、術前の治療計画及び術後の評価のためのプロトコルを提供するのに役立つ。この分類システムを利用するための現在の環境は、外科医が術前の患者のフィルムを検査し、骨盤形態角、腰椎前弯、骨盤傾斜、及び矢状垂直軸を手動でかまたは術前のソフトウェアの使用を介してかのいずれかで測定することを必要とする。処置後、外科医は、術後のフィルムを検査し、同一のパラメータ及びそれらが手術の結果どのように変化したかを測定する。これら及び他の脊椎パラメータを術中に評価し、外科的処置が術前の計画に向けて進行する際にこれらの術中の脊椎パラメータへの変化を評価するためのシステム及び方法の必要が存在する。
【0007】
脊椎手術中、ねじ、フック、及びロッドは、脊柱を安定させるために使用されるデバイスである。そのような処置は、多くの骨要素の器具使用を必要とすることが多い。例えば、ロッド等のデバイスは、設計し、患者の中に埋め込むことが非常に困難であり得る。脊椎ロッドは、通常、ステンレス鋼、チタン、コバルトクロム、または他の同様の硬質金属で形成され、したがって何らかのてこに基づく屈曲器を用いずに屈曲することは困難である。さらに、脊椎ロッドは、患者の脊柱の解剖学的構造及びロッドを椎骨に固定するための取り付け点(ねじ、フック等)を補うように6自由度で配向される必要がある。それに加えて、治療されている生理学的問題及び医師の好みは、必要な実際の構成を決定するであろう。したがって、脊椎ロッドの大きさ、長さ、及び具体的な屈曲は、拘束される各椎骨の大きさ、数、及び位置、椎骨間の空間的関係性、ならびに椎骨に取り付けられたロッドを保持するために使用されるねじ及びフックに依存する。
【0008】
脊椎ロッドの屈曲は、多数の方法によって達成され得る。最も広範に使用される方法は、フレンチ屈曲器と呼ばれる3点屈曲器である。フレンチ屈曲器は、ロッドに1つ以上の屈曲を定置するために手動で動作される、プライヤー様デバイスである。フレンチ屈曲器は、両方のハンドルが動作し、ハンドルの長さに基づいて、てこ力を提供することを必要とする。屈曲の場所、角度、及び配向の決定は主観的であることが多く、患者の解剖学的構造と相関することが困難であり得るため、フレンチ屈曲器の使用は、高度の医師の技術を必要とする。ロッド屈曲させてねじ及び/またはフック構築物に適合させる他の方法は、現場ロッド屈曲器及び鍵穴屈曲器の使用を含む。しかしながら、これらの方法は全て、主観的、反復的であり得、「技」と呼ばれることも多い。したがって、ロッド屈曲及び低減動作は、時間がかかることがあり、また複雑な及び/または長い脊椎用構築物の完成においてストレスの多いステップである可能性がある。最適な屈曲を達成するための手術室内での増加した時間は、患者にとって費用がかかるものであり、また病的状態の機会を増加させ得る。ロッドの屈曲が不良に実施されると、ロッドは、構築物に事前に負荷を加え、固定システムの故障の機会を増加させ得る。関与する屈曲及び再屈曲はまた、金属疲労、及びロッド内の応力を上昇させるものの作成を促進し得る。
【0009】
脊椎ロッドのコンピュータによる設計または形状付けに関する努力は、屈曲デバイスの不足及び外科用デバイスの屈曲に関わる問題の全ての理解の不足のため、大部分は成功していない。近年、Isaacsに対する米国特許第7,957,831号において、外科用インプラント(ねじ、フック等)の3次元の場所を取得するためのデジタイザを有する空間的測定サブシステムと、そのインプラントの場所を一連の屈曲指示に変換するためのソフトウェアと、ロッドがねじの各々の中にカスタム適合するように正確に屈曲されるように屈曲指示を実行するために使用される機械的ロッド屈曲器とを含む、ロッド屈曲システムが説明されている。これは、外科医が初回通過にてカスタム適合されたロッドを作成することを可能にし、それによって、特に複雑な事例においてロッド屈曲の速度及び効率を増加させる、各患者の解剖学的構造にカスタマイズされた定量化可能なロッド屈曲ステップを提供するため、有利である。これは次に、そのような処置に関連付けられる病的状態及び費用を低減する。しかしながら、固定処置における弯曲及び変形矯正を可能にし、使用者により多いロッド屈曲の選択肢を提供し、使用者の臨床的好みにより多く対応する改善されたロッド屈曲システムに関する必要が未だ存在する。
【発明の概要】
【0010】
本発明は、使用者(例えば、外科医)が患者の脊椎状態の所望の矯正に適合するようにロッド屈曲指示をカスタマイズすることを可能にする、ロッド屈曲のためのシステム及び方法を含む。
【0011】
広範な態様によると、本発明は、外科用インプラントの3次元の位置情報を取得するための空間追跡システムと、そのインプラントの場所を所望の矯正に基づいて一連の屈曲指示に変換するためのソフトウェアを有する処理システムと、所望の脊椎矯正を達成するために外科的連結デバイスを屈曲させるための機械的ロッド屈曲器とを含む。
【0012】
本発明の別の態様によると、空間追跡システムは、赤外線(IR)位置センサと、外科用インプラントの場所をデジタル化するために使用されるデジタイザポインタに取り付けられた少なくとも1つのIR-反射型追跡アレイとを含む含む。空間追跡システムは、処理システムが空間的な位置情報を利用して屈曲指示を生成し得るように、処理システムに通信可能に連結される。
【0013】
本発明の別の態様によると、処理システムは、外科医によって指示された1つ以上の臨床的目的に基づいて屈曲指示を生成するようにプログラムされる。例えば、処理システムは、カスタム屈曲を作成する、ロッドが屈曲される1つ以上の点を調節する、事前屈曲されたロッドオプションを提案する、矢状面における脊椎矯正を提供する、冠状面における脊椎矯正を提供する、及びグローバル脊椎均衡を達成するような矯正を提供する、ならびに複数の予め決定された機能を実施するようにプログラムされ得る。処理システムは、術前の脊椎パラメータを受信する、計画されたまたは標的脊椎パラメータを入力する、及び/またはそれらのパラメータの術中の測定値を追跡するようにさらにプログラムされてもよい。処理システムは、これらの臨床的目的の結果及び/または予め決定された機能を有意義な方法で使用者にプレビュー及び表示するようにさらに構成される。
【0014】
本発明の別の態様によると、1つ以上の外科的処置は、本システムの種々の実施形態を使用して実施され得る。
【0015】
本発明の別の態様によると、外科的脊椎処置中の脊椎変形矯正の術中計画及び評価のためのシステムであって、IRセンサ及びIR追跡アレイを備える空間追跡システムであって、該IR追跡アレイは、埋め込まれた外科用デバイスの場所をデジタル化し、該IRセンサを介して該空間追跡システムに中継することができる外科用ポインタツールの近位端部に沿って配列される、空間追跡システムと、該空間追跡システムと通信している制御ユニットであって、(a)複数の埋め込まれたねじの該デジタル化された場所データを受信する、(b)少なくとも1つの解剖学的基準点の該デジタル化された場所データを受信する、(c)該少なくとも1つの解剖学的基準点のデジタル化された場所データに基づいて、少なくとも1つの仮想の解剖学的基準線を生成する、(d)1つ以上の脊柱矯正入力を受け入れる、及び(e)該デジタル化された場所とは別個の場所にて該ねじと係合するように形状付けられた少なくとも1つのロッド解出力を生成する、ように構成される、制御ユニットと、を備える、システムが提供される。
【0016】
1つ以上の実施形態によると、脊柱矯正入力は、冠状面における脊柱矯正である。いくつかの実現形態によると、脊柱矯正入力は、冠状面においてCSVLに対して、デジタル化されたねじ場所の全てを整列させることを含む。いくつかの実現形態によると、本システムは、その長さの少なくとも一部分に沿って垂直に真っ直ぐなロッドTを含むロッド解出力を生成する。
【0017】
いくつかの実現形態によると、仮想の解剖学的基準線は、中心仙骨垂直線(CSVL)である。いくつかの実現形態によると、少なくとも1つの解剖学的基準点は、CSVLと相関する少なくとも2つの点を含む。他の実現形態によると、少なくとも1つの解剖学的基準点は、CSVLに沿って存在する2つの点を含む。いくつかの実現形態によると、少なくとも2つの点は、仙骨の左腸骨稜、右腸骨稜、及び中点である。いくつかの実現形態によると、少なくとも1つの解剖学的基準点は、仙骨上の上側点及び下側点を含む。
【0018】
1つ以上の実施形態によると、制御ユニットは、少なくとも2つの解剖学に基づいた基準線に基づいて少なくとも1つの測定値を生成するように構成される。いくつかの実現形態によると、この測定値は、2つの基準線間のオフセット距離であり得る。いくつかの実現形態によると、2つの基準線は、中心仙骨垂直線(CSVL)及びC7鉛直線(C7PL)である。また他の実現形態によると、制御ユニットは、該CSVLとC7PLとの間の関係性に基づいて術中の脊椎均衡を評価し、その評価を使用者に通信するようにさらに構成される。いくつかの実現形態では、該関係性は、CSVLとC7PLとの間の冠状面オフセット距離に基づき得る。また他の実現形態では、通信は、色であり得る。例えば、通信は、第1の色が、冠状面内の均衡のとれた脊柱を示すオフセット距離を指定し、第2の色が、冠状面内の不均衡な脊柱を示すオフセット距離を指定するようであってもよい。
【0019】
1つ以上の実施形態によると、制御ユニットは、少なくとも1つの解剖学に基づいた基準点に基づいて少なくとも1つの測定値を生成するように構成される。1つ以上の実現形態によると、測定値は、術中の腰椎前弯角及び計画された骨盤形態角を含む。いくつかの実現形態によると、制御ユニットは、術中の腰椎前弯角測定と計画された骨盤形態角との間の関係性に基づいて、術中の脊椎均衡を評価するようにさらに構成される。いくつかの例では、腰椎前弯角及び骨盤形態角は、手術の進行中に少なくとも1回測定され得る。いくつかの実現形態によると、腰椎前弯と骨盤形態角との間の関係性は、術中の腰椎前弯角と計画された骨盤形態角との間の差異に基づき得る。いくつかの実装によると、通信は、色であり得る。例えば、第1の色は、矢状面内の均衡のとれた脊柱を示す差異を指定し、第2の色は、矢状面内の不均衡な脊柱を示す差異距離を指定し得る。
【図面の簡単な説明】
【0020】
本発明の多くの利点は、同様の参照番号が同様の要素に適用される、以下の添付の図面と併せて本明細書を読むことによって、当業者に明らかとなる。
【0021】
【
図1】一実施形態に係る外科的計画、評価、及び矯正システムの構成要素を描写する外科的処置の配置である。
【
図2】
図1のシステムの一部を含む、閉鎖位置にあるデジタイザアレイの一実施形態の斜視図である。
【
図3】
図2のデジタイザアレイの分解斜視図である。
【
図4】開放位置にある
図2のデジタイザアレイの斜視図である。
【
図5】
図1のシステムの一部を含む、デジタイザポインタアセンブリの一実施形態の正面図である。
【
図6】
図2のデジタイザアレイと互換性のある種々の外科用ポインタの斜視図である。
【
図7】崩壊位置にある
図6のオフセットポインタの部分斜視図である。
【
図8】
図6のオフセットポインタの部分分解図である。
【
図9】延在位置にある
図6のオフセットポインタの部分斜視図である。
【
図10】一実施形態に係る空間的追跡アルゴリズムのステップを描写するフローチャートである。
【
図11】一実施形態に係るロッド屈曲ワークフローを描写するフローチャートである。
【
図12】第1の実施形態に係るロッド解の生成におけるステップを描写するフローチャートである。
【
図13】第2の実施形態に係るロッド解の生成におけるステップを描写するフローチャートである。
【
図14】第3の実施形態に係るロッド解の生成におけるステップを描写するフローチャートである。
【
図15】第1の実施形態に係るロッド屈曲プロセスのステップを描写するフローチャートである。
【
図16】
図1のシステムのセットアップ画面例を描写する画面ショットである。
【
図17】
図1のシステムのIR位置付けセンサのセットアップ画面例を描写する画面ショットである。
【
図18】
図15のねじ獲得ステップにおける第1のステップ中のねじ場所デジタル化画面例を描写する画面ショットである。
【
図19】
図15のねじ獲得ステップにおける第2のステップ中のねじ場所デジタル化画面例を描写する画面ショットである。
【
図20】
図15のねじ獲得ステップにおける第3のステップ中のねじデジタル化画面例を描写する画面ショットである。
【
図21】
図15の屈曲指示ステップにおける屈曲指示画面例を描写する画面ショットである。
【
図22】第2の実施形態に係るロッド屈曲プロセスのステップを描写するフローチャートである。
【
図23】
図1のシステムの高度オプションメニュー画面例を描写する画面ショットである。
【
図24】一実施形態に係る点調節機構の第1の画面例を例証する画面ショットである。
【
図25】
図24の点調節機構の第2の画面例を例証する画面ショットである。
【
図26】
図24の点調節機構の第3の画面例を例証する画面ショットである。
【
図27】一実施形態に係る事前屈曲プレビュー機構の第1の画面例を例証する画面ショットである。
【
図28】
図27の事前屈曲プレビュー機構の第2の画面例を例証する画面ショットである。
【
図29】
図27の事前屈曲プレビュー機構の第3の画面例を例証する画面ショットである。
【
図30】一実施形態に係る矢状矯正機構の第1の画面例を例証する画面ショットである。
【
図31】第1の実施形態に係る矢状矯正機構の第2の画面例を例証する画面ショットである。
【
図32】第2の実施形態に係る矢状矯正機構の第1の画面例を例証する画面ショットである。
【
図33】第1及び/または第2の実施形態に係る矢状矯正機構の追加の画面例を例証する画面ショットである。
【
図34】第1の実施形態に係る冠状矯正機構の第1の画面例を例証する画面ショットである。
【
図35】第1の実施形態に係る冠状矯正機構の第2の画面例を例証する画面ショットである。
【
図36】第2の実施形態に係る冠状矯正機構の第1の画面例を例証する画面ショットである。
【
図37】第2の実施形態に係る冠状矯正機構の第2の画面例を例証する画面ショットである。
【
