(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-05-08
(45)【発行日】2023-05-16
(54)【発明の名称】円柱光学系を用いた楕円ビーム設計
(51)【国際特許分類】
G02F 3/00 20060101AFI20230509BHJP
B82B 1/00 20060101ALI20230509BHJP
B82Y 10/00 20110101ALI20230509BHJP
G21K 1/00 20060101ALI20230509BHJP
【FI】
G02F3/00
B82B1/00
B82Y10/00
G21K1/00 A
(21)【出願番号】P 2021505218
(86)(22)【出願日】2019-07-30
(86)【国際出願番号】 US2019044077
(87)【国際公開番号】W WO2020028325
(87)【国際公開日】2020-02-06
【審査請求日】2021-04-30
(32)【優先日】2018-07-30
(33)【優先権主張国・地域又は機関】US
(32)【優先日】2019-07-29
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】520132894
【氏名又は名称】イオンキュー インコーポレイテッド
(73)【特許権者】
【識別番号】507189666
【氏名又は名称】デューク ユニバーシティ
(74)【代理人】
【識別番号】100120891
【氏名又は名称】林 一好
(74)【代理人】
【識別番号】100165157
【氏名又は名称】芝 哲央
(74)【代理人】
【識別番号】100205659
【氏名又は名称】齋藤 拓也
(74)【代理人】
【識別番号】100126000
【氏名又は名称】岩池 満
(74)【代理人】
【識別番号】100185269
【氏名又は名称】小菅 一弘
(72)【発明者】
【氏名】キム ジュンサン
(72)【発明者】
【氏名】ウォン-カンポス デイヴィッド
(72)【発明者】
【氏名】フデック カイ
【審査官】林 祥恵
(56)【参考文献】
【文献】特開2008-145463(JP,A)
【文献】米国特許第05973853(US,A)
【文献】特開平04-118608(JP,A)
【文献】特開2009-072789(JP,A)
【文献】米国特許出願公開第2009/0139652(US,A1)
【文献】STREED, E. W. et al.,"Imaging of Trapped Ions with a Microfabricated Optic for Quantum Information Processing",PHYSICAL REVIEW LETTERS,2011年01月07日,Vol. 106,pp. 010502-1- 010502-4
【文献】MEHTA, K. K. et al.,"Towards fast and scalable trapped-ion quantum logic with integrated photonics",PROCEEDINGS OF SPIE Advances in Photonics of Quantum Computing, Memory, and Communication XII,2019年03月04日,Vol. 10933,pp. 109330B-1 - 109330B-11,doi: 10.1117/12.2507647
【文献】CHIAVERINI, J. et al.,"Recent experiments in trapped-ion quantum information processing at NIST",PROCEEDINGS OF SPIE ICONO 2005: Ultrafast Phenomena and Physics of Superintense Laser Fields; Quantum and Atom Optics; Engineering of Quantum Information,2006年05月22日,Vol. 6256,pp. 625610-1 - 6256-12,doi: 10.1117/12.682633
【文献】GOKMEN, D. E.,"Optical Design for Gaussian Beam Elliptical Spot Shaping & AOM Double-pass Configuration for Realising Calcium Ion Thermal Qubit",Summer project at Trapped Ion Quantum Information group, ETH Zurich,2017年09月05日,pp. 1-38,https://www.researchgate.net/publication/319490327_Optical_Design_for_Gaussian_Beam_Elliptical_Spot_Shaping_AOM_Double-pass_Configuration_for_Realising_Calcium_Ion_Thermal_Qubit?msclkid=a12c06b4ae5211ecae5bf956efe27aa3
(58)【調査した分野】(Int.Cl.,DB名)
G02F 1/00-1/125
G02F 1/21-7/00
G02B 6/12-6/14
G21K 1/00
B82Y 10/00
B82B 1/00
JSTPlus/JST7580(JDreamIII)
SPIE Digital Library
APS Journals
(57)【特許請求の範囲】
【請求項1】
イオンを制御するための楕円光ビームを生成するためのシステムであって、
1つまたは複数のイオンをトラップするように構成された表面トラップを含む量子情報処理(QIP)システムと、
前記量子情報処理(QIP)システムに結合された光学システムであって、
第一の焦点距離を有する第一の光学部品と、
第二の焦点距離を有し、第一の方向に
沿って倍率を有する第二の光学部品と、
第三の焦点距離を有し、前記第一の方向と直交する第二の方向に
沿って倍率を有する第三の光学部品とを含む、光学システムと、を備え、
前記第三の光学部品は、伝搬方向に沿って前記第一の光学部品の後に位置決めされ、前記第三の光学部品は、前記伝搬方向に沿って前記第二の光学部品の前に位置決めされ、
前記光学システムは、1つまたは複数の光ビームを受け取るように構成され、且つ、対応するイオンを制御するために、前記量子情報処理QIPシステム内の前記1つまたは複数のイオンの単一の、前記対応するイオン上にそれぞれ結像された、1つまたは複数の楕円ガウス光ビームを結像するために、前記第一の方向および前記第二の方向に異なる倍率を前記1つまたは複数の光ビームに適用するように構成される、
システム。
【請求項2】
前記1つまたは複数の光ビームのそれぞれは、円形ガウス光ビームまたは楕円ガウス光ビームである、請求項1に記載のシステム。
【請求項3】
前記1つまたは複数の光ビームのそれぞれが楕円ガウス光ビームである場合、前記光学システムによって結像される前記1つまたは複数の楕円ガウス光ビームの対応する1つは、前記第一の方向で、よりルーズな焦点を有し、前記第二の方向で、よりタイトな焦点を有する、請求項2に記載のシステム。
【請求項4】
前記1つまたは複数の楕円ガウス光ビームのそれぞれは、前記第二の方向におけるビームウェストよりも前記第一の方向におけるビームウェストの方が大きく、
前記1つまたは複数の楕円ガウス光ビームのそれぞれは、前記第二の方向におけるビームウェスト位置と伝搬方向に沿った位置で一致する前記第一の方向におけるビームウェスト位置を有する、
請求項1に記載のシステム。
【請求項5】
前記伝搬方向は、前記第一の方向と前記第二の方向との両方に直交する、請求項4に記載のシステム。
【請求項6】
前記第一の方向の前記倍率は、縮小率Mであり、前記第二の方向の前記倍率は、縮小率aMであり、aは楕円比である、請求項1に記載のシステム。
【請求項7】
前記第一の光学部品、前記第二の光学部品、および前記第三の光学部品のそれぞれは、単一レンズまたは複合レンズを含む、請求項1に記載のシステム。
【請求項8】
前記第二の光学部品は、前記伝搬方向に沿って前記第一の光学部品の後に位置決めされ、
前記1つまたは複数の楕円ガウス光ビームは、前記第二の光学部品の前記第二の焦点距離と前記第三の光学部品の前記第三の焦点距離との両方と一致する前記伝搬方向に沿った位置に結像される、
請求項1に記載のシステム。
【請求項9】
前記第一の光学部品は球面レンズであり、
前記第二の光学部品は第一の円柱レンズであり、
前記第三の光学部品は第二の円柱レンズである、
請求項1に記載のシステム。
【請求項10】
前記第一の円柱レンズおよび前記第二の円柱レンズは、両方とも正の円柱レンズである、請求項9に記載のシステム。
【請求項11】
前記第一の円柱レンズおよび前記第二の円柱レンズの両方の実像面で、画質の測定および分析を行うように構成された結像システムをさらに備える、請求項10に記載のシステム。
【請求項12】
前記第一の円柱レンズおよび前記第二の円柱レンズの後に、空間フィルタ、アパーチャ、または視野レンズのうちの1つまたは複数を含む1つまたは複数の追加の光学部品をさらに備える、請求項10に記載のシステム。
【請求項13】
前記球面レンズが複合レンズである、請求項9に記載のシステム。
【請求項14】
前記球面レンズは、低速の負レンズと、それに続く高速の正レンズとを含み、前記低速の負レンズと前記高速の正レンズとの間の分離は、前記球面レンズが正味の正レンズであるように制御可能である、請求項9に記載のシステム。
【請求項15】
前記光学システムは、前記量子情報処理QIPシステムの一部である、請求項1に記載のシステム。
【請求項16】
