IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ CONNEXX SYSTEMS株式会社の特許一覧 ▶ 国立大学法人京都大学の特許一覧

特許7273270固体酸化物形電気化学セルおよびその製造方法
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B1)
(11)【特許番号】
(24)【登録日】2023-05-02
(45)【発行日】2023-05-15
(54)【発明の名称】固体酸化物形電気化学セルおよびその製造方法
(51)【国際特許分類】
   H01M 8/1213 20160101AFI20230508BHJP
   C25B 1/04 20210101ALI20230508BHJP
   C25B 9/00 20210101ALI20230508BHJP
   C25B 9/23 20210101ALI20230508BHJP
   C25B 11/02 20210101ALI20230508BHJP
   H01M 4/86 20060101ALI20230508BHJP
   H01M 4/88 20060101ALI20230508BHJP
   H01M 8/12 20160101ALI20230508BHJP
   H01M 8/124 20160101ALI20230508BHJP
【FI】
H01M8/1213
C25B1/04
C25B9/00 A
C25B9/23
C25B11/02
H01M4/86 U
H01M4/88 T
H01M8/12 101
H01M8/124
【請求項の数】 8
(21)【出願番号】P 2022562015
(86)(22)【出願日】2022-06-10
(86)【国際出願番号】 JP2022023458
【審査請求日】2022-10-12
(31)【優先権主張番号】P 2021112725
(32)【優先日】2021-07-07
(33)【優先権主張国・地域又は機関】JP
【国等の委託研究の成果に係る記載事項】(出願人による申告)令和4年度、国立研究開発法人科学技術振興機構、研究成果展開事業「超高エネルギー密度、本質安全および長寿命な鉄-空気二次電池 Shuttle Battery の開発」委託研究、産業技術力強化法第17条の適用を受ける特許出願
【早期審査対象出願】
(73)【特許権者】
【識別番号】712006374
【氏名又は名称】CONNEXX SYSTEMS株式会社
(73)【特許権者】
【識別番号】504132272
【氏名又は名称】国立大学法人京都大学
(72)【発明者】
【氏名】岩井 裕
(72)【発明者】
【氏名】岸本 将史
(72)【発明者】
【氏名】塚本 壽
【審査官】高木 康晴
(56)【参考文献】
【文献】特表2012-507129(JP,A)
【文献】特表2008-505458(JP,A)
【文献】特開2010-267618(JP,A)
【文献】特開2010-287441(JP,A)
【文献】中国特許出願公開第109755615(CN,A)
【文献】米国特許出願公開第2011/0223519(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H01M 8/12
H01M 4/86
H01M 4/88
C25B 9/23
C25B 9/00
C25B 1/04
C25B 11/02
(57)【特許請求の範囲】
【請求項1】
発電時に酸素イオンと反応して水素を水に酸化する固体水素電極と、
前記固体水素電極の一方の第1面に積層され、発電時に酸素イオンを伝導する固体電解質膜と、
前記第1面に接する面に対して反対側の前記固体電解質膜の第2面に積層され、発電時に空気中の酸素を酸素イオンに還元する固体酸素電極と、を有し、
前記固体水素電極は、前記第1面に、前記固体電解質膜の方向に隆起した複数の第1隆起部と、複数の前記第1隆起部の内の隣接する2つの前記第1隆起部の間にある第1中間部と、を備え、
前記固体電解質膜は、前記第1隆起部に積層された第2隆起部と、前記第1中間部に積層された第2中間部と、を備え、
前記固体酸素電極は、前記第2隆起部に積層された第3隆起部と、前記第2中間部に積層された第3中間部と、を備え、
前記第1隆起部は、ピッチが70~110μmであり、
前記第2中間部は、前記第3中間部に隙間なく接するものであり、
前記第1隆起部の頂上を覆う前記第2隆起部の厚さは、前記第2中間部の厚さよりも薄い固体酸化物形電気化学セル。
【請求項2】
前記第1隆起部は、隆起方向に対して直角な方向に直線的に連続し、かつ隣接する2つが等間隔に離間した形状である請求項1に記載の固体酸化物形電気化学セル。
【請求項3】
前記第1隆起部は、高さが50~90μmである請求項1または2に記載の固体酸化物形電気化学セル。
【請求項4】
発電時に酸素イオンと反応して水素を水に酸化する固体水素電極の一方の第1面に、発電時に酸素イオンを伝導する固体電解質膜を積層する工程と、
前記第1面に接する面に対して反対側の前記固体電解質膜の第2面に、発電時に空気中の酸素を酸素イオンに還元する固体酸素電極を積層する工程と、を含み、
前記固体水素電極は、前記固体電解質膜および前記固体酸素電極よりも大きい厚さを持ち、かつ前記第1面に凹凸を有するものであり、凹凸表面を持つシリコン基板の前記凹凸表面の上に前記固体水素電極の材料を塗工した後、前記シリコン基板から剥離することによって形成され、
前記固体酸素電極は、一部をプリンティングするまたはあらかじめ設定した材料濃度の材料で全体をプリンティングすることによって形成される固体酸化物形電気化学セルの製造方法。
【請求項5】
前記固体水素電極の材料濃度は、60~75wt%である請求項に記載の固体酸化物形電気化学セルの製造方法。
【請求項6】
前記固体電解質膜の材料濃度は、4~7wt%であり、