図38】第3の実施形態に係る冠状矯正機構の第1の画面例を例証する画面ショットである。
【
図39】第3の実施形態に係る冠状矯正機構の第2の画面例を例証する画面ショットである。
【
図40】第3の実施形態に係る冠状矯正機構の第3の画面例を例証する画面ショットである。
【
図41】第3の実施形態に係る冠状矯正機構の第4の画面例を例証する画面ショットである。
【
図42】第2の実施形態に係る冠状矯正機構の第1の画面例を例証する画面ショットである。
【
図43】第2の実施形態に係る冠状矯正機構の第2の画面例を例証する画面ショットである。
【
図44】第2の実施形態に係る冠状矯正機構の第3の画面例を例証する画面ショットである。
【
図45】第3の実施形態に係る冠状矯正機構の第1の画面例を例証する画面ショットである。
【
図46】第3の実施形態に係る冠状矯正機構の第2の画面例を例証する画面ショットである。
【
図47】第3の実施形態に係る冠状矯正機構の第3の画面例を例証する画面ショットである。
【
図48】第3の実施形態に係る冠状矯正機構の第4の画面例を例証する画面ショットである。
【
図49】第3の実施形態に係る冠状矯正機構の第5の画面例を例証する画面ショットである。
【
図50】一実施形態に係るグローバル脊椎均衡機構のステップを例証するフローチャートである。
【
図51】術前モードにおけるグローバル脊椎均衡機構の第1の画面例を例証する画面ショットである。
【
図52】標的モードにおけるグローバル脊椎均衡機構の第1の画面例を例証する画面ショットである。
【
図53】標的モードにおけるグローバル脊椎均衡機構の第2の画面例を例証する画面ショットである。
【
図54】術中モードにおけるグローバル脊椎均衡機構の第1の画面例を例証する画面ショットである。
【
図55】術中モードにおけるグローバル脊椎均衡機構の第2の画面例を例証する画面ショットである。
【
図56】術中モードにおけるグローバル脊椎均衡機構の第3の画面例を例証する画面ショットである。
【
図57】術中モードにおけるグローバル脊椎均衡機構の第4の画面例を例証する画面ショットである。
【
図58】術中モードにおけるグローバル脊椎均衡機構の第5の画面例を例証する画面ショットである。
【
図59】第1の実施形態に係る冠状評価及び矯正機構の第1の画面例を例証する画面ショットである。
【
図60】
図60の実施形態に係る冠状評価及び矯正機構の第2の画面例を例証する画面ショットである。
【
図61】
図60の実施形態に係る冠状評価及び矯正機構の第3の画面例を例証する画面ショットである。
【
図62】
図60の実施形態に係る冠状評価及び矯正機構の第4の画面例を例証する画面ショットである。
【
図63】
図1のシステムの一部を含む機械的ロッド屈曲器の一実施形態の斜視図である。
【発明を実施するための形態】
【0022】
本発明の実例となる実施形態が、以下に記載される。明確化のため、実際に実現される全ての機構が本明細書に記載されるわけではない。当然ながら、任意のそのような実際の実施形態の開発において、実現形態によって異なる、システムに関連する制約及びビジネスに関連する制約の順守等の開発者の特定の目的を達成するために、多数の埋め込みに特異な決定が行われるべきであることが理解される。さらに、そのような開発努力は、複雑かつ時間のかかるものであり得るが、それでもなお、本開示の利益を有する当業者にとっては日常的取り組みであり得ることが理解される。本明細書に開示されるシステム及び方法は、個々及び組み合わせの両方で特許権保護が保証される、種々の発明の機構及び構成要素を誇る。
【0023】
ここで
図1を参照すると、例として、1つ以上の外科用インプラント14の場所を取得するために空間追跡システム12と、インプラントの場所を一連の屈曲指示に変換するためのソフトウェアを含有する制御ユニット16と、屈曲指示を実行するための屈曲デバイス18とを含む、外科的計画、評価、及び矯正システム10の一実施形態が示される。
【0024】
好ましくは、空間追跡システム12は、IR位置センサ20、デジタイザポインタ23、及びホストUSB変換器21を含む他の構成要素を含む。空間追跡システム12は、制御ユニット16と通信している。制御ユニット16は、空間関係ソフトウェア及びCアームビデオインポート機能を有し、外科的処置に関連する情報が使用者に有意義な様式で伝達され得るようにディスプレイ32に通信可能に連結される。例として、関連する情報とは、限定されるものではないが、IR位置センサ20によって獲得される空間的位置付けデータ(例えば、x、y、及びz軸における並行移動データ、ならびに配向/回転データRx、Ry、及びRz)、及びCアーム蛍光透視鏡によって生成される術中の蛍光透視画像が挙げられる。
【0025】
1つ以上の実施形態によると、システム10は、制御ユニット16を介して空間追跡システム12及び/またはCアームに通信可能に連結される神経監視システムを備える。ほんの一例として、神経監視システムは、「Neurophysiologic Monitoring System」と題され、2008年4月3日に出願された米国特許第8,255,045号に示され、説明される神経監視システムであってもよく、その全体の内容は、参照によりそれが本明細書に完全に記載されるかのように本明細書に組み込まれる。
【0026】
図2~9は、本発明との使用のための1つ以上のデジタイザポインタ23の種々の構成要素を描写する。
図2~4は、デジタイザポインタ23のIR反射型追跡アレイ22構成要素の例を詳述する。アレイ22は、筐体34と、両面シャッター36と、その位置情報がIR位置センサ20によって選択的に検出可能であるようにアレイ22上の種々の場所に算出された様式で配列された複数のIR反射型球38とを含む。筐体34は、上筐体40と、下筐体42と、針(例えば、針24、26、28、及び/または30)のねじ式端部78を螺着するように構成された遠位ねじ式開口部56とを備える。上筐体部分40はさらに、上部部分44、裏面46、及び側面48から成る。複数の球開口部52は、上部部分44と裏面46との間に延在し、陥凹ポケット54内に反射型球38を受容するような大きさ及び寸法である。各側面48は、切欠き50を含み、タング70を受容するような大きさ及び寸法である。下筐体42は、第1の面58と第2の面60とから成る。第1の面58は、入れ子式プラットフォーム62とビュレット支柱64とを含む。各シャッター36は、ハンドル部分66と、カバー部分68と、タング70と、相互に嵌合する歯車の歯72と、ビュレット支柱64を受容するためのチャネル74とを含む。ばね76は、2つのシャッター36の間に延在し、ばね支柱71を介して定位置に保持される。
【0027】
組み立てられた状態では、各IR反射型球38は、プラットフォーム62上に入れ子にされている。上筐体40は、各IR反射型球38がそのそれぞれの球開口部52内の陥凹ポケット54内に適合するように、下筐体42の上にスナップ式構成で定置される。1つの実現形態によると、両面シャッター36は、
図2に描写される通り、各シャッターカバー68がIR反射型球38(例えば、中央IR反射型球38)の丁度半分を覆い隠すように、タング70が切欠き50内に摺動する状態で筐体34上に位置付けられる。
【0028】
図5に描写される通り、IR反射型追跡アレイ22は、1つ以上の手術用物体(例えば、針24、26、28、30)と嵌合する。各針24、26、28、30は、IR反射型追跡アレイ22のねじ式遠位開口部56と嵌合するためのねじ式近位端部78と、細長いシャフト80と、形状付けられた遠位先端82とを含む。
形状付けられた遠位先端82は、特定のねじ頭の形状を優遇し、それにしっかりと適合する任意の形状であってもよい。例えば、
図6は、各々異なる開放ねじシステム、最小侵襲性ねじシステム、及び閉鎖したチューリップ(closed tulip)、腸骨、及びオフセット接合具システムと嵌合するように設計された異なる形状付けられた遠位先端である、針24、26、28、及び30を示す。遠位先端82は好ましくは、各ねじ内に、デジタイザポインタをそのねじ(または他の固定デバイス)と同軸に配向している間に挿入される。
【0029】
いくつかの実現形態(例えば、針24、26、及び28に関して示される実現形態)によると、細長いシャフト80の長さは、全てのデジタル化された点がIR反射型マーカ38の幾何学から一定の長さであり、位置情報がこの関係性から取得され得るように、アレイ22に対して固定されている。他の実現形態(例えば、オフセットポインタ30に関して示される実現形態)によると、細長いシャフト80の長さは、針30と共に示されるもののようにアレイ22に対して調節可能であり、デジタル化された点及びIR反射型マーカからの距離を効果的に伸長する。このより長い距離は、使用者が細長いシャフト80を調節した距離に基づいて、実際のねじ頭上の点のデジタル化につながる。下記の考察と併せて理解されるであろう通り、結果として得られる屈曲指示は、ねじ上の点を横切るロッドを形状付け、使用者がロッドに対するねじを低減することを可能にする。
【0030】
図6~8に示される通り、オフセットポインタ30は、細長い管状部材84と内側ピストン86とを含む。細長い管状部材84は、下記に説明される通り、圧延された螺旋状スロット104と、その螺旋の周囲に配置された複数のオフセット距離に対応する複数のオフセット深さのスロット106とから成る。内側ピストン86は、シャフト88と、T形状キャップ92と、ばね94と、ブッシング96とを含む。T形状キャップ92は、シャフト88の近位端部上に位置付けられ、好ましくは細長い管状部材84の近位端部105に溶接される。ばね94は、T形状キャップ92の遠位端部93とブッシング96との間にシャフト88の長さに沿って摺動可能に位置付けられる。ブッシング96は、シャフト88の遠位端部上に位置付けられる。ピン100は、内側シャフト88及びブッシング96上のスロット90、98を通って移動し、それらから側方向に突出し、それによってブッシング96を内側シャフト88に固定する。ピン100は、それが螺旋状スロット104を通って移動し、オフセット深さのスロット106の各々の中に位置付けられるような大きさ及び寸法である。
【0031】
オフセットポインタ30は、計画されたねじ動作を特定の所定の量だけ実行する能力を使用者に付与する。使用者は、オフセットポインタ30をねじ頭に挿入する。遠位先端82をねじ頭と係合した状態に保ちながら、使用者は次に、ねじに付加されるオフセット量を選択し、彼または彼女がオフセットを適用したい方向にオフセットポインタ30を角度付ける。オフセット深さのスロット106間を調節するために、シャフト88は、アレイ22から引き離され、ピン100が所望のオフセットスロット106内に入るまで回転される。シャフト88が引っ張られるとき、それは細長い管状部材84の内外にはめ込まれ、その結果、形状付けられた遠位端部82とアレイ22との間の距離が増加される。例証の目的のため、
図8は、ポインタ30長さとIR反射型アレイ22との間の16mmオフセットに対応する16mmオフセットスロット106内にピン100がある状態のオフセットポインタ30を示す。ほんの一例として、2mm増分の0mm~16mmオフセット等の、矢状矯正のためのオフセットオプションが提供されてもよい。次に、システム10は、1つ以上の椎骨レベル矢状矯正を可能にする、ねじが存在する場所の反対側の空間内の点において位置情報を獲得するであろう。
【0032】
デジタイザポインタ23は、いくつかまたは全てのねじ場所に関する位置情報を獲得するために使用され得る。好ましい実施形態によると、形状付けられた遠位先端82は、ねじ頭内に同軸的に整列され、アレイ22は、ねじ点を登録するために動作される。ねじ場所は、上下または下上方向にデジタル化され得る。いくつかの実現形態によると、第1のデジタル化されたねじ場所は、屈曲指示のロッド挿入方向構成要素と相関する(下記に説明される)。ハンドル66の把持は、ばねメカニズムを作動させ、シャッター36が相互に嵌合する歯車の歯72を介して均等に開放することを可能にする(
図4)。シャッターカバー68の開放は、中央IR反射型球38を露出させ、IR追跡アレイ22がIR位置センサ20によって「見られ」、デジタイザポインタ23の位置がデジタル化されることを可能にする。この方法では、IR位置センサ20は、中央球38が露出された後にのみデジタイザポインタ23を認識し、これは、点から点への追跡を可能にし、手術用物体を継続的に追跡する先行技術のシステムで発生し得る1つ以上の不要なデータ点の検知及びデジタル化を未然に防ぐ。さらに、歯車メカニズムの使用は、受動的なIR反射型球38がIR位置センサ20によって対称的に「見られる」ことを可能にし、それによってシステム10による位置情報のより正確な算出を可能にする。いくつかの実現形態によると、制御ユニット16は、使用者に中央球38がIR位置センサ20によって認識され、ねじ点が獲得されることを通知するために、可聴音を発する。点登録されると、シャッターハンドル66は、解放され、それによって両面シャッター36を閉鎖する。このプロセスは次に、デジタル化するための全てのねじ場所に対して反復される。
【0033】
本発明によると、ロッド屈曲を達成するための複数のアルゴリズムが提供される。外科的屈曲アルゴリズムは、2つのより小さいサブシステム:(1)空間内の点を獲得、収集、及びデジタル化する空間的場所アルゴリズム、ならびに(2)点を分析し、機械的屈曲デバイス18を用いてロッドを屈曲させるために必要な屈曲指示及びロッド長さを算出する屈曲アルゴリズム、に分割され得る。
【0034】
上記の通り、空間追跡システム12は、追跡されるIR反射型球38に関する6自由度(6DOF)情報を測定する。これらのデータは、目的とする各ねじの全体姿勢(位置及び配向)を提供し、それは次に、屈曲指示を算出するためのアルゴリズムライブラリに対して利用可能にされ得る。