前記光学システムは、前記表面トラップのエッジをクリッピングすることなく、前記1つまたは複数の楕円ガウス光ビームのそれぞれを前記対応するイオン上に結像するように構成される、請求項1に記載のシステム。
【請求項17】
前記1つまたは複数の楕円ガウス光ビームは、複数の楕円ガウス光ビームを備え、前記光学システムは、複数の楕円ガウス光ビームのそれぞれを、隣接する楕円ガウス光ビームが互いに重なり合うことなく、前記対応するイオン上に結像するように構成される、請求項1に記載のシステム。
【請求項18】
前記光学システムは、前記伝搬方向に沿って前記第三の光学部品の後に位置決めされた結像部品をさらに備え、前記光学システムは、前記1つまたは複数の楕円ガウス光ビームのそれぞれを前記結像部品上に結像するように構成され、
前記結像部品は、前記1つまたは複数の楕円ガウス光ビームのそれぞれを前記量子情報処理QIPシステム内の前記1つまたは複数のイオンの前記対応するイオン上に再び結像するように構成される、請求項1に記載のシステム。
【請求項19】
前記量子情報処理QIPシステム内の音響光学変調器(AOM)は、前記1つまたは複数の光ビームを回折させるトーンで前記1つまたは複数の光ビームを変調するように構成され、
前記光学システムは、回折された前記1つまたは複数の光ビームを受け取り、回折された前記1つまたは複数の光ビームに、前記第一の方向および前記第二の方向に異なる倍率を適用して、前記1つまたは複数の楕円ガウス光ビームのそれぞれを前記対応するイオン上に結像するように構成される、
請求項1に記載のシステム。
【請求項20】
前記第一の方向の倍率、前記第二の方向の倍率、またはその両方が、前記1つまたは複数の光ビームのそれぞれの半径を1/40~1/100に縮小する縮小率である、請求項1に記載のシステム。
【請求項21】
前記第一の光学部品は球面レンズであり、
前記第二の光学部品は第一の負の円柱レンズであり、
前記第三の光学部品は第二の負の円柱レンズであり、伝搬方向に沿って前記第一の光学部品の後で前記第二の光学部品の前に位置決めされ、
前記光学システムは、前記1つまたは複数の光ビームを受け取り、前記第一の方向および前記第二の方向に、異なる倍率を前記1つまたは複数の光ビームに適用して、前記伝搬方向に沿って前記第三の光学部品の前の位置で前記1つまたは複数の楕円ガウス光ビームを仮想的に結像するように構成される、請求項1に記載のシステム。
【請求項22】
前記光学システムは、伝搬方向に沿って前記第二の光学部品の後に位置決めされた結像部品をさらに含み、前記光学システムは、前記結像部品上の前記1つまたは複数の楕円ガウス光ビームのそれぞれを仮想的に結像するように構成され、
前記結像部品は、前記量子情報処理QIPシステム内の前記1つまたは複数のイオンの前記対応するイオン上に前記1つまたは複数の楕円ガウス光ビームのそれぞれの実像を形成するために、仮想的に結像された前記1つまたは複数の楕円ガウス光ビームのそれぞれを再結像するように構成される、請求項1に記載のシステム。
【請求項23】
イオンを制御するための光学システムによって、楕円光ビームを生成するための方法であって、
前記光学システムによって1つまたは複数の光ビームを受け取るステップであって、前記光学システムは、第一の焦点距離を有する第一の光学部品と、第二の焦点距離を有し、第一の方向に
沿って倍率を有する第二の光学部品と、第三の焦点距離を有し、前記第一の方向に直交する第二の方向に
沿って倍率を有する第三の光学部品とを含み、前記第三の光学部品は、伝搬方向に沿って前記第一の光学部品の後に、そして、前記伝搬方向に沿って前記第二の光学部品の前に位置決めされている、ステップと、
前記光学システムによって1つまたは複数の楕円ガウス光ビームを結像するステップと、
対応するイオンを制御するために、量子情報処理(QIP)システムの表面トラップ内にトラップされた前記1つまたは複数の楕円ガウス光ビームのそれぞれを1つまたは複数のイオンの単一の、前記対応するイオン上に結像するために、前記光学システムによって前記1つまたは複数の光ビームに前記第一の方向および前記第二の方向に異なる倍率を適用するステップと、を、
を含む、方法。
【請求項24】
前記1つまたは複数の光ビームのそれぞれは、円形ガウス光ビームまたは楕円ガウス光ビームである、請求項23に記載の方法。
【請求項25】
前記1つまたは複数の光ビームのそれぞれが楕円ガウス光ビームである場合、前記光学システムによって結像される前記1つまたは複数の楕円ガウス光ビームの対応する1つは、前記第一の方向で、よりルーズな焦点を有し、前記第二の方向で、よりタイトな焦点を有する、請求項24に記載の方法。
【請求項26】
前記1つまたは複数の楕円ガウス光ビームのそれぞれは、前記第二の方向におけるビームウェストよりも前記第一の方向におけるビームウェストの方が大きく、
前記1つまたは複数の楕円ガウス光ビームのそれぞれは、前記第二の方向におけるビームウェスト位置と伝搬方向に沿った位置で一致する前記第一の方向におけるビームウェスト位置を有する、請求項23に記載の方法。
【請求項27】
前記伝搬方向は、前記第一の方向と前記第二の方向との両方に直交する、請求項26に記載の方法。
【請求項28】
前記第一の方向の前記倍率は、縮小率Mであり、前記第二の方向の前記倍率は、縮小率aMであり、aは楕円比である、請求項23に記載の方法。
【請求項29】
前記1つまたは複数の楕円ガウス光ビームを前記第二の光学部品の前記第二の焦点距離および前記第三の光学部品の前記第三の焦点距離の両方と一致する前記伝搬方向に沿った位置に結像するステップと、をさらに含む、
請求項23に記載の方法。
【請求項30】
前記第一の光学部品は球面レンズであり、
前記第二の光学部品は第一の円柱レンズであり、
前記第三の光学部品は第二の円柱レンズである、
請求項23に記載の方法。
【請求項31】
前記球面レンズは複合レンズであり、
前記第一の円柱レンズおよび前記第二の円柱レンズは、両方とも正の円柱レンズである、
請求項30に記載の方法。
【請求項32】
前記球面レンズは、低速の負レンズと、それに続く高速の正レンズとを含み、
前記低速の負レンズと前記高速の正レンズとの間の分離は、前記球面レンズが正味の正レンズであるように制御可能である、請求項31に記載の方法。
【請求項33】
前記光学システムは、前記量子情報処理QIPシステムの一部である、請求項23に記載の方法。
【請求項34】
前記量子情報処理QIPシステム内の音響光学変調器(AOM)によって、前記1つまたは複数の光ビームを回折させるトーンを有する前記1つまたは複数の光ビームを変調するステップをさらに含み、
前記1つまたは複数の光ビームを受け取るステップは、回折された前記1つまたは複数の光ビームを受け取るステップを含み、
前記1つまたは複数の楕円ガウス光ビームのそれぞれを前記対応するイオン上に結像するステップは、前記光学システムに、回折された前記1つまたは複数の光ビームに、前記第一の方向および前記第二の方向に異なる倍率を適用させるステップを含む、
請求項23に記載の方法。
【請求項35】
前記第一の方向の倍率、前記第二の方向の倍率、またはその両方が、前記1つまたは複数の光ビームのそれぞれの半径を1/40~1/100に縮小する縮小率である、請求項23に記載の方法。
【請求項36】
前記第一の光学部品は球面レンズであり、
前記第二の光学部品は第一の負の円柱レンズであり、
前記第三の光学部品は第二の負の円柱レンズであり、前記伝搬方向に沿って前記第一の光学部品の後で前記第二の光学部品の前に位置決めされ、
前記1つまたは複数の楕円ガウス光ビームを結像するステップは、前記伝搬方向に沿って前記第三の光学部品の前の位置に、前記1つまたは複数の楕円ガウス光ビームを仮想的に結像するステップを含む、
請求項23に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
(関連出願の相互参照)
本特許出願は、2019年7月29日に出願された「円柱光学系を用いた楕円ビーム設計」と題する米国非仮出願第16/524,637号、および2018年7月30日に出願された「円柱光学系を用いた楕円ビーム設計」と題する米国仮特許出願第62/711,995号の優先権を主張するものであり、その内容はその全体が参照により本明細書に組み込まれる。
【0002】
本開示の態様は、一般に、光学システムに関し、より具体的には、楕円ビーム設計のために円柱光学系を使用する光学システムに関する。
【背景技術】
【0003】
トラップされた原子またはイオンは、量子情報処理に使用される主要な実装の1つである。トラップイオンに基づく量子ビット(キュービット)は量子メモリとして、量子計算機やシミュレータの量子ゲートとして利用でき、量子通信ネットワークのノードとして機能できる。しかしながら、量子ビットにトラップされたイオンを使用するシステムは、個々の量子ビットに格納された量子情報を操作するために、レーザ位相、周波数、振幅、および/または偏光を正確に制御することを必要とする。トラップイオンは、そのようなレベルの操作を可能にするために、個別のアドレス指定を必要とすることがあり、またトラップイオンは、互いに非常に近接して配置されるので、光学システムは、レーザまたは光ビームの焦点を特定のイオンに合うように改善して、そのイオンをより良好に操作できるようにすることが望ましい。
【発明の概要】
【0004】
以下では、1つまたは複数の態様の簡略化された発明の概要を提示し、そのような態様の基本的な理解を提供する。この発明の概要は、すべての企図された態様の広範な概観ではなく、すべての態様の主要または重要な要素を識別するものでも、任意のまたはすべての態様の範囲を線引きすることを意図するものでもない。その目的は、後に提示されるより詳細な説明の前置きとして、1つまたは複数の態様のいくつかの概念を簡略化された形態で提示することである。