前記固体電解質膜は、前記固体水素電極の前記第1面の上に前記固体電解質膜の材料をスプレーコーティングすることによって形成される請求項またはに記載の固体酸化物形電気化学セルの製造方法。
【請求項7】
前記固体酸素電極の材料濃度は、スプレーコーティング用が4~7wt%、プリンティング用が40~75wt%であり、
前記固体酸素電極は、前記固体電解質膜の前記第2面の上に前記固体酸素電極の材料をスプレーコーティングした後にさらにプリンティングすることによって形成される請求項またはに記載の固体酸化物形電気化学セルの製造方法。
【請求項8】
前記固体酸素電極の材料濃度は、40~60wt%であり、
前記固体酸素電極は、前記固体電解質膜の前記第2面の上に前記固体酸素電極の材料で全体をプリンティングすることによって形成される請求項またはに記載の固体酸化物形電気化学セルの製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、固体水素電極の上に固体電解質膜と固体酸素電極とを順に積層した燃料極支持型の固体酸化物形電気化学セルに関し、特に、固体水素電極の表面に凹凸を有する固体酸化物形電気化学セルに関する。
【背景技術】
【0002】
固体酸化物形電気化学セルは、固体酸化物形燃料電池(SOFC、Solid Oxide Fuel Cell)および固体酸化物形電解セル(SOEC、Solid Oxide Electrolyser Cell)を含み、従来の固体酸化物形電気化学セルは、固体水素電極と固体電解質膜と固体酸素電極とを順に単に平坦に積層した構造であり、どの層を最も厚くして他の2つの層を機械的に支持するかによって、固体電解質支持型セル、燃料極支持型セル、空気極支持型セルの3つに分類されている。また、3つの層とは別に独立した多孔金属板を設ける多孔金属板支持型セルも検討されている。たとえば、特許文献1には、上記4つの型の固体酸化物形電気化学セルが記載されている。
【0003】
一方、固体酸化物形電気化学セルの出力を高めるために、固体水素電極と固体電解質膜との間ならびに固体電解質膜と固体酸素電極との間の凹凸を形成することによって界面表面積を大きくする構造が検討されている。たとえば、非特許文献1には、メゾ構造と名付けた上記構造の固体酸化物形電気化学セルおよびその製作方法が記載されている。
【先行技術文献】
【特許文献】
【0004】
【文献】特許第6865993号
【非特許文献】
【0005】
【文献】Journal of Power Sources, Volume 450, 29 February 2020, 227682, Microextrusion printing for increasing electrode-electrolyte interface in anode-supported solid oxide fuel cells
【発明の概要】
【発明が解決しようとする課題】
【0006】
しかしながら、特許文献1のセルには、その出力を飛躍的に向上させたいという潜在的ニーズがあった。また、その潜在的ニーズを満たした非特許文献2のセルの製作方法には、固体酸化物形電気化学セルの出力と生産性との間、ならびに生産性と品質との間にトレードオフがある。すなわち、あらかじめ決められた長方形の領域に燃料極ペーストを塗布する場合に、出力を高める目的で固体水素電極と固体電解質膜との間の界面表面積を大きくするために塗布位置のピッチを小さくするほど、長方形の領域全体の塗布距離が長くなって生産性が低下する。一方、生産性の低下を防ぐために燃料極ペーストの塗布速度を高くするほど、適切な位置に燃料極ペーストのノズルを移動させる制御およびその位置に適切な量の燃料極ペーストを吐出させる制御が難しくなって品質低下の懸念が増加する。したがって、固体酸化物形電気化学セルの出力を高めようとすると生産性の低下または品質低下の懸念が生じるという問題があった。
【0007】
本発明は、従来のこのような問題点に鑑みてなされたものであり、本発明の目的は、高い出力を持つ固体酸化物形電気化学セル、および高い出力を持ち、かつ高い生産性と高い品質とを両立させた方法で製作することが可能な固体酸化物形電気化学セルの製造方法を提供することにある。
また、本発明の他の目的は、上記目的に加え、従来と同等以上に低コストで製作することが可能な固体酸化物形電気化学セルの製造方法を提供することにある。
【課題を解決するための手段】
【0008】
本発明者は、上記目的を達成するために鋭意研究を重ねた結果、まず、平坦な固体水素電極の表面の上に固体水素電極の材料のペーストを塗布して凹凸を形成するのではなく、凹凸表面を持つ型の凹凸表面の上に固体水素電極の材料を塗工した後、型から剥離することによって、平坦な固体水素電極の表面の上に凹凸を形成することができることを見出した。
【0009】
また、本発明者は、固体電解質膜および固体酸素電極のそれぞれの材料濃度を柔らか過ぎず硬過ぎない範囲に調節することによって、固体水素電極の上に固体電解質膜と固体酸素電極とを順に適切に積層することができること、および押出式マイクロ塗布法で製作したセルと同等以上の高い出力を持ち、かつ押出式マイクロ塗布法よりも高い生産性と高い品質とを両立させた方法で固体酸化物形電気化学セルを製作することができることを見出し、本発明に至ったものである。
【0010】
即ち、本発明の第1形態は、発電時に酸素イオンと反応して水素を水に酸化する固体水素電極と、固体水素電極の一方の第1面に積層され、発電時に酸素イオンを伝導する固体電解質膜と、第1面に接する面に対して反対側の固体電解質膜の第2面に積層され、発電時に空気中の酸素を酸素イオンに還元する固体酸素電極と、を有し、固体水素電極は、第1面に、固体電解質膜の方向に隆起した複数の第1隆起部と、複数の第1隆起部の内の隣接する2つの第1隆起部の間にある第1中間部と、を備え、固体電解質膜は、第1隆起部に積層された第2隆起部と、第1中間部に積層された第2中間部と、を備え、固体酸素電極は、第2隆起部に積層された第3隆起部と、第2中間部に積層された第3中間部と、を備え、第1隆起部は、ピッチが70~110μmであり、第2中間部は、第3中間部に隙間なく接するものであり、第1隆起部の頂上を覆う第2隆起部の厚さは、第2中間部の厚さよりも薄い固体酸化物形電気化学セルを提供するものである。