図10は、一実施形態に係る空間的場所データ獲得プロセスのステップを示すフローチャートである。システム10は、構成からセンサ目標を初期化して、IR位置センサ20に接続し、それを制御し、それからデータを読み取る(ステップ140)。システム10は次に、それに接続している全てのデバイスを調べ、IR位置センサ20に対応するデバイスIDを有するデバイスを見つけ出す(ステップ141)。ステップ142において、IR位置センサ20がステップ141において見つけ出された場合、システム10は、IR位置センサ20との接続の確立を継続する(ステップ143)。しかしながら、見つからない場合、システム10は検索を継続する。システム10がIRセンサ20に接続した後、それは、アレイ22を定義するツールファイルをロードする(ステップ144)。初期化及びツールファイルのローディングの後、IRセンサ20は、データ取得の準備ができていなければならない。ステップ145において、IRセンサ20は、有効にされており、位置データを生成する準備ができているが、追跡が有効にされるまで待機したままである。例として、また
図17を参照して、患者の身体に対してIRセンサ20の位置を選択することは、制御ユニット16に、追跡を開始する命令をIRセンサ20に送信させる。追跡が有効にされた状態で(ステップ146)、IRセンサ20は、データについてポーリングされ得る(ステップ147)。好ましくは、新たなデータが毎秒20回IRセンサ20から要求される。ステップ148において、IRセンサ20のポーリングから生成されたデータは、それが有効データを報告しているかを確実にするためにチェックされる。IR反射型球38の全てがIRセンサ20に対して可視であり、デジタイザポインタ23が完全にIRセンサ20の可動範囲内にあり、IRセンサ20とデジタイザポインタ23との間に干渉がなく、報告された場所及び回転情報の両方が空値でなければ、データは有効であると見なされ得る。ステップ149において、データが有効であると判断されない場合、デジタル化された点は、システム10によって使用されず、ポーリングが再開される。第5のIR反射型球38(即ち、中央球)がデジタイザポインタ23上で可視である場合(ステップ150)、屈曲アルゴリズムのための位置データ収集のプロセスが開始する。中央球38が可視でない場合、データは、IRセンサ20とIR反射型追跡アレイ22の近位性を示すためにのみ、システム10に対して利用可能である(ステップ151)。屈曲アルゴリズムによって使用される点は、好ましくは、複数の生要素の平均である(ステップ152)。通常、5つの点がこのステップで収集され、その後、それらの点は処理され、屈曲アルゴリズムに対して利用可能にされる。位置データは、平均算出を使用して平均化される。方向は、四元数表現(生の形態)で平均化され、次に単位方向ベクトルに変換される。データは、回転マトリックスを使用して空間追跡システム12座標からシステム10座標枠に回転される。ステップ153において、全ての処理の後、データは、下記により詳細に説明される通り、さらに収集及び処理するために屈曲アルゴリズムに対して利用可能である。
【0035】
外科的屈曲ソフトウェアは、上述の通り、ねじ場所の場所及び方向データを取得し、1つ以上の幾何学に基づくアルゴリズムを使用して、これらの関連するねじ場所を一連の屈曲指示に変換する。
図11は、第1の実施形態に係る外科的屈曲プロセスのステップを示すフローチャートである。入力妥当性検証ステップ154において、システム10は、ロッド突出がゼロより大きいことを確実にするためにシステム入力の妥当性を検証し、IRセンサ20の場所が設定されていることを確実にするためにセンサセットアップの妥当性を検証し、また獲得された点の各々の妥当性を検証することができる。例として、獲得された点の各々の妥当性の検証は、例えば、少なくとも2つのデジタル化されたねじ点が存在すること、離れ過ぎている2つのねじ場所がないこと、近過ぎる2つのねじ場所がないこと、また最上ねじ場所と最下ねじ場所との間の範囲が最も長い利用可能なロッドよりも長くないことを確実にする。
【0036】
変換ステップ155において、データは、獲得された初めのデータ点がシステム10座標の原点に設定され、全てのデータがシステムの座標のx軸に整列され、それによって患者の脊柱に対するIRセンサ20の潜在的な不整列を低減するように、集中及び整列され得る。
【0037】
ロッド算出ステップ156において、システム10は、真っ直ぐなロッド解、事前屈曲されたロッド解、及びカスタム屈曲解に関するロッド算出を実施し得る。真っ直ぐなロッド解に関して、システム10はまず、ねじ場所の全てに渡る真っ直ぐなロッドの長さを決定する。この長さは、ねじ頭の各々、選択されたロッドのヘックス及びノーズ(hex and nose)長さ、ならびに使用者の選択したロッド突出長さを収容するように算出され得る。システム10は次に、データを直線に適合し、ねじデータが直線の許容誤差内である場合、屈曲指示は真っ直ぐなロッドを返し、そうでない場合、ロッド解を返さず、事前屈曲されたロッド解を検索するように進行する。ほんの一例として、許容誤差は、矢状及び冠状面の各々において2mmであり得る。
【0038】
事前屈曲されたロッド解に関して、システム10はまず、ねじ場所の全てにわたる利用可能なロッド類からの利用可能なロッドから、最も短い事前屈曲されたロッドの長さを決定する(下記により詳細に説明される)。この長さは、ねじ頭の各々、選択されたロッドのヘックス及びノーズ長さ、ならびに使用者の選択したロッド突出長さを収容するように算出され得る。次に、システム10は、デジタル化されたねじデータを3次元空間内で円弧に適合する。ねじデータが弧の許容誤差内である場合、屈曲指示は事前屈曲されたロッド解を返し、そうでない場合、ロッド解を返さず、カスタム屈曲ロッド解を検索するように進行する。例として、この許容誤差は、矢状及び冠状面の各々において2mmであり得る。
【0039】
図12は、一実施形態に係るカスタム屈曲アルゴリズムのフローチャートを描写する。ステップ158では、上記の通り、ねじ場所及び方向データが空間追跡システム12によって生成される。データは次に、2つの平面:x-y平面(冠状ビュー)及びx-z平面(矢状ビュー)に投影される。次に、各投影が2Dデータセットとして取り扱われる。ステップ159において、固定の大きさのループが、ロッド端部に関する第1の屈曲場所に関して少しずつ増分するオフセットで生成され、それは、屈曲低減ステップ162の能力を最適化し、滑らかな解を作製する。ステップ160において、システム10は、各ねじ場所におけるスプライン交点を作成し、ねじ点を通る区分的に連続的な4次多項式曲線(3次スプライン)を作製する。ステップ161において、滑らかな連続的スプラインが、曲線に沿って規則的間隔(例えば、1cm毎)で抽出されて、提案される屈曲場所の初期セットを生成する。ステップ162では、使用者が各デジタル化されたねじ点にロッドを適合するためにロッド上で実行しなければならない屈曲の数を低減するために、可能な限り多くの屈曲が、ステップ161の提案された屈曲場所の初期セットから可能な限り除去される。一実施形態によると、屈曲を取り除くことが、(1)屈曲されたロッドの経路を、所定の許容誤差限界よりも多く逸脱させる、(2)屈曲角度のいずれかを、最大所望屈曲角度を超過させる、及び(3)ロッドからねじへの交角を、ねじ頭の最大角形成を超過させる場合、それは除去されない。屈曲の数が低減された後、2Dデータセットは、組み合わされ、3Dデータセットとして取り扱われる。次に、3D線分が、各線分相互作用間の距離(場所)、2つの線分間の角度(屈曲角度)、及び次の屈曲平面に屈曲を配向するために必要な回転(回転)に基づいて、以下の算出を使用して求められる:
【表1】
これらの算出された数は次に、ロッド屈曲器18の物理的設計ならびに選択されるロッドの材料及び直径に対して一覧にされる。屈曲角度は、機械的ロッド屈曲器18の許容誤差の主要因であり、また機械的ロッド屈曲器18及び特定の種類のロッドを用いて実施された以前の較正試験に基づいて、ロッドの材料及び直径の主要因となるであろう。較正試験は、特定のロッド材料及び直径を屈曲させるときに予測される跳ね返りの量を定量化する。例証のため、5.5mm直径のチタンロッドの跳ね返りは、1次線形方程式:
BA
A=0.94*BA
T-5.66
によって特徴付けることができ、式中、BA
Tは、3D線分から算出された必要とされる理論上の屈曲角度であり、BA
Aは、ロッドを、それがその理論上の屈曲角度に跳ね返り得るように屈曲させるために必要とされる実際の屈曲角度である。したがって、この方程式を使用して、20度の屈曲が上記の3D線分から算出されるとき、そのロッドに関する「跳ね返り」方程式は、それが20度に跳ね返るために25度の屈曲が実行される必要があることを説明するであろう。最終的なロッドの長さは、全ての算出された距離及び選択されたロッド突出の合計である。
【0040】
ロッド解の全てが生成されると、ループは完了される(ステップ163)。ステップ164では、上記のループにおいて生成されたロッド解の全てから、システム10は、最小最大屈曲角度を有するロッド解(即ち、最も滑らかな屈曲されたロッド)を出力し得る。システム10は、任意の数の他の基準に基づいて表示されるロッド解を選択し得ることが理解されるべきである。ステップ169において、システム10は次に、空間内に屈曲の3次元の場所を生成する。
【0041】
図11のフローチャートに戻って参照すると、幾何学的な屈曲場所及び/または上記のロッド算出ステップ156の事前屈曲されたロッド出力から、システム10は、使用者のために真っ直ぐなロッド、事前屈曲されたロッドを選択するか、またはロッドをカスタム屈曲させるための指示を生成する(ステップ157)。出力指示は全て、人間が読むことができる文字列または文字である。全ての場合において、必要とされるロッドの長さは、上述の通りに算出され、切断されたロッドかまたは標準ロッドかのいずれかとして使用者に表示される。カスタム屈曲解に関して、ロッドは、「挿入器端部」(例えば、ロッドの1つの所定の端部)が屈曲器コレット126内にある状態で屈曲器内に装填される。幾何学的な制約により、ロッドが挿入器端部から屈曲され得ない場合、指示は、反転され、ロッドの切断された(またはノーズ)端部が屈曲器コレット126内に入れられるように指示される。屈曲指示は、幾何学的な屈曲場所から生成され、下記により詳細に説明される通り、「場所」、「回転」、及び「屈曲」として付与される。これらの値は、機械的屈曲器18上の印に対応する。
【0042】
図13~14は、カスタム屈曲アルゴリズムの第2の実施形態のフローチャートを描写する。この第2の実施形態によると、カスタム屈曲アルゴリズムは、仮想のロッドを表示させるために使用される仮想の屈曲器を含む。以下の算出及び
図13~14のフローチャートは、この実施形態のステップを明らかにする。
【0043】
3Dベクトルs
i=[s
i
x,s
i
y,s
i
z]
Tは、使用者によってデジタル化されたi番目のねじを示し、その結果、ロッド構築物を定義するN個の獲得されたねじのセットは、
【数1】
として示され得る。ねじは、順番に(例えば、最上ねじから最下ねじまたは最下ねじから最上ねじへ)収集されていると仮定することができ、したがって指数iはまた、経時的な指数と考えられ得る。
【0044】
mmで与えられる長さL
rの仮想のロッド(R)は、Nr個の均一に分布された点、R=[r
0,....,r
Nr-1]に分解される。各ロッド点r
iは、2つの構成要素、空間的構成要素及び方向的構成要素
【数2】
から成り、式中、
【数3】
である。ロッド点間のセグメントは、一貫しており、
【数4】
によって定義される。
【0045】
仮想の屈曲器(B)は、半径M
r(mm)の回転軸(M)から成る。好ましくは、必然ではないが、Mの周囲に仮想のロッドを屈曲させるときの主要な仮定は、弧長の保存である。単に例証のために、90°の屈曲が、半径10mmの回転軸の周囲で長さ100mmのロッド例Rに導入され、ロッド
【数5】
を生成する場合、
【数6】
である。
【0046】
仮想のロッドRは、指示のリストに従って屈曲される。各指示は、場所(Il)、回転(Ir)、及び屈曲角度(Iθ)から成る。場所は、ベンダー内のロッドの位置であり、回転軸Mの真下の点に対応する。回転は、度(0°~360°)で付与され、ロッドがコレット内で0から回転された量に対応する。屈曲角度は、度での特定の角度に対応する単一文字によって付与される。使用者が選択するために、同じ文字を有する屈曲器上の対応する刻み目が存在する。
【0047】
ロッドは、空間的構成要素
【数7】
であり、方向構成要素
【数8】
であるように初期化され、それは、仮想のロッドを仮想の屈曲器内でゼロ回転であるように効果的に配向する(ステップ166)。各屈曲指示に関して(ステップ167)、システム10は、仮想のロッドをx軸の周囲でI
rだけ回転させる(ステップ168)。システム10は、I
lに一致する点
【数9】
を検索する。仮想のロッドは、
【数10】
によって並行移動される。次に、i~i+M
r*I
θの各ロッド点が、セグメントの長さを保存しながら、回転軸M上に投影される(ステップ169~170)。仮想のロッドは次に、角度-I
rだけx軸の周囲で回転される。次に、システム10は、コレット内の仮想のロッドが正しい方向ベクトルを有しているかを検証するために、
【数11】
をチェックする(ステップ171)。この点において、Rは、それが物理的な機械的屈曲器18内で屈曲されるであろうようにロッドの幾何学を近似している。
【0048】
次のステップは、屈曲された仮想のロッドを獲得されたねじ位置に整列させることである(ステップ172)。一実施形態によると、整列プロセスは、2つの段階を有する。第1に、システム100は、最適な回転粗スケールを見出す(ステップ174)。第2に、システムは、反復的な最接近点反復アルゴリズム微細スケールを実施する。
【0049】
好ましくは、システムはまず、グローバル最小値に近い結果を初期化する(ステップ173)。ロッド整列アルゴリズムでは、この初期化は、下記に説明されるアプローチに従う:
【0050】
カスタムロッドの弧長及びねじの弧長を使用して、ねじからロッドまでの推定上の一致が生成される。これは、等しい大きさの2つの3D点のセットを生成する。2つの3D平均集中点セット
【数12】
を考えると、最小二乗という意味で、
【数13】
を最小化することが望ましい。式中、Tは、回転マトリックスを示す。
【数14】