【0005】
一般に、円柱光学系を使用する楕円ビーム設計のためのシステムおよび方法を説明する。この光学系は、例えば、量子情報処理(QIP)システムを含む異なるタイプのシステムで使用することができる。
【0006】
一例では、第一の焦点距離を有する第一の光学部品と、第二の焦点距離を有し、第一の方向に整列された第二の光学部品と、第三の焦点距離を有し、第一の方向に直交する第二の方向に整列された第三の光学部品とを含み、光学システムが、1つまたは複数の光ビームを受け取り、1つまたは複数の楕円ガウス光ビーム(単に楕円光ビームまたは楕円ビームとも呼ばれる)を結像するために、第一の方向および第二の方向に異なる倍率を1つまたは複数の光ビームに適用するように構成される、楕円光ビームを生成するための光学システムが説明される。光学システムによって受け取られる1つまたは複数の光ビームは、円形ガウス光ビームまたは楕円ガウス光ビームとすることができる。
【0007】
別の例では、光学システムによって、第一の焦点距離を有する第一の光学部品と、第二の焦点距離を有し、第一の方向に整列された第二の光学部品と、第三の焦点距離を有し、第一の方向に直交する第二の方向に整列された第三の光学部品とを含む、1つまたは複数の光ビームを受信することを含む、楕円光ビームを生成するための方法が説明される。この方法は、光学システムによって、1つまたは複数の楕円ガウス光ビームを結像するステップをさらに含み、光学システムは、1つまたは複数の楕円ガウス光ビームを結像するために、1つまたは複数の光ビームに第一の方向および第二の方向に異なる倍率を適用するように構成される。光学システムによって受け取られる1つまたは複数の光ビームは、円形ガウス光ビームまたは楕円ガウス光ビームとすることができる。
【0008】
添付の図面は、いくつかの実施態様のみを示しており、したがって、範囲を限定するものと見なされるべきではない。
【図面の簡単な説明】
【0009】
【
図1A】光ビームで表面トラップ内の量子ビットをアドレス指定するための1つの可能な構成を示すダイアグラムである。
【
図1B】光ビームで表面トラップ内の量子ビットをアドレス指定するための1つの可能な構成を示すダイアグラムである。
【
図1C】サンディア国立研究所で製造された高光学アクセス(HOA)トラップの現在の幾何形状の例を示す走査型電子顕微鏡(SEM)画像である。
【
図2A】本開示の態様に従って、円形ガウス光ビームを示すダイアグラムである。
【
図2B】本開示の態様に従って、楕円ガウス光ビームを示すダイアグラムである。
【
図3】望遠鏡の基本構成を示すダイアグラムである。
【
図4A】本開示の態様に従って、互いに直交して整列された共通の球面レンズおよび2つの円柱レンズを使用して楕円光ビームを画像化するための光学システムの基本設計の一例を示すダイアグラムである。
【
図4B】本開示の態様に従って、
図4Aにおける2つの円柱レンズの直交整列を示すダイアグラムである。
【
図4C】本開示の態様に従って、正の円柱レンズを示すダイアグラムである。
【
図4D】本開示の態様に従って、負の円柱レンズを示すダイアグラムである。
【
図5A】本開示の態様に従って、負の焦点距離(凹レンズ)を有する円柱レンズを用いて虚像を作成する例を示すダイアグラムである。
【
図5B】本開示の態様に従って、光ビームを再び画像化するための撮像システムの一例を示すダイアグラムである。
【
図6】本開示の態様に従って、楕円光ビームの画像化に関連して音響光学変調器(AOM)を使用する回折光ビームの周波数依存性の一例を示すダイアグラムである。
【
図7】本開示の態様に従って、コンピュータ装置の一例を表すダイアグラムである。
【
図8A】本開示の態様に従って、量子情報処理(QIP)システムの一例を示すブロック図である。
【
図8B】本開示の態様に従って、光学コントローラの一例を示すブロック図である。
【
図9】本開示の態様に従って、方法の一例を示すフロー図である。
【発明を実施するための形態】
【0010】
添付の図面に関連して以下に記載される詳細な説明は、様々な構成の説明として意図されており、本明細書で説明される概念が実施され得る唯一の構成を表すことを意図していない。詳細な説明は、様々な概念の完全な理解を提供する目的で、特定の詳細を含む。しかしながら、これらの概念は、これらの特定の詳細なしに実施されてもよいことは、当業者には明らかであろう。場合によっては、そのような概念を曖昧にすることを避けるために、周知の部品がブロック図の形態で示される。
【0011】
上述したように、トラップイオンは、量子情報処理システム(またはQIPシステム)を実施するために使用されてもよい。トラップイオンに基づく量子ビットは、非常に良好なコヒーレンス特性を有することができ、ほぼ100%の効率で準備して、測定することができ、光場およびマイクロ波場などの適切な外部制御場とのクーロン相互作用を変調することによって、互いに容易に絡み合うことができる。本開示で使用されるように、用語「原子イオン」、「原子」、「イオン化原子」、および「イオン」は、結晶、格子、チェーン、または同様の配置もしくは構成を形成するためにトラップ内に閉じ込められることになるか、または実際に閉じ込められている粒子を説明するために互換的に使用されることがある。さらに、用語「レーザビーム」、「光ビーム」、「レーザ」、「ビーム」、および「場」は、トラップ内のイオンなどの閉じ込められたイオンの態様を制御するために使用される何らかの形態の照明を説明するために互換的に使用されることがある。
【0012】
QIPシステムでは、光ビームの位相、周波数、振幅、および/または極性(例えば、偏光)の正確な制御が、結晶またはチェーンのイオン(例えば、キュービット)に格納された量子情報を操作するために必要とされる。一態様では、光ビームを対応するイオン上に正確に集束させる能力を有するが、他のイオンに適用される他の光ビームとのクロストークを引き起こすことも、および/またはトラップによる光ビームのクリッピングを引き起こすこともないことが非常に望ましい。
【0013】
本開示は、クロストークおよび/またはクリッピングの問題を回避することができる高集束楕円ビームを設計するための技術を、方法またはプロセスおよび機器または装置も含めて、説明する。これらの技術では、楕円光ビームは、光ビームがイオンおよびイオンを保持するトラップと、より良好に相互作用できるように、円柱光学系を使用して形成される。そのような技術は、トラップイオンを使用するQIPシステムに向けられているが、そのように限定される必要はなく、楕円光ビームが必要とされ得る様々な光学シナリオで使用されてもよい。
【0014】
トラップイオンを操作するために光ビームを使用する場合、光ビームは、イオンが光ビームのウェスト(例えば、ビームウェスト)に正しく位置させるように、あるいは配置されるように集束されることが望ましい。イオンをビームウェストに位置させる1つの理由は、光ビームの強度がその点で最も高いことである。別の理由として、ビームウェストは、光ビームが最小のスポットサイズを有する場所であるため、光ビームが近接または隣接する光ビームと重なり合ってクロストークを引き起こす可能性が低いからである。加えて、光ビームの強度のプロファイルはガウス形状であるため、光ビームまたはイオンが互いに対して移動し、イオンが強度のピークに位置する場合、全体的な相互作用は、わずかな相対的移動に鈍感であるが、イオンがガウス形状の強度プロファイルのエッジのうちの1つに位置する場合、全体的な相互作用は、わずかな相対的移動に非常に鈍感である。さらに、光ビームの波面は、ビームウェストにおいてほぼ平坦であり、このことは、非常に望ましい。
【0015】
図1Aおよび
図1Bは、それぞれ、光ビームを使用して、表面トラップ(表面イオントラップとも呼ばれる)内の量子ビットを個別にアドレス指定するための可能な2つの構成を表すダイアグラム100aおよび100bを示す。表面トラップでは、トラップ内のイオンを使用して、実装される量子ビットを個別にアドレス指定するために、タイトに集束された光ビーム(例えば、レーザビーム)を取り込む必要がある場合がある。上述したように、イオンは、タイトに集束された光ビームのビームウェストに位置するか、または配置されることが望ましい。その1つの方法は、
図1Aのダイアグラム100aに示す光学構成を使用することであり、その1つは、光ビーム140のビームウェスト145がイオン150の位置で正確に生じるように、表面トラップ110の表面の電極120の間にスロット130を通して光ビーム140(破線)を導くことである。この構成は、光ビーム140がトラップ基板の浅い深さをクリアするだけでよいので、タイトに集束された光ビームが可能になる。光ビーム140のようなタイトに集束された光ビームの場合、ビーム発散角(例えば、ビームウェストからの発散)は、
【数1】
によって与えられる。ここで、λは光の波長であり、w
0はビームウェスト145のような最もタイトに集束されたスポットの半径を表すビームのウエストである。したがって、この構成では、光ビーム140は、イオン150が位置するビームウェスト145でタイトに集束させることができ、表面トラップ110が小さい厚さを有するので、表面トラップ110と相互作用する光ビーム140がなくても(例えば、クリッピングがない)、スロット130を通過することができる。
【0016】
ダイアグラム100a(およびダイアグラム100b)は、表面トラップ110の断面図を提供し、表面トラップ110は、追加のイオン150をダイアグラム100aの平面内および/または平面外に保持することができることを理解されたい。したがって、表面トラップ110については、表面トラップ110の追加のイオン150を操作するために使用される追加の光ビーム140があってもよい(図示せず)。種々の光ビーム140は、上面から提供され(例えば、
