IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ パナソニックIPマネジメント株式会社の特許一覧

(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-05-18
(45)【発行日】2023-05-26
(54)【発明の名称】モータ駆動装置
(51)【国際特許分類】
   H02P 29/00 20160101AFI20230519BHJP
   G05B 13/04 20060101ALI20230519BHJP
【FI】
H02P29/00
G05B13/04
【請求項の数】 4
(21)【出願番号】P 2020509806
(86)(22)【出願日】2019-03-11
(86)【国際出願番号】 JP2019009552
(87)【国際公開番号】W WO2019188154
(87)【国際公開日】2019-10-03
【審査請求日】2022-01-06
(31)【優先権主張番号】P 2018069490
(32)【優先日】2018-03-30
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】314012076
【氏名又は名称】パナソニックIPマネジメント株式会社
(74)【代理人】
【識別番号】100106116
【弁理士】
【氏名又は名称】鎌田 健司
(74)【代理人】
【識別番号】100131495
【弁理士】
【氏名又は名称】前田 健児
(72)【発明者】
【氏名】鈴木 健一
【審査官】柏崎 翔
(56)【参考文献】
【文献】特開2007-304995(JP,A)
【文献】特開2008-228360(JP,A)
【文献】特開昭57-199486(JP,A)
【文献】特開2007-252142(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H02P 29/00
G05B 13/04
(57)【特許請求の範囲】
【請求項1】
モータを駆動するモータ駆動装置であって、
制御指令からトルク指令を生成するモータ制御部と、
前記モータに接続されるはずの負荷の特性及び前記トルク指令に基づいて模擬トルク指令を生成することによって、前記負荷の特性を模擬する負荷特性模擬部と、
前記模擬トルク指令に基づいて前記モータを制御するモータ駆動部とを備え
前記負荷特性模擬部は、前記負荷の特性として剛体特性を模擬する係数を有し、前記トルク指令に前記係数を乗算することで前記模擬トルク指令を生成する、
モータ駆動装置。
【請求項2】
前記負荷特性模擬部は、共振周波数、反共振周波数、共振減衰比及び反共振減衰比の少なくとも一つをパラメータに持つ共振特性を模擬する2次フィルタを含む、
請求項1記載のモータ駆動装置。
【請求項3】
前記負荷特性模擬部は、直列結合された複数の前記2次フィルタを含む、請求項2記載のモータ駆動装置。
【請求項4】
前記負荷特性模擬部は、前記負荷の特性及び前記トルク指令と、外乱トルクを模擬した模擬外乱トルクとに基づいて前記模擬トルク指令を生成する、
請求項1記載のモータ駆動装置。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、モータ駆動装置に関する。
【背景技術】
【0002】
近年、HILS(Hardware-In-the-Loop-Simulation)と呼ばれる、実機を仮想的に再現した環境で実機コントローラの開発を行なう手法の適用例が、車載装置の分野で増えてきている。産業分野でも、負荷装置及びサーボモータとこれを制御するモータ駆動装置とからなるモータ駆動システムのシミュレーションにおいて、一部に実機を用いて実現するものがある(例えば、特許文献1を参照)。
【0003】
従来の構成では、負荷系と駆動系と制御系とを有するモータ駆動システムのうち、負荷系及び駆動系に対する数学モデルに制御系の実機の出力を入力して、数学モデルの出力を制御系の実機に入力する。これにより、すべてをシミュレーションモデルで実現する場合と比べて、より正確なシミュレーションを実現しようとしている。
【0004】
