(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-05-10
(45)【発行日】2023-05-18
(54)【発明の名称】電極触媒層、膜電極接合体、および、固体高分子形燃料電池
(51)【国際特許分類】
H01M 4/86 20060101AFI20230511BHJP
H01M 8/10 20160101ALI20230511BHJP
【FI】
H01M4/86 M
H01M4/86 B
H01M8/10 101
(21)【出願番号】P 2019068167
(22)【出願日】2019-03-29
【審査請求日】2022-02-24
(31)【優先権主張番号】P 2018069985
(32)【優先日】2018-03-30
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000003193
【氏名又は名称】凸版印刷株式会社
(74)【代理人】
【識別番号】100105957
【氏名又は名称】恩田 誠
(74)【代理人】
【識別番号】100068755
【氏名又は名称】恩田 博宣
(72)【発明者】
【氏名】小澤 まどか
【審査官】小森 重樹
(56)【参考文献】
【文献】特開2006-134630(JP,A)
【文献】特開2001-338651(JP,A)
【文献】特開2008-103164(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01M 4/86
H01M 8/10
(57)【特許請求の範囲】
【請求項1】
固体高分子形燃料電池において固体高分子電解質膜に接合する電極触媒層であって、
触媒物質と、
前記触媒物質を担持する導電性担体と、
高分子電解質と、を含み、
前記電極触媒層に含まれる空隙のなかで、3nm以上5.5μm以下の直径を有する空隙を細孔とするとき、
水銀圧入法によって測定された細孔容積から算出された
前記細孔の直径が
、細孔直径であり、
前記細孔直径に対する前記細孔容積の分布を示す分布曲線のピークが、前記細孔直径が0.06μm以上0.1μm以下である範囲に含まれ
、
前記電極触媒層の体積に対して、全ての前記細孔の前記細孔容積を積算した積算容積の百分率が、65%以上90%以下である
電極触媒層。
【請求項2】
固体高分子形燃料電池において固体高分子電解質膜に接合する電極触媒層であって、
触媒物質と、
前記触媒物質を担持する導電性担体と、
高分子電解質と、を含み、
前記電極触媒層に含まれる空隙のなかで、3nm以上5.5μm以下の直径を有する空隙を細孔とするとき、
水銀圧入法によって測定された細孔容積から算出された前記細孔の直径が、細孔直径であり、
全ての前記細孔の前記細孔容積を積算した値が、第1積算容積であり、
前記細孔直径が50nm以下である前記細孔の前記細孔容積を積算した値が、第2積算容積であり、
前記第1積算容積に対する前記第2積算容積の百分率が、30%以上40%以下である
電極触媒層。
【請求項3】
固体高分子形燃料電池において固体高分子電解質膜に接合する電極触媒層であって、
触媒物質と、
前記触媒物質を担持する導電性担体と、
高分子電解質と、を含み、
前記電極触媒層に含まれる空隙のなかで、3nm以上5.5μm以下の直径を有する空隙を細孔とするとき、
水銀圧入法によって測定された細孔容積から算出された前記細孔の直径が、細孔直径であり、
全ての前記細孔の前記細孔容積を積算した値が、第1積算容積であり、
前記細孔直径が90nm以上である前記細孔の前記細孔容積を積算した値が、第3積算容積であり、
前記第1積算容積に対する前記第3積算容積の百分率が、15%以上35%以下である
電極触媒層。
【請求項4】
固体高分子形燃料電池において固体高分子電解質膜に接合する電極触媒層であって、
触媒物質と、
前記触媒物質を担持する導電性担体と、
高分子電解質と、を含み、
前記電極触媒層に含まれる空隙のなかで、3nm以上5.5μm以下の直径を有する空隙を細孔とするとき、
水銀圧入法によって測定された細孔容積から算出された前記細孔の直径が、細孔直径であり、
全ての前記細孔の前記細孔容積を積算した値が、第1積算容積であり、
50nm以上80nm以下の各細孔直径が第1の細孔直径であり、
3nmから前記第1の細孔直径までの前記細孔の前記細孔容積を積算した値が累積細孔容積であって、前記第1積算容積に対する前記累積細孔容積の百分率が累積細孔容積率であり、
前記第1の細孔直径(μm)に対する前記累積細孔容積の分布を示す分布曲線の傾きが、7以上14以下である
電極触媒層。
【請求項5】
前記電極触媒層の体積に対して、全ての前記細孔の前記細孔容積を積算した積算容積の百分率が、65%以上90%以下である
請求項
2から4のいずれか一項に記載の電極触媒層。
【請求項6】
繊維状物質をさらに含む
請求項1から5のいずれか一項に記載の電極触媒層。
【請求項7】
前記繊維状物質は、電子伝導性繊維、および、プロトン伝導性繊維から選択される一種または二種以上の繊維状物質を含み、
前記電子伝導性繊維は、カーボンナノファイバー、カーボンナノチューブ、および、遷移金属含有繊維から構成される群から選択される少なくとも一種を含む
請求項6に記載の電極触媒層。
【請求項8】
前記電極触媒層の厚さが、5μm以上30μm以下である
請求項1から7のいずれか一項に記載の電極触媒層。
【請求項9】
固体高分子電解質膜と、
前記固体高分子電解質膜において対向する2つの面の少なくとも一方に接合された電極触媒層と、を備え、
前記電極触媒層が、請求項1から8のいずれか一項に記載の電極触媒層である
膜電極接合体。
【請求項10】
前記電極触媒層は、前記固体高分子形燃料電池においてカソードを構成する電極触媒層である
請求項9に記載の膜電極接合体。
【請求項11】
請求項9または10に記載の膜電極接合体を備える固体高分子形燃料電池。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、電極触媒層、膜電極接合体、および、固体高分子形燃料電池に関する。
【背景技術】
【0002】
燃料電池は、水素と酸素との化学反応から電流を生成する。燃料電池は、従来の発電方式と比べて高効率、低環境負荷、かつ、低騒音であって、クリーンなエネルギー源として注目されている。特に、室温付近での使用が可能な固体高分子形燃料電池は、車載用電源や家庭用定置電源などへの適用が有望視されている。
【0003】