は最適な3D回転マトリックスを示すとすると、
【数15】
である。その結果、
【数16】
となり、式中、
【数17】
であり、
【数18】
である(ステップ174)。
【0051】
弧長の差によって潜在的に導入されるエラーのため、提案される解は、グローバル最小値ではない場合がある。したがって、以下が収束まで反復される(ステップ175):
各s
iに関して、最接近r
jを検索する(ステップ176)
残差ベクトルe
i=s
i-r
jを算出する
平均残差ベクトル
【数19】
を算出する(ステップ177)
ロッドを
【数20】
によって並行移動させる(ステップ178)
エラーが低減されるかを検証する(ステップ179)。
【0052】
次に、仮想のロッドが、ステップ180において表示される。曲線は、表示の目的のために、ロッド点の各3つ組を横切り、2つのベクトル間の角度を算出することによって単純化されてもよい。第1の3つ組が{r0,r1,r2}である場合、2つのベクトルは、v=r1-r0及びw=r2-r0として形成される。|v×w|=0である場合、3つ組の中間点(この場合r1)は余分であり、ロッドの幾何学に対する新たな情報を提供せず、除去され得る。
【0053】
ロッド屈曲アルゴリズムのこの実施形態によると、仮想の屈曲器は、弧長を完全に観察するために任意の角度の任意の場所でロッドを屈曲させ得ることが理解されるであろう。仮想的に屈曲された3Dロッドを使用して、問題のねじ(即ち、高いねじ-ロッド適合エラーを有するねじ場所)を決定することは、実際のロッドが屈曲される前に、実際のねじと実際のロッドとの間の正確な適合を付与し得る。これは、オフセットロッド解とデジタル化されたねじ場所との間のオフセットの量を定量化すること、及びロッド屈曲算出に1つ以上の外科的パラメータを入力することが望ましい特定の外科的用途において、特に有利であり得る。
【0054】
本発明によると、第2の実施形態と併せて利用され得る、カスタム屈曲を生成するためのアルゴリズムの第3の実施形態が説明される。このアプローチは、可能性分布から標本抽出し、無作為標本抽出を用いて数値結果を取得する1つ以上のアルゴリズムに関する。マルコフ連鎖は、現在の状態、将来の状態、及び過去の状態が独立しているような一連の確率変数、X
0,X
1...である。
【数21】
構築物を定義する順序付けられたねじのセット、
【数22】
を考えると、式中、s
i=[s
i
x,s
i
y,s
i
z]
Tは、使用者によってデジタル化されたi番目の3Dねじを示し、システム10は、エラー関数によって定義される最適な方法でねじに適合するロッドを画定する屈曲指示のセットを検索する。有効な屈曲指示を生成するためにアルゴリズムに関して観察されなければならない複数の制約(例えば、屈曲場所は、ねじに非常に接近することはできない、屈曲場所は、5mmの倍数で離間しなければならない、屈曲角度は、5°の倍数でなければならない、屈曲角度は、60°より大きいことはできない等)が存在するため、屈曲器空間の検索は、極めて複雑であることが理解されるべきである。
【0055】
第2の実施形態によると、尤度またはエラー関数は、仮想のロッドがデータにいかに良好に適合しているかに基づいて構築され得る。ここで、ロッドは、最小二乗という意味でデータに適合される。この方法では、例えば、より少ない屈曲指示を選好するために、事前分布を組み込む以下の尤度関数が定義される:
【数23】
その結果、対数尤度関数は、
【数24】
として定義される。式中、N
bは、ロッド内の屈曲の数を示し、N
sは、ねじ場所の数を示し、s
iは、i番目のねじであり、r
iは、i番目のロッド点であり、αは、屈曲数に関する制御ハイパーパラメータである(例えば、α=0.05)。
【0056】
方程式(3)から分かる通り、ロッドに導入される屈曲の数を制御するために、事前分布が導入されている。屈曲指示生成のためのこの確率的なアプローチは、制約を調整することを可能にし、例えば、屈曲の重大度に対する事前分布が同様に導入されてもよい。さらに、事前分布は、屈曲がねじにどれだけ近く配置され得るかをどのように定義するかに対して導入されてもよい。この事前分布は、「好ましい」値を有し得るが、確率的に、この理想的な値から離れた最適解が存在し得る。例として、このアルゴリズムに適用され得るいくつかの仮定される規則としては、限定されるものではないが、バース移動、すなわち現在の解に屈曲を追加する;デス移動、すなわち現在の解から屈曲を除去する;更新移動、すなわちロッドに沿ってロッド点を並行移動させる、が挙げられる。この実施形態の使用は、使用者により多くの潜在的なロッド解を提供し得る。
【0057】
ここで、システム10の詳細が、カスタム適合ロッドを取得するための方法の第1の実施形態と併せて述べられる。システム10は典型的には、後方または側方固定外科的処置の最後に、ねじ、フック、または他の器具使用が定置された後であるがロッドが挿入される前に利用される。
図15のフローチャートに示される通り、システム10は、埋め込まれたねじ位置の位置情報を取得し、それらの埋め込まれたねじ内にカスタム適合するように形状付けられたロッドのための屈曲指示を出力する。ステップ190において、適当な情報が、セットアップ画面を介してシステムに入力される。ステップ192において、使用者は、ロッドが作成される側(患者の左または右側)を指定する。ステップ194において、システム10は、ねじ場所をデジタル化する。ステップ196において、システム10は、屈曲指示を出力する。ステップ198において、使用者は、屈曲指示に従ってロッドを屈曲させる。次に、ステップ190~198は、所望により、患者の対側部位上のロッドに関して反復され得る。
【0058】
図16は、ほんの一例として、フィードバック情報を使用者に通信することに加えて、使用者から入力を受信することができる制御ユニット16の画面表示200の一実施形態を例証する。この例では(必ずしもではないが)、グラフィカルユーザインターフェース(GUI)が、画面表示200からデータを直接入力するために利用される。
図16に描写される通り、画面表示200は、ヘッダバー202、ナビゲーションコラム204、デバイスコラム206、及びメッセージバー208を含み得る。
【0059】
ヘッダバー202は、使用者が、それぞれ日時表示210、設定メニュー212、ボリュームメニュー214、及びヘルプメニュー216を介して、日時を見る、設定を変更する、システムボリュームを調節する、及びヘルプ情報を取得することを可能にし得る。設定ドロップダウンメニュー212の選択は、使用者がシステム、履歴、及びシャットダウンボタン(図示せず)をナビゲートすることを可能にする。例えば、下記により詳細に説明される通り、システムボタンの選択は、ロッド屈曲ソフトウェアバージョン及びロッド屈曲器構成ファイルを表示し、シャットダウンオプションの選択は、ロッド屈曲ソフトウェアアプリケーション及び制御ユニット16に存在する任意の他のソフトウェアアプリケーション(例えば、神経監視ソフトウェアアプリケーション)をシャットダウンし、履歴オプションの選択は、使用者が以前のシステムセッションにおける履歴的な屈曲点/指示データをナビゲートすることを可能にする。ヘルプメニュー216の選択は、使用者をシステム使用者マニュアルにナビゲートする。下記により詳細に説明される通り、ナビゲーションコラム204は、ロッド屈曲プロセスにおける種々のステップを通じたナビゲーションのために種々のボタン(例えば、ボタン218、220、222、224、226)を含む。ボタン204の押圧は、ナビゲーションコラムの詳細を拡大/最小化する。デバイスコラム206は、システム10に関連付けられる1つ以上のデバイスの状態を示す種々のボタンを含む。例として、デバイスコラム206は、それぞれシステム10のデジタイザ23及びIRセンサ20構成要素のためのボタン228及び230を含み得る。ボタン206の押圧は、デバイスコラムの詳細を拡大/最小化する。さらに、ポップアップメッセージバー208は、使用者に指示、警告、及びシステムエラーを伝える。
【0060】
図16~17は、セットアップ画面例を描写する。表示画面200上のセットアップボタン218を選択すると、システム10は、セットアップ手順を自動的に開始する。システム10は、その必要とされる構成要素の各々の接続状態を検出するように構成される。ほんの一例として、アイコン228、230は、それぞれ、デジタイザ23及びIRセンサ20の接続性及び動作状況を示す。1つ以上の必要とされる構成要素が接続されていないか、または不適切に接続されている場合、表示200は、テキスト、聴覚、及び/または視覚手段(例えば、テキストメッセージ、可聴音、色付きアイコンまたは画面、点滅アイコンまたは画面等)を介して、進行する前に問題に対処するように使用者に警告し得る。一実施形態によると、デジタイザアイコン228は、デジタイザのアクティブな獲得及び/または認識の状態指示器であり、アイコン228の存在及び背景色は、デジタイザ追跡状態を示すために変化し得る。例として、アイコン228は、システム10がねじを獲得しておらず、デジタイザを認識していないときは不在、システム10がねじを獲得しておらず、デジタイザを認識しているときは灰色、システム10がねじ獲得モードであり、デジタイザを認識しているときは緑、システム10がねじ獲得モードであり、デジタイザを認識していないときは赤であってもよい。ボタン206の押圧は、デバイスコラム206の詳細を拡大/最小化する。手術の種類、患者の変形の種類等に応じて、使用者にとって、異なるデジタイザ選択の中からデジタイザを選択することは有利であり得る。一実施形態によると、アイコン228の押圧は、システム10と共に利用することができる異なる針オプション(例えば、上述の通り針22、24、26、30)に関するプルアウトウィンドウを拡大する。別の実施形態によると、IRセンサグラフィックアイコン230は、IRセンサ20の状態指示器である。アイコン230の存在及び背景色は、IRセンサ20の状態を示すために変化し得る。例として、アイコン230は、システム10がIRセンサ20を認識していないときは不在、システム10がシステム10に接続されているIRセンサ20を認識しているときは灰色、システム10がIRセンサ20に関する通信またはバンプエラーを検知しているときは赤であってもよい。好ましくは、IRセンサ20は、それが屈曲アプリケーションの初期化後に接続されているかどうかを認識されるべきである。
【0061】
必要とされる構成要素の全てが適切にシステム10に接続している状態で、使用者は次に、1つ以上のドロップダウンメニューから1つ以上の事例特異的な情報を入力し得る。例として、ロッドシステム234、ロッド材料/直径236、ロッド突出238、処置の種類(図示せず)、及び外科的処置の解剖学的な脊椎レベルに関するドロップダウンメニューが、画面表示200のセットアップ選択パネル232からアクセスされ得る。ロッドシステムドロップダウンメニュー234は、使用者が、彼/彼女が使用しようと計画しているロッドシステムを選択することを可能にする。この選択は、ロッド材料/直径236ドロップダウンメニューの選択を駆動する。例として、ロッドシステムドロップダウンメニュー234の下に、システム10は、1つ以上の製造業者からの多数の固定オプションと共にプログラムされ得る。別法として、それは、1つの製造業者のみの固定システム選択と共にプログラムされてもよい(例えば、NuVasive(登録商標)Precept(登録商標)、Armada(登録商標)、及びSpherX(登録商標)EXT)。使用者はまた、ロッド材料(例えば、チタン、コバルトクロム等)とロッド直径(例えば、6.5mm直径、5.5mm直径、3.5mm直径等)の組み合わせを選択することもできる。材料及び直径オプションに関するドロップダウンメニュー238は、好ましくは、ロッドシステムの選択に依存し得る。幾何学及び大きさは製造業者及び/ロッドシステム間で変動し得るため、これらの特定の入力と共にシステム10をプログラミングすることは、さらにより正確な屈曲指示の出力を助け得る。使用者はまた、ロッド突出プルダウンメニュー238から突出の量を選択することもできる。例として、突出の量は、0mm、2.5mm、5mm、7.5mm、及び10mmの長さで選択可能であり得る。一実施形態によると、この機能は、ロッドの上側及び下側端部の両方に対称な突出を指示する。別の実施形態によると、この機能はまた、使用者の好み及び患者の解剖学的な留意事項に基づいて、ロッドの各端部に異なる突出長さを指示する。図示されてはいないが、システム10はまた、例えば、後頭-頸部-胸部(OCT)癒合処置において使用されるような、複数のロッド直径及び推移的なロッドに対応するための機能性も含む。
【0062】
セットアップ入力がセットアップ選択パネル232内に入力された後、システム10は、使用者がIRセンサ20を位置データ獲得に最適な位置でセットアップすることを助ける。任意の視覚的(テキスト、グラフィック)指示器がIRセンサ定置指示を示すために使用され得ることが理解されるべきである。いくつかの実現形態によると、アクティブなグラフィックは、使用者に、患者体内に静止して保持されているデジタイザアレイ22に対してIRセンサ20を位置付けるように指示する。
図17に示される通り、使用者はまず、IRセンサセットアップパネル240内の左側センサ位置ボタン242または右側センサ位置ボタン244を選択することによって、IRセンサ20が配置される患者の側を選択する。左または右側センサ位置ボタン242、244の選択は、IRセンサ位置付けパネル246を作動させ、その結果、センサグラフィック248及び追跡ボリュームボックスグラフィック250が、表示画面200上に現れる。IRセンサ20としてセンサグラフィック248と共に移動する追跡ボリュームボックス252は、移動される。次に、使用者は、デジタイザアレイ22を患者の体内に位置付ける。システム10によって認識された後、標的ボリュームボックス252(白色で表示され得る)は、患者グラフィック254上に位置付けられる。次に、使用者は、追跡ボリュームボックス250が標的ボリュームボックス252の位置に一致するまで、IRセンサ20をデジタイザアレイ22に対して移動させる。いくつかの実現形態によると、センサグラフィック248は、標的追跡ボリュームの上側に移動されると大きさが増加し、標的ボリュームの下側に移動されると大きさが減少する。いくつかの他の実現形態によると、追跡ボリュームボックス250は、標的ボリュームまでの相対距離を描写するために色分けされ得る。例として、追跡ボリュームボックス250は、標的ボリュームまでの距離が1つ以上の軸において特定の距離外である場合(例えば、全ての3つの軸において±8cm外)には赤で、また全ての3つの軸において±8cm以内である場合には緑で描写され得る。IRセンサ20の最適な位置が確定されると、セットアッププロセスが完了される。