【0011】
ここで、上記第1形態においては、第1隆起部は、隆起方向に対して直角な方向に直線的に連続し、かつ隣接する2つが等間隔に離間した形状であるのが好ましい
第1隆起部は、高さが50~90μmであるのが好ましい。
【0012】
また、本発明の第2形態は、発電時に酸素イオンと反応して水素を水に酸化する固体水素電極の一方の第1面に、発電時に酸素イオンを伝導する固体電解質膜を積層する工程と、第1面に接する面に対して反対側の固体電解質膜の第2面に、発電時に空気中の酸素を酸素イオンに還元する固体酸素電極を積層する工程と、を含み、固体水素電極は、固体電解質膜および固体酸素電極よりも大きい厚さを持ち、かつ第1面に凹凸を有するものであり、凹凸表面を持つシリコン基板の凹凸表面の上に固体水素電極の材料を塗工した後、シリコン基板から剥離することによって形成され、固体酸素電極は、一部をプリンティングするまたはあらかじめ設定した材料濃度の材料で全体をプリンティングすることによって形成される固体酸化物形電気化学セルの製造方法を提供するものである。
【0013】
ここで、上記第2形態においては、固体水素電極の材料濃度は、60~75wt%であるのが好ましい。
固体電解質膜の材料濃度は、4~7wt%であり、固体電解質膜は、固体水素電極の第1面の上に固体電解質膜の材料をスプレーコーティングすることによって形成されるのが好ましい。
固体酸素電極の材料濃度は、スプレーコーティング用が4~7wt%、プリンティング用が40~75wt%であり、固体酸素電極は、固体電解質膜の第2面の上に固体酸素電極の材料をスプレーコーティングした後にさらにプリンティングすることによって形成されるのが好ましい。
固体酸素電極の材料濃度は、40~60wt%であり、固体酸素電極は、固体電解質膜の第2面の上に固体酸素電極の材料で全体をプリンティングすることによって形成されるのが好ましい。
【発明の効果】
【0014】
本発明の第1形態によれば、高い出力を持つことができ、本発明の第2形態によれば、高い出力を持ち、かつ高い生産性と高い品質とを両立させた方法で製作することができる。
また、本発明の第2形態によれば、上記効果に加え、従来と同等以上に低コストで製作することができる。
【図面の簡単な説明】
【0015】
図1(a)】本発明の固体酸化物形電気化学セルの一例を模式的に示す断面図である。
図1(b)】本発明の固体酸化物形電気化学セルの他の一例を模式的に示す断面図である。
図2図1(a)、(b)の固体酸化物形電気化学セルを構成する固体水素電極の平面図の図面代用写真である。
図3図2の固体水素電極の断面図の図面代用写真である。
図4図1(a)、(b)の固体酸化物形電気化学セルの作製手順を示すフローチャートである。
図5】固体酸化物形電気化学セルA1の部分拡大断面図の図面代用写真である。(実施例1)
図6】固体酸化物形電気化学セルA1の発電特性を示すグラフである。
図7】固体酸化物形電気化学セルA2の部分拡大断面図の図面代用写真である。(実施例2)
図8】固体酸化物形電気化学セルA2の発電特性を示すグラフである。
図9】固体酸化物形電気化学セルA3の部分拡大断面図の図面代用写真である。(実施例3)
図10】固体酸化物形電気化学セルA3の発電特性を示すグラフである。
図11】固体酸化物形電気化学セルB1の部分拡大断面図の図面代用写真である。(比較例1)
図12】固体酸化物形電気化学セルB2の部分拡大断面図の図面代用写真である。(比較例2)
図13】固体酸化物形電気化学セルB3の部分拡大断面図の図面代用写真である。(比較例3)
図14】固体酸化物形電気化学セルB4の部分拡大断面図の図面代用写真である。(比較例4)
【発明を実施するための形態】
【0016】
以下に、本発明を添付の図面に示す好適実施形態に基づいて詳細に説明する。まず、本発明の第1実施形態の固体酸化物形電気化学セルについて詳細に説明する。図1(a)は、本発明の固体酸化物形電気化学セルの一例を模式的に示す断面図である。
【0017】
本発明の固体酸化物形電気化学セル10は、固体水素電極12(燃料極、負極、アノード層ともいう)と固体電解質膜14と固体酸素電極16(空気極、正極、カソード層ともいう)とを有する。固体水素電極12は、発電時に酸素イオンと反応して水素を水に酸化する。固体電解質膜14は、固体水素電極12の一方の第1面12fに積層され、発電時に酸素イオンを伝導する。固体酸素電極16は、第1面12fに接する面に対して反対側の固体電解質膜14の第2面14fに積層され、発電時に空気中の酸素を酸素イオンに還元する。
【0018】
固体水素電極12は、第1面12fに複数の第1隆起部12aと第1中間部12bとを備える。複数の第1隆起部12aは、固体電解質膜14の方向に隆起したものである。第1中間部12bは、複数の第1隆起部12aの内の隣接する2つの第1隆起部12aの間にある。固体電解質膜14は、第2隆起部14aと第2中間部14bとを備える。第2隆起部14aは、第1隆起部12aに積層されたものである。第2中間部14bは、第1中間部12bに積層されたものである。固体酸素電極16は、第3隆起部16aと第3中間部16bとを備える。第3隆起部16aは、第2隆起部14aに積層されたものである。第3中間部16bは、第2中間部14bに積層されたものである。
【0019】
第1隆起部12aは、ピッチPが70~110μmである。ここで、第1隆起部12aのピッチPとは、複数の第1隆起部12aの内の隣接する2つの第1隆起部12aの中心間距離である。第1隆起部12aのピッチPが70μm未満の場合には、第1隆起部12aのピッチが狭くなり過ぎて、第1隆起部12aの幅も狭くなってしまうのでシリコン基板から剥離する時に第1隆起部12aがちぎれる懸念が生じるのに対して、110μm超の場合には、第1隆起部12aのピッチが広くなり過ぎて、出力を高めることが不十分になる。第1隆起部12aのピッチPは、第1隆起部12aが形成された場所によって変化させても良いが、同一であるのが好ましい。なお、押出式マイクロ塗布法で製作したセルの隆起部は、ピッチが約200~550μmである。
