IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 国立大学法人名古屋大学の特許一覧

<>
  • 特許-カーボンナノウォールの製造方法 図1
  • 特許-カーボンナノウォールの製造方法 図2
  • 特許-カーボンナノウォールの製造方法 図3
  • 特許-カーボンナノウォールの製造方法 図4
  • 特許-カーボンナノウォールの製造方法 図5
  • 特許-カーボンナノウォールの製造方法 図6
  • 特許-カーボンナノウォールの製造方法 図7
  • 特許-カーボンナノウォールの製造方法 図8
  • 特許-カーボンナノウォールの製造方法 図9
  • 特許-カーボンナノウォールの製造方法 図10
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-05-09
(45)【発行日】2023-05-17
(54)【発明の名称】カーボンナノウォールの製造方法
(51)【国際特許分類】
   C01B 32/18 20170101AFI20230510BHJP
   H05H 1/46 20060101ALI20230510BHJP
【FI】
C01B32/18
H05H1/46 B
H05H1/46 M
【請求項の数】 2
(21)【出願番号】P 2019230432
(22)【出願日】2019-12-20
(65)【公開番号】P2021098624
(43)【公開日】2021-07-01
【審査請求日】2022-06-07
(73)【特許権者】
【識別番号】504139662
【氏名又は名称】国立大学法人東海国立大学機構
(74)【代理人】
【識別番号】110000648
【氏名又は名称】弁理士法人あいち国際特許事務所
(74)【代理人】
【識別番号】100087723
【弁理士】
【氏名又は名称】藤谷 修
(74)【代理人】
【識別番号】100165962
【弁理士】
【氏名又は名称】一色 昭則
(74)【代理人】
【識別番号】100206357
【弁理士】
【氏名又は名称】角谷 智広
(72)【発明者】
【氏名】堀 勝
(72)【発明者】
【氏名】石川 健治
(72)【発明者】
【氏名】清水 尚博
(72)【発明者】
【氏名】市川 知範
【審査官】森坂 英昭
(56)【参考文献】
【文献】特開2014-105129(JP,A)
【文献】特開2011-190156(JP,A)
【文献】国際公開第2013/140822(WO,A1)
【文献】特開2007-186363(JP,A)
【文献】特開2017-064676(JP,A)
【文献】国際公開第2008/013309(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
C01B 32/00 - 32/991
H05H 1/46
(57)【特許請求の範囲】
【請求項1】
水素ガスをプラズマ化して反応室に拡散させつつ送出し、
メタンガスを前記反応室に拡散させつつ送出し、
前記反応室の内部で前記水素ガスと前記メタンガスとの混合ガスをプラズマ化し、
基板支持部に100ns以上3μs以下のパルス幅の負電圧のパルス電圧を印加し、
前記反応室の内部の前記基板支持部に支持される基板の上に孤立して配置されたカーボンナノウォール層を成長させること
を含むカーボンナノウォールの製造方法。
【請求項2】
請求項1に記載のカーボンナノウォールの製造方法において、
前記基板支持部にパルス電圧を印加しないで、
孤立して配置された前記カーボンナノウォール層の間に孤立していない第2のカーボンナノウォール層を成長させること
を含むカーボンナノウォールの製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本明細書の技術分野は、カーボンナノウォールの製造方法に関する。
【背景技術】
【0002】
カーボンナノウォールは、基板上に壁状に形成された炭素原子を主成分とする導電性ナノ構造体である。そのため、カーボンナノウォールは二次電池やキャパシタの電極材料としての応用が期待されている。
【0003】
例えば、特許文献1には、平行平板型容量結合プラズマにより、基板上にカーボンナノウォールを形成する技術が開示されている。
【先行技術文献】
【特許文献】
【0004】
【文献】特開2006-69816号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
特許文献1には、壁間間隔が180nm程度で飽和する旨が開示されている(特許文献1の段落[0052])。しかし、応用分野によってはウォール間隔が広いことが好ましいことがある。そのような応用分野として例えば、細胞培養基材等に応用する場合が挙げられる。さらに、カーボンナノウォールが互いに合流せず、独立していることが好ましいことがある。