【0063】
使用者がセットアップ画面内の必要とされるステップの全てを完了した後、グラフィック(例えば、チェック)が、そのような完了を示すためにセットアップボタン218上に現れてもよく、システム10は、
図15のフローチャート内のステップ192に進む。GUIを使用して、使用者は、左「L」トグル/状態ボタン220かまたは右「R」トグル/状態ボタン222のいずれかを選択することによって、患者の脊柱のどちら側からデジタル化された位置情報を獲得するかを指定する。使用者は次に、ねじ獲得ボタン224を選択し、それは、表示画面200を
図18~20に例として示されるねじ獲得(左または右)画面にナビゲートする。ねじ獲得モードでは、表示画面200は、矢状ビューパネル256及び冠状ビューパネル258を、矢状及び冠状ビューの各々の中にそれぞれ脊柱グラフィック260、262がある状態で含む。脊柱グラフィック260は、使用者が脊柱のどちら側をデジタル化しているか(左または右)に応じて配向を反転させ得る。それに加えて、脊柱グラフィック262は、使用者がデジタル化している患者の側(左または右)を強調し得る。使用者は、例えば、上述の通りデジタイザポインタ23を使用して、各埋め込まれたねじの場所をデジタル化し得る。各ねじ点264がデジタル化されるとき、他の獲得されたねじ点264に対するその相対的な場所は、
図19に示される通り、矢状ビューパネル256及び冠状ビューパネル258を介して、矢状ビュー及び冠状ビューの両方に表示され得る。所望により、デジタル化された最後のねじ点は、それまでに獲得されたねじ点264とは異なるグラフィック266を有してもよい(例として、最後の獲得されたねじ点266は囲まれ、それまでに獲得されたねじ点264は円であってもよい)。ねじ場所は、上から下または下から上方向にデジタル化されてもよく、いくつかの実施形態によると、システム10は、2つの連続的なねじ点場所の獲得後にデジタル化が発生している方向を検出し得る。デジタル化プロセス中に、使用者が、デジタル化されたねじ点を削除したい場合、彼/彼女は、「点を消去する」ボタン270を押圧することによってそのようにし得る。使用者が全てのデジタル化されたねじ点を削除したい場合、彼/彼女は、「全ての点を消去する」ボタン268を押圧することによってそのようにし得る。
【0064】
デジタル化されたねじ点264が受け入れ可能であると見なされた後、使用者は、「ロッドを算出する」ボタン272を押圧することができ、それは、好ましくは上記のアルゴリズムのうちの1つを使用して、曲線算出を開始する。ロッド解が算出された後、ロッドグラフィック274がねじ点264、266を通して投入され、確認グラフィック(例えば、チェック)が、システム10がロッド解を生成したことを示すために「ねじを獲得する」ボタン224上に現れ得る。同時に、「ロッドを算出する」ボタン272は、「ロッドを取り消す」ボタン272になる。使用者が「ロッドを取り消す」ボタン272を押圧すると、ロッド解274は、消去され、使用者は、より多くのねじ点を獲得するか、または1つ以上のねじ点を消去してもよい。「ロッドを取り消す」ボタン272が押圧された後、それは次に、「ロッドを算出する」ボタン272に戻る。所望により、システム10は、ロッドのどこに沿って曲線算出が重大な屈曲(鋭角)を生成しているかに関する視覚グラフィックを含み得る。使用者は、「ロッドを取り消す」ボタン272を選択し、1つ以上の外科的操作(例えば、ねじの低減、ねじのバックアップ、ねじ頭の調節等)を実施し、ねじ点を再デジタル化し、より実行可能な解を生成し得る。ロッド解が使用者にとって受け入れ可能である場合、ねじ獲得ステップ194は完了し、システム10は、
図15のフローチャート内の屈曲指示ステップ196に進む。別法として、図示されてはいないが、システム10は、重大な屈曲角度をもたらす有害な点を赤で表示し、その屈曲器に関する所定の角度範囲内の屈曲角度を含む次善の解を提示してもよい。ロッド解が使用者にとって受け入れ可能である場合、ねじ獲得ステップ194は完了し、システム10は、
図15のフローチャート内の屈曲指示ステップ196に進む。
【0065】
使用者は次に、「屈曲指示」ボタン226を選択し、それは、表示画面200を
図21に例として示される屈曲指示(左または右)画面にナビゲートする。屈曲指示パネル276内の屈曲指示は、使用者が、ねじ獲得画面内で結果として得られるロッド解に対応する屈曲指示を見ることを可能にする(
図20)。例として、屈曲指示パネル276は、屈曲指示の種々の態様を含む3つのフィールド:上部メッセージフィールド278、屈曲器指示フィールド280、及び下部メッセージフィールド282を含む。例として、上部メッセージフィールド278は、ロッド切断長さ、ロッド種類、及び/またはロッド装填指示を使用者に伝え得る(例えば、「ロッド切断:175.00mm挿入器端部を屈曲器内へ装填する」)。屈曲器指示フィールド280は、下記により詳細に説明される通り、機械的屈曲器18上で実施するための場所286、回転288及び屈曲角度290における屈曲操作の行284を表示する。
図21に示される例では、5つの屈曲指示を示す5つの行が存在する。下部メッセージフィールド282は、挿入の方向またはロッドの埋め込みの配向を使用者に伝え得る。例えば、
図21に示される下部メッセージフィールド282は、次の指示見本を提供する:「ロッドを頭から足方向へ挿入する」。いくつかの実現形態では、患者内へのロッド挿入方向は、ねじデジタル化の順序(上から下または下から上)に依存する。1つ以上の好ましい実施形態によると、屈曲指示アルゴリズムは、ロッドの下側、上側、前側、及び後側の態様の配向を考慮し、これらの態様が使用者に既知であることを確実にする。使用の指示が使用者にロッドを屈曲器内に装填させるとき、システム10は、どの屈曲がロッドに初めに与えられるかを屈曲角度の重大度に基づいて管理する。より大きな屈曲角度を伴う屈曲指示のセクションが初めに実施されてもよく、次に、屈曲指示のより真っ直ぐな屈曲セクションが最後に実施されてもよい。さらに、指示はまた、使用者に、機械的ロッド屈曲器18上の整列矢印(図示せず)に対して、ロッド上のレーザー線または配向線を整列させてもよい。この整列は、ロッド幾何学の前方/後方配向を制御し、屈曲指示をそれに従って生成する。使用者は、システム10によって生成される場所(場所は、屈曲器18上及び画面200上で緑の三角として色分けされ得る)、回転(回転は、屈曲器18上及び画面200上で赤の丸として色分けされ得る)、及び屈曲角度(屈曲角度は、屈曲器18上及び画面200上で青い四角として色分けされ得る)に関する屈曲指示に従い、連続して、第1の屈曲指示を開始し、最終的な屈曲が完了するまで連続して作業する。ここから、使用者は、患者の脊柱の対側部位に関してステップ190~198をロッド構築物上で反復し得る。
【0066】
外科的処置において、使用者は、参照または比較のために、左画面と右画面とを切り替えて、左及び右のデジタル化されたねじ点、ロッドプレビュー、及び屈曲指示を見たいと望み得る。左「L」トグル/状態ボタン220及び右「R」トグル/状態ボタン222の選択は、使用者がそのようにすることを可能にする。1つ以上の実現形態によると、GUIは、履歴機構をさらに含み得る。履歴ボタン(図示せず)の選択は、使用者が、任意の以前のロッド屈曲解を再び参照することを可能にするであろう。使用者は、L/Rトグルボタン220、222の選択に基づいて屈曲指示画面226をナビゲートし、屈曲指示ボタン226を押圧する。以前の屈曲指示をナビゲートする場合、屈曲指示画面は、以前の屈曲指示を表示するであろう。使用者が所望のロッド解を選択した後、使用者は次に、機械的屈曲器18を使用して屈曲を実行する。
【0067】
上記の
図15及び18~21に関して説明される実施形態は、埋め込まれたねじ位置のデジタル化、及びそれらの埋め込まれたねじ内にカスタム適合するように形状付けられたロッドに関する屈曲指示の出力を企図する。1つ以上の追加の実施形態では、システム10は、
図22のフローチャート内に描写される通り、埋め込まれたねじの位置情報を取得し(ステップ192及び194)、1つ以上の高度オプション機構を介して矯正入力を受け入れ(ステップ195)、それらの埋め込まれたねじ位置から離れた場所に適合するように形状付けられたロッドのための屈曲指示を表示するために生成する(ステップ196)。この様式で形状付けられたロッドの組み込みは、使用者が指示した外科的計画に従って患者の脊柱の弯曲または変形を矯正することができる。システム10の詳細は、1つ以上の手術計画に従ってロッド屈曲を取得するための例と共にここに述べられる。
【0068】
図23に描写される通り、「高度オプション」ボタン292の選択は、使用者がデジタル化されたねじ点に対して1つ以上の矯正を実施することができ、システム10が、ロッドが埋め込まれ、ねじがロッドにもたらされた後に患者の脊柱上にそれらの所望の矯正を達成するであろう屈曲指示を生成する、高度オプションメニュー292を拡大する。
【0069】
いくつかの外科的処置では、使用者は、屈曲指示の決定においてロッド屈曲解がデジタル化されたねじ点ではない点を考慮することを望み得る。いくつかの実現形態によると、この点は、デジタル化されたねじ点場所からの調節された距離である。高度オプションメニュー292からの「点を調節する」ボタン296の選択は、使用者を、
図23に描写される通り点を調節する画面にナビゲートする。目的とするデジタル化されたねじ場所(例えば、
図24内でドット304として表されるねじ点)の選択は、そのねじ点を強調し、矢状及び冠状ビュー256、258の各々に点調節制御306をもたらす。使用者は、矢印308、310、312、及び314を使用して、点304を矢状及び冠状面内のその所望の場所に調節する。いくつかの実現形態では、
図25に示される通り、点が移動するのに伴い、ドット304は、最初にデジタル化されたねじ場所からの距離に基づいて色を変化させる。好ましくは、その色は、それは、点が調節された距離に関して視覚フィードバックを使用者に提供する色分けされたオフセット距離指示器322に対応する。例として描写される通り、ドット304は、
図25において黄色く見え、その点が矢状及び冠状面の各々において4mm移動していることを示している。いくつかの実現形態では、システム10は、操作される点が超えることができない、デジタル化された点からの最大距離を有し得る(ほんの一例として、この距離は5mmであってもよい)。他の実現形態では、この距離は、ある距離として描写され得る(例えば、
図48内の数字18、ねじ点がその最初の場所から18mmであることを示す)。使用者は、この様式で所望する限り多くの点を調節し得る。使用者は、「リセットする」ボタン316を介して全ての調節された点をそれらの最初の構成にリセットしてもよく、または「直前の操作を取り消す」ボタン318を介して最後の調節点を取り消してもよい。調節された点に満足すると、使用者は、下記に記載される通り1つ以上の追加の高度オプションへ進むか、または「ロッドを算出する」272を選択することができる。「ロッドを算出する」272が選択されると、システム10は、
図26にある通り、曲線が調節された点を横切るロッドを生成し、それによって矯正特異的なロッドを作成し、使用者に彼または彼女が指示した曲線に従って脊柱内の弯曲または変形を矯正する能力を提供する。
【0070】
他の実現形態によると、使用者は、より滑らかなロッド屈曲を望み得る。「仮想の点」ボタン320(例として
図25に示される)が選択されると、システム10は、使用者が最上のデジタル化されたねじ場所と最下のデジタル化されたねじ場所との間の任意の場所に追加の点を追加するを可能にする。この場所にはねじは存在しないが、この点は、曲線算出中に考慮され、曲線をより滑らかなロッド屈曲を生み出すより自然な形状にし得る。仮想の点に満足すると、使用者は、下記に記載される通り1つ以上の追加の高度オプションへ進むか、または「ロッドを算出する」272を選択することができ、上述の通り、システム10は、使用者が脊柱をロッドの形状に矯正するために使用し得る矯正特異的なロッド解274を生成する。
【0071】
いくつかの患者の解剖学的構造に関して、事前屈曲されたロッドを使用することは使用者にとって有利であり得る。事前屈曲されたロッドの使用は、望ましいロッド曲線が達成されることを保証しながら、追加の屈曲をロッドに作製する必要を排除する。ねじ獲得ステップ194において全てのねじ点がデジタル化された後、高度オプションメニュー292からの「事前屈曲されたロッドを表示する」ボタン298の選択は、
図27~28に描写される通り、使用者を「事前屈曲されたロッドを表示する」画面にナビゲートする。
図27に示されるデジタル化されたねじ場所に基づいて、システム10は、セットアップステップ190中に選択された、選択された製造業者のロッドシステム(例えば、NuVasive(登録商標)Precept(登録商標))に基づく最良の事前屈曲されたロッド幾何学を算出及び出力し、矢状及び冠状ビュー256、258内に表示するために、デジタル化されたねじ点の最上部で利用可能な最適な仮想の事前屈曲されたロッド解324を表示する(
図28を参照)。好ましくは、システム10は、事前屈曲されたロッドの幾何学が予め決定された曲線適合許容誤差(例えば、7mm)内でデジタル化されたねじ点に適合する場合、事前屈曲されたロッド解のみを生成する。1つ以上の実施形態(