【0020】
第2中間部14bは、第3中間部16bに隙間なく接する。第2中間部14bと第3中間部16bとの間に隙間がある場合には、発電時における固体酸素電極16から固体電解質膜14への酸素イオンの移動が妨げられるので、出力を高めることが不十分になる。
【0021】
このような構成とすることで、本発明の固体酸化物形電気化学セルは、固体水素電極12と固体電解質膜14との間の界面表面積が大きくなるので、高い出力を持つことができる。
【0022】
次に、固体水素電極12の凹凸形状について詳細に説明する。
第1隆起部12aは、隆起方向に対して直角な方向に直線的に連続し、かつ隣接する2つが等間隔に離間した形状であるのが好ましい。すなわち、固体水素電極12の凹凸を構成する第1隆起部12aは、円錐、円錐台または円柱のような形状ではなく、3つの部分から構成された複合形状、すなわち、円錐、円錐台または円柱をその中心軸を含む平面で切断した2つの部分、およびその双方の切断面が互いに正対する位置に2つの部分を離間させた間の空間に配置した、その切断面を底面とする角柱から構成された複合形状であるのが好ましい。また、等間隔に離間した形状の一例として、図2は、図1(a)、(b)の固体酸化物形電気化学セルを構成する固体水素電極の平面図の図面代用写真であり、図3は、図2の固体水素電極の断面図の図面代用写真である。なお、押出式マイクロ塗布法で製作したセルは、固体水素電極の隣接する2つの隆起部が端部において離間せずに連結した形状である。
【0023】
このような構成とすることで、本発明の固体酸化物形電気化学セルは、固体水素電極12をシリコン基板から剥離する時に、隆起部を点状に形成するよりも隆起部がちぎれにくくなるので、高い生産性と高い品質とを両立させた方法で製作することができる。また、本発明の固体酸化物形電気化学セルは、あらかじめ決められた長方形の領域に隆起部を効率的に形成することができるので、高い出力を持つことができる。
【0024】
次に、固体水素電極12の第1隆起部12aの寸法について詳細に説明する。
第1隆起部12aは、幅Wが35~55μm、高さHが50~90μmであるのが好ましい。ここで、第1隆起部12aの幅Wとは、第1隆起部12aを構成する両側の壁面12cが第1中間部12bの平面に交差してできる2つの交線の間の距離である。第1隆起部12aの高さHとは、第1中間部12bの平面と第1隆起部12aの頂上との距離である。
【0025】
第1隆起部12aの幅Wが35μm未満の場合には、第1隆起部12aの幅が狭くなり過ぎて、シリコン基板から剥離する時に第1隆起部12aがちぎれる懸念が生じるのに対して、55μm超の場合には、第1隆起部12aの幅が広くなり過ぎて、ピッチも広くなってしまうので出力を高めることが不十分になる。
【0026】
第1隆起部12aの高さHが50μm未満の場合には、第1隆起部12aの高さが低くなり過ぎて、固体水素電極12と固体電解質膜14との間の界面表面積が小さくなってしまうので出力を高めることが不十分になるのに対して、90μm超の場合には、第1隆起部12aの高さが高くなり過ぎて、シリコン基板から剥離する時に第1隆起部12aがちぎれる懸念が生じる。第1隆起部12aの幅Wおよび高さHは、第1隆起部12aが形成された場所によって変化させても良いが、同一であるのが好ましい。なお、押出式マイクロ塗布法で製作したセルの隆起部は、幅が約100~210μmであり、高さが約25~40μmである。
【0027】
このような構成とすることで、本発明の固体酸化物形電気化学セルは、押出式マイクロ塗布法で製作したセルよりも幅が狭くて高さが高い凹凸を形成することができるので、高い出力を持つことができる。
【0028】
次に、固体電解質膜14の厚さについて説明する。
第1隆起部12aの頂上を覆う第2隆起部14aの厚さは、第2中間部14bの厚さよりも薄いのが好ましい。
【0029】
このような構成とすることで、本発明の固体酸化物形電気化学セルは、発電時に酸素イオンを伝導しやすくなるので、高い出力を持つことができる。
【0030】
次に、固体酸素電極16の厚さについて詳細に説明する。図1(b)は、本発明の固体酸化物形電気化学セルの他の一例を模式的に示す断面図である。
本発明の固体酸化物形電気化学セル20は、固体酸化物形電気化学セル10に対して固体酸素電極16と異なる固体酸素電極22を有する点以外は同一の構成を有するものであるので、同一の構成要素の説明を省略する。
【0031】
固体酸素電極22は、形状のみが固体酸素電極16と異なり、第3中間部16bの厚さが相対的に厚く、固体酸素電極16の上面が平坦であるのに対して、第3中間部22bの厚さが相対的に薄く、固体酸素電極22の上面が平坦ではなく凹凸を有する。固体酸素電極22は、第3隆起部22aと第3中間部22bとを備える。第3隆起部22aは、第2隆起部14aに積層されたものである。第3中間部22bは、第2中間部14bに積層されたものであり、厚さが5.0μm以上であるのが好ましい。
本発明の第1実施形態の固体酸化物形電気化学セルは、基本的に以上のように構成される。
【0032】
次に、本発明の第2実施形態の固体酸化物形電気化学セルの製造方法について詳細に説明する。
本発明の固体酸化物形電気化学セルの製造方法は、固体水素電極12の一方の第1面12fに固体電解質膜14を積層する工程と、第1面12fに接する面に対して反対側の固体電解質膜14の第2面14fに固体酸素電極16を積層する工程と、を含む。固体水素電極12は、発電時に酸素イオンと反応して水素を水に酸化する。固体電解質膜14は、発電時に酸素イオンを伝導する。固体酸素電極16は、発電時に空気中の酸素を酸素イオンに還元する。