固体高分子形燃料電池は、一般的に、多数の単セルが積層された構造を有している。単セルは、膜電極接合体が2つのセパレーターによって挟まれた構造である。膜電極接合体は、高分子電解質膜と、燃料ガスを供給する燃料極(アノード)と、酸化剤を供給する酸素極(カソード)とを備える。高分子電解質膜における第1面に燃料極が接合し、第1面とは反対の第2面に酸素極が接合している。セパレーターは、ガス流路および冷却水流路を有している。燃料極および酸素極は、別々に電極触媒層とガス拡散層とを備えている。各電極において、電極触媒層が高分子電解質膜に接している。電極触媒層は、白金系の貴金属などの触媒物質、導電性担体、および、高分子電解質を含んでいる。ガス拡散層は、ガスの通気性と、導電性とを兼ね備えている。
【0004】
固体高分子形燃料電池は、以下の電気化学反応を経て電流を生成する。まず、燃料極の電極触媒層において、燃料ガスに含まれる水素が触媒物質により酸化されて、プロトンおよび電子が生成される。生成されたプロトンは、電極触媒層内の高分子電解質、および、高分子電解質膜を通り、酸素極の電極触媒層に達する。プロトンと同時に生成された電子は、電極触媒層内の導電性担体、ガス拡散層、セパレーター、および、外部回路を通って酸素極の電極触媒層に達する。酸素極の電極触媒層において、プロトンおよび電子が酸化剤ガスに含まれる酸素と反応して水を生成する。
【0005】
ガス拡散層は、セパレーターから供給されるガスを拡散して電極触媒層に供給する。電極触媒層の細孔は、ガスや生成水などの複数の物質を輸送する。燃料極の細孔は、酸化還元の反応場である三相界面に燃料ガスを円滑に供給する機能を求められる。酸素極の細孔は、電極触媒層内に酸化剤ガスを円滑に供給する機能を求められる。燃料ガスおよび酸素ガスを円滑に供給するためには、ひいては、燃料電池の発電性能を高めるためには、電極触媒層が細孔間に間隔を設け、これによって、細孔の緻密な分布を抑制することが求められる。細孔の緻密な分布を抑制する構成として、例えば、カーボン粒子またはカーボン繊維を含む電極触媒層が提案されている(例えば、特許文献1、2を参照)。
【先行技術文献】
【特許文献】
【0006】
【文献】特開平10-241703号公報
【文献】特許第5537178号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
特許文献1では、互いに異なる粒径を有するカーボン粒子を組み合わせることで、電極触媒層中における細孔の分布が密になることを抑えている。また、特許文献2では、互いに異なる長さを有するカーボン繊維を組み合わせることで、電極触媒層中における細孔の分布が密になることを抑えている。一方で、カーボン粒子の組み合わせが互いに等しい層であっても、層の組成や層形成の条件などに応じて、細孔の大きさや細孔の分布は互いに異なる。また、カーボン繊維の組み合わせが互いに等しい層であっても、同様に、細孔の大きさや細孔の分布は互いに異なる。燃料電池における発電性能は、細孔の大きさや細孔の分布によって大きく変わるものであるから、結局のところ、カーボン粒子の組み合わせやカーボン繊維の組み合わせを用いる方法では、発電性能を高める観点において、依然として改良の余地がある。
【0008】
本発明は、発電性能を高めることを可能にした電極触媒層、膜電極接合体、および、固体高分子形燃料電池を提供することを目的とする。
【課題を解決するための手段】
【0009】
上記課題を解決するための電極触媒層は、固体高分子形燃料電池において固体高分子電解質膜に接合する電極触媒層であって、触媒物質と、前記触媒物質を担持する導電性担体と、高分子電解質と、を含み、前記電極触媒層に含まれる空隙のなかで、3nm以上5.5μm以下の直径を有する空隙を細孔とするとき、水銀圧入法によって測定された細孔容積から算出された細孔の直径が細孔直径であり、前記細孔直径に対する前記細孔容積の分布を示す分布曲線のピークが、前記細孔直径が0.06μm以上0.1μm以下である範囲に含まれる。
【0010】
上記課題を解決するための電極触媒層は、固体高分子形燃料電池において固体高分子電解質膜に接合する電極触媒層であって、触媒物質と、前記触媒物質を担持する導電性担体と、高分子電解質と、を含み、前記電極触媒層に含まれる空隙のなかで、3nm以上5.5μm以下の直径を有する空隙を細孔とするとき、水銀圧入法によって測定された細孔容積から算出された前記細孔の直径が、細孔直径であり、全ての前記細孔の前記細孔容積を積算した値が、第1積算容積であり、前記細孔直径が50nm以下である前記細孔の前記細孔容積を積算した値が、第2積算容積であり、前記第1積算容積に対する前記第2積算容積の百分率が、30%以上40%以下である。
【0011】
上記課題を解決するための電極触媒層は、固体高分子形燃料電池において固体高分子電解質膜に接合する電極触媒層であって、触媒物質と、前記触媒物質を担持する導電性担体と、高分子電解質と、を含み、前記電極触媒層に含まれる空隙のなかで、3nm以上5.5μm以下の直径を有する空隙を細孔とするとき、水銀圧入法によって測定された細孔容積から算出された前記細孔の直径が、細孔直径であり、全ての前記細孔の前記細孔容積を積算した値が、第1積算容積であり、前記細孔直径が90nm以上である前記細孔の前記細孔容積を積算した値が、第3積算容積であり、前記第1積算容積に対する前記第3積算容積の百分率が、15%以上35%以下である。
【0012】
上記課題を解決するための電極触媒層は、固体高分子形燃料電池において固体高分子電解質膜に接合する電極触媒層であって、触媒物質と、前記触媒物質を担持する導電性担体と、高分子電解質と、を含み、前記電極触媒層に含まれる空隙のなかで、3nm以上5.5μm以下の直径を有する空隙を細孔とするとき、水銀圧入法によって測定された細孔容積から算出された前記細孔の直径が、細孔直径であり、全ての前記細孔の前記細孔容積を積算した値が、第1積算容積であり、50nm以上80nm以下の各細孔直径が第1の細孔直径であり、3nmから前記第1の細孔直径までの前記細孔の前記細孔容積を積算した値が累積細孔容積であって、前記第1積算容積に対する前記累積細孔容積の百分率が累積細孔容積率であり、前記第1の細孔直径(μm)に対する前記累積細孔容積の分布を示す分布曲線の傾きが、7以上14以下である。
【0013】
上記電極触媒層は、前記電極触媒層の体積に対して、全ての前記細孔の前記細孔容積を積算した積算容積の百分率が、65%以上90%以下であってもよい。
上記電極触媒層は、繊維状物質をさらに含んでもよい。
【0014】
上記電極触媒層は、前記繊維状物質が、電子伝導性繊維、および、プロトン伝導性繊維から選択される一種または二種以上の繊維状物質を含み、前記電子伝導性繊維は、カーボンナノファイバー、カーボンナノチューブ、および、遷移金属含有繊維から構成される群から選択される少なくとも一種を含んでもよい。
【0015】
上記電極触媒層は、前記電極触媒層の厚さが、5μm以上30μm以下であってもよい。