この構成では、モータ駆動装置の駆動系、及び、モータ、軸、負荷装置などの実機の多くが不要である。よって、モータ駆動装置単体でのシミュレーションも可能となる。しかしながら、この構成では、駆動系及び負荷系のシミュレーションの精度は、ソフトウェアブロックにおけるシミュレーションモデルの精度に依存してしまう。
【0005】
この構成には実際に電流が流れる駆動系、及び、可動する負荷系が存在しないため、シミュレーション結果はソフトウェアブロックの内部情報が出力されるだけである。このため、実機動作で生じる音、振動などの情報が失われて、臨場感に欠けるという欠点がある。
【先行技術文献】
【特許文献】
【0006】
【文献】特開2001-290515号公報
【発明の概要】
【0007】
本開示は、このような従来の問題を解決する。本開示は、シミュレーションの精度を向上させつつ、より臨場感あふれる負荷特性シミュレーション機能を備えた、モータ駆動装置を提供することを目的とする。
【0008】
上記問題を解決するために、本開示に係るモータ駆動装置の一態様は、モータを駆動するモータ駆動装置であって、制御指令からトルク指令を生成するモータ制御部と、モータに接続されるはずの負荷の特性及びトルク指令に基づいて模擬トルク指令を生成することによって、負荷の特性を模擬する負荷特性模擬部と、模擬トルク指令に基づいてモータを制御するモータ駆動部とを備え、負荷特性模擬部は、負荷の特性として剛体特性を模擬する係数を有し、トルク指令に係数を乗算することで模擬トルク指令を生成する
【0009】
このようなモータ駆動装置の駆動系及び負荷系のうち、駆動系において、モータの実機を用いることで、モータの数学モデルを用いる従来の構成より精度のよいシミュレーションが可能となる。このシミュレーションでは実際にモータが動作することで、シミュレーション結果として実機動作で生じうる音及び振動を再現できる。これにより、臨場感あふれるモータ駆動装置のシミュレーションを提供することができる。
【0010】
また、本開示のモータ駆動装置の一態様において、負荷特性模擬部は、負荷の特性として剛体特性を模擬する係数を有し、トルク指令に係数を乗算することで模擬トルク指令を生成してもよい。
【0011】
また、本開示のモータ駆動装置の一態様において、負荷特性模擬部は、共振周波数、反共振周波数、共振減衰比及び反共振減衰比の少なくとも一つをパラメータに持つ共振特性を模擬する2次フィルタを含んでもよい。
【0012】
また、本開示のモータ駆動装置の一態様において、負荷特性模擬部は、直列結合された複数の2次フィルタを含んでもよい。
【0013】
また、本開示のモータ駆動装置の一態様において、負荷特性模擬部は、負荷の特性及びトルク指令と、外乱トルクを模擬した模擬外乱トルクとに基づいて模擬トルク指令を生成してもよい。
【0014】
これらの各構成により、一般的な負荷系の多くを高い精度でシミュレーションすることができる。
【0015】
本開示によれば、シミュレーションの精度を向上させつつ、より臨場感あふれる負荷特性シミュレーション機能を備えた、モータ駆動装置を提供できる。
【図面の簡単な説明】
【0016】
図1図1は、実施の形態1に係るモータ駆動装置の制御ブロック図である。
図2図2は、実施の形態1に係るモータ駆動装置の模擬対象であるモータ駆動装置の制御ブロック図である。
図3A図3Aは、図2に示される構成において負荷装置を剛体系と仮定した場合の制御ブロック図である。
図3B図3Bは、図3Aに示される制御ブロック図の演算順序を交換した構成を示す制御ブロック図である。
図3C図3Cは、図3Bに示される制御ブロック図を変形した制御ブロック図である。
図4A図4Aは、図2に示される構成において負荷装置を2慣性系と仮定した場合の制御ブロック図である。
図4B図4Bは、図4Aに示される制御ブロック図を変形した制御ブロック図である。
図4C図4Cは、図4Bに示される制御ブロック図を変形した制御ブロック図である。
図4D図4Dは、実施の形態2に係るモータ駆動装置の制御ブロック図である。
図5図5は、実施の形態3に係るモータ駆動装置の制御ブロック図である。
図6A図6Aは、図4Aに示される制御ブロック図において外乱トルクを残して変形した制御ブロック図である。
図6B図6Bは、図6Aに示される制御ブロック図を変形した制御ブロック図である。
図6C図6Cは、図6Bに示される制御ブロック図を変形した制御ブロック図である。