図1Aのダイアグラム100aの矢印方向を参照)、クロストークを引き起こすことなく、および/または、表面トラップ110をクリッピングすることなく、それらのそれぞれのイオン150(例えば、ビームウェスト145)の位置または場所にタイトに集束することができるため、この構成は、光ビームを使用して、表面トラップ内の量子ビットを個々にアドレス指定するのに有効である。
【0017】
しかしながら、
図1Bのダイアグラム100bに示すように、特定のシステムアーキテクチャを使用することも含め、光ビーム140を表面トラップ110の表面に沿って導く(例えば、表面トラップ110の表面をスキミングする)ための様々な理由があり得る。この構成は、光ビーム140が上面(例えば、垂直)から持ち込まれる
図1Aのダイアグラム100aに示される構成とは異なる。この構成では、光ビーム140が表面トラップ110の表面を横切って(例えば、電極120を越えて)スキミングするので、光ビーム140の発散は、表面トラップ110のエッジでのクリッピングにつながる可能性がある。これは、光ビーム140がビームウェスト145における集束点から発散または回折し(例えば、集束が少なくなる)、光ビーム140が表面トラップ110のいずれかの側の電極120と干渉するダイアグラム110bに示されている。このクリッピングは、光ビーム140に影響を及ぼし、イオン150を制御するのに役立たない場合がある。その結果、この構成を用いて光ビーム140上で達成することができる集束の量は、発散角がビームウェスト145のサイズに反比例するので、タイトに集束された光ビームが表面トラップ110をクリップできるという事実によって制限される。
【0018】
この問題を回避するために、表面トラップ110の幅をこの方向(例えば、
図1Bのダイアグラム100bの矢印方向)に狭めて、クリッピングを最小化または回避することが可能である。しかしながら、この構成を使用して達成され得る最小の集束スポット(例えば、ビームウェスト145)は、
図1Aのダイアグラム100aに示す構成で達成され得るものよりもはるかに大きくなる傾向があるため、この技術でさえ制限される。
【0019】
表面トラップ110の幅を狭くする一例を、
図1Cのダイアグラム100cに示す。ダイアグラム100cは、表面トラップ110の一例の走査型電子顕微鏡(SEM)を示す。この場合は、サンディア国立研究所で製造された高光学アクセス(HOA)トラップである。中央に沿った黒線は、スロット160(例えば、
図1Aのダイアグラム100aのように、光ビーム140を、表面トラップを介して垂直に導くことができるように開いた穴)であり、イオン150は、スロット160の長さに沿って直線的にトラップされている。スロット160は、数ミリメートル(mm)の長さとすることができ、イオン150を捕捉するためには、ほんの一部しか使用されない。例えば、量子ビットとして32個のイオンを使用し、これらのイオンが約5マイクロメートル(μm)だけ分離されているQIPシステムでは、スロット160の全長の約150μmだけが使用される。
【0020】
イオン150は、電極120が生成する電界によって、表面トラップ110の表面上にトラップされる(例えば、
図1Aおよび
図1Bのダイアグラム100aおよび100bをそれぞれ参照)。いくつかの例では、イオン150は、表面トラップ110の表面の約70μm程度上方にトラップされてもよい。
図1Cのダイアグラム100cに示す表面トラップ110(例えば、HOAトラップ)では、トラッピング領域の幅は、峡部(isthmus)の形状で、中央で小さくなっており(例えば、2つのYの端部の間の狭い部分)、表面トラップ110の表面に沿って運ばれるときに、光ビームの適度な量の集束が可能になる。すなわち、表面トラップ110の幅を狭くすることによって、光ビーム140の発散部分が表面トラップ100のエッジを外れ、クリッピングを回避することが可能である。
【0021】
このセットアップを用いれば、光ビーム140(またはスロット160の長さに沿って複数のイオン150が存在し得るので、光ビーム140)を、光ビーム140がスロット160を通って表面に垂直にもたらされる場合(例えば、
図1Aのダイアグラム100aの構成)、半径約2μm(例えば、ビームウェスト半径)未満にして、また光ビーム140が表面トラップ110の表面に沿ってスキムする場合(例えば、
図1Bのダイアグラム100bの構成)、半径(例えば、ビームウェスト半径)約4μmにして、実質的なビームのクリッピングを生じることなく、集束させることが可能であり得る。本明細書で使用されるように、用語「約」および「およそ」は、例えば、1%、2%、3%、5%、10%、15%、20%、または25%の範囲内の公称値からの変動を指すために互換的に使用され得る。垂直構成のための半径約2μm未満までの集束量は、望ましい範囲内であるが、水平(スキミング)構成のための約4μm半径までの集束量は、望ましい範囲内ではなくてもよいが、この構成でさらに集束することは、クリッピングを生じる結果となり得るので、不可能なこともある。
【0022】
表面トラップを使用する典型的な量子計算セットアップでは、チェーン内のイオン150間の間隔は、典型的には、約3~7μm(例えば、スロット160の長さに沿って、または
図1Aおよび1Bのダイアグラム100aおよび100bの平面の内外で、それぞれ)である。したがって、個々のアドレス指定光ビーム140は、最小限のクロストークで正確なアドレス指定を保証するために、2~3μm範囲未満の半径を有する集束ビームウェスト(例えば、ビームウェスト145)を特徴とすることが重要である。上述のように、クリッピングを伴わないこのレベルの焦点合わせは、
図1Aのダイアグラム100aの垂直構成において可能であり得るが、このようなレベルの焦点合わせは、
図1Bのダイアグラム100bの水平(スキミング)構成において制限され得る。
【0023】
この開示は、個々のアドレス指定のために、チェーン内のイオンを分解するように、トラップチェーン方向に沿って(例えば、スロット160の長さに沿って)、タイトに収束された光ビーム140を達成するために使用され得る光学設計で、クリッピングを伴わずに、表面トラップチップの表面を横切って光ビームをスキミングさせるものの態様を記載する。
【0024】
表面トラップ110の表面を横切って光ビーム140を導くとき(例えば、
図1Bのダイアグラム100bの構成のように)、表面トラップ150の表面に垂直な方向に沿って丸い、または円形の光ビーム(例えば、光ビーム140)を集束させるのに十分な開口数(角度アクセス)がないことがある。しかしながら、表面に平行な方向に沿って、イオン150が並んでいる方向である開口数が多く存在する場合がある。したがって、チェーンの長さに沿って非常にタイトに集束するが、表面トラップ110に垂直な方向に沿ってより大きな焦点スポットを有する楕円の光ビームを設計し、実装することが可能である。すなわち、光ビーム140が集束される平面(例えば、イオン150がビームウェスト145に位置する平面)では、光ビーム140は、他の光ビームとのクロストークを回避するためにイオン150の方向にタイトに集束させるだけでよく、クリッピングを回避するために垂直方向にあまり集束させる必要はない。
【0025】
図2Aおよび
図2Bは、それぞれ本開示の態様による異なる光ビームを示すダイアグラム200aおよび200bを示す。上述のように、光ビーム140が表面トラップ110のエッジをクリップする前に、表面トラップ110の表面(例えば、
図1Bのダイアグラム100b)に沿って光ビーム140をスキミングする場合に、光ビーム140上で達成され得る集束の量に制限がある場合がある。これらの制限は、光ビームの形状によって異なる場合がある。
【0026】
ダイアグラム200aは、表面トラップ110内のイオン150を操作するために丸い、または円形のガウス光ビームを使用する例を示している。この例では、3つのイオン150(例えば、イオン150a、150b、および150c)が、
図1Cのダイアグラム100cに示す表面トラップ110のスロット160の長さに沿ってトラップされ、約3~7μmの距離だけ互いに分離されて示されている。より多く、またはより少ないイオン150がトラップされてもよいが、例示の目的のために3つが使用されている。3つの別個の円形ガウス光ビーム140(例えば、光ビーム140a、140b、および140c)をそれぞれ用いて、イオン150を個々に操作する。光ビーム140は、ビームウェスト145(例えば、最小の光ビームスポット)がそれぞれのイオン150の位置で生じるように集束される。この例における光ビーム140は丸い、または円形のガウス光ビームであるので、光ビームの半径はx方向においても、y方向においても同じである。ダイアグラム200aは、集束の量が制限されている場合(例えば、スポットサイズを小さくすることができない)、それらのそれぞれのイオン150における光ビーム140の半径は、十分に小さくなくてもよく、望ましくない重なり合いおよびクロストークを生じ得ることを示している。しかしながら、重なり合いは、x方向(例えば、イオン150のチェーンの長さに沿って)にのみ生じる。
【0027】
ダイアグラム200bは、円形ガウス光ビームを使用する代わりに、イオン150のそれぞれが、楕円ガウス光ビーム140’(例えば、光ビーム140a’、140b’、および140c’)で個々にアドレス指定される例を示す。y方向(例えば、表面トラップ110の垂直方向)における集束は、x方向(例えば、イオン150のチェーンの長さに沿った)における集束よりも、ルーズにすることができる。このアプローチを使用すると、光ビーム140’は、クロストークを回避するために、ビームウェスト145においてx方向において十分に小さな半径と、表面トラップ110の縁部における光ビーム140’のクリッピングを回避するために、y方向ビームウェスト145における十分に大きな、またはルーズな半径とを有することができる。したがって、表面トラップのイオン上に円形ガウス光ビームの代わりに楕円ガウス光ビームを画像化させることによって、表面トラップの表面を横切って光ビームをもたらす上述の構成も、クロストークまたはクリッピングを伴わずに、表面トラップ内の量子ビットを個々にアドレス指定するために有効に使用することができる。