上記課題を解決するための膜電極接合体は、固体高分子電解質膜と、前記固体高分子電解質膜において対向する2つの面の少なくとも一方に接合された上記電極触媒層と、を備える。
【0016】
上記膜電極接合体において、前記電極触媒層は、前記固体高分子形燃料電池においてカソードを構成する電極触媒層であってもよい。
上記課題を解決するための固体高分子形燃料電池は、上記膜電極接合体を備える。
【発明の効果】
【0017】
本発明によれば、発電性能を高めることができる。
【図面の簡単な説明】
【0018】
【
図1】一実施形態における膜電極接合体の構造を示す断面図。
【
図2】一実施形態における電極触媒層の構造を模式的に示す模式図。
【
図3】一実施形態における固体高分子形燃料電池の構成を示す分解斜視図。
【
図4】実施例および比較例における細孔直径の分布曲線。
【
図5】実施例および比較例における細孔直径と累積細孔容積率との関係を示すグラフ。
【発明を実施するための形態】
【0019】
図1から
図5を参照して、電極触媒層、膜電極接合体、および、固体高分子形燃料電池の一実施形態を説明する。以下では、膜電極接合体の構成、電極触媒層の構成、固体高分子形燃料電池を構成する単セルの構成、膜電極接合体の製造方法、および、実施例を順に説明する。
【0020】
[膜電極接合体の構成]
図1を参照して、膜電極接合体の構成を説明する。
図1は、膜電極接合体の厚さ方向に沿う断面構造を示している。
図1が示すように、膜電極接合体10は、高分子電解質膜11と、カソード側電極触媒層12Cと、アノード側電極触媒層12Aとを備えている。高分子電解質膜11は、固体状の高分子電解質膜である。高分子電解質膜11において対向する一対の面において、一方の面にカソード側電極触媒層12Cが接合し、他方の面にアノード側電極触媒層12Aが接合している。カソード側電極触媒層12Cは酸素極(カソード)を構成する電極触媒層であり、アノード側電極触媒層12Aは燃料極(アノード)を構成する電極触媒層である。電極触媒層12の外周部は、不図示のガスケットなどによって封止されてもよい。
【0021】
[電極触媒層の構成]
図2を参照して、膜電極接合体10が備える電極触媒層の構成をより詳しく説明する。
【0022】
図2が示すように、電極触媒層12は、触媒物質21、導電性担体22、高分子電解質23、および、繊維状物質24を含んでいる。電極触媒層12は、繊維状物質24を含まなくてもよい。電極触媒層12の中で触媒物質21、導電性担体22、高分子電解質23、および、繊維状物質24が存在しない部分が空隙である。本実施形態では、空隙のなかで、3nm以上5.5μm以下の直径を有する空隙を細孔と定義する。
【0023】
電極触媒層12において、水銀圧入法によって測定された細孔容積Vpから算出された細孔の直径が細孔直径Dである。なお、細孔直径Dは、水銀圧入法により得られる円筒モデル化した細孔の直径Dと定義される。
【0024】
ここで、上述した細孔容積Vpの分布について説明する。細孔容積Vpの分布は、細孔直径D(3nm≦D≦5.5μm)に対する、細孔容積Vpの分布関数(=dVp/dlogD)によって示される。細孔容積Vpの分布は、水銀圧入法によって得られる。
【0025】
水銀は高い表面張力を有するため、細孔に水銀を侵入させる場合には、所定の圧力Pを加える必要がある。細孔に水銀を進入させるために加えた圧力Pと、細孔に圧入された水銀量とから、細孔容積Vpの分布や、比表面積を求めることができる。加えられた圧力Pと、その圧力Pにおいて水銀が侵入可能な細孔直径Dとの関係は、Washburnの式として知られる式(1)で表すことができる。なお、以下の式(1)において、γは水銀の表面張力であり、θは水銀と細孔壁面の接触角である。本実施形態では、表面張力γを0.48N/mとし、かつ、接触角θを130°として、細孔直径Dを計算している。
【0026】
D = -4γcosθ/P … 式(1)
なお、水銀圧入法を用いて実際に測定を行うときには、圧入された水銀の容積を相互に異なる圧力Pの印加によって別々に記録する。そして、上記式(1)に基づいて、各圧力Pを細孔直径Dに換算する。また、圧入された水銀の容積と細孔容積Vpとは等しいとして、細孔直径がDからD+dDまでに増加したときの細孔容積Vpの増加分である細孔容積増加分dVを細孔直径Dに対してプロットする。このプロットのピークが、細孔容積Vpの分布のピークである。
【0027】
電極触媒層12において発電性能の向上に要する機能は、例えば、電極触媒層12内における三相界面の維持、電極触媒層12におけるガスの拡散、電極触媒層12における生成水の排出である。そして、三相界面の維持に適した細孔直径D、ガスの拡散に適した細孔直径D、生成水の排水に適した細孔直径Dは、相互に異なり、発電性能の向上に適した細孔直径Dは、これら各細孔直径Dを含むことを要する。なお、三相界面とは、高分子電解質、触媒、および、ガスによって形成される界面である。
【0028】
電極触媒層12は、上述の観点から、下記条件1から条件4の少なくとも1つを満たす。
[条件1]
条件1では、細孔直径Dに対する細孔容積Vpの分布を示す分布曲線のピークは、細孔直径Dが0.06μm以上0.1μm以下(0.06μm≦D≦0.1μm)である範囲に含まれている。分布曲線のピークは、細孔直径Dが0.07μm以上0.1μm以下(0.07μm≦D≦0.1μm)である範囲に含まれることが好ましい。分布曲線のピークが、細孔直径Dが0.06μm以上0.1μm以下である範囲に含まれることによって、電極触媒層12は、電極触媒層12が十分なガス拡散性、および、排水性を備えるだけの空隙を含むことができる。
【0029】
[条件2]
電極触媒層12では、全ての細孔の細孔容積Vpを積算した値が、第1積算容積である。細孔直径Dが50nm以下である細孔の細孔容積Vpを積算した値が、第2積算容積である。条件2では、第1積算容積に対する第2積算容積の割合が、30%以上40%以下である。
【0030】
[条件3]
電極触媒層12では、細孔直径Dが90nm以上である細孔の細孔容積Vpを積算した値が、第3積算容積である。条件3では、第1積算容積に対する第3積算容積の割合が、15%以上35%以下である。
【0031】
条件2,3を満たす場合のように、電極触媒層12に含まれる細孔のなかでも、直径が相対的に大きい細孔が上述の割合で含まれることによって、電極触媒層12内において三相界面を維持しつつ、電極触媒層12におけるガスの拡散性と、生成水の排出性とを高めることができる。また、電極触媒層12に含まれる細孔のなかでも、直径が相対的に小さい細孔が上述の割合で含まれることによって、電極触媒層12内において三相界面を維持しつつ、電極触媒層12におけるガスの拡散性と、生成水の排出性とを高めることができる。