【0033】
固体水素電極12は、固体電解質膜14および固体酸素電極16よりも大きい厚さを持ち、かつ第1面12fに凹凸を有するものである。また、固体水素電極12は、凹凸表面を持つシリコン基板の凹凸表面の上に固体水素電極12の材料を塗工(テープキャスティング)した後、シリコン基板から剥離することによって形成される。固体酸素電極16は、一部をプリンティングするまたはあらかじめ設定した材料濃度の材料で全体をプリンティングすることによって形成される。
【0034】
すなわち、燃料極支持型セルの固体水素電極12を形成する時に、凹凸表面を持つシリコン基板を型としてその凹凸を転写することによって固体水素電極12の表面に凹凸を設け、固体酸素電極16を形成する時に、全体にプリンティング以外の方法を適用するのではなく、プリンティングとプリンティング以外の方法とを併用する、または全体にあらかじめ設定した材料濃度の材料でのプリンティングを適用する。
【0035】
ここで、テープキャスティングとは、一定の速度で相対的に移動するキャリヤフィルムの上に原料粉末を含んだスラリーを連続的に流し、これを乾燥させてシ─トを得る方法をいい、その中の1つとしてドクターブレード法がある。この方法は、ドクターブレードと呼ばれる板と塗布対象物とを直線方向に相対的に移動させ、ドクターブレードのエッジが塗布対象物の上にあるスラリーの上部を擦り切るようにして一定の厚さのテープ状にスラリーを成形する方法である。また、プリンティングとは、被コーティング物の上に原料粉末を含んだペーストを塗り、これを乾燥させて膜付する方法をいい、その中の1つとしてスクリーン印刷がある。この方法は、厚さを均一にするためにスクリーンを使用する方法である。
【0036】
このような構成とすることで、本発明の固体酸化物形電気化学セルの製造方法は、固体水素電極12と固体電解質膜14との間の界面表面積が大きくなるので、高い出力を持つことができる。また、シリコン基板の凹凸のピッチを小さくしても繰り返し生産工程の生産性には影響しないので、高い生産性と高い品質とを両立させた方法で製作することができる。
【0037】
次に、固体水素電極12の材料について詳細に説明する。
固体水素電極12の材料濃度は、60~75wt%であるのが好ましい。ここで、固体水素電極12の材料は、NiO、YSZ、カーボン、トリトンX、PVB、PEG400、グリセロールであり、溶媒は、エタノールである。
【0038】
固体水素電極12の材料濃度が60wt%未満の場合には、材料の粘度が低くなり過ぎて、塗工中に材料が流れ落ちてしまうので生産性が低下するのに対して、75wt%超の場合には、材料の粘度が高くなり過ぎて、シリコン基板の凹部に材料が適切に入り込まない懸念が生じる。
【0039】
このような構成とすることで、本発明の固体酸化物形電気化学セルの製造方法は、塗工に適した粘度の材料を使用するので、高品質を維持することができる。
【0040】
次に、固体電解質膜14の材料について詳細に説明する。
固体電解質膜14の材料濃度は、4~7wt%であり、固体電解質膜14は、固体水素電極12の第1面12fの上に固体電解質膜14の材料をスプレーコーティングすることによって形成されるのが好ましい。ここで、固体電解質膜14の材料は、YSZ、PVB(B30H)であり、溶媒は、エタノールである。
【0041】
固体電解質膜14の材料濃度が4wt%未満の場合には、材料の粘度が低くなり過ぎて、スプレーコーティング中に材料が流れ落ちてしまうので生産性が低下するのに対して、7wt%超の場合には、材料の粘度が高くなり過ぎて、固体水素電極12の第1中間部12bに材料が適切に入り込まない懸念が生じる。ここで、スプレーコーティングとは、加圧したコーティング液を噴霧ノズルを介して均一に分散させて細かいミストとし、被コーティング物の表面に噴霧してコーティングする方法をいう。
【0042】
このような構成とすることで、本発明の固体酸化物形電気化学セルの製造方法は、スプレーコーティングに適した粘度の材料を使用するので、高品質を維持することができる。
【0043】
次に、固体酸素電極16の材料の一例について詳細に説明する。
固体酸素電極16の材料濃度は、スプレーコーティング用が4~7wt%、プリンティング用が40~75wt%であり、固体酸素電極16は、固体電解質膜14の第2面14fの上に固体酸素電極16の材料をスプレーコーティングした後にさらにプリンティングすることによって形成されるのが好ましい。ここで、スプレーコーティング用の固体酸素電極16の材料は、LSCF、PVB(B30H)であり、溶媒は、エタノールである。また、プリンティング用の固体酸素電極16の材料は、LSCFであり、溶媒は、VEHである。
【0044】
固体酸素電極16の材料濃度のうち、スプレーコーティング用が4wt%未満の場合には、材料の粘度が低くなり過ぎて、スプレーコーティング中に材料が流れ落ちてしまうので生産性が低下するのに対して、7wt%超の場合には、材料の粘度が高くなり過ぎて、固体電解質膜14の第2中間部14bに材料が適切に入り込まない懸念が生じる。また、プリンティング用が40wt%未満の場合には、材料の粘度が低くなり過ぎて、プリンティング中に材料が流れ落ちてしまうので生産性が低下するのに対して、75wt%超の場合には、材料の粘度が高くなり過ぎて、プリンティングの作業性が悪化するので生産性が低下する。
【0045】
このような構成とすることで、本発明の固体酸化物形電気化学セルの製造方法は、スプレーコーティングおよびプリンティングにそれぞれ適した粘度の材料を使用するので、高品質を維持することができる。
【0046】
次に、固体酸素電極16の材料の他の一例について詳細に説明する。
固体酸素電極16の材料濃度は、40~60wt%であり、固体酸素電極16は、固体電解質膜14の第2面14fの上に固体酸素電極16の材料で全体をプリンティングすることによって形成されるのが好ましい。ここで、固体酸素電極16の材料は、LSCFであり、溶媒は、VEHである。