【0028】
本開示は、円柱光学系(例えば、円柱レンズ)を使用して楕円ガウス光ビームを生成し、発成し、または結像する光学設計の態様を説明し、このような光ビームは、表面トラップ内のイオンを制御または操作するために表面トラップの表面にわたって光ビームがもたらされるQIPシステムを含む様々な用途で使用することができる。これらの光学設計は、QIPシステムでの使用に加えて、広い用途において適用可能性を見出し得る。
【0029】
QIPシステムでは、サイズが比較的大きい(典型的には半径80μm)個々のアドレス指定光ビームから開始することが可能である。システムの詳細に応じて、ビームウェストが約0.7~2μmの表面トラップにイオンをアドレス指定するためには、これらの光ビームを1/40~1/100に縮小する必要がある。すなわち、個々のアドレス指定光ビームは、トラップされたイオン(例えば、イオン150)を効果的に制御するのに適切なサイズであるために、はるかに小さなビームウェストに集束される必要がある。光ビームを適切な倍率レベルMにするための標準的なアプローチは、1つまたは複数の望遠鏡を使用することである。用語「倍率」とは、望遠鏡によって提供される集束の量を指すことができ、用語「縮小率」とは、より具体的には、光ビームのビームウェストが望遠鏡によって実際に縮小される倍率の大きさを指すことができる(例えば、M<1)。
【0030】
図3は、光学システム、この場合、望遠鏡300の基本的な配置を示す。この例では、望遠鏡300は、第一の光学部品310および第二の光学部品320を含む。一例では、望遠鏡300は、表面トラップ(例えば、表面トラップ110)内のイオン450上に光ビーム(例えば、光ビーム140)を集束させるために使用されてもよい。第一の光学部品310は第一のレンズとすることができ、第二の光学部品は第二のレンズとすることができる。2つのレンズの焦点距離は異なり、第一のレンズの焦点距離はf
1で、第二のレンズの焦点距離はf
2である。第一のレンズは、f
1の間隔を有するソースオブジェクト(例えば、大きなサイズの個別のアドレス指定光ビームのソース)から配置され、第二のレンズはf
1+f
2の間隔を空けて第一のレンズから配置される。画像は、
【数2】
によって与えられる縮小率mで第二のレンズからf
2だけ離れて形成される。上述のように、2つ以上の望遠鏡を使用して、光学システム内の所望の距離または位置で適切な拡大または縮小を達成することができる。
【0031】
大きなサイズの個々のアドレス指定光ビームをとり、イオン上にそれを集束させて、イオンでの光ビームが、他の光ビームとのクロストークを回避し、かつ表面トラップとのクリッピングも回避する楕円ガウス光ビーム(例えば、
図2Bのダイアグラム200bにおける光ビーム140’)であるようにすると、光学システムまたは撮像システムは、水平方向および垂直方向(例えば、x方向、y方向)に沿って異なる2つの倍率を有する必要がある。これを達成するための1つの方法は、各方向(水平および垂直)に対して異なる倍率を有する異なる円柱レンズを使用することである。
【0032】
円柱レンズの2つの独立した対で、垂直方向のための1つの対および水平方向のための1つの対(例えば、
図2Aおよび
図2Bのそれぞれのダイアグラム200aおよび200bにおけるx方向およびy方向)が使用される場合、2つの異なる倍率を有する望遠鏡または光学システム、または一方が一方向の倍率を有し、他方が直交方向の倍率を有する本質的に2つの一致する望遠鏡を構築することが可能である。第一の望遠鏡は2つの光学部品を含み、その第一は焦点距離f
1を有する第一の円柱レンズであり、その第二は焦点距離f
2を有する第二の円柱レンズである。第二の望遠鏡は、2つの光学部品を含み、その第一は焦点距離f
1’を有する第一の円柱レンズであり、その第二は、焦点距離f
2’を有する第二の円柱レンズである。円柱レンズの2つの独立した対が同じ位置(例えば、イオン150が位置するビームウェスト145で)で画像を形成するためには、水平方向と垂直方向の望遠鏡の全長が同じであることも重要である。これらの制約は、以下:
【数3】
のように定式化することができる。
【0033】
最初の2つの条件は2つの望遠鏡の倍率を設定し、最終的な条件は2つの方向に対して同じ平面(例えば、イオン150が位置する平面)で画像が形成されることを保証する。パラメータaは、最終的に、得られるガウス光ビームの楕円率をもたらすであろう2つの倍率(例えば、楕円比)の比を定義する。これらの方程式を解くことにより、円柱レンズの対の焦点距離の関係は、以下:
【数4】
のようになる。
【0034】
M、aM>>1のような大きな倍率MおよびaMの場合は、以下:
【数5】
である。
【0035】
この制限では、第一の望遠鏡の第一の円柱レンズと第二の望遠鏡の第一の円柱レンズ(例えば、2つの望遠鏡の第一段)は、基本的に同じ焦点距離を有し、焦点距離
【数6】
の単一球面レンズで置き換えることができる。そして、第一の望遠鏡の第二の円柱レンズと第二の望遠鏡の第二の円柱レンズとは、それぞれ、水平方向(例えば、x方向にルーズな焦点)と垂直方向(例えば、y方向にタイトな焦点)について、異なった焦点距離f
2’とaf
2’とを有する。
【0036】
図4Aは、共通の球面レンズと、互いに直交して整列された2つの円柱レンズとを使用して楕円光ビームを画像化するための、光学システム400の基本設計の一例を示す。光学システム400は、上述の一致する望遠鏡の実装である。例えば、光学システム400は、球面レンズであり得る第一の光学部品410と、第一の方向(例えば、y方向)に沿って倍率を有する第一の円柱レンズであり得る第二の光学部品420と、第一の方向に直交する第二の方向(例えば、x方向)に沿って倍率を有する第二の円柱レンズであり得る第三の光学部品430とを含む。この点に関し、
図4Bは、光学システム400の2つの円柱レンズ(例えば、光学部品420および430)の直交整列を表すダイアグラム460を示し、ここで、一方は伝搬方向であるz方向に沿って他方に追従する。ダイアグラム460は、レンズが直交または垂直であるという概念を単に説明するためのものであり、円柱レンズのサイズおよび/または形状を説明することを意図するものではない。加えて、
図4Cは、1つのタイプの円柱レンズ、z方向に沿った焦点距離fを有する正の円柱レンズ475を表すダイアグラム470を示し、
図4Dは、別のタイプの円柱レンズ、すなわちz方向に沿った焦点距離fを有する負の円柱レンズ485を表すダイアグラム480を示す。正の円柱レンズ475は、正の焦点距離を有する円柱レンズであり、光(例えば、光ビーム)を一次元または一方向に集束または集光する。負の円柱レンズ485は、負の焦点距離(例えば、凹レンズ)を有する円柱レンズであり、光(例えば、光ビーム)を一次元または一方向に発散させる。第一の円柱レンズ(例えば、第二の光学部品420)および第二の円柱レンズ(例えば、第三の光学部品430)は、いずれも、
図4Cのダイアグラム470に関連して上述した正の円柱レンズ475のような正の円柱レンズであってもよい。
【0037】
光学システム400における球面レンズと第一の円柱レンズとの組合せは、一致する望遠鏡のうちの一方の機能を提供し、光ビーム(点線)を垂直またはy方向にルーズに集束または画像化させ、一方、球面レンズと第二の円柱レンズとの組合せは、一致する望遠鏡のうちの他方の機能を提供し、光ビーム(実線)を水平またはx方向にタイトに集束または画像化させる。光学システム400によって、確実に、2つの方向に対して画像が同一平面(例えば、イオン450が位置する平面)で形成される。したがって、実像は、イオン450が存在する点または面において、光学システム400によって形成され得る。
【0038】
正の円柱レンズ(例えば、光学部品420、430)を使用することによって、実像を形成するいくつかの利点があり得る。それらは、いくつかの実用的な機能のために使用することができる。例えば、正の円柱レンズを使用して実像を形成することにより、診断ツール(例えば、カメラまたはビームプロファイラー)を使用して、円柱撮像光学系の品質または光ビームの全体的な品質(例えば、画質測定、分析)を検証することができる。正の円柱レンズの使用による回折効果は限られていることもあるが、これは診断ツールを使用することによって検証することができる。また、空間フィルタなどの他の光学部品または要素を追加することも、(例えば、散乱、収差を除去するために)、実像面に開口部を配置することも、あるいは視野レンズを使用することも可能である。視野レンズは、対物レンズの後ろで、画像平面の前に来る正のパワーレンズまたはレンズ群である。
【0039】
図4Aの光学システム400に関連して上述した設計を使用すると、対称ガウス光ビームを入力としてから、ほぼ理想的な楕円ガウス光ビームを生成することができ、そのために、2つの直交方向に沿ったビームウェスト位置が一致し、望ましくない光ビーム内の非点収差が排除される。別の実装において、光学システム400への入力光ビームは、既に楕円ガウス光ビームであり得るが、光学システム400は、システム要件(例えば、イオン間の間隔、イオンのサイズ、表面トラップのサイズなど)に基づいて、入力光ビームの赤道方向および極ガウス半径を、より適切な楕円ガウス光ビームに変更する倍率を提供する。
【0040】