【0032】
[条件4]
50nm以上80nm以下の各細孔直径は、第1の細孔直径である。3nmから第1の細孔直径までの細孔の細孔容積Vpを積算した値は、累積細孔容積である。そして、第1積算容積に対する累積細孔容積の百分率が、累積細孔容積率である。条件4では、電極触媒層12において、各第1の細孔直径(μm)に対する累積細孔容積の分布を示す分布曲線の傾きが7以上14以下である。条件4を満たす電極触媒層12では、細孔直径が3nm以上80nm以下の相対的に小さい各直径の細孔が、発電性能の向上に要する各機能に適した割合で分布する。すなわち、電極触媒層12内において三相界面を維持しつつ、電極触媒層12におけるガスの拡散性と、生成水の排出性とを高めることができる。
【0033】
電極触媒層12は、条件1から4に加えて、下記条件5を満たすことが好ましい。
[条件5]
条件5において、電極触媒層12の体積V0に対して、電極触媒層12に含まれる全ての細孔の細孔容積を積算した積算容積Vの百分率(V/V0×100(%))が、65%以上90%以下である。これによって、電極触媒層12は、より十分なガス拡散性、および、排水性を有することができる。なお、電極触媒層12の体積V0は、水銀圧入法による測定に用いた電極触媒層12の面積と厚さとの積として得ることができる。
【0034】
なお、電極触媒層12の厚さは、5μm以上30μm以下であることが好ましい。電極触媒層12の厚さが30μm以下であることによって、クラックが生じることが抑えられる。また、電極触媒層12を固体高分子形燃料電池に用いた場合に、ガスや生成した水の拡散性、および、導電性が低下することが抑えられ、ひいては、固体高分子形燃料電池の出力が低下することが抑えられる。また、電極触媒層12の厚さが5μm以上であることによって、電極触媒層12において厚さのばらつきが生じにくくなり、電極触媒層12に含まれる触媒物質21や高分子電解質23の分布が不均一になることが抑えられる。なお、電極触媒層12の表面におけるひび割れや、厚さの不均一性は、電極触媒層12を固体高分子形燃料電池の一部として使用し、かつ、固体高分子形燃料電池を長期に渡り運転した場合に、固体高分子形燃料電池の耐久性に悪影響を及ぼす可能性が高い点で、好ましくない。
【0035】
電極触媒層12の厚さは、例えば、走査型電子顕微鏡(SEM)を用いて電極触媒層12の断面を観察することで計測することができる。電極触媒層12の断面を露出させる方法には、例えば、イオンミリング、および、ウルトラミクロトームなどの方法を用いることができる。電極触媒層12の断面を露出させる加工を行うときには、電極触媒層12を冷却することが好ましい。これにより、電極触媒層12が含む高分子電解質23に対するダメージを軽減することができる。
【0036】
なお、上述した電極触媒層12は、カソード側電極触媒層12Cおよびアノード側電極触媒層12Aの両方に適用することが可能な構成であるが、カソード側電極触媒層12Cおよびアノード側電極触媒層12Aのいずれか一方のみに適用されてもよい。この場合には、電極触媒層12がカソード側電極触媒層12Cに適用されることがより好ましい。電極触媒層12がカソード側電極触媒層12Cに適用されることによって、カソード側電極触媒層12Cで生成される水の排水性と、カソード側電極触媒層12Cに流入するガスの拡散性との両方を高めることができる。ひいては、固体高分子形燃料電池の出力が低下することが抑えられる。
【0037】
[固体高分子形燃料電池の構成]
図3を参照して、膜電極接合体10を備える固体高分子形燃料電池の構成を説明する。以下に説明する構成は、固体高分子形燃料電池の一例における構成である。また、
図3は、固体高分子形燃料電池が備える単セルの構成を示している。固体高分子形燃料電池は、複数の単セルを備え、かつ、複数の単セルが積層された構成でもよい。
【0038】
図3が示すように、固体高分子形燃料電池30は、膜電極接合体10、一対のガス拡散層、および、一対のセパレーターを備えている。一対のガス拡散層は、カソード側ガス拡散層31Cとアノード側ガス拡散層31Aとから構成されている。一対のセパレーターは、カソード側セパレーター32Cとアノード側セパレーター32Aとから構成されている。
【0039】
カソード側ガス拡散層31Cは、カソード側電極触媒層12Cに接している。カソード側電極触媒層12Cとカソード側ガス拡散層31Cとが、酸素極(カソード)30Cを構成している。アノード側ガス拡散層31Aは、アノード側電極触媒層12Aに接している。アノード側電極触媒層12Aとアノード側ガス拡散層31Aとが、燃料極(アノード)30Aを構成している。
【0040】
高分子電解質膜11において、カソード側電極触媒層12Cが接合された面がカソード面であり、アノード側電極触媒層12Aが接合された面がアノード面である。カソード面のなかで、カソード側電極触媒層12Cによって覆われていない部分が外周部である。外周部には、カソード側ガスケット13Cが位置している。アノード面のなかで、アノード側電極触媒層12Aによって覆われていない部分が外周部である。外周部には、アノード側ガスケット13Aが位置している。ガスケット13C,13Aによって、各面の外周部からガスが漏れることが抑えられる。
【0041】
カソード側セパレーター32Cとアノード側セパレーター32Aとは、固体高分子形燃料電池30の厚さ方向において、膜電極接合体10、および、2つのガス拡散層31C,31Aから構成される多層体を挟んでいる。カソード側セパレーター32Cは、カソード側ガス拡散層31Cに対向している。アノード側セパレーター32Aは、アノード側ガス拡散層31Aに対向している。
【0042】
カソード側セパレーター32Cにおいて対向する一対の面は、それぞれ複数の溝を有している。一対の面のなかで、カソード側ガス拡散層31Cと対向する対向面が有する溝は、ガス流路32Cgである。一対の面のなかで、対向面とは反対側の面が有する溝は、冷却水流路32Cwである。
【0043】
アノード側セパレーター32Aにおいて対向する一対の面は、それぞれ複数の溝を有している。一対の面のなかで、アノード側ガス拡散層31Aと対向する対向面が有する溝は、ガス流路32Agである。一対の面のなかで、対向面とは反対側の面が有する溝は、冷却水流路32Awである。
【0044】
各セパレーター32C,32Aは、導電性を有し、かつ、ガスに対する不透過性を有した材料によって形成されている。
【0045】