【0047】
固体酸素電極16の材料濃度が40wt%未満の場合には、材料の粘度が低くなり過ぎて、プリンティング中に材料が流れ落ちてしまうので生産性が低下するのに対して、60wt%超の場合には、材料の粘度が高くなり過ぎて、固体電解質膜14の第2中間部14bに材料が適切に入り込まない懸念が生じる。
【0048】
このような構成とすることで、本発明の固体酸化物形電気化学セルの製造方法は、スプレーコーティングを省略することによってスプレーコーティングに必要な工数を減らすことができるので、低コストで高品質を維持することができる。
【0049】
次に、本発明の固体酸化物形電気化学セルの製作手順の一例について説明する。図4は、図1(a)、(b)の固体酸化物形電気化学セルの製作手順を示すフローチャートである。
まず、ステップS10において、シリコン基板用ダイシング装置でシリコン基板の表面に凹凸を形成する。次に、ステップS12において、固体水素電極12の材料のスラリーを調製する。次に、ステップS14において、シリコン基板の凹凸上に固体水素電極12の材料のスラリーを塗工(テープキャスティング)し、乾燥し、仮焼成する。次に、ステップS16において、シリコン基板から固体水素電極12のシートを剥離する。なお、シリコン基板の型は、変形または摩耗がない限り固体水素電極12の製作時に繰り返し使用できるので、その場合にはステップS10を省略できる。
【0050】
次に、ステップS20において、固体電解質膜14の材料のスラリーを混合し、分散させる。次に、ステップS22において、固体水素電極12の上に固体電解質膜14の材料のスラリーをスプレーコーティングし、乾燥する。次に、ステップS24において、必要な厚さまでスプレーコーティングおよび乾燥を繰り返した後、焼成する。
【0051】
次に、ステップS30において、固体酸素電極16の材料のスラリーを混合し、分散させる。次に、ステップS32において、固体電解質膜14の上に固体酸素電極16の材料のスラリーをスプレーコーティングし、乾燥させる。次に、ステップS34において、必要な厚さまでスプレーコーティングおよび乾燥を繰り返す。次に、ステップS36において、固体酸素電極16の材料のペーストを調製する。次に、ステップS38において、さらにその上に固体酸素電極16の材料のペーストをプリンティング後、焼成する。
【0052】
次に、本発明の固体酸化物形電気化学セルの製作手順の他の一例について説明する。
まず、ステップS10~S16、S20~S24を行う。次に、ステップS30~S34を省略し、ステップS36~S38を行う。すなわち、固体水素電極12および固体電解質膜14を形成する手順は同じであるが、固体酸素電極16を形成する時に、スプレーコーティングとプリンティングとを併用するのではなく、プリンティングのみを適用する。
本発明の第2実施形態の固体酸化物形電気化学セルの製造方法は、基本的に以上のように構成される。
【実施例
【0053】
次に、本発明の具体的実施例を挙げ、本発明についてより詳細に説明する。
まず、実施例1として、以下の手順で固体酸化物形電気化学セルA1を製作した。
1.(工程A11)まず、シリコン基板用ダイシング装置を使用してシリコン基板の表面に溝加工を行った。幅70μmの回転刃を使用し、回転刃の切込み幅目標値は70μm、切込み深さ目標値は90μm、切込みピッチ目標値は160μmとした。次に、ボールミルを使用して固体水素電極12の材料のスラリーを調製した。すなわち、NiO粉末(住友金属)-36g、YSZ粉末(TZ-8Y、東ソー)-24g、カーボン-10g、トリトンX-1.5g、エタノール-41gをアイボーイ容器の中に入れて24時間ボールミルし、次に、そのアイボーイ容器の中にPVB(B60H)-7.6g、PEG400-3.5g、グリセロール-2.5gを追加して24時間ボールミルした後、アイボーイ容器から固体水素電極12の材料のスラリーを取り出した。次に、調製した固体水素電極12の材料のスラリーを真空脱気し、次に、脱気したスラリーをシリコン基板の上に塗工し、乾燥させ、1150℃で3時間仮焼成した後、シリコン基板から剥離して固体水素電極12を製作した。
【0054】
2.(工程A12)まず、固体電解質膜14の材料のスラリーを調製した。すなわち、YSZ粉末-1g、PVB(B30H)-0.1g、エタノール18.9gをカープの中に入れて分散機で10分間分散させた。次に、分散した固体電解質膜14の材料のスラリーを固体水素電極12の上にスプレーコーティングし、自然乾燥させ、必要な厚さになるまでスプレーコーティングと乾燥を繰り返し、1350℃で5時間焼成して固体電解質膜14を製作した。
【0055】
3.(工程A13)まず、固体酸素電極16の材料のスラリーを調製した。すなわち、LSCF粉末-1g、PVB(B30H)-0.08g、エタノール-18.92gをカープの中に入れて分散機で10分間分散させた。次に、分散した固体酸素電極16の材料のスラリーを固体電解質膜14の上にスプレーコーティングし、自然乾燥させ、必要な厚さになるまでスプレーコーティングと乾燥を繰り返し、900℃で2時間焼成した。次に、固体酸素電極16の材料のペーストをLSCF粉末-65wt%、VEH-35wt%になるように調製し、次に、調製した固体酸素電極16の材料のペーストをプリンティングし、900℃で2時間焼成して固体酸素電極16を製作した。
【0056】
次に、実施例2として、以下の手順で固体酸化物形電気化学セルA2を製作した。
1.(工程A21)固体酸化物形電気化学セルA2の固体水素電極12の製作手順は、シリコン基板の表面に溝加工を行うための回転刃の切込み幅が38μm、切込み深さが79μm、切込みピッチが79μmである点で、固体酸化物形電気化学セルA1の固体水素電極12の製作手順と相違するが、それ以外は同一であるので説明を省略する。