一例として、M=8となるようなルーズな方向(y方向)の縮小と、aM=40となるようなタイトな方向(x方向)の縮小を選択することができ、楕円率はa=5になる。この場合、円柱レンズの焦点距離はf2’=15mm、af2’=75mm、球面レンズの焦点距離はf1=600mmとすることができる。他の実装が可能であり、この例は、限定ではなく例示として提供されることを理解されたい。
【0041】
図4Aに示す光学システム400には、いくつかのバリエーションが存在し得る。例えば、2つの円柱レンズは、
図4Dのダイアグラム480において上述した負の円柱レンズ485のような負の円柱レンズを使用して形成することができる。そのような一例を、
図5Aに示す光学システム500に関してより詳細に説明する。光学システム500は、球面レンズであり得る第一の光学部品510と、第一の円柱レンズであり得る第二の光学部品520と、第二の円柱レンズであり得る第三の光学部品530とを含んでもよく、両方の円柱レンズは負の円柱レンズである。
【0042】
この場合、焦点長が一致する2つの円柱レンズの前に、実像ではなく虚像が形成される。光学システム400と同様に、光学システム500において、光学システム400における球面レンズと第一の円柱レンズとの組合せは、一方の一致する望遠鏡の機能を提供し、垂直またはy方向にルーズに光ビーム(点線)を仮想的に集束または画像化し、一方、球面レンズと第二の円柱レンズとの組合せは、他方の一致する望遠鏡の機能を提供し、水平またはx方向に光ビーム(実線)をタイトに仮想的に集束または画像化する。光学システム500によって、確実に、虚像が2つの方向に対して同じ平面に形成される。この虚像点は、イオンの制御のために表面トラップ内のイオン550で実像を形成するために、適切な倍率を有する別の撮像システム(別の望遠鏡、または撮像レンズ)によって再び画像化することができる。
図5Bは、イオン550において実像を形成するために、光学システム500に続く撮像システム570を伴うダイアグラム560を示す。
【0043】
光学システム500は、いくつかの利点を有し得る。例えば、光学システムの全長を短くすることができる。このタイプの光学システムの欠点は、アドレス指定光ビームのための実像点を生成するために、虚像点をイオン上に中継するために撮像システム(例えば、撮像システム570)が必要なことである。これは、最終投影レンズによって行われ、イオンが配置されている適切な場所にビームを集束させるために、いずれにせよ、別の撮像システムが必要になることもある(例えば、光学システム400において)。したがって、負の円柱レンズを使用しても、ハードウェア要件が追加されないこともある。
【0044】
光学システム400および光学システム500の両方の別の態様では、光学システム400の第一の光学部品410および光学システム500の第一の光学部品510は、いくつかの要素を有する複合レンズで実現することができる焦点距離f1を有する球面レンズとすることができる。具体的には、球面レンズは、低速(長い焦点距離)の負レンズに続き、両者の間の分離の制御が正味の正レンズを生成するように、両者の間を有限の間隔で、高速(短い焦点距離)の正レンズとすることができるが、低速の負レンズと高速の正レンズとの間の分離を制御することによって、焦点距離を調整することができる。この場合、光学システム(例えば、光学システム400または光学システム500)の全体的な倍率を、この調整を行うことによって修正することができる。レンズ速度は、レンズの焦点距離に対するレンズ半径の比によって与えられる開口数を指し、「高速レンズ」は、他のレンズよりも短い時間で同じ露光を達成することができ、逆に、「低速レンズ」は、より小さい開口数を有し、より少ない光強度を送達し、そのために他のレンズよりも長い時間を必要とする。
【0045】
本開示に記載される技術の付加的な利点は、QIPシステムにおいて、量子ビットを個々にアドレス指定するために使用される光ビーム(例えば、レーザビーム)の周波数を変調するために複数のトーンが使用されることである。上述のように、これらの光ビームは、クロストークまたはクリッピングを生じさせることなく、個々にアドレス指定されたトラップイオン(例えば、量子ビット)に楕円ガウス光ビームを達成するためには、異なる方向に拡大または集束させる必要があり得る。QIPシステムにおいて音響光学変調器(AOM)を使用することによって、これらのトーンは、異なる角度でAOMから光ビームを「回折」させる。これらの変調された光ビームをイオンに再び集束させると、異なるトーンはイオンに、ある角度で収束する。上述したようなタイトに集束された光ビームの場合、これらの角度は非常に大きくなる傾向があり、(1)イオンに到達する光ビームの不十分な重なり合い、または(2)タイトな整列要件に関連する問題につながる。場合によっては、角度によって、量子ビット自体に刻印された光学位相に対する感度(干渉効果)などの望ましくない効果が生じることがある。現在の実装では、異なるトーンは、トラップ表面に垂直なy方向)に光ビームを回折する。焦点は垂直方向に劇的に緩和されるので、光ビームはさらに引き伸ばされ、異なる回折光ビームがイオンに収束する角度も劇的に減少する。これにより、それぞれのイオンでの回折光ビームがより容易に光学的に整列し、重なり合いがより柔軟になる。
【0046】
図6は、上述のような回折光ビームの周波数依存性の一例を表すダイアグラム600を示す。この例では、第一のRF信号(例えば、変調信号)が、周波数またはトーンf
1に基づいてRF発生器610aによって生成され、第二のRF信号が、周波数またはトーンf
2に基づいてRF発生器610bによって生成される。これらの2つの信号は、加算器615によって結合され、AOM620aに印加される。AOM620は、各チャネルが独立して動作し、独自のRE信号の対を受信するマルチチャネルAOMであってもよい。AOMの各チャネルは、別個にアドレス指定される光ビーム(例えば、別個の光ビーム140)と関連付けられてもよい。
【0047】
AOM620は、入射光ビーム625を受け取り、その一部は回折されない(例えば、0次回折によって生成される非回折光ビーム630)。一方、2つの変調された光ビームは、AOM620での回折によって入射光ビーム625から生成される(例えば、トーンf1についての回折光ビーム635aおよびトーンf2についての回折光ビーム635b、両方とも一次回折によって生成され、高次回折光ビームを空間的にフィルタリングすることができる)。この2つの回折光ビームは、異なる角度で回折し、共伝搬しない。したがって、2つの回折光ビームは、光学部品640(例えば、f1については集束光ビーム645a、f2については集束光ビーム645b)によって、上述の表面トラップ110のようなトラップ内に形成された格子、結晶、またはチェーン内のそれぞれのイオンまたは原子650上に集束される必要がある再び集束された光ビームは、同じ伝搬方向でイオン650に到達しない(例えば、共伝搬しない)ので、量子状態操作に誤差を生じさせ得る。しかしながら、上述のように、この問題は、本明細書で説明される技術を使用することによって、少なくとも部分的に対処することができる。すなわち、光学システム400または光学システム500の態様は、光学部品640内に実装することができる。例えば、光学部品640は、異なる倍率または異なる方向への集束を可能にするように構成されてもよく、これにより、y方向、例えば、表面トラップの表面に対して垂直方向に、よりルーズな集束も、またx方向、例えば、表面トラップの表面に対して水平または平行な方向に、よりタイトな集束が可能になる。焦点は、垂直方向において劇的に緩和され得るので、光ビームはさらに引き伸ばされ、異なる回折光ビームがイオンに集束する角度も劇的に減少し、したがって、イオン650に到達する光ビーム(例えば、光ビーム645aおよび645b)は、共伝搬に、より近くなる。
【0048】
異なる倍率の使用に関連したAOMの使用例は、
図3の望遠鏡300の例によって表すことができる。この例では、望遠鏡300は、2つの光ビームがソースから、異なる角度で出て(例えば、AOM620から回折された光ビーム635aおよび635bに類似して)、次いで、望遠鏡300の右側に急勾配な角度で収束する(例えば、イオン650に収束する光ビーム645aおよび645bに類似している)ことを表すために使用することができる。したがって、収束角度を初期の発散角度よりも、はるかに急勾配にすることによって、望遠鏡300によって提供される縮小率が実現する。AOM620がマルチチャネルAOMである場合、異なるチャネルは、特定の分離を有する。いくつかの例では、この分離は、約450μmとすることができる。上述のように、チェーン中のイオン(例えば、表面トラップ110中のイオン150)間の間隔は、典型的には約3~7μmであり、4.5μmはこの範囲内である。望遠鏡300、または光学システム400および500などの光学システムを(例えば、光学部品640の一部として)使用して、約1/100の全体的な縮小率(例えば、450μmチャネル間隔/4.5μmイオン間隔)を提供することができる。このような場合、AOM620から回折された光ビームは、初期の発散角で出現し、次いで、それらの光ビームは、それぞれのイオン上で、約100倍大きい角度で収束する。例えば、初期発散角度が約0.2°である場合、収束角度は約20°であり、これは、収束光ビームが共伝搬するのに近くないので問題となることがある。
【0049】
AOM620から回折された2つのトーン(例えば、光ビーム635aおよび635b)は、イオンを個々にアドレス指定するために、光ビームを絞る必要またはタイトにする必要がある方向に垂直な方向に出てくる。したがって、代わりに光学システム400および500を使用する場合、光ビームをx方向に絞ることができ(例えば、