【0006】
本明細書の技術が解決しようとする課題は、独立して配置されているカーボンナノウォールの製造方法を提供することである。
【課題を解決するための手段】
【0007】
第1の態様におけるカーボンナノウォールは、基板と、基板の上のアモルファスカーボン層と、アモルファスカーボン層の上のカーボンナノウォール層と、を有する。カーボンナノウォール層が壁状に孤立して配置されている。
【0008】
このカーボンナノウォールにおいては、カーボンナノウォール層が壁状に孤立して配置されている。このカーボンナノウォールは、例えば、細胞培養基材に好適である。
本開示の一態様(後述の第3の態様)は、水素ガスをプラズマ化して反応室に拡散させつつ送出し、
メタンガスを前記反応室に拡散させつつ送出し、
前記反応室の内部で前記水素ガスと前記メタンガスとの混合ガスをプラズマ化し、
基板支持部に100ns以上3μs以下のパルス幅の負電圧のパルス電圧を印加し、
前記反応室の内部の前記基板支持部に支持される基板の上に孤立して配置されたカーボンナノウォール層を成長させること
を含むカーボンナノウォールの製造方法にある。
【発明の効果】
【0009】
本明細書では、独立して配置されているカーボンナノウォールの製造方法が提供されている。
【図面の簡単な説明】
【0010】
図1】第1の実施形態のカーボンナノウォールの概略構成図である。
図2】第1の実施形態のカーボンナノウォールの構造を概念的に示す図である。
図3】第1の実施形態のカーボンナノウォールの断面を模式的に示す図である。
図4】第1の実施形態の気相成長装置の概略構成図である。
図5】第1の実施形態の気相成長装置のパルス電圧印加部の回路図である。
図6】実験で用いた気相成長装置のパルス電圧およびパルス電流の測定値を示すグラフである。
図7】カーボンナノウォールを示す表面写真および断面写真である。
図8】入力電圧Vinと平均ウォール間隔との間の関係を示すグラフである。
図9】入力電圧Vinとアモルファスカーボン層の膜厚との間の関係を示すグラフである。
図10】二段階成長を実施したカーボンナノウォール層の表面写真である。
【発明を実施するための形態】
【0011】
以下、具体的な実施形態について、カーボンナノウォールとその製造方法および気相成長装置を例に挙げて図を参照しつつ説明する。
【0012】
(第1の実施形態)
1.カーボンナノウォール
本明細書において、カーボンナノウォールとは、基材上に壁状に成長させることにより配置された炭素原子を主成分とする導電性ナノ構造体である。
【0013】
1-1.カーボンナノウォールの構造
図1は、第1の実施形態のカーボンナノウォールCNWの概略構成図である。図1に示すように、カーボンナノウォールCNWは、基板S1と、アモルファスカーボン層AC1と、カーボンナノウォール層CNW1、CNW2と、を有する。アモルファスカーボン層AC1は、基板S1の上に位置している。カーボンナノウォール層CNW1、CNW2は、アモルファスカーボン層AC1の上に位置している。
【0014】
図1に示すように、カーボンナノウォール層CNW1とカーボンナノウォール層CNW2とは、別体である。すなわち、カーボンナノウォール層CNW1、CNW2は、壁状に孤立して配置されている。カーボンナノウォール層CNW1とカーボンナノウォール層CNW2とは、互いに合流することなく独立している。
【0015】
図2は、第1の実施形態のカーボンナノウォールCNWの構造を概念的に示す図である。図2では、グラフェンシートGS1を例示している。複数のグラフェンシートGS1から構成させるグラファイトが導電性もよく、好適である。
【0016】
カーボンナノウォール層CNW1、CNW2は、グラフェンシートGS1を有する。グラフェンシートGS1は、カーボンナノウォール層CNW1、CNW2の厚み方向に10層程度積層されたグラファイトの状態で存在する。その積層数は上記以外であってもよい。グラフェンシートGS1が積層されたグラファイトは、活性炭等の炭素材料に比べて高い電気伝導率を備えている。
【0017】
アモルファスカーボン層AC1は、基板S1とカーボンナノウォール層CNW1、CNW2との間に位置している。アモルファスカーボン層AC1は、カーボンナノウォール層CNW1、CNW2を構成するグラフェンシートGS1の成長の起点となり得る層である。アモルファスカーボン層AC1の膜厚は、例えば、10nm以上200nm以下である。好ましくは、10nm以上100nm以下である。なお、カーボンナノウォールの成長方法によっては、アモルファスカーボン層AC1が無くてもよい場合がある。