図28に描写される)によると、色分けされたオフセット距離指示器322は、使用者に、各ねじ位置が事前屈曲されたロッド構築物から離間するであろう距離の指示を提供し得る。使用者が事前屈曲されたロッド提案に満足する場合、システム10は、屈曲指示ステップ196へ進み、それは、対応する事前屈曲されたロッドの仕様を屈曲指示画面内に表示する(
図29)。上部メッセージフィールド278は、デジタル化されたねじ点に基づいて、使用者に85.0mmの事前屈曲されたロッドが推奨されることを指示する。ここから、使用者は、患者の解剖学的及び外科的要件が事前屈曲されたオプションまたはカスタム屈曲オプションにより良く適合するかどうかを決定し得る。
図27~29からの情報と共に、使用者は次に、所望により、事前屈曲されたロッドに適合するようにねじ位置を調節し得る(例えば、ねじ頭を調節する、ねじ深さを調節する等)。
【0072】
いくつかの例では、使用者は、患者の脊柱を矢状面において整列させるまたは矯正する(即ち、脊柱前弯または脊柱後弯を追加または削減する)ことを望み得る。システム10は、使用者が矢状面において脊柱の脊柱前彎前弯の量を測定し、角度を調節することができる矢状矯正機構を含む。システム10は次に、ロッド解が所望の整列または矯正を含むように、これらの入力を屈曲アルゴリズムに組み込む。
【0073】
高度オプションメニュー292からの「ベクトルを表示する」ボタン300の選択は、矢状矯正機構を開始する。使用者は、少なくとも2つの目的とする点を選択することができ、システムは次に、矢状ビュー内の適切なベクトルを決定する。
図30~31及び33に示される実施形態によると、角度は、ねじ獲得ステップ194において獲得されたデジタル化されたねじデータを使用して、ねじ軌道(ねじ軸位置)に基づいて測定及び調節される。
図30に示される通り、使用者は、少なくとも2つの目的とするねじ点(例えば、ねじ点338及び342)を選択する。システム10は次に、ねじ軌道間の角度を測定する(ここでは35度として示される)。いくつかの実現形態では、システム10は、上腰椎における腰椎前弯角334(
図30にて15度として示される)及び下腰脊柱における腰椎前弯角336(
図30にて35度として示される)を測定することによって、腰椎前弯の全体量を測定し得る。角度調節メニュー326上の角度調節ボタン328、330を使用して、使用者は、矢状面における脊柱の所望の角度矯正を増加または減少させ得る(即ち、脊柱前弯または脊柱後弯を上側または下側に追加または削減する)。角度が調節されるとき、2つのねじ点338、342間の角度位置336も同様に変化される。
図31は、点338と342との間の角度位置336が50度に増加される例を例証する。システム10は、上述の通り、各デジタル化されたねじ位置が矢状面において調節されるであろう距離の指示を使用者に提供するための色分けされたオフセット距離指示器322を含み得る。所望の量の角度矯正が達成されると、使用者は、「設定する」ボタン332、次に「ロッドを算出する」ボタン270を選択し得る。システム10は次に、
図33に描写される通り、矢状面における脊柱の矯正のための使用者の臨床的目的を組み込むロッド解274を表示する。
【0074】
図32に示される矢状矯正機構の実施形態によると、上及び下腰椎前弯角334、336が、インポートされた側方向X線画像から解剖学的構造を参照して測定、表示、及び調節される。例として、側方向X線画像358が、システム10に入力され得る。使用者は、画面200を触り、線360を少なくとも2つの目的とする点(例えば、V1の上終板及びV3の下終板)の上に移動させることができ、システム10は次に、2つの線360間の角度を測定する。上角調節メニュー346または下角調節メニュー348上の角度調節ボタン328、330を使用して、使用者は、矢状面における脊柱の所望の角度矯正を増加または減少させ得る(即ち、脊柱前弯または脊柱後弯を上側または下側に追加または削減する)。上または下腰椎前弯角のいずれかが調節されるとき、調節の量は、そのそれぞれの角度測定ボックス(即ち、上腰椎前弯角ボックス354かまたは下腰椎前弯角ボックス356かのいずれか)内で動的に変更される。
図32に描写される通り、使用者は、下腰椎前弯角の一部として角度線360を調節する。システム10は、角度測定フィールド350に描写される通り、この角度を20度と測定する。使用者は次に、上角調節メニュー346内のボタン330を使用して、角度を増加させる。この変化は、下腰椎前弯角ボックス356内に描写される。所望の量の矯正が達成されると、この例では、それは50度で達成される。使用者は次に、角度捕捉ボタン352を押圧することができ、このパラメータは、それらの角度が測定されている椎骨レベルに対応するデジタル化されたねじ位置と相関性があり得る。システム10は、上述の通り、各デジタル化されたねじ位置が矢状面において調節されるであろう距離の指示を使用者に提供するための色分けされたオフセット距離指示器322を含み得る。所望の量の角度矯正が達成されると、使用者は、「設定する」ボタン332、次に「ロッドを算出する」ボタン272を選択し得る。システム10は次に、
図33に描写される通り、矢状面における脊柱の矯正のための使用者の臨床的目的を組み込むロッド解274を表示する。
【0075】
患者の位置(例えば、骨盤傾斜)は、腰椎前弯測定に影響を及ぼし得るため、システムの矢状矯正機構は、任意の患者の位置付けに関連する偏差を説明し得るであろうことが理解されるべきである。また、前弯矯正に加えて、矢状角度評価ツールは、限定されるものではないが、椎弓根短縮骨切り術(PSO)処置及び前柱再建(ACR)処置を含む他の種類の外科的操作に有用であり得ることも理解されるであろう。
【0076】
いくつかの例では、使用者は、患者の脊柱を冠状面において整列させるまたは矯正する(即ち、脊柱側弯を矯正する)ことを望み得る。システム10は、使用者が、冠状面における患者の脊柱(及び変形)を前後方向x線を介して見る、1つ以上の解剖学的基準角度を測定する、及び/またはロッド屈曲曲線が調節される方向を手動または自動で偏向させることによって1つ以上のねじ場所を特定の冠状整列プロフィールに向かわせることができる、1つ以上の冠状矯正機構を含む。システム10は次に、ロッド解が所望の整列または矯正を含むように、これらの入力を屈曲アルゴリズムに組み込み得る。
【0077】
高度オプションメニュー292からの「冠状矯正」ボタン302の選択は、冠状矯正機構を開始する。使用者は、脊椎解剖学的構造を参照し、冠状面内の2つの解剖学的基準間の冠状コブ角を測定し、手術計画の一部としてそれらの角度を術中に調節して、脊柱を垂直な(またはそれにより近い)整列にすることによって、冠状変形の度合いを確定したいと望み得る。
【0078】
図34~35に示される実施形態によると、冠状コブ角は、前後方向X線画像を使用して確定され得る。前後方向X線画像358は、システム10に入力され得る。1つの実現形態によると、冠状コブ角は、曲線の頂点の上下の最も傾斜した椎骨の終板に平行な線を描画し、それらの間の角度を測定することによって決定され得る。使用者は、画面200を触り、線360を少なくとも2つの目的とする点(例えば、T11の上終板及びL3の下終板)の上に移動させることができ、システム10は次に、2つの線360間の角度を測定する。上椎骨角度調節メニュー346及び/または下椎骨角度調節メニュー348上の角度調節ボタン328、330を使用して、使用者は、冠状面における脊柱の所望の角度矯正を増加または減少させ得る(即ち、矯正を追加または削減して、選択された上及び下椎骨の終板を互いに対してより平行にする)。冠状角度の上側または下側構成要素のいずれかが調節されるのに伴い、冠状コブ角測定値は、冠状コブ角測定ボックス350内で動的に変更され得る。例として、
図34では、開始冠状コブ角は58度である。使用者は、ボタン328、330を使用して、T11とL3との間の角度線360を低減する。矯正の所望の量が達成されると(例えば、
図35では0度の冠状コブ角として示される)、使用者は次に、角度捕捉ボタン352を押圧し得る。このパラメータは、それらの角度が測定されている椎骨レベルに対応するデジタル化されたねじ位置と相関性があり得る。システム10は、上述の通り、各デジタル化されたねじ位置が冠状面において調節されるであろう距離の指示を使用者に提供するための色分けされたオフセット距離指示器322を含み得る(ここでは図示されていない)。所望の量の角度矯正が達成されると、使用者は、「設定する」ボタン332、次に「ロッドを算出する」ボタン272を選択し得る。システム10は次に、冠状面における脊柱の矯正のための使用者の臨床的目的を組み込むロッド解274を表示する。
【0079】
図36~37に示される実施形態によると、冠状コブ角は、目的とする椎骨の左及び右椎弓根内に定置されたねじのデジタル化された場所から解剖学的構造を参照して、表示及び調節され得る。システムは、それぞれ対応する椎骨に関する左右のデジタル化されたねじ場所を結び(線361)、2つの線361の間の角度を測定する(ここでは
図36にて58度として示される)。1つの実現形態によると、冠状コブ角は、曲線の頂点の上下の最も傾斜した椎骨のねじ場所を選択することによって決定され得る。角度調節メニュー326上の角度調節ボタンを使用して、使用者は、冠状面における脊柱の所望の角度矯正を増加または減少させ得る(即ち、矯正を追加または削減して、使用者によって選択された上または下椎骨の終板を互いに対してより平行にする)。冠状角度が調節されるのに伴い、コブ角測定値は上記の通り動的に変更され得る。しかしながら、ここでは冠状コブ角測定ボックス351の代わりに、コブ角は、X線画像の横に表示され得る(
図36では58度の開始冠状コブ角と共に示される)。使用者は、メニュー326内のボタンを使用して、T11とL3との間の角度線361を低減する。所望の量の矯正が達成されると(例として、
図37では0度として示される)、使用者は次に、「設定する」ボタン332を押圧することができ、このパラメータは、それらの角度が測定されている椎骨レベルに対応するデジタル化されたねじ位置と相関性があり得る。システム10は、上述の通り、各デジタル化されたねじ位置が冠状面において調節されるであろう距離の指示を使用者に提供するための色分けされたオフセット距離指示器322を含み得る(ここでは図示されていない)。所望の量の角度矯正が達成されると、使用者は、「ロッドを算出する」ボタン272を選択し得る。システム10は次に、冠状面における脊柱の矯正のための使用者の臨床的目的を組み込むロッド解274を表示する。
【0080】
冠状矯正機構の1つ以上の他の実現形態によると、使用者は、少なくとも2つの目的とする点を選択することができ、システムは次に、その少なくとも2つの目的とする点を含み、またその間に存在する全ての点を通る最適な基準線を生成する。いくつかの例では、冠状面における脊柱の理想的な矯正は、目的とする最上ねじ場所と最下ねじ場所との間に延在する真っ直ぐな垂直線である。しかしながら、患者の個々の解剖学的構造に応じて、真っ直ぐな垂直線を達成することは実行可能ではない場合がある。使用者は、理想的な矯正に対して特定の量の矯正を達成することを望み得る。表示画面から、使用者は、デジタル化されている通りのねじ点(0%矯正)と最適な基準線(100%)との間で相対的な矯正のパーセンテージを選択し得る。さらに、システムは次に、ロッド解を算出し、偏心指示器322を示して、上記の通り、各ねじの冠状調節されたロッド構築物からの距離の指示を使用者に提供する。
【0081】
図38~41に示される実施形態によると、使用者は、構築物内の全ての点を真っ直ぐにし得る(グローバル冠状矯正)。表示画面200から、上及び下ねじ点362、364が選択され、システム10は、全ての点362、364、368を通る最適なグローバル基準線366を生成する。冠状矯正メニュー370を使用して、使用者は、+及び-ボタン372、374を操作して、所望の矯正のパーセンテージを調節する。
図36に示される例では、所望の矯正の量は、パーセンテージ矯正指示器376上で100%として示されており、ロッド解274が冠状面において直線であり、全てのねじ場所がロッド/線に適合するように調節されることを意味する。
図40に描写される通り、システム10は、上述の通り、各デジタル化されたねじ位置が冠状面において調節されるであろう距離の指示を使用者に提供するための色分けされたオフセット距離指示器322を含み得る。使用者がこれを受け入れ可能なロッド解と見なす場合、使用者は、ロッド解274を見るために「ロッドを算出する」ボタン272を選択し(
図41)、屈曲指示を受信するか、または下記により詳細に説明される通り、別の高度機構に進む。
【0082】
図42~44に示される実施形態によると、使用者は、構築物内のねじ点のサブセットを真っ直ぐにし得る(セグメント冠状矯正)。それらの点がシステムに入力される順序に基づいて、最適なセグメント基準線が、最後に選択された点の方向にそれらの点を通って生成される。下側点364が1番目に選択され、次に上側点362が2番目に選択される場合、システム10は、
図42に示される通り、最適なセグメント基準線378を上側に描画するであろう。反対に、上側点362が1番目に選択され、次に下側点364が2番目に選択される場合、システム10は、最適なセグメント基準線378を下側に描画するであろう。冠状矯正メニュー370を使用して、使用者は、+及び-ボタン372、374を操作して、所望の矯正のパーセンテージを調節する。
図43に示される例では、所望の矯正の量は、パーセンテージ矯正指示器376上で100%として示されており、ロッド解274が冠状面において直線であり、全ての選択されるねじ場所がロッド/線に適合するように調節されることを意味する。しかしながら、
図44に示される通り、選択されていないねじ場所380は、ロッド/線に適合するように調節されず、それらの相対的な場所は、システム10に入力され、ロッド算出が行われるときに考慮される。
図43に描写される通り、システム10は、上述の通り、各デジタル化されたねじ位置が冠状面において調節されるであろう距離の指示を使用者に提供するための色分けされたオフセット距離指示器322を含み得る。使用者がこれを受け入れ可能なロッド解と見なす場合、使用者は、ロッド解274を見るために「ロッドを算出する」ボタン272を選択し(