固体高分子形燃料電池30では、カソード側セパレーター32Cのガス流路32Cgを通じて酸化剤が酸素極30Cに供給される。また、固体高分子形燃料電池30では、アノード側セパレーター32Aのガス流路32Agを通じて燃料が供給される。これにより、固体高分子形燃料電池30が発電を行う。なお、酸化剤には、例えば空気および酸素などを挙げることができる。燃料には、例えば水素を含む燃料ガス、および、有機物燃料などを挙げることができる。
【0046】
固体高分子形燃料電池30では、燃料極30Aにおいて、以下の反応式(1)に示す反応が生じる。これに対して、酸素極30Cにおいて、以下の反応式(2)に示す反応が生じる。
H2 → 2H+ + 2e- … 反応式(1)
1/2O2 + 2H+ + 2e- → H2O … 反応式(2)
【0047】
このように、本実施形態における固体高分子形燃料電池30とは、酸素極30Cに対して酸素を含有するガスが供給されることによって、酸素極30Cにおいて水を生成する燃料電池である。
【0048】
上述したように、本実施形態における電極触媒層12は、アノード側電極触媒層12Aに適用することが可能であり、また、カソード側電極触媒層12Cに適用することが可能でもある。ここで、上記反応式(2)によるように、酸素極30Cにおいて、酸素、プロトン、および、電子から水が生成される。酸素極30Cにおいて生成された水が酸素極30C外に排出されない場合には、酸素極30Cへの酸素含有ガスの供給が水によって妨げられてしまう。これによって、固体高分子形燃料電池30の発電性能が低下してしまう。この点で、本実施形態の電極触媒層12は、上述した各条件を満たすことによって、高い排水性を有することから、こうした電極触媒層12が酸素極30Cが備えるカソード側電極触媒層12Cに適用されることによって、固体高分子形燃料電池30の発電性能を高める効果を、より顕著に得ることができる。
【0049】
[膜電極接合体の製造方法]
以下、上述した膜電極接合体の製造方法を説明する。
膜電極接合体10を製造するときには、まず、触媒物質21、導電性担体22、高分子電解質23、および、繊維状物質24を分散媒に混合し、その後、混合物に分散処理を施すことによって触媒インクを作成する。なお、繊維状物質24は、触媒インクを構成する物質から省略されてもよい。分散処理は、例えば、遊星型ボールミル、ビーズミル、および、超音波ホモジナイザーなどを用いて行うことができる。
【0050】
触媒インクの分散媒には、触媒物質21、導電性担体22、高分子電解質23、および、繊維状物質24を浸食せず、かつ、分散媒の流動性が高い状態で、高分子電解質23を溶解することができる、または、高分子電解質23を微細なゲルとして分散することが可能な溶媒を用いることができる。分散媒には水が含まれてもよく、水は高分子電解質23とのなじみがよい。触媒インクは、揮発性の液体有機溶媒を含むことが好ましい。溶媒が低級アルコールである場合には発火のおそれがあるため、こうした溶媒には、水が混合されることが好ましい。溶媒には、高分子電解質23が分離することによって、触媒インキが白濁したりゲル化したりしない範囲で水を混合することができる。
【0051】
作成した触媒インクを基材に塗布した後に乾燥することによって、触媒インクの塗膜から溶媒が除去される。これにより、基材上に電極触媒層12が形成される。基材には、高分子電解質膜11、または、転写用基材を用いることができる。高分子電解質膜11を基材として用いる場合には、例えば、高分子電解質膜11の表面に触媒インクを直に塗布した後、触媒インクの塗膜から溶媒を除去することによって電極触媒層12を形成する方法を用いることができる。
【0052】
転写用基材を用いる場合には、転写用基材の上に触媒インキを塗布した後に乾燥することによって、触媒層付き基材を作成する。その後、例えば、触媒層付き基材における電極触媒層12の表面と、高分子電解質膜11とを接触させた状態で、加熱および加圧を行うことによって、電極触媒層12と高分子電解質膜11とを接合させる。高分子電解質膜11の両面に電極触媒層12を接合することによって、膜電極接合体10を製造することができる。
【0053】
触媒インクを基材に塗布する方法には、様々な塗工方法を用いることができる。塗工方法には、例えば、ダイコート、ロールコート、カーテンコート、スプレーコート、および、スキージーなどを挙げることができる。塗工方法には、ダイコートを用いることが好ましい。ダイコートは、塗布期間の中間における膜厚が安定し、かつ、間欠的な塗工を行うことが可能である点で好ましい。触媒インクの塗膜を乾燥させる方法には、例えば、温風オーブンを用いた乾燥、IR(遠赤外線)乾燥、ホットプレートを用いた乾燥、および、減圧乾燥などを用いることができる。乾燥温度は、40℃以上200℃以下であり、40℃以上120℃以下程度であることが好ましい。乾燥時間は、0.5分以上1時間以下であり、1分以上30分以下程度であることが好ましい。
【0054】
転写用基材に電極触媒層12を形成する場合には、電極触媒層12の転写時に電極触媒層12に掛かる圧力や温度が膜電極接合体10の発電性能に影響する。発電性能が高い膜電極接合体を得る上では、多層体に掛かる圧力は、0.1MPa以上20MPa以下であることが好ましい。圧力が20MPa以下であることによって、電極触媒層12が過剰に圧縮されることが抑えられる。圧力が0.1MPa以上であることによって、電極触媒層12と高分子電解質膜11との接合性の低下により発電性能が低下することが抑えられる。接合時の温度は、高分子電解質膜11と電極触媒層12との界面の接合性の向上や、界面抵抗の抑制を考慮すると、高分子電解質膜11、または、電極触媒層12が含む高分子電解質23のガラス転移点付近であることが好ましい。
【0055】
転写用基材には、例えば、高分子フィルム、および、フッ素系樹脂によって形成されたシート体を用いることができる。フッ素系樹脂は、転写性に優れている。フッ素系樹脂には、例えば、エチレンテトラフルオロエチレン共重合体(ETFE)、テトラフルオロエチレン‐ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロパーフルオロアルキルビニルエーテル共重合体(PFA)、および、ポリテトラフルオロエチレン(PTFE)などを挙げることができる。高分子フィルムを形成する高分子には、例えば、ポリイミド、ポリエチレンテレフタラート、ポリアミド(ナイロン(登録商標))、ポリサルホン、ポリエーテルサルホン、ポリフェニレンサルファイド、ポリエーテル・エーテルケトン、ポリエーテルイミド、ポリアリレート、および、ポリエチレンナフタレートなどを挙げることができる。転写用基材には、ガス拡散層を用いることもできる。
【0056】