【0018】
カーボンナノウォール層CNW1、CNW2において、基板S1の側には根元部R1があり、基板S1の反対側には、先端部E1がある。根元部R1は、多くの場合アモルファスカーボン層AC1を介して基板S1に固定されている固定部である。
【0019】
図2では、グラフェンシートGS1と、基板S1とは、ほぼ垂直である。そのため、グラフェンシートGS1の先端には、先端部E1がある。先端部E1は、グラフェンシートGS1の先端に位置する箇所である。なお、先端部E1における炭素原子C1は、水素原子と結合している。つまり、カーボンナノウォール層CNW1、CNW2の終端基は、水素原子である。
【0020】
1-2.カーボンナノウォールのサイズ
図3は、第1の実施形態のカーボンナノウォールCNWの断面を模式的に示す図である。グラフェンシートGS1の平均高さH1は、0.1μm以上50μm以下である。つまり、カーボンナノウォール層CNW1、CNW3の平均高さH1が0.1μm以上50μm以下である。好ましくは、0.5μm以上40μmである。
【0021】
グラフェンシートGS1の平均厚みW1は、0.5nm以上100nm以下の程度である。つまり、カーボンナノウォール層CNW1、CNW3の平均厚みW1が0.5nm以上100nm以下である。好ましくは、1nm以上50nm以下である。より好ましくは、2nm以上30nm以下である。
【0022】
カーボンナノウォール層CNW1の厚みW1に対するカーボンナノウォール層CNW1の高さH1の比は、3.3以上40000以下である。好ましくは、500以上5000以下である。この数値範囲は例示であり、上記以外の数値であってもよい。
【0023】
1-3.ウォール間隔
隣り合うカーボンナノウォール層CNW1とカーボンナノウォール層CNW3との間の平均ウォール間隔D1は、例えば、500nm以上1000nm以下である。好ましくは、600nm以上800nm以下である。これらの数値範囲は例示であり、上記以外の数値であってもよい。
【0024】
また、前述のように、カーボンナノウォール層CNW1、CNW3は、グラフェンシートGS1を多数枚積層したグラファイトである。実際には、互いのグラフェンシートGS1が完全に平行に延びているわけではない。しかし、各々のカーボンナノウォール層CNW1、CNW3は、前述のように孤立して配置されている。図2に示すように、隣り合う壁状のグラファイト間の距離をウォール間隔D1ということとする。
【0025】
このウォール間隔D1の平均値である平均ウォール間隔は、カーボンナノウォール層CNW1、CNW3の密度と関連している。つまり、平均ウォール間隔が広いほど、カーボンナノウォール層CNW1、CNW3の密度は低い。逆に、平均ウォール間隔が狭いほど、カーボンナノウォール層CNW1、CNW3の密度は高い。
【0026】
これらカーボンナノウォール層CNW1等の構造を示す数値を表1に示す。
【0027】
[表1]
ウォールの高さ 100nm以上 50μm以下
ウォールの厚み 0.5nm以上 100nm以下
ウォールの間隔 500nm以上 1000nm以下
【0028】
2.気相成長装置
図4は、第1の実施形態における気相成長装置1の概略構成図である。気相成長装置1は、プラズマ生成室46と、反応室10と、導波路47と、石英窓48と、スロットアンテナ49と、ラジカル源導入口42と、隔壁44と、貫通孔14と、基板支持部24と、ヒーター25と、原料導入口12と、排気口16と、電圧印加部100と、を有している。
【0029】
プラズマ生成室46は、その内部でプラズマを発生させるとともに、反応室10に供給するラジカルをも発生させるためのものである。反応室10は、プラズマ生成室46で生じたラジカルを利用して、カーボンナノウォール層CNW1を形成するためのものである。
【0030】
導波路47は、マイクロ波39を導入するためのものである。スロットアンテナ49は、石英窓48からプラズマ生成室46にマイクロ波39を導入するためのものである。
【0031】
プラズマ生成室46は、マイクロ波39により表面波プラズマ(SWP)を発生させるためのものである。プラズマ生成室46には、ラジカル源導入口42が設けられている。ラジカル源導入口42は、プラズマ生成室46に発生するプラズマ61の内部にラジカル源36となる水素ガスを供給するためのものである。そのため、プラズマ生成室46は、水素ガスをプラズマ化する。
【0032】