図2Bを参照)、2つのトーンがy方向に出て、そのy方向に、a分の1の小さな倍率にすることができる。ここで、aは、上述のように2つの倍率の比を定義するパラメータである。ここで、上述した例のように、楕円比が、a=5であるように選択される場合、20°の収束角度を有する代わりに、4°(20°/5)の収束角度を有することが可能なこともある。したがって、楕円光ビームを画像化するために異なる方向に倍率を制御する能力の付加的な利点は、AOM幾何学の文脈において、AOMから回折された様々な光ビーム(例えば、トーン)が、光ビームがあまりタイトでない方向に生じ、その方向において光ビームの収束角度の問題がより容易に抑制され得ることである。
【0050】
AOMの使用は、場合によっては、光ビームに収差および/または散乱を引き起こすことがある。光学システム400に関連して上述したように、空間フィルタのような他の光学部品または要素を追加すること、実像面にアパーチャを配置すること、または視野レンズを使用することが可能である。これらの他の光学部品は、光学部品640の一部であってもよく、光学部品640と、イオン650が位置する実像面との間のどこかに追加されてもよく、または、例えば、実像面に追加されてもよい。以下の場合。
【0051】
ここで
図7を参照すると、本開示の態様による例示的なコンピュータ装置700が示されている。コンピュータ装置700は、例えば、単一のコンピューティング装置、複数のコンピューティング装置または分散コンピューティングシステムを代表し得る。コンピュータ装置700は、量子コンピュータ(例えば、量子情報処理(QIP)システム)、古典的コンピュータ、または量子および古典的計算機能の組合せとして構成されてもよい。例えば、コンピュータ装置700は、トラップされたイオン技術に基づく量子アルゴリズムを使用して情報を処理するために使用されてもよく、したがって、トラップされたイオンを制御するために円柱光学系またはレンズを使用して楕円の光ビームを生成するために、本明細書に記載される技術のいくつかを実施してもよい。本明細書で説明する技法を実装することができるQIPシステムとしてのコンピュータ装置700の一般的な例を、
図8Aおよび
図8Bに示す例に示す。
【0052】
一例では、コンピュータ装置700は、本明細書で説明する特徴のうちの1つまたは複数に関連する処理機能を実行するためのプロセッサ710を含むことができる。例えば、プロセッサ710は、円柱光学系またはレンズを使用して楕円光ビームを生成することによって、イオンまたは原子に格納された量子情報を操作する態様を制御、調整、および/または実行するように構成され得る。一態様では、プロセッサ710は、上述の表面トラップ110などの表面トラップを含むことができ、表面トラップ110内にトラップされたイオン150は、プロセッサ710の機能の少なくとも一部を実行するために使用される。プロセッサ710は、単一または複数セットのプロセッサまたはマルチコアプロセッサを含んでもよい。さらに、プロセッサ710は、統合処理システムおよび/または分散処理システムとして実装されてもよい。プロセッサ710は、中央処理ユニット(CPU)、量子処理ユニット(QPU)、グラフィックス処理ユニット(GPU)、またはこれらのタイプのプロセッサの組合せを含むことができる。一態様では、プロセッサ710は、コンピュータ装置700のi一般的なプロセッサを参照することができ、これは、さらに特定の機能を実行するために、追加のプロセッサ710を含むこともできる。
【0053】
一例では、コンピュータ装置700は、本明細書に記載する機能を実行するためにプロセッサ710によって実行可能な命令を記憶するメモリ720を含んでもよい。一実施形態では、例えば、メモリ720は、本明細書に記載する1つまたは複数の機能または動作を実行するためのコードまたは命令を記憶するコンピュータ可読記憶媒体に対応することができる。一例では、メモリ720は、円柱光学系またはレンズを使用して楕円光ビームの生成を制御する態様を実行するための命令を含むことができる。プロセッサ710と同様に、コンピュータ装置700の一般的なメモリ720を参照することができ、これは、メモリ720は、より具体的な機能のために命令および/またはデータを格納するために、追加のメモリ820を含むこともできる。
【0054】
さらに、コンピュータ装置700は、本明細書で説明するように、ハードウェア、ソフトウェア、およびサービスを利用して、1人または複数の当事者との通信を確立し、維持することを提供する通信部品730を含むことができる。通信部品730は、コンピュータ装置700上の部品間でも、コンピュータ装置700と、外部装置、例えば、通信網を介して配置された装置および/またはコンピュータ装置700にシリアルまたはローカルに接続された装置との間でも通信を実行することができる。例えば、通信部品730は、1つまたは複数のバスを含むことができ、さらに、外部装置とインターフェースするために動作可能な送信機および受信機にそれぞれ関連する送信チェーン部品および受信チェーン部品を含むことができる。
【0055】
さらに、コンピュータ装置700は、データストア740を含むことができ、本明細書で説明する実装に関連して使用される情報、データベース、およびプログラムの大容量記憶を提供するハードウェアおよび/またはソフトウェアの任意の適切な組合せとすることができる。例えば、データストア740は、オペレーティングシステム760(例えば、従来OS、または量子OS)のためのデータリポジトリであってもよい。一実施形態では、データストア740は、メモリ720を含んでもよい。
【0056】
コンピュータ装置700は、また、コンピュータ装置700のユーザから入力を受信するように操作可能であり、さらにユーザに提示するための出力を生成するように、または異なるシステムに(直接的または間接的に)提供するように操作可能なユーザインタフェース部品750を含むことができる。ユーザインタフェース部品750は、1つまたは複数の入力装置を含むことができる。入力装置には、キーボード、ナンバーパッド、マウス、タッチセンシティブディスプレイ、デジタイザ、ナビゲーションキー、ファンクションキー、マイクロフォン、音声認識部品、ユーザからの入力を受信することができる任意の他の機構、またはそれらの任意の組合せが含まれるが、これらに限定されない。さらに、ユーザインタフェース部品750は、1つまたは出力装置を含むことができる。出力装置には、ディスプレイ、スピーカ、触覚フィードバック機構、プリンタ、ユーザに出力を提示することができる任意の他の機構、またはそれらの任意の組合せが含まれるが、これらに限定されない。
【0057】
一実装では、ユーザインタフェース部品750は、オペレーティングシステム760の動作に対応するメッセージを送受信することができる。さらに、プロセッサ710は、オペレーティングシステム760および/またはアプリケーションまたはプログラムを実行することができ、メモリ720またはデータストア740は、それらを格納することができる。
【0058】
コンピュータ装置700がクラウドベースのインフラ解決策の一部として実装される場合、ユーザインタフェース部品750を使用して、クラウドベースのインフラ解決策のユーザがコンピュータ装置700とリモートで対話できるようにすることが可能になる。
【0059】
図8Aは、本開示の態様によるQIPシステム800の例を示すブロック図である。QIPシステム800は、量子計算システム、コンピュータ装置、トラップイオン量子コンピュータなどと呼ばれることもある。一態様では、QIPシステム800は、
図7のコンピュータ装置700の量子コンピュータ実装の一部に対応し得る。
【0060】
QIPシステム800は、原子種(例えば、中性原子のフラックス)を、光学コントローラ820(例えば、
図8B参照)によって一旦イオン化された(例えば、光イオン化された)原子種をトラップするイオントラップ870を有するチャンバ850に提供するソース860を含むことができる。上述した表面トラップ110は、イオントラップ870の一例であってもよい。光学コントローラ820内の光源830は、原子種のイオン化、イオンの制御(例えば、位相制御)、光学コントローラ820内の撮像システム840内で動作する画像処理アルゴリズムによって監視および追跡され得るイオンの蛍光のために、および/または本開示で説明されるような円柱光学システムまたはレンズを使用して楕円光ビームの操作および/または生成を実行するために使用され得る1つまたは複数のレーザ源を含んでもよい。一態様では、光源830は、光学コントローラ820とは別個に実装され得る。
【0061】
撮像システム840は、イオントラップ870に提供されている間、またはイオントラップ870に提供された後に、原子種を監視するための高分解能イメージャ(例えば、CCDカメラ)を含んでもよい。また、撮像システム840は、例えば、光学システム400および500などの光学システム上で、画像品質測定および分析動作などの診断または他の動作を実行するために使用されてもよい。一態様では、撮像システム840は、光学コントローラ820とは別個に実装することができるが、画像処理アルゴリズムを使用して原子イオンを検出し、識別し、ラベル付けするための蛍光の使用は、光学コントローラ820と調整する必要がある場合もある。別の態様では、撮像システム840は、イオンによって散乱される光子を誘導するために使用され得る撮像光学系を含み得、光子は、測定時に、イオンの位置および/または量子ビットの量子状態などの情報を得るために使用され得る。光子は、例えば、イメージャおよび/または光電子増倍管などの単一の光子検出器を含む、異なるタイプの検出器に向けることができる。光子は、光ファイバおよび/または他のタイプの光導波路を使用して検出器に向けることができる。
【0062】