電極触媒層12の細孔の大きさおよび分布は、触媒インクの塗膜を加熱する温度、塗膜を加熱する速度、触媒インクが乾燥するまでの加圧条件、繊維状物質24の配合率、触媒インクの溶媒組成、触媒インクを調整するときの分散強度などを調整することによって調整することが可能である。例えば、繊維状物質24の配合率を高めるほど、分布曲線のピークに対応する細孔直径Dは大きくなり、第1積算容積に対する第2積算容積の割合は少なくなり、第1積算容積に対する第3積算容積の割合は多くなる。
【0057】
触媒物質21には、例えば、白金族に含まれる金属、白金族以外の金属、および、これら金属の合金、酸化物、複酸化物、および、炭化物などを用いることができる。白金族に含まれる金属は、白金、パラジウム、ルテニウム、イリジウム、ロジウム、および、オスミウムである。白金族以外の金属には、鉄、鉛、銅、クロム、コバルト、ニッケル、マンガン、バナジウム、モリブデン、ガリウム、および、アルミニウムなどを用いることができる。
【0058】
導電性担体22には、導電性を有し、かつ、触媒物質21に侵食されることなく触媒物質21を担持することが可能な担体を用いることができる。導電性担体22には、カーボン粒子を用いることができる。カーボン粒子には、例えば、カーボンブラック、グラファイト、黒鉛、活性炭、カーボンナノチューブ、カーボンナノファイバー、および、フラーレンを用いることができる。カーボン粒子の粒径は、10nm以上1000nm以下程度であることが好ましく、10nm以上100nm以下程度であることがさらに好ましい。粒径が10nm以上であることによって、カーボン粒子が電極触媒層12において密に詰まり過ぎず、これによって、電極触媒層12のガス拡散性を低下させることが抑えられる。粒径が1000nm以下であることによって、電極触媒層12にクラックを生じさせることが抑えられる。
【0059】
高分子電解質膜11および電極触媒層12に含まれる高分子電解質には、プロトン伝導性を有する電解質を用いることができる。高分子電解質には、例えば、フッ素系高分子電解質、および、炭化水素系高分子電解質を用いることができる。フッ素系高分子電解質には、テトラフルオロエチレン骨格を有する高分子電解質を用いることができる。なお、テトラフルオロエチレン骨格を有する高分子電解質には、デュポン社製のNafion(登録商標)を例示することができる。炭化水素系高分子電解質には、例えば、スルホン化ポリエーテルケトン、スルホン化ポリエーテルスルホン、スルホン化ポリエーテルエーテルスルホン、スルホン化ポリスルフィド、および、スルホン化ポリフェニレンなどを用いることができる。
【0060】
高分子電解質膜11に含まれる高分子電解質と、電極触媒層12に含まれる高分子電解質23とは、互いに同じ電解質であってもよいし、互いに異なる電解質であってもよい。ただし、高分子電解質膜11と電極触媒層12との界面における界面抵抗や、湿度が変化した場合において、高分子電解質膜11と電極触媒層12とにおける寸法変化率を考慮すると、高分子電解質膜11に含まれる高分子電解質と、電極触媒層12に含まれる高分子電解質23とは、互いに同じ電解質であるか、類似の電解質であることが好ましい。
【0061】
繊維状物質24には、電子伝導性繊維およびプロトン伝導性繊維を用いることができる。電子伝導性繊維には、カーボンファイバー、カーボンナノチューブ、カーボンナノホーン、および、導電性高分子ナノファイバーなどを挙げることができる。導電性や分散性の観点から、カーボンナノファイバーを繊維状物質24として用いることが好ましい。
【0062】
触媒能を有する電子伝導性繊維は、貴金属によって形成される触媒の使用量を低減できる点でより好ましい。電極触媒層12が酸素極を構成する電極触媒層12として用いられる場合には、触媒能を有する電子伝導性繊維には、カーボンナノファイバーから作製したカーボンアロイ触媒を挙げることができる。触媒能を有する電子伝導性繊維は、燃料極用の電極活物質を繊維状に加工した繊維であってもよい。電極活物質には、Ta、Nb、Ti、および、Zrから構成される群から選択される少なくとも一つの遷移金属元素を含む物質を用いることができる。遷移金属元素を含む物質には、遷移金属元素の炭窒化物の部分酸化物、または、遷移金属元素の導電性酸化物、および、遷移金属元素の導電性酸窒化物を挙げることができる。
【0063】
プロトン伝導性繊維は、プロトン伝導性を有する高分子電解質を繊維状に加工した繊維であればよい。プロトン伝導性繊維を形成するための材料には、フッ素系高分子電解質、および、炭化水素系高分子電解質などを用いることができる。フッ素系高分子電解質には、例えば、デュポン社製のNafion(登録商標)、旭硝子(株)製のFlemion(登録商標)、旭化成(株)製のAciplex(登録商標)、および、ゴア社製のGore Select(登録商標)などを用いることができる。炭化水素系高分子電解質には、スルホン化ポリエーテルケトン、スルホン化ポリエーテルスルホン、スルホン化ポリエーテルエーテルスルホン、スルホン化ポリスルフィド、スルホン化ポリフェニレン、スルホン化ポリイミド、および、酸ドープ型ポリベンゾアゾール類などの電解質を用いることができる。
【0064】
繊維状物質24には、上述した繊維のうちの一種のみが用いられてもよいし、二種以上が用いられてもよい。繊維状物質24として、電子伝導性繊維とプロトン伝導性繊維とを併せて用いてもよい。繊維状物質24は、上述した繊維状物質24のなかでも、カーボンナノファイバー、カーボンナノチューブ、および、電解質繊維から構成される群から選択される少なくとも1つを含むことが好ましい。
【0065】
繊維状物質24の繊維径は、0.5nm以上500nm以下であることが好ましく、5nm以上200nm以下であることがより好ましい。繊維径を0.5nm以上500nm以下の範囲に設定することにより、電極触媒層12内の空隙を増加させることができ、ひいては、固体高分子形燃料電池30の高出力化が可能である。繊維状物質24の繊維長は、1μm以上50μm以下であることが好ましく、1μm以上20μm以下であることがより好ましい。繊維長を1μm以上50μm以下の範囲に設定することにより、電極触媒層12の強度を高めることができ、ひいては、電極触媒層12を形成するときに、電極触媒層12にクラックが生じることが抑えられる。加えて、電極触媒層12内の空隙を増加させることができ、ひいては、固体高分子形燃料電池30の高出力化が可能である。
【0066】
[実施例]
図4および
図5を参照して、膜電極接合体の実施例を説明する。
[実施例1]