プラズマ生成室46と、反応室10との間には、隔壁44が設けられている。隔壁44は、プラズマ生成室46と、反応室10とを仕切るためのものである。隔壁44は、電圧を印加するための電極も兼ねている。そして、隔壁44には、貫通孔が形成されている。プラズマ生成室46で生成されたラジカルを反応室10に供給するためである。
【0033】
反応室10は、容量結合型プラズマ(CCP)を発生させるためのものである。また、基板S1の上にカーボンナノウォール層CNW1を形成するためのものでもある。反応室10は、基板支持部24と、ヒーター25と、を収容するとともに、原料導入口12と、排気口16と、を有している。
【0034】
基板支持部24は、第1電極22との間に電圧を印加するためのものである。ヒーター25は、基板S1を加熱して、基板S1の温度を制御するためのものである。原料導入口12は、カーボンナノウォールの原料となる炭素系ガス32を拡散しつつ反応室10に導入する。排気口16は、真空ポンプ等に接続されている。真空ポンプは、反応室10の内部の圧力を調整する。
【0035】
隔壁44は、基板支持部24との間に電圧を印加するための第1電極22を兼ねている。第1電極22は、基板支持部24との間にプラズマ34を発生させる。第1電極22には、電源および回路が接続されている。第1電極22の電位を時間的に制御するためである。隔壁44には貫通孔14が形成されている。貫通孔14は、プラズマ生成室46と反応室10とを連通する。そのため、水素ラジカルは、貫通孔14を通過することによりプラズマ生成室46から反応室10に進入することができる。
【0036】
基板支持部24は、基板S1を支持するためのものである。基板支持部24は、第1電極22との間に電圧を印加するための第2電極を兼ねている。そして、基板支持部24は、基板S1を載置するための載置台でもある。第1電極22と基板支持部24との間の距離は約5cmである。もちろん、この値に限らない。
【0037】
3.パルス電圧印加部
図5は、第1の実施形態の気相成長装置1のパルス電圧印加部100の回路図である。パルス電圧印加部100は、基板支持部24にパルス電圧を印加する。図5に示すように、パルス電圧印加部100は、駆動回路110と、電圧計120と、電流計130と、を有する。駆動回路110は、電圧入力部111を有する。電圧入力部111は、入力電圧Vinを入力する。入力電圧Vinに対して、駆動回路110の出力電圧Voutが発生する。この出力電圧Voutは、基板支持部24に実際に印加されることとなるパルス電圧である。
【0038】
パルス電圧は負の電圧である。パルス電圧のパルス幅は、例えば、100ns以上3μs以下である。パルス電圧の大きさは、例えば、-800V以上-300V以下の程度である。パルス電圧の周期は、例えば、パルス幅の5倍以上50倍以下の程度である。このようにパルス電圧印加部100は、100ns以上3μs以下のパルス幅の負電圧のパルス電圧を基板支持部24に印加する。これらの数値は、目安であり、上記以外の値であってもよい。
【0039】
4.パルス電圧とプラズマの振る舞い
基板S1は、例えば、金属である。負電圧のパルス電圧が基板支持部24に印加されることにより、基板S1にもパルス電圧が印加される。基板S1の表面が負に帯電することにより、プラズマ34中の電子が基板S1から遠ざかる向きに加速される。そして、プラズマ34中のH+ 、CH3 + といった陽イオンが基板S1に引き込まれる。そして、陽イオンが基板S1に衝突することにより、基板S1および基板支持部24に電流が流れることとなる。
【0040】
このような基板S1への陽イオンの瞬間的な引き込みが、孤立して配置されているカーボンナノウォール層CNW1、CNW2の生成に影響していると考えられる。
【0041】
5.カーボンナノウォールの製造方法
5-1.アモルファスカーボン層形成工程
まず、気相成長装置1の内部に、カーボンナノウォール層CNW1を形成する前の基板S1を載置する。次に、マイクロ波39を導波路47に導入する。マイクロ波39は、スロットアンテナ49により、石英窓48から、プラズマ生成室46に導入される。これにより、高密度プラズマ60が発生する。
【0042】
そして、この高密度プラズマ60がプラズマ生成室46の内部で拡散して、プラズマ61となる。このプラズマ61は、ラジカル源導入口42から供給されるラジカル源のイオンを含んでいる。ラジカル源として、例えば、水素ガス(H2 )を用いる。もしくは、酸素、窒素、その他の気体であってもよい。プラズマ61中の大部分のイオンは、隔壁44に衝突して中性化して、ラジカルとなる。ラジカル38は、隔壁44の貫通孔14を通過して、反応室10に入る。
【0043】