2.(工程A22)固体酸化物形電気化学セルA2の固体電解質膜14の製作手順は、固体酸化物形電気化学セルA1の固体電解質膜14の製作手順と同一であるので説明を省略する。
【0057】
3.(工程A23)固体酸化物形電気化学セルA2の固体酸素電極16の製作手順は、スプレーコーティングを省略する点、および固体酸素電極16の材料のペーストをLSCF粉末-50wt%、VEH-50wt%になるように調製する点で、固体酸化物形電気化学セルA1の固体酸素電極16の製作手順と相違するが、それ以外は同一であるので説明を省略する。
【0058】
次に、実施例3として、以下の手順で固体酸化物形電気化学セルA3を製作した。
1.(工程A31)固体酸化物形電気化学セルA3の固体水素電極12の製作手順は、シリコン基板の表面に溝加工を行うための回転刃の切込み幅が30μm、切込み深さが65μm、切込みピッチが93μmである点で、固体酸化物形電気化学セルA1の固体水素電極12の製作手順と相違するが、それ以外は同一であるので説明を省略する。
2.(工程A32)固体酸化物形電気化学セルA3の固体電解質膜14の製作手順は、固体酸化物形電気化学セルA1の固体電解質膜14の製作手順と同一であるので説明を省略する。
【0059】
3.(工程A33)固体酸化物形電気化学セルA3の固体酸素電極16の製作手順は、スプレーコーティングを省略する点、および固体酸素電極16の材料のペーストをLSCF粉末-50wt%、VEH-50wt%になるように調製する点で、固体酸化物形電気化学セルA1の固体酸素電極16の製作手順と相違するが、それ以外は同一であるので説明を省略する。
【0060】
次に、比較例1として、以下の手順で固体酸化物形電気化学セルB1を製作した。
1.(工程B11、B12)固体酸化物形電気化学セルB1の固体水素電極12および固体電解質膜14の製作手順は、固体酸化物形電気化学セルA1の固体水素電極12および固体電解質膜14の製作手順とそれぞれ同一であるので説明を省略する。
2.(工程B13)まず、固体酸素電極16の材料のスラリーを調製した。すなわち、LSCF粉末-1g、PVB(B30H)-0.08g、エタノール-18.92gをカープの中に入れて分散機で10分間分散させた。次に、分散した固体酸素電極16の材料のスラリーを固体電解質膜14の上にスプレーコーティングし、自然乾燥させ、スプレーコーティングと乾燥を16回繰り返し、900℃で2時間焼成して固体酸素電極16を製作した。
【0061】
次に、比較例2として、以下の手順で固体酸化物形電気化学セルB2を製作した。
1.(工程B21、B22)固体酸化物形電気化学セルB2の固体水素電極12および固体電解質膜14の製作手順は、固体酸化物形電気化学セルA1の固体水素電極12および固体電解質膜14の製作手順とそれぞれ同一であるので説明を省略する。
2.(工程B23)固体酸化物形電気化学セルB2の固体酸素電極16の製作手順は、スプレーコーティングと乾燥を24回繰り返す点で、固体酸化物形電気化学セルB1の固体酸素電極16の製作手順と相違するが、それ以外は同一であるので説明を省略する。
【0062】
次に、比較例3として、以下の手順で固体酸化物形電気化学セルB3を製作した。
1.(工程B31、B32)固体酸化物形電気化学セルB3の固体水素電極12および固体電解質膜14の製作手順は、固体酸化物形電気化学セルA1の固体水素電極12および固体電解質膜14の製作手順とそれぞれ同一であるので説明を省略する。
2.(工程B33)固体酸化物形電気化学セルB3の固体酸素電極16の製作手順は、スプレーコーティングと乾燥を50回繰り返す点で、固体酸化物形電気化学セルB1の固体酸素電極16の製作手順と相違するが、それ以外は同一であるので説明を省略する。
【0063】
次に、比較例4として、以下の手順で固体酸化物形電気化学セルB4を製作した。
1.(工程B41、B42)固体酸化物形電気化学セルB4の固体水素電極12および固体電解質膜14の製作手順は、固体酸化物形電気化学セルA1の固体水素電極12および固体電解質膜14の製作手順とそれぞれ同一であるので説明を省略する。
2.(工程B43)固体酸化物形電気化学セルB4の固体酸素電極16の製作手順は、スプレーコーティングを省略する点で、固体酸化物形電気化学セルA1の固体酸素電極16の製作手順と相違するが、それ以外は同一であるので説明を省略する。
以上の各固体酸化物形電気化学セルの製作方法の相違点を簡潔にまとめた表を表1に示す。
【0064】
【表1】
【0065】
次に、各固体酸化物形電気化学セルの製作状態の観察結果および発電特性の測定結果について詳細に説明する。
SEM(Miniscope、TM3000)を使用して各固体酸化物形電気化学セルの微細構造を観察した。また、固体水素電極側にH-3%、HO-100SCCM、固体酸素電極側に空気-100SCCMを供給して600~800℃で各固体酸化物形電気化学セルのOCVおよび最大出力密度を測定した。さらに、本発明の目的である高い出力の範囲は、OCVが0.90V以上、700℃での最大出力密度が0.50W/cm以上の範囲に設定した。
【0066】
まず、実施例1について説明する。図5は、固体酸化物形電気化学セルA1の部分拡大断面図の図面代用写真であり、図6は、固体酸化物形電気化学セルA1の発電特性を示すグラフである。
固体酸素電極16の剥離が発生せず、使用可能なセルを製作できた。また、固体水素電極12の第1隆起部12aの幅Wは約46~48μm、高さHは約67~71μm、ピッチPは約99~101μmになり、固体電解質膜14の厚さは、第2隆起部14aの頂上Taが約3~4μm、第2中間部14bの中央Tbが約4~5μmになった。さらに、OCVは1.03Vに、700℃での最大出力密度は0.75W/cmになったので、高い出力の範囲内になった。
【0067】
次に、実施例2について説明する。図7は、固体酸化物形電気化学セルA2の部分拡大断面図の図面代用写真であり、図8は、固体酸化物形電気化学セルA2の発電特性を示すグラフである。