白金担持カーボン触媒(TEC10E50E、田中貴金属工業(株)製)、水、1‐プロパノール、高分子電解質(ナフィオン(登録商標)分散液、和光純薬工業(株)製)、および、カーボンナノファイバー(VGCF(登録商標)-H、直径150nm、昭和電工(株)製)を混合した。なお、白金担持カーボン触媒において、白金触媒がカーボン粒子に担持されている。カーボン粒子の質量と高分子電解質の質量との比を1:1に設定した。そして、混合物に対して遊星型ボールミルを用いて60分間にわたって300rpmで分散処理を行った。その際に、直径が5mmであるジルコニアボールをジルコニア容器の3分の1程度加えた。これにより、触媒インクを調製した。なお、高分子電解質の質量はカーボン粒子の質量に対して100質量%であり、繊維状物質の質量はカーボン粒子の質量に対して100質量%であり、分散媒中の水の割合は50質量%であり、触媒インクにおける固形分含有量が10質量%であるように触媒インクを調整した。
【0067】
触媒インクを、高分子電解質膜(ナフィオン(登録商標)211、Dupont社製)の両面にスリットダイコーターを用いて塗布することによって塗膜を形成した。なお、高分子電解質膜のカソード面には触媒インクの厚さが150μmとなるように、また、アノード面には触媒インクの厚さが100μmとなるように、触媒インクを高分子電解質膜に塗布した。次いで、塗膜が形成された高分子電解質膜を80度の温風オーブンに配置し、塗膜のタックがなくなるまで塗膜を乾燥させた。これにより、実施例1の膜電極接合体を得た。
【0068】
[実施例2]
触媒インクを調製するときに、カーボンナノファイバー(VGCF(登録商標)-H、直径150nm、昭和電工(株)製)のかわりに多層カーボンナノチューブ(直径60-100nm、東京化成工業(株)製)を用いた以外は、実施例1と同様の方法によって、実施例2の膜電極接合体を得た。
【0069】
[実施例3]
実施例1と同様の方法によって、触媒インクを調製した。触媒インクを、PTFEフィルムの表面にスリットダイコーターを用いて塗布することによって塗膜を形成した。次いで、80度の温風オーブンに配置し、塗膜のタックがなくなるまで塗膜を乾燥させた。これにより、触媒層付き基材を得た。カソード側電極触媒層を含む基材と、アノード側電極触媒層を含む基材とを準備した。なお、高分子電解質膜のカソード面には触媒インクの厚さが150μmとなるように、また、アノード面には触媒インクの厚さが60μmとなるように、高分子電解質膜に触媒インクを塗布した。そして、高分子電解質膜(ナフィオン(登録商標)211、Dupont社製)における一対の面に対し、触媒層付き基材が1つずつ各面に対向するように配置し、積層体を形成した。120℃、5MPaの条件で積層体をホットプレスすることによって、高分子電解質膜に2つの電極触媒層を接合した。次いで、各電極触媒層からPTFEフィルムを剥離することによって、実施例3の膜電極接合体を得た。
【0070】
[比較例1]
カソード側電極触媒層を形成するときに、触媒インクの塗布量を実施例1の3倍とした以外は、実施例1と同様の方法によって、比較例1の膜電極接合体を得た。
【0071】
[比較例2]
触媒インクを調製するときに、固形分比率を実施例1の2分の1とした以外は、実施例1と同様の方法によって、比較例2の膜電極接合体を得た。
【0072】
[比較例3]
触媒インクを調製するときに、カーボンナノファイバーを添加しなかった以外は、実施例1と同様の方法によって、比較例3の膜電極接合体を得た。
【0073】
[比較例4]
触媒インクを調製するときに、カーボンナノファイバーの量を実施例1の2倍とした以外は、実施例1と同様の方法によって、比較例4の膜電極接合体を得た。
【0074】
[比較例5]
触媒インクを調製するときに、カーボンナノファイバーの量を実施例1の3倍とした以外は、実施例1と同様の方法によって、比較例5の膜電極接合体を得た。
【0075】
[細孔容積Vpに基づく数値の算出]
細孔容積Vpの分布は、水銀圧入法により測定した。具体的には、高分子電解質膜にカソード側電極触媒層のみが形成された膜電極接合体を用いて、自動ポロシメーター(マイクロメリティックス社製、オートポアIV9510)を用いて、細孔容積Vpを測定した。測定セルの容積は約5cm3であり、水銀圧入の圧力を3kPaから400MPaまで昇圧した。これにより、各圧力における水銀の圧入量、つまり細孔容積Vpを得た。水銀圧入の圧力をWashburnの式を用いて細孔直径Dに換算し、細孔直径Dに対する細孔容積Vpの分布関数dVp/dlogDのプロットを作成した。なお、表面張力γを0.48N/mとし、かつ、接触角θを130°とした。そして、このプロットのピークに対応する細孔直径Dを細孔直径Dpとして読み取った。
【0076】
次に、細孔直径Dが3nm以上5.5μm以下である全ての細孔の容積を積算して第1積算容積を算出した。また、細孔直径Dが90nm以上である細孔の容積を積算して第3積算容積を算出した。そして、第3積算容積を第1積算容積で除算し、かつ、除算した値を100倍することによって、第1積算容積に対する第3積算容積の百分率R(L)を算出した。また、細孔直径Dが50nm以下である細孔の細孔容積を積算して第2積算容積を算出した。そして、第2積算容積を第1積算容積で除算し、かつ、除算した値を100倍することによって、第1積算容積に対する第2積算容積の百分率R(S)を算出した。さらに、細孔容積Vpの測定に用いた電極触媒層の面積と厚さとを乗算して、電極触媒層の体積V0を算出した。そして、電極触媒層の体積V0に対する第1積算容積Vの百分率V/V0を算出した。
【0077】
[電極触媒層の厚さ計測]
走査型電子顕微鏡(SEM)を用いて電極触媒層の断面を観察することによって、電極触媒層の厚さを計測した。具体的には、電極触媒層の断面を、走査型電子顕微鏡((株)日立ハイテクノロジーズ製、FE-SEM S-4800)を用いて、1000倍の倍率で観察した。電極触媒層の断面における30カ所の観察点において電極触媒層の厚さを計測した。30カ所の観察点における厚さの平均値を電極触媒層の厚さとした。
【0078】
[発電性能の測定]
発電性能の測定には、新エネルギー・産業技術総合開発機構(NEDO)が刊行した小冊子である「セル評価解析プロトコル」に準拠する方法を用いた。膜電極接合体の各面に、ガス拡散層、ガスケット、および、セパレーターを配置し、所定の面圧となるように締め付けたJARI標準セルを評価用単セルとして用いた。そして、「セル評価解析プロトコル」に記載された方法に準拠してI‐V測定を実施した。このときの条件を標準条件に設定した。また、アノードの相対湿度とカソードの相対湿度とをRH100%としてI‐V測定を実施した。このときの条件を高湿条件に設定した。
【0079】
[耐久性の測定]
耐久性の測定には、発電性能の測定に用いた評価用単セルと同一の単セルを評価用単セルとして用いた。そして、上述した「セル評価解析プロトコル」に記載の湿度サイクル試験によって耐久性を測定した。