反応室10の内部には、ラジカル38の他に、原料導入口12から炭素系ガス32が供給される。炭素系ガス32とは、例えば、CH4 やC2 6 である。もちろん、それ以外のものであってもよい。そして、第1電極22と、基板支持部24との間に電圧を印加する。これにより、反応室10の内部にプラズマ34が発生する。
【0044】
プラズマ34の雰囲気中には、原料である炭素系ガス32と、ラジカル38とが混在している。そして、このプラズマ34の雰囲気中で基板S1の表面にアモルファスカーボン層AC1が成長する。
【0045】
このように、気相成長装置1の内部でプラズマ化した炭素系ガスを基板S1に供給して基板S1の上にアモルファスカーボン層AC1を形成する。
【0046】
反応室10の内部の圧力は、5~2000mTorr(0.65Pa~267Pa)の範囲内である。また、基板S1の温度は、100~800℃の範囲内である。もちろん、これらは例示であり、これらの数値範囲に限らない。
【0047】
5-2.カーボンナノウォール成長工程
続いて、気相成長装置1の内部で、アモルファスカーボン層AC1の上にカーボンナノウォール層CNW1を成長させる。アモルファスカーボン層AC1を成長させる場合と同様に、プラズマ61を発生させる。ラジカル38のラジカル源として、例えば、水素ガス(H2 )を用い、炭素系ガス32として、例えば、CH4 やC2 6 を用いる。
【0048】
このように、気相成長装置1の内部でプラズマ化した炭素系ガスを基板S1に供給してアモルファスカーボン層AC1の上にカーボンナノウォール層CNW1を成長させる。
【0049】
つまり、水素ガスをプラズマ化して反応室10に拡散させつつ送出し、メタンガスを反応室10に拡散させつつ送出する。反応室10の内部で水素ガスとメタンガスとの混合ガスをプラズマ化する。基板支持部24に100ns以上3μs以下のパルス幅の負電圧のパルス電圧を印加し、反応室10の内部の基板支持部24に支持される基板S1の上に孤立して配置されたカーボンナノウォール層CNW1、CNW2を成長させる。
【0050】
反応室10の内部の圧力は、5~2000mTorr(0.65Pa~267Pa)の範囲内である。また、基板S1の温度は、100~800℃の範囲内である。もちろん、これらは例示であり、これらの数値範囲に限らない。
【0051】
カーボンナノウォール層CNW1の成長がある程度進んだ後に、基板S1を取り出す。このときのカーボンナノウォール層CNW1の高さH1は、例えば、1000nmである。
【0052】
6.第1の実施形態の効果
カーボンナノウォール層CNW1とカーボンナノウォール層CNW2とは、それぞれ孤立して配置されている。また、カーボンナノウォール層CNW1の平均ウォール間隔D1は、従来のカーボンナノウォール層に比べて広い。
【0053】
7.変形例
7-1.二段階成長
カーボンナノウォール層を形成する際に、第1のカーボンナノウォール層形成工程と、第2のカーボンナノウォール層形成工程と、を実施してもよい。第1のカーボンナノウォール層形成工程では、パルス電圧を印加し、第2のカーボンナノウォール層形成工程では、パルス電圧を印加しない。これにより、孤立した大きなカーボンナノウォールの隙間に、微細なカーボンナノウォールが形成される。このようにして形成されたカーボンナノウォールは、孤立して配置されたカーボンナノウォール層の間に孤立していない第2のカーボンナノウォール層を有する。第2のカーボンナノウォール層は、互いに合流している。
【0054】
(実験)
1.実験方法
ラジカル38のラジカル源としてH2 を用い、炭素系ガス32としてCH4 を用いた。内圧は1Paであった。基板を支持するステージの温度は650℃であった。また、パルス電圧を適宜印加した。入力電圧Vinとして0V、90V、120V、150Vを用いた。
【0055】
2.パルス電圧
図6は、実験で用いた気相成長装置1のパルス電圧およびパルス電流の測定値を示すグラフである。パルス電圧およびパルス電流は、図6の通りである。入力電圧Vinの絶対値が大きいほど、出力電圧Voutの絶対値は大きい。また、電流値の絶対値が大きいほど、基板S1に到達する陽イオンの数が多い。
【0056】
3.結果
3-1.ウォール間隔
図7は、実験結果を示す写真である。成膜時間はいずれも290秒である。図7(a)は、パルス電圧を印加していない場合のカーボンナノウォール層の表面写真である。図7(e)は、パルス電圧を印加していない場合のカーボンナノウォール層の断面写真である。図7(a)に示すように、カーボンナノウォール層は密集し、互いに合流している。
【0057】