固体酸素電極16の剥離が発生せず、使用可能なセルを製作できた。また、固体水素電極12の第1隆起部12aの幅Wは約40~42μm、高さHは約79~81μm、ピッチPは約79~84μmになり、固体電解質膜14の厚さは、第2隆起部14aの頂上Taが約2~3μm、第2中間部14bの中央Tbが約6~7μmになった。固体酸素電極16の厚さは、第3中間部16bの中央Tcが約5~6μmになった。さらに、OCVは1.05Vに、700℃での最大出力密度は1.03W/cmになったので、高い出力の範囲内になった。
【0068】
次に、実施例3について説明する。図9は、固体酸化物形電気化学セルA3の部分拡大断面図の図面代用写真であり、図10は、固体酸化物形電気化学セルA3の発電特性を示すグラフである。
固体酸素電極16の剥離が発生せず、使用可能なセルを製作できた。また、固体水素電極12の第1隆起部12aの幅Wは約39~40μm、高さHは約64~65μm、ピッチPは約93~96μmになり、固体電解質膜14の厚さは、第2隆起部14aの頂上Taが約4~6μm、第2中間部14bの中央Tbが約8~9μmになった。固体酸素電極16の厚さは、第3中間部16bの中央Tcが約10~11μmになった。さらに、OCVは1.00Vに、700℃での最大出力密度は0.73W/cmになったので、高い出力の範囲内になった。
【0069】
次に、各比較例の製作状態の観察結果について詳細に説明する。まず、比較例1について説明する。図11は、固体酸化物形電気化学セルB1の部分拡大断面図の図面代用写真である。
固体酸素電極16に開裂や剥離が発生せず、使用可能なセルを製作できた。また、固体酸素電極16の厚さは、第3中間部16bの中央Tcが約4~5μmになった。しかしながら、スプレーコーティングと乾燥を16回繰り返したので生産性が低かった。このため、発電特性の測定を中止した。
【0070】
次に、比較例2、3について説明する。図12は、固体酸化物形電気化学セルB2の部分拡大断面図の図面代用写真であり、図13は、固体酸化物形電気化学セルB3の部分拡大断面図の図面代用写真である。
固体酸素電極16に剥離が発生し、第2中間部14bと第3中間部16bとの間に隙間18ができたので、使用可能なセルを製作できなかった。このため、発電特性の測定を中止した。
【0071】
次に、比較例4について説明する。図14は、固体酸化物形電気化学セルB4の部分拡大断面図の図面代用写真である。
固体酸素電極16に開裂や剥離はなかったものの、第2中間部14bと第3中間部16bとの間に大きな空洞、すなわち隙間18ができたので、使用可能なセルを製作できなかった。また、固体水素電極12の第1隆起部12aの幅Wは約40~45μm、高さHは約75~79μm、ピッチPは約76~80μmになり、固体電解質膜14の厚さは、第2隆起部14aの頂上Taが約2~3μm、第2中間部14bの中央Tbが約6~8μmになった。さらに、OCVは0.98Vになったので、高い出力の範囲内になったが、700℃での最大出力密度は0.45W/cmになったので、高い出力の範囲の外側になった。
以上の固体酸化物形電気化学セルの製作状態の観察結果および発電特性の測定結果を簡潔にまとめた表を表2に、各寸法の計測結果をまとめた表を表3に示す。
【0072】
【表2】
【0073】
【表3】
【0074】
この結果から、実施例1~3の固体酸化物形電気化学セルA1~A3および比較例1の固体酸化物形電気化学セルB1と同様に固体酸化物形電気化学セルを構成することによって、高い出力を持つことができるのは明らかである。また、実施例1~3の固体酸化物形電気化学セルA1~A3と同様に固体酸化物形電気化学セルを構成することによって、高い出力を持ち、かつ高い生産性と高い品質とを両立させた方法で製作することができるのは明らかである。
【0075】
以上、本発明の固体酸化物形電気化学セルについて実施例1~3を挙げて詳細に説明したが、本発明は上記記載に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良や変更をしても良いのはもちろんである。
【産業上の利用可能性】
【0076】
本発明の固体酸化物形電気化学セルは、高い出力を持つことができ、その製造方法は、高い出力を持ち、かつ高い生産性と高い品質とを両立させた方法で製作することができるという効果に加え、従来と同等以上に低コストで製作することができるという効果もあるので、産業上有用である。
【符号の説明】
【0077】
10、20 固体酸化物形電気化学セル
12 固体水素電極
12a 第1隆起部
12b 第1中間部
12c 壁面
12f 第1面
14 固体電解質膜
14a 第2隆起部
14b 第2中間部
14f 第2面
16、22 固体酸素電極
16a、22a 第3隆起部
16b、22b 第3中間部
18 隙間
【要約】
高い出力を持つ固体酸化物形電気化学セル、および高い出力を持ち、かつ高い生産性と高い品質とを両立させた方法で製作することが可能な固体酸化物形電気化学セルの製造方法を提供する。固体酸化物形電気化学セル10は、固体水素電極12と固体電解質膜14と固体酸素電極16とを有する。固体水素電極12は、一方の第1面12fに、固体電解質膜14の方向に隆起した複数の第1隆起部12aと、隣接する2つの第1隆起部12aの間にある第1中間部12bと、を備える。固体電解質膜14は、第1隆起部12aに積層された第2隆起部14aと、第1中間部12bに積層された第2中間部14bと、を備える。固体酸素電極16は、第2隆起部14aに積層された第3隆起部16aと、第2中間部14bに積層された第3中間部16bと、を備える。第1隆起部12aは、ピッチが70~110μmである。第2中間部14bは、第3中間部16bに隙間なく接する。
図1(a)】
図1(b)】
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14