図44)、屈曲指示を受信するか、または下記により詳細に説明される通り、別の高度機構に進む。
【0083】
別の実施形態によると,セグメント冠状矯正は、2つの選択されたデジタル化されたねじ場所を通る最適なセグメント基準線の代わりに、患者の中心仙骨垂直線(CSVL)に関して達成され得る。CSVLは、仙骨の中心を通る垂直線であり、患者の冠状変形に関する垂直基準線、ならびに本開示の冠状評価及び矯正機構による冠状面における脊椎矯正のためのガイドとして機能し得る。
【0084】
図45~49は、一実施形態に従って冠状変形を評価し、冠状矯正を達成するためのCSVL線を使用するための方法を例証する。好ましくは、この方法は、上記の様式で全てのねじが患者内に埋め込まれ、デジタル化された後に開始する。使用者は、仙骨の1つ以上のX線画像を生成し、仙骨上の上側及び下側点を局在させ、それらの点に印を付ける(例えば、カスパーピン(Caspar pin)を埋め込む、患者の皮膚にマーカで印をつける等)。次に、使用者は、「整列」ボタン506を選択する(
図45)。そのような選択の後、使用者は、上及び下仙骨ランドマークを表す印を付けた皮膚の点をデジタル化するよう促される。例として
図46に示される通り、ボックス510がポップアップし、ワークフローの種々のステップを使用者に指示し得る。ここでは、仙骨上の上側点は、既にデジタル化されている(デジタル化された点512及びチェックマーク514として示される)。ボックス510は、使用者に「下側端部における点を獲得する」ようにさらに指示する。「冠状整列線を消去する」516を選択して、仙骨点を再デジタル化する、及び/またはCSVL冠状矯正機構を終了する。上及び下仙骨点がデジタル化されると、患者の真のCSVL線を表す点線518が画面上に現れ(
図47)、デジタル化されたねじ場所264は、CSVL線518に対してシステム10内で再配向される。冠状ビュー内の表示200は、ここでは、垂直基準(CSVL)に対する患者の現在の冠状曲線を表す。ここから、使用者は、彼/彼女がCSVLに対して矯正するかまたは真っ直ぐにしたいと望む2つの点(即ち、ねじセグメント)を選択し得る。
図48に示される通り、例として、使用者は、点542及び544を選択する。1つの実現形態によると、第1の選択された点542は、セグメントの回転点及び直線化線520の起点である。第2の点544は、直線化線520の方向を決定する。冠状矯正の目的は、脊柱を冠状面において可能な限り垂直にすることであるため、直線化線520は、CSVL線518に平行に描画され得る。使用者がこれを受け入れ可能なロッド解と見なす場合、使用者は、ロッド解274を見るために「ロッドを算出する」ボタン272を選択し(
図49)、屈曲指示を受信する。使用者は今では、それがCSVL線に対して真っ直ぐであり、したがって冠状変形の所望の矯正を提供することが分かるので、彼/彼女がねじをそれに対して引っ張り得るロッド解を有する。使用者は、屈曲指示を受信するか、または下記により詳細に説明される通り、別の高度機構に進むであろう。
【0085】
いくつかの脊椎処置(例えば、前柱変形矯正処置)では、患者の脊柱を均衡のとれた位置に復元することは、所望の外科的結果であり得る。本発明の広範な態様によると、システム10は、制御ユニット16が1)術前の脊椎パラメータ測定、2)標的脊椎パラメータ入力、3)術中の脊椎パラメータ入力、及び4)術後の脊椎パラメータ入力を受信及び評価するように構成される、グローバル脊椎均衡機構を含み得る。これらの入力のうちの1つ以上は、外科的矯正が手術計画に向かってどのように進行しているかを評価するため、また患者の脊柱がグローバル脊椎均衡の達成にどれだけ近いかを評価するために追跡される、及び/または他の入力と比較され、所望の外科的矯正を達成するために手術計画を開発/改良ために利用され得る。
【0086】
脊椎パラメータは、患者の骨盤形態角(PI)、骨盤傾斜(PT)、仙骨の傾き(SS)、腰椎前弯(LL)、上腰椎前弯(↑LL)、下腰椎前弯(↓LL)、C7鉛直線オフセット(C7PL)、及び胸椎脊柱後弯(TK)、T1傾斜、及び矢状垂直軸(SVA)測定値を含み得る。標的脊椎パラメータ測定値は、臨床的なガイドラインであり得る(ほんの一例として、SRS-Schwab分類、または患者の解剖学的構造に基づく患者に特異的な目標)。使用者好みに応じて、これらの脊椎パラメータは、骨盤形態角(PI)、骨盤傾斜(PT)、仙骨の傾き(SS)、腰椎前弯(LL)、上腰椎前弯(↑LL)、下腰椎前弯(↓LL)、C7鉛直線オフセット(C7PL)、及び胸椎脊柱後弯(TK)、T1傾斜、及び矢状垂直軸(SVA)測定値を含み得る。
【0087】
図50は、一実施形態に係るグローバル脊椎均衡機構のステップを示すフローチャートを描写する。ステップ390において、システム10は、患者の術前の脊椎パラメータ測定値を入力する。次に、システムは、理論上の標的脊椎パラメータ測定値を生成する(ステップ392)。1つ以上の標的脊椎パラメータ測定値は、所望により、ステップ394において手術計画に従って使用者によって調節され得る。ステップ396において、標的脊椎ロッドは、ステップ392または394からの理論上のまたは調節された標的脊椎パラメータ測定値を使用して、患者の解剖学的構造に一致するように拡大縮小され得る。この拡大縮小された標的ロッドは次に、使用者に表示され得る398。所望により、システム10は、外科的処置中に1つ以上の測定値を生成し得る(ステップ400)。ステップ402において、標的脊椎パラメータデータは次に、ステップ400からの術中測定に基づいて調節され得る。最後に、システム10は、均衡のとれた脊柱矯正のための屈曲指示を生成し得る。
【0088】
使用者は、例として
図51に描写される通り、患者の術前の測定をシステム10に入力し得る。術前測定ボタン404の選択は、使用者が、測定値をPI、LL、上LL、下LL、C7PL、及びTK入力フィールド408、410、412、414、416、418、及び420にそれぞれ入力することを可能にする。そのような術前測定値は、任意の数の市販のデスクトップ及びモバイルソフトウェアアプリケーションからインポートされる手動の測定手段から取得され得る。これらの術前の解剖学的測定値は、患者の変形した脊柱内の不均衡を理解するため、及び脊柱をより自然な均衡に調節または形成するであろうデバイス(例えば、ロッド、ねじ、過度前弯椎間インプラント等)を埋め込むための手術計画を決定するのに役立てるために使用され得る。
【0089】
図52に描写される通り、グローバル脊椎均衡機構は、使用者が、患者の解剖学的測定値を均衡のとれた、及び/または整列された脊柱のための使用者の好ましい標的脊椎パラメータに調節することを可能にする。1つの実現形態によると、標的測定ボタン406の選択は、測定値を、理想的または適切に均衡のとれた脊柱を表す入力フィールド410、412、414、416、418、420に投入する。使用者がこれらの標的脊椎パラメータを受け入れる場合、システム10は、
図53に示される通り、拡大縮小され、デジタル化されたねじ点状に重ねられた理想的または適切に均衡のとれた脊柱を表すロッド形状及び曲線を含む理論上のロッド解を出力する。システム10はまた、上述の通り、各デジタル化されたねじ位置の矢状及び冠状面におけるロッド解からの距離の指示を使用者に提供するための色分けされたオフセット距離指示器322を含み得る。別法として、使用者が異なる整列を達成しようとする場合、彼または彼女は、ボタン422、424、426を使用して、これらの標的脊椎パラメータを調節し得る。使用者は次に、それらの調節された入力矯正値に基づいて、どれ程の矯正が(術前及び理論上の脊椎パラメータに対して)達成されるであろうかという指示のために、矯正指示器428を参照し得る。使用者が入力した矯正値は次に、その特定の定置に関して使用者の計画にカスタマイズされたロッド形状に対して、(デジタル化されたねじ場所に基づいて)ロッド屈曲アルゴリズムを駆動する。最終的なロッドは、患者内に位置付けられることができ、ねじ及び脊柱は、所望の整列においてロッドに対して調節される。
【0090】
グローバル脊椎均衡機構に従って、脊椎パラメータ入力は、術中に評価され得る。例えば、使用者は、達成された腰椎前弯の量を術中に(例えば、椎間インプラントの定置後に)測定したいと望み得る。
図54~55に描写される通り、システム10は、1つ以上の側方向画像を取得またはインポートし、患者の解剖学的構造上の2つ以上のランドマークの間に1つ以上の線を生成し、それらのランドマーク間の関係性を決定し、ロッド解の生成に使用されるための1つ以上の脊椎パラメータを調節するように構成され得る。例として
図54に示される通り、使用者はまず、術中測定ボタン408を選択する。次に、側方向X線画像358が、システム10に入力され得る。使用者は、画面200を触り、線360を少なくとも2つの目的とする点(例えば、V1の上終板及びV2の上終板)上に移動させることができ、システム10は次に、2つの線360間の角度を測定する。
図55に示される通り、システム10は、この角度を角度測定フィールド350に示される通り15度と測定する。所望により、システムは、術中の測定値を術前の及び/または標的脊椎パラメータ値と比較し、術前及び理論上の脊椎パラメータに対してどれ程の矯正が達成されたかという指示を使用者に提供し得る。角度測定ボタン328、330を使用して、使用者は、矢状面における脊柱の所望の矯正角度を増加し得る(即ち、脊柱前弯または脊柱後弯を追加または削減する)。角度が調節されるのに伴い、調節の量は、角度測定フィールド350内に動的に表示され得る。システム10は、上述の通り、各デジタル化されたねじ位置が矢状面において調節されるであろう距離の指示を使用者に提供するための色分けされたオフセット距離指示器を含み得る(図示せず)。所望の量の角度矯正が更新されると、使用者は、「設定する」ボタン332、次に「ロッドを算出する」ボタン(この表示内には示されていない)を押圧し得る。システムは次に、矢状面における脊柱の矯正のための使用者の術中の目的を組み込むロッド解274を表示する。
【0091】
使用者はまた、患者の骨盤形態角を術中に測定したいと望み得る。
図56に示される通り、術中測定ボタン408の選択は、所望により、PI評価ツールをもたらす。システム10は、患者の骨盤の蛍光透視画像452を取得する。使用者はまず、大腿骨頭ボタン432を選択し、PI調節メニュー448上の矢印450を使用して、大腿骨頭の中心点434を配置する。次に、使用者は、後方仙骨ボタン436を選択し、矢印450を使用して、仙骨終板438の後方態様を特定する。次に、使用者は、前方仙骨ボタン440を選択し、矢印450を使用して、仙骨終板442の前方態様を特定する。全てのPI入力が選択された状態で、使用者は、「PIを描画する」ボタン446を押圧することができ、その後、システム10は、使用者のために骨盤形態角446を自動的に描画し、測定する。
【0092】
上記の例証的な実施形態は、標的ロッド形状を決定して、脊椎均衡を復元または改善するために、標的脊椎パラメータ入力の使用を含んだ。しかしながら、全ての実施形態がそのような決定を必要とするわけではないことを理解されたい。
図57は、一実施形態に係る術中のグローバル脊椎均衡評価機構ステップを示すフローチャートを描写する。ステップ556において、システム10は、患者の術前の脊椎パラメータ測定を入力する。次に、システムは、理論上の標的脊椎パラメータ測定値を生成する(ステップ558)。1つ以上の標的脊椎パラメータ測定値は、所望により、ステップ560において手術計画に従って使用者によって調節され得る。ステップ562において、システムは、1つ以上の脊椎パラメータ測定値を術中に測定し、外科的処置がどのように進行しているかという1つ以上の指示を使用者に提供し得る。ステップ564において、システムは、1つ以上の脊椎パラメータ測定値を術後に測定して、達成された変形矯正及び均衡の最終的な状態を評価し得る。
【0093】
使用者は、例として
図51に描写される通り、患者の術前の測定値をシステム10に入力し得る。術前測定ボタン404の選択は、使用者が、測定値をPI、LL、上LL、下LL、C7PL、及びTK入力フィールド408、410、412、414、416、418、及び420にそれぞれ入力することを可能にする。そのような術前測定値は、任意の数の市販のデスクトップ及びモバイルソフトウェアアプリケーションからインポートされる手動の測定手段から取得され得る。これらの術前の解剖学的測定値は、患者の変形した脊柱内の不均衡を理解するため、及び脊柱をより自然な均衡に調節または形成するであろうデバイス(例えば、ロッド、ねじ、過度前弯椎間インプラント等)を埋め込むための手術計画を決定するのに役立てるために使用され得る。
【0094】
図52に描写される通り、グローバル脊椎均衡機構は、使用者が、患者の解剖学的測定値を均衡のとれた、及び/または整列された脊柱のための使用者の好ましい標的脊椎パラメータに調節することを可能にする。1つの実現形態によると、標的測定ボタン406の選択は、測定値を、理想的または適切に均衡のとれた脊柱を表す入力フィールド410、412、414、416、418、420に投入する。別法として、使用者が異なる整列を達成しようとする場合、彼または彼女は、ボタン422、424、426を使用して、これらの標的脊椎パラメータを調節し得る。グローバル脊椎均衡機構に従って、脊椎パラメータ入力は、術中に評価され得る。例えば、使用者は、達成された腰椎前弯の量を術中に(例えば、椎間インプラントの定置後に)測定したいと望み得る。
図54~55に描写される通り、システム10は、1つ以上の側方向画像を取得またはインポートし、患者の解剖学的構造上の2つ以上のランドマークの間に1つ以上の線を生成し、それらのランドマーク間の関係性を決定し、ロッド解の生成に使用されるための1つ以上の脊椎パラメータを調節するように構成され得る。例として
図54に示される通り、使用者はまず、術中の測定ボタン408を選択する。次に、側方向X線画像358が、システム10に入力され得る。使用者は、画面200を触り、線360を少なくとも2つの目的とする点(例えば、V1の上終板及びV2の上終板)上に移動させることができ、システム10は次に、2つの線360間の角度を測定する。