図7(b)は、入力電圧Vinが90Vのパルス電圧を印加している場合のカーボンナノウォール層の表面写真である。図7(f)は、入力電圧Vinが90Vのパルス電圧を印加している場合のカーボンナノウォール層の断面写真である。図7(b)に示すように、カーボンナノウォール層のウォール間隔は、図7(a)に比べて広がっている。
【0058】
図7(c)は、入力電圧Vinが120Vのパルス電圧を印加している場合のカーボンナノウォール層の表面写真である。図7(g)は、入力電圧Vinが120Vのパルス電圧を印加している場合のカーボンナノウォール層の断面写真である。図7(c)に示すように、カーボンナノウォール層のウォール間隔は、図7(b)に比べて広がっている。また、カーボンナノウォール層は、それぞれ孤立して配置されている。
【0059】
図7(d)は、入力電圧Vinが150Vのパルス電圧を印加している場合のカーボンナノウォール層の表面写真である。図7(h)は、入力電圧Vinが150Vのパルス電圧を印加している場合のカーボンナノウォール層の断面写真である。図7(d)に示すように、カーボンナノウォール層のウォール間隔は、図7(c)に比べて広がっている。また、カーボンナノウォール層は、それぞれ孤立して配置されている。
【0060】
入力電圧Vinが90Vのときの電流のピーク値は、-0.5A程度である。入力電圧Vinが120Vのときの電流のピーク値は、-1A程度である。そのため、電流値が-0.8A以下の場合に、孤立して配置されているカーボンナノウォール層が形成されると考えられる。
【0061】
図8は、入力電圧Vinと平均ウォール間隔との間の関係を示すグラフである。図8の横軸は入力電圧Vinである。図8の縦軸は平均ウォール間隔である。図8に示すように、入力電圧Vinが90V以上の範囲では、入力電圧Vinが大きいほど平均ウォール間隔が大きい。つまり、出力電圧Voutの絶対値が大きいほど平均ウォール間隔が大きい。
【0062】
3-2.アモルファスカーボン層
図9は、入力電圧Vinとアモルファスカーボン層の膜厚との間の関係を示すグラフである。図9の横軸は入力電圧Vinである。図9の縦軸はアモルファスカーボン層の膜厚である。
【0063】
3-3.二段階成長
図10は、二段階成長を実施したカーボンナノウォール層の表面写真である。第1段階目を成長させる際には入力電圧Vinを150Vとして成長時間を180秒とした。第2段階目を成長させる際には入力電圧Vinを0Vとして成長時間を120秒とした。
【0064】
図10に示すように、ウォール間隔の広い孤立したカーボンナノウォール層の間に、ウォール間隔の狭いカーボンナノウォール層が形成されている。ウォール間隔の狭いカーボンナノウォール層は互いに合流している。
【0065】
(付記)
第1の態様におけるカーボンナノウォールは、基板と、基板の上のアモルファスカーボン層と、アモルファスカーボン層の上のカーボンナノウォール層と、を有する。カーボンナノウォール層が壁状に孤立して配置されている。
【0066】
第2の態様におけるカーボンナノウォールは、孤立して配置されたカーボンナノウォール層の間に孤立していない第2のカーボンナノウォール層を有する。
【0067】
第3の態様におけるカーボンナノウォールの製造方法は、水素ガスをプラズマ化して反応室に拡散させつつ送出し、メタンガスを反応室に拡散させつつ送出し、反応室の内部で水素ガスとメタンガスとの混合ガスをプラズマ化し、基板支持部に100ns以上3μs以下のパルス幅の負電圧のパルス電圧を印加し、反応室の内部の基板支持部に支持される基板の上に孤立して配置されたカーボンナノウォール層を成長させる。
【0068】
第4の態様におけるカーボンナノウォールの製造方法は、基板支持部にパルス電圧を印加しないで、孤立して配置されたカーボンナノウォール層の間に孤立していない第2のカーボンナノウォール層を成長させる。
【0069】
第5の態様における気相成長装置は、基板を支持する基板支持部と、基板支持部にパルス電圧を印加するパルス電圧印加部と、基板支持部を収容する反応室と、基板支持部との間にプラズマを発生させる第1電極と、水素ガスをプラズマ化するプラズマ生成室と、プラズマ生成室と反応室とを連通する貫通孔と、炭素系ガスを拡散しつつ反応室に導入する原料導入口と、を有する。パルス電圧印加部は、100ns以上3μs以下のパルス幅の負電圧のパルス電圧を基板支持部に印加する。
【符号の説明】
【0070】
CNW…カーボンナノウォール
S1…基板
AC1…アモルファスカーボン層
CNW1、CNW2、CNW3…カーボンナノウォール層
1…気相成長装置
100…パルス電圧印加部
110…駆動回路
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10