【0080】
[比較結果]
実施例1から実施例3の膜電極接合体が備える電極触媒層、および、比較例1から比較例5の膜電極接合体が備える電極触媒層の各々について、以下の項目における結果は、表1に示す通りであった。すなわち、各電極触媒層において、細孔容積Vpの分布曲線におけるピークでの細孔直径Dp、第1積算容積に対する第3積算容積の百分率R(L)(%)、および、第1積算容積に対する第2積算容積の百分率R(S)(%)は、表1に示す通りであった。また、各電極触媒層において、電極触媒層の体積V0に対する第1積算容積Vの百分率V/V0(%)、および、電極触媒層の厚さT(μm)は、表1に示す通りであった。また、実施例1から実施例3の膜電極接合体を備える固体高分子形燃料電池、および、比較例1から比較例5の膜電極接合体を備える固体高分子形燃料電池の各々について、発電性能、および、耐久性を測定した結果は、表1に示す通りであった。
【0081】
発電性能において、標準条件では、単セルにおいて、電圧が0.6Vのときの電流が25A以上である場合を「○」に設定し、25A未満である場合を「×」に設定した。また、高湿条件では、単セルにおいて、電圧が0.6Vのときの電流が30A以上である場合を「○」に設定し、30A未満である場合を「×」に設定した。耐久性において、8000サイクル後の水素クロスリーク電流が初期値の10倍未満である場合を「○」に設定し、10倍以上である場合を「×」に設定した。
【0082】
実施例1から実施例3の電極触媒層、および、比較例1から比較例5の電極触媒層の各々において、細孔容積Vpの分布曲線は、
図4に示す通りであった。また、実施例1から実施例3の電極触媒層、および、比較例1から比較例5の電極触媒層の各々において、累積細孔容積率と、細孔直径Dとの関係を示すグラフは、
図5に示す通りであった。
【0083】
【0084】
表1が示すように、実施例1から実施例3のいずれにおいても、細孔容積Vpの分布曲線におけるピークが、細孔直径Dpが0.06μm以上0.1μm以下である範囲に含まれることが認められた。実施例1から実施例3のいずれにおいても、第1積算容積に対する第3積算容積の百分率R(L)が、15%以上35%以下の範囲に含まれることが認められ、また、第1積算容積に対する第2積算容積の百分率R(S)が、30%以上40%以下の範囲に含まれることが認められた。
【0085】
実施例1から実施例3のいずれにおいても、電極触媒層の体積に対する細孔容積の積算値の百分率が、65%以上90%以下であることが認められた。実施例1から実施例3のいずれにおいても、第1の細孔直径(μm)に対する累積細孔容積の分布を示す分布曲線の傾きが、7以上14以下であることが認められた。
【0086】
実施例1から実施例3のいずれにおいても、電極触媒層の厚さが、5μm以上30μm以下の範囲に含まれることが認められた。さらに、実施例1から実施例3のいずれにおいても、測定時の条件に関わらず発電性能が「○」であり、かつ、耐久性が「○」であることが認められた。すなわち、実施例1から実施例3の膜電極接合体は、発電性能および耐久性に優れた燃料電池を構成することが可能な膜電極接合体であることが認められた。
【0087】
一方で、比較例1から比較例5のいずれにおいても、細孔容積Vpの分布曲線におけるピークが、細孔直径Dpが0.06μm以上0.1μm以下である範囲には含まれないことが認められた。比較例1から比較例5のいずれにおいても、第1積算容積に対する第3積算容積の百分率R(L)が、15%以上35%以下の範囲に含まれないことが認められた。比較例1から比較例5のいずれにおいても、第1積算容積に対する第2積算容積の百分率R(S)が、30%以上40%以下の範囲に含まれないことが認められた。
【0088】
比較例3,5では、電極触媒層の体積に対する細孔容積の積算値の百分率が、65%以上90%以下に含まれる一方で、比較例1,2,4では、電極触媒層の体積に対する細孔容積の百分率が、60%であることが認められた。比較例1では、電極触媒層の厚さが30μmを超えることが認められた一方で、比較例2から比較例5では、電極触媒層の厚さが、5μm以上30μm以下の範囲に含まれることが認められた。
【0089】
比較例1から比較例5において、標準条件および高湿条件の少なくともいずれかにおいて、発電性能が「×」であることが認められた。また、比較例2,3,5については、耐久性も「×」であることが認められた。このように、比較例1から比較例5によれば、上述した各実施例に比べて、少なくとも発電性能が低下し、耐久性が低下する場合もあることが認められた。
【0090】
以上説明したように、電極触媒層、膜電極接合体、および、燃料電池の一実施形態によれば、以下に列挙する効果を得ることができる。
(1)細孔直径Dに対する細孔容積Vpの分布を示す分布曲線のピークにおいて細孔直径Dが0.06μm以上0.1μm以下である場合には、電極触媒層12が十分なガス拡散性、および、排水性を備えるだけの空隙が含まれて、発電性能が向上可能である。
【0091】
(2)第1積算容積に対する第2積算容積の割合が、30%以上40%以下である場合には、電極触媒層12において三相界面を維持しつつ、ガスの拡散性と、生成水の排出性とを高めることが可能であって、それによって、発電性能が向上可能である。
【0092】
(3)第1積算容積に対する第3積算容積の割合が、15%以上35%以下である場合には、三相界面を維持しつつ、ガスの拡散性と、生成水の排出性とを高めることが可能であって、それによって、発電性能が向上可能である。
【0093】
(4)各第1の細孔直径(μm)に対する累積細孔容積の分布を示す分布曲線の傾きが7以上14以下である場合には、三相界面を維持しつつ、ガスの拡散性と、生成水の排出性とを高めることが可能であって、それによって、発電性能が向上可能である。
(5)電極触媒層12がカソード側電極触媒層12Cに適用されることによって、固体高分子形燃料電池30の発電性能を高める効果をより顕著に得ることができる。
【符号の説明】
【0094】
10…膜電極接合体、11…高分子電解質膜、12…電極触媒層、12A…アノード側電極触媒層、12C…カソード側電極触媒層、13A…アノード側ガスケット、13C…カソード側ガスケット、21…触媒物質、22…導電性担体、23…高分子電解質、24…繊維状物質、30…固体高分子形燃料電池、30A…燃料極、30C…酸素極、31A…アノード側ガス拡散層、31C…カソード側ガス拡散層、32A…アノード側セパレーター、32Ag,32Cg…ガス流路、32Aw,32Cw…冷却水流路、32C…カソード側セパレーター。