図55に示される通り、システム10は、この角度を角度測定フィールド350に示される通り15度と測定する。所望により、システムは、術中の測定値を術前の及び/または標的脊椎パラメータ値と比較し、術前及び理論上の脊椎パラメータに対してどれ程の矯正が達成されたかという指示を使用者に提供し得る。角度測定ボタン328、330を使用して、使用者は、矢状面における脊柱の所望の矯正角度を増加し得る(即ち、脊柱前弯または脊柱後弯を追加または削減する)。角度が調節されるのに伴い、調節の量は、角度測定フィールド350内に動的に表示され得る。
【0095】
1つ以上の実現形態によると、使用者は、外科的処置が標的とされる計画に対してどのように進行しているかに関する視覚指示を提供される。例として、術中の腰椎前弯測定値が計画された骨盤形態角値の10度以内になると、両ボタンは、画面200上で緑として表される。術中の腰椎前弯測定値が計画された骨盤形態角値の10度超であるが21度未満になると、両ボタンは、画面200上で黄として表される。術中の腰椎前弯測定値が21度以上になると、両ボタンは、画面200上で赤として表される。
【0096】
いくつかの環境では、使用者は、冠状面変形の量/重大度を評価する、及び/または付与されたロッド屈曲構成を用いて達成される矯正の量を術中に画定することを望み得る。システムは、1つ以上の前後方向画像を取得またはインポートし、患者の解剖学的構造上のランドマークに関するデジタル位置情報を獲得し、それらのランドマーク間に1つ以上の線を生成し、それらのランドマーク間の関係性を決定するように構成される冠状オフセット評価機構を含み得る。
【0097】
いくつかの実現形態によると、システム10はまず、腸骨仙骨領域の蛍光透視画像454を取得する(
図58)。使用者は、2つの点456をデジタル化し、「腸骨線:設定する」ボタン460を選択して、水平腸骨線458を確立する。次に、使用者は、仙骨の中点462をデジタル化して、「CSVL線:設定する」ボタン466を選択しシステム10は、仙骨の中点462から腸骨線458へと直交線(CSVL線464)を自動的に生成する。システム10は次に、
図59に描写される通り、C7椎骨の蛍光透視画像468を取得する。使用者は、C7椎骨の中点470をデジタル化し、「C7PL:設定する」ボタン474を選択し、システム10は、C7の中点470から腸骨線458へと直交線(C7PL線476)を自動的に生成する。最後に、システム10は、CSVL線464とC7PL線476線との間のオフセット距離を使用して冠状面オフセット距離を(ボックス476内に)算出する。したがって、使用者は、矯正された、または矯正されるべき冠状面オフセットの量の術中の評価を付与され、それは、手術計画目標が達成されたかどうか、または1つ以上の脊椎パラメータ入力が冠状整列に対して更新される必要があるかどうかを決定する機会を与える。
【0098】
上記の通り、システム10は、使用者に、脊柱上の2つの点を選択し、それらの2つの点の間に、ロッド解を生成し、脊柱を矯正するための最適な基準線を生成する機能を提供する。いくつかの例では、冠状面における脊柱の真の変形を術中に表現し、骨盤の解剖学的基準線に対して脊柱を矯正することが望ましい場合がある。したがって、仮想の直交基準線が提供され、それを通して使用者は変形された脊柱を術中に評価する、及び/または冠状脊椎変形を矯正する。
【0099】
例証の目的のため、使用者は、
図60に示される通りねじ点264をデジタル化しており、直線化線524を最適な基準線として用いたセグメント冠状矯正(上記の通り)の実施を企図していると仮定する。使用者は、「仮想T定規」ボタン522を選択して、仮想T定規機構を作動させ得る。
図61~62は、仮想T定規機構を詳細に説明する。まず、使用者は、cアーム蛍光透視法によって患者の解剖学的構造上に3つの基準点を局在させ、それらの解剖学的基準の場所に印を付ける(例えば、カスパーピンを埋め込む、患者の皮膚にマーカで印をつける等)。例として、解剖学的基準点は、左腸骨稜、右腸骨稜、及び仙骨中点であり得る。使用者は、本明細書に先に説明される様式で以前に特定された解剖学的基準点の各々をデジタル化するよう(テキストボックス、可聴警告音等を介して)促され得る。システム10が腸骨稜上の左及び右の点を指定する印のデジタル化された場所を登録するのに伴い、点528、530がそれぞれ画面200上に現れ、腸骨線を表す水平線534が左及び右腸骨稜点528、530の間に描画される。これは、ほんの一例として、
図61にて点線534として示される。次に、システム10は、仙骨中点のデジタル化された場所を登録し、点532が画面200上に現れ、CSVLを表す点線536が腸骨線534の上側に、それと直交して描画される。1つ以上の好ましい実施形態によると、システム10は、1つ以上のアルゴリズムを使用して、仮想T定規機構が作動されるときに、次の3つの獲得されたデジタル化された点が3つの目的とする解剖学的基準点に対応するであろうことを検出し得る。CSVL線536が確立された状態で、デジタル化されたねじ場所264は、システム10内でCSVL線536に対して再配向されることができ、使用者は、上記の通り、彼/彼女がCSVLに対して矯正するかまたは真っ直ぐにしたいと望む2つの点(即ち、ねじセグメント)を選択し得る。使用者はまた、ロッド解を生成し、屈曲指示を受信し、上記に詳細に説明される通りそれがCSVL線に対して真っ直ぐであることが分かると、ねじをそれに対して引っ張るロッドを出力することができる。「リセットする」ボタン316の選択は、線534、536、及び冠状ビュー内の全ての調節を消去し、調節された球をそれらの元のデジタル化された場所に戻す。使用者が仮想T定規ボタン522を停止すると、基準線526は消去され、点の配向は、冠状ビューウィンドウ内の最良適合524に変わって戻る。
【0100】
いくつかの例では、脊柱の真の冠状変形の術中評価及び/または矯正に加えて、冠状脊椎均衡を術中に評価することがさらに望ましい場合がある。冠状脊椎均衡は、CSVLとC7との間のオフセットを測定することによって決定される。いくつかの実施形態によると、仮想T定規機構は、C7鉛直線測定機構と共に含まれ得る。使用者が仮想T定規機構522によってCSVL線を獲得した後、「C7鉛直線」ボタン540が有効にされる。
図63は、C7鉛直線機構を詳細に説明する。まず、使用者は、cアーム蛍光透視法によってC7椎骨の中心を局在させ、この解剖学的基準の場所を患者の皮膚上に(例えば、「X」を用いて)表面的に印を付ける。使用者は、本明細書に先に説明される様式でC7椎骨点の各々をデジタル化するよう(テキストボックス、可聴警告音等を介して)促され得る。システム10がC7椎骨を指定する印のデジタル化された場所を登録するのに伴い、点558が画面200上に現れ、C7鉛直線を表す垂直線538が、CSVLに平行に、かつ腸骨線534に直交して描画される。これは、ほんの一例として、
図63にて点線538として示される。1つ以上の好ましい実施形態によると、システム10は、1つ以上のアルゴリズムを使用して、C7鉛直線機構が作動されるときに、次の獲得されたデジタル化された点がC7解剖学的ランドマークに対応するであろうことを検出し得る。最後に、システム10は、CSVL線536とC7PL線538との間のオフセット距離を使用して、冠状面オフセット距離を算出する。例として、冠状オフセットの程度、したがって冠状面における脊椎均衡または不均衡を表すために、2つの垂直線の間に二重矢印線が描画される(
図63では10cmとして示される)。1つ以上の実施形態(図示せず)によると、色分けされた冠状面オフセット距離指示器は、冠状オフセットの程度の指示を使用者に提供し得る。例として、0~2cmのオフセットは、緑の二重矢印線で示されることができ、3~4cmのオフセットは、黄の二重矢印線で示されることができ、4cm超のオフセットは、赤の二重矢印線で示されることができる。したがって、使用者は、矯正された、または矯正されるべき冠状面オフセットの量の術中の評価を付与され、それは、手術計画目標が達成されたかどうか、または1つ以上の脊椎パラメータ入力が冠状整列に対して更新される必要があるかどうかを決定する機会を与える。
【0101】
上記の機構の1つまたは多数から、使用者が所望のロッド解を選択した後、使用者は次に、機械的ロッド屈曲器18を使用して屈曲を実行する。機械的ロッド屈曲器18は、それが脊椎ロッド上に屈曲をもたらすように、6自由度情報を考慮する任意の屈曲器であり得ることが企図される。例として、1つの実現形態によると、機械的ロッド屈曲器18は、2011年6月7日に特許所得された、共同所有される「System and Device for Designing and Forming a Surgical Implant」と題される米国特許第7,957,831号に説明される屈曲器であってもよく、その開示は、参照によりその全体が本明細書に記載されるかのように本明細書に組み込まれる。第2の実現形態によると、機械的ロッド屈曲器18は、
図50に示される屈曲器であり得る。第1及び第2のレバー106、110が示され、またレバー106を手動で握持するために設計されたレバーハンドル108、及びレバー110を静止した位置で保持するためのベース112も示される。第2のレバー110は、屈曲プロセス中にロッド屈曲デバイス18と共に無限に長いロッドが一定のロッドと同様に使用され得るように、ロッド用開口部114を有する。使用者は、ハンドル108を握持し、それを開放して、角度計132上の角度を選び、レバー106、110が互いにより近付くようにハンドル108を閉鎖することによって、特定のロッドを屈曲させる。他の実施形態では、機械的ロッド屈曲器18は、ハンドルの開放動作中にも生成されて、ロッドを屈曲させ得る。ロッドは、回転軸118を通り、移動ダイ120と固定ダイ122との間を移動する。ロッドは、2つのダイ120、122の間で屈曲される。屈曲器18上の計器は、使用者が、ロッドを操作して、屈曲位置、屈曲角度、及び屈曲回転を決定することを可能にする。ロッドは、コレット126によって定位置に保持される。スライドブロック128をベース112に沿って摺動させることによって、ロッドは、機械的ロッド屈曲器18内で近位及び遠位に移動され得る。位置は、ベース112に沿って規則的間隔でクリックストップ130によって測定され得る。各クリックストップ130は、ベース112に沿った測定された距離であり、したがって、特定の数のクリックストップ130を移動させることは、ロッド屈曲の場所のための正確な場所を付与する。
【0102】
屈曲角度は、角度計132を使用して測定される。角度計132は、規則的間隔で離間されたラチェット歯116を有する。ハンドル106が開放及び閉鎖されるときに、各ラチェットストップは、特定の屈曲角度計132による5度の屈曲角度を表す。各ラチェットステップは、任意の好適な増分度(例えば、.25度~10度)を表し得ることを理解されたい。屈曲回転は、コレットノブ134によって制御される。コレットノブ134を時計回りかまたは反時計回りかのいずれかに回転させることによって、使用者は、特定の回転角度を設定し得る。コレットノブ134は、規則的間隔の刻み目136で印を有するが、この特定の実施形態では、連続的に回転可能であり、したがって無限の設定を有する。使用者がノブ134を回転させた後、使用者は、ノブ134を特定の印またはその間等に設定して、特定の角度の回転を高精度に決定し得る。それに加えて、ベース112は、使用者が術中にロッドを測定するのを助けるために、その長さに沿って定規138を有し得る。
【0103】
別の実現形態によると、ロッド屈曲器18は、ロッドの場所、回転、及び屈曲角度を自動的に調節し得る空気式またはモータ駆動式デバイスであり得る。例として、3つのモータが、各動作のために使用され得る。リニアトランスレータモータは、ロッドを回転軸118及び移動ダイ120の内外に移動させるであろう。1つの回転モータは、ロッド及び移動ダイ120を回転させるであろう。屈曲算出は、モータに電源を供給し、制御するために動作するインターフェースプログラムに変換され得る。自動屈曲器は、手動の屈曲指示に従うときの使用者エラーの可能性を低減するであろう。それはまた、ロッド内に与えられ得る屈曲の解決または数を増加させ、より滑らかに見えるロッドを生み出すであろう。
【0104】
本発明は、本発明の目的を達成するための最良の形態に関して記載されてきたが、これらの教示を考慮して、本発明の趣旨または範囲から逸脱することなく、変形物が達成され得ることが、当業者によって理解される。例えば、本発明は、コンピュータプログラミングソフトウェア、ファームウェア、またはハードウェアの任意の組み合わせを使用して実現され得る。本発明を実践する、または本発明に従って装置を構築する準備ステップとして、本発明に係るコンピュータプログラミングコード(ソフトウェアであるか、またはファームウェアであるかに関わらず)は、典型的に、固定(ハード)ドライブ、ディスケット、光学ディスク、磁気テープ、ROM、PROM等の半導体メモリ等の1つ以上の機械可読記憶媒体に記憶することができ、それによって、本発明に係る製品を作製する。コンピュータプログラミングコードを含有する製品は、記憶デバイスからコードを直接実行することによってか、記憶デバイスからハードディスク、RAM等の別の記憶デバイスにコードをコピーすることによってか、または遠隔実行のためにコードを伝送することによってかのいずれかで使用される。
【0105】
本発明は種々の修正及び代替的形態の影響を受け得るが、その特定の実施形態が、ほんの一例として図面に示され、また本明細書に詳細に説明されている。当業者が想定することができるように、上記の多くの異なる組み合わせを使用することができ、したがって、本発明は、指定される範囲に制限されない。本明細書における特定の実施形態の説明は、本発明を開示される具体的な形態に限定することを意図するものではないことが理解されるべきである。それどころか、本発明は、本明細書に定義される本発明の趣旨及び範囲内の全ての修正、等価物、及び代替物を網羅する。