QIPシステム800は、また、QIPシステム800の他の部分(図示せず)とともに動作して、単一量子ビット演算または多重量子ビット演算および拡張量子計算を含む量子アルゴリズムまたは量子操作を実行することができるアルゴリズム部品810も含むことができる。そのように、アルゴリズム部品810は、量子アルゴリズムまたは量子操作の実装を可能にするために、QIPシステム800の様々な部品(例えば、光学コントローラ820)に命令を提供してもよい。一例では、アルゴリズム部品810は、本明細書で説明する楕円ビームの生成に関連する動作の性能を性能し、調整し、かつ/または命令することができる。
【0063】
図8Bは、光学コントローラ820の少なくとも一部を示す。この例では、光学コントローラ820は、ビームコントローラ821と、光源830と、撮像システム840と、AOMおよびレンズまたはレンズアセンブリを含む光学部品のうちの1つまたは複数を含むことができるAOM構成837と、楕円光ビームを生成する楕円ビーム光学系838とを含むことができる。点線によって示されるように、光源830、撮像システム840、AOM構成837、および楕円ビーム光学系838のうちの1つまたは複数は、光学コントローラ820とは別個であるが通信して実装されてもよい。楕円ビーム光学系838は、例えば、光学システム400、光学システム500、および/または光学システム400とともに、または光学システム500とともに使用される撮像システム570を含むことができる。AOM構成837は、例えば、AOM620を含むことができる。
【0064】
撮像システム840は、CCD741(または同様のイメージャまたはカメラ)と、画像処理アルゴリズム部品842とを含む。光源830は、1つまたは複数の変調器825と、複数のレーザ源835a、…、835bとを含み、複数のレーザ源は、(例えば、量子ビット情報の操作のためのレーザビームまたはゲートビームを生成するために)上述の機能の1つまたは複数のために使用され得る。一態様において、レーザ源835a、…、835bは、楕円ビーム光学系838を使用して、イオントラップ870内のイオン上に楕円ガウス光ビームを画像化することによって、異なる方向に異なるように拡大され得る光ビームを生成してもよい。別の態様では、変調器825は、本明細書に記載されるRF発生器(例えば、
図6のRF発生器610aおよび610b)のうちの1つまたは複数を実装して、光ビームを回折するためにAOMによって使用される異なるトーンを生成してもよい。
【0065】
ビームコントローラ821は、量子処理のための楕円光ビームを画像化するために、本明細書に記載される様々な態様を実施するように構成される。ビームコントローラ821は、異なるトーンに基づいてRF制御信号を生成して、印加することに関連する様々な態様を制御するためのトーン生成部品824と、適切なRF制御信号を生成することによって偏光の微細かつ迅速な制御を提供するのにAOMを使用することに関連する様々な態様を制御するための偏光部品826とを有するAOM構成制御部品822を含んでもよい。AOM構成制御部品822は、トーンの生成および制御にも、偏光の制御にも関連する光源830(例えば、変調器825)と相互作用してもよい。一実施態様では、AOM構成制御部品822は、ビームコントローラ821とは別個であるが、ビームコントローラ821と通信するように実装することができる。
【0066】
光学コントローラ820の様々な部品は、個々に、または組み合わせて動作して、本開示で説明された様々な機能を実行してもよい。さらに、光学コントローラ820の様々な部品は、本開示で説明された様々な機能を実行するために、QIPシステム800の部品のうちの1つまたは複数とともに動作し得る。
【0067】
図9は、本開示の態様による楕円光ビームを生成するための方法900の一例を示すフロー図である。方法900は、コンピュータ装置700によって、あるいはQIPシステム800によって実行され得る。
【0068】
910において、方法900は、光学システム(例えば、光学システム400、光学システム500)によって、1つまたは複数の光ビームを受け取ることを含み、この光学システムは、第一の焦点距離を有する第一の光学部品(例えば、第一の光学部品410、510)と、第二の焦点距離を有し、第一の方向に整列された第二の光学部品(例えば、第二の光学部品420、520)と、第三の焦点距離を有し、第一の方向に直交する第二の方向に整列された第三の光学部品(例えば、第三の光学部品430、530)と、を含む。
【0069】
920において、方法900は、光学システムによって、1つまたは複数の楕円ガウス光ビーム(例えば、光ビーム140’)を画像化する(例えば、画像を形成または生成する)ことを含み、この光学システムは、1つまたは複数の光ビーム(例えば、入力光ビーム)に、第一の方向および第二の方向に異なる倍率を適用して、1つまたは複数の楕円ガウス光ビーム(例えば、出力光ビーム)を画像化するように構成される。
【0070】
方法900の一態様では、光学システムによって受け取られる1つまたは複数の光ビーム(例えば、入力光ビーム)のそれぞれは、円形ガウス光ビームまたは楕円ガウス光ビームである。1つまたは複数の光ビームのそれぞれが楕円ガウス光ビームである場合、光学システムによって画像化される1つまたは複数の楕円ガウス光ビーム(例えば、出力光ビーム)のうちの対応するイオンは、第一の方向においてよりルーズな焦点を有し、第二の方向においてよりタイトな焦点を有する。光学システムが受け取る楕円ガウス光ビームの極半径と赤道半径に異なる倍率を適用することによって、一つの方向への焦点をより緩くして、別の方向へ焦点をよりタイトにすることができる。
【0071】
方法900の別の態様では、1つまたは複数の楕円ガウス光ビームのそれぞれは、第二の方向のビームウェスト(例えば、光ビーム140’)よりも大きい第一の方向のビームウェストを有し、1つまたは複数の楕円ガウス光ビームのそれぞれは、第二の方向のビームウェスト位置と伝搬方向(例えば、z方向)位置で一致する第一の方向のビームウェスト位置を有する。伝搬方向は、第一の方向と第二の方向との両方に直交する。
【0072】
方法900の別の態様では、第一の方向の倍率は、縮小率Mであり、第二の方向の倍率は、縮小率aMであり、aは楕円比である。
【0073】
方法900の別の態様では、第二の光学部品は、伝搬方向(例えば、z方向)に沿って第一の光学部品の後に位置決めされ、第三の光学部品は、伝搬方向に沿って第二の光学部品の後に位置決めされ、1つまたは複数の楕円ガウス光ビームを画像化することは、第二の光学部品の第二の焦点距離と第三の光学部品の第三の焦点距離との両方と一致する伝搬方向に沿った位置に1つまたは複数の楕円ガウス光ビームを画像化することを含む(例えば、光学システム400を参照)。
【0074】
方法900の別の態様では、第一の光学部品は、球面レンズであり、第二の光学部品は、第一の円柱レンズであり、第三の光学部品は、第二の円柱レンズである。球面レンズは、複合レンズ(例えば、複数のレンズなどの複数の光学素子を含む)であってもよく、第一の円柱レンズおよび第二の円柱レンズは、両方とも正の円柱レンズ(例えば、正の円柱レンズ475)であってもよい。一実装において、球面レンズは、低速の負レンズと、それに続く高速の正レンズを含み、方法900は、さらに、球面レンズが正味の正レンズであるように、低速の負レンズと高速の正レンズとの間の分離を(例えば、光学コントローラ820によって)制御するステップを含む。例えば、光学コントローラ820は、低速の負レンズと高速の正レンズとの間の間隔または分離を(例えば、一方または両方のレンズを動かすことによって)制御して、球面レンズのための所望の焦点距離を得ることができる。
【0075】
方法900の別の態様では、光学システムは、QIPシステム(例えば、QIPシステム800)の一部であり、QIPシステムは、1つまたは複数のイオンをトラップするように構成された表面トラップ(例えば、表面トラップ110の一例であるイオントラップ870)を含み、1つまたは複数の楕円ガウス光ビームを画像化するステップは、1つまたは複数の楕円ガウス光ビームのそれぞれを1つまたは複数のイオンの対応するイオン上に画像化するステップを含む。方法900は、QIPシステム内のAOM(例えば、AOM620、AOM構成837)によって、1つまたは複数のガウス光ビームを回折させるトーンを有する1つまたは複数のガウス光ビーム(例えば、
図6を参照)を変調するステップをさらに含み、1つまたは複数のガウス光ビームを受信するステップは、回折された1つまたは複数のガウス光ビームを受信するステップを含み、対応するイオン上の1つまたは複数の楕円ガウス光ビームのそれぞれを画像化するステップは、光学システムに、回折された1つまたは複数のガウス光ビームに第一の方向および第二の方向に異なる倍率を適用させるステップを含む。
【0076】
方法900の別の態様では、第一の方向の倍率、第二の方向の倍率、またはその両方は、1つまたは複数のガウス光ビームのそれぞれの半径を1/40~1/100に縮小する縮小率である、(例えば、M<1)である。
【0077】
方法900の別の態様では、第一の光学部品は球面レンズであり、第二の光学部品は第一の負の円柱レンズであり、第三の光学部品は第二の負の円柱レンズであり、伝搬方向に沿って、第一の光学部品の後で、第二の光学部品の前に配置され、1つまたは複数の楕円ガウス光ビームを画像化するステップは、伝搬方向に沿って第三の光学部品の前の位置に、1つまたは複数の楕円ガウス光ビームを仮想的に画像化するステップを含む(例えば、光学システム500参照)。
【0078】
本開示は、図示された実施形態に従って提供されたが、当業者は、実施形態にバリエーションがあり得、それらのバリエーションも本開示の範囲内にあることを容易に認識するであろう。したがって、添付の特許請求の範囲から逸脱することなく、当業者は多くの修正を行うことができる。