図6D図6Dは、図6Cに示される制御ブロック図を変形した制御ブロック図である。
【発明を実施するための形態】
【0017】
本開示のモータ駆動装置の第1の態様は、モータを駆動するモータ駆動装置であって、制御指令からトルク指令を生成するモータ制御部と、モータに接続される負荷の特性及びトルク指令に基づいて模擬トルク指令を生成することによって、負荷の特性を模擬する負荷特性模擬部と、模擬トルク指令に基づいてモータを制御するモータ駆動部とを備える。
【0018】
これにより、モータ駆動装置の駆動系及び負荷系のうち、駆動系において、モータ特性に実機を用いた場合に、モータの数学モデルを用いる従来の構成より精度のよいシミュレーションが可能となる。また副次的な効果として、このシミュレーションでは実際にモータが動作することで、シミュレーション結果として実機動作で生じうる音及び振動を再現できる。これにより、臨場感あふれるモータ駆動装置のシミュレーションを提供することができる。
【0019】
本開示のモータ駆動装置の第2の態様において、負荷特性模擬部は、負荷の特性として剛体特性を模擬する係数を有し、トルク指令に係数を乗算することで模擬トルク指令を生成する。
【0020】
これにより、この係数を変化させることで、負荷系を剛体とみなしたときの負荷イナーシャを模擬的に変化させるシミュレーションが可能となる。
【0021】
本開示のモータ駆動装置の第3の態様において、負荷特性模擬部は、共振周波数、反共振周波数、共振減衰比及び反共振減衰比の少なくとも一つをパラメータに持つ共振特性を模擬する2次フィルタを含む。
【0022】
これにより、2慣性系の特性を持つ負荷系のシミュレーションが可能となる。
【0023】
本開示のモータ駆動装置の第4の態様において、負荷特性模擬部は、直列結合された複数の2次フィルタを含む。
【0024】
これにより、3慣性系またはそれ以上の多慣性系の特性を持つ負荷系のシミュレーションが可能となる。
【0025】
本開示のモータ駆動装置の第5の態様において、負荷特性模擬部は、負荷の特性及びトルク指令と、外乱トルクを模擬した模擬外乱トルクとに基づいて模擬トルク指令を生成する。
【0026】
これにより、偏荷重、及び、動摩擦、粘性摩擦などの摩擦特性といった外乱トルクを模擬したシミュレーションが可能となる。
【0027】
以下、本開示の実施の形態について、図面を参照しながら説明する。なお、以下に説明する実施の形態は、いずれも本開示の一具体例を示すものである。したがって、以下の実施の形態で示される、数値、構成要素、構成要素の配置及び接続形態、並びに、ステップ及びステップの順序等は、一例であって、本開示を限定する主旨ではない。よって、以下の実施の形態における構成要素のうち、本開示の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
【0028】
また、各図は、模式図であり、必ずしも厳密に図示されたものではない。なお、各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略又は簡略化する。
【0029】
(実施の形態1)
実施の形態1に係るモータ駆動装置について図1を用いて説明する。
【0030】
図1は、実施の形態1に係るモータ駆動装置1の制御ブロック図である。なお、図1には、モータ駆動装置1に接続されたモータ2及び検出器3も併せて示されている。
【0031】
図1に示されるように、モータ駆動装置1は、モータ制御部13と、負荷特性模擬部15と、モータ駆動部17とを備える。
【0032】
モータ制御部13は、制御指令11からトルク指令14を生成する制御部である。制御指令11はモータの回転を制御する指令値である。トルク指令14は、負荷装置が接続されたように模擬したモータを回転させるためのトルクを示す指令値である。本実施の形態では、モータ制御部13は、制御指令11と、モータ2に接続された検出器3からのフィードバック値12とに基づいてトルク指令14を生成する。モータ制御部13において用いられる制御の構成は、特に限定されない。例えば、一般的なPID(Proportional-Integral-Differential)制御に代表されるフィードバック制御、制御指令11を入力とするフィードフォワード制御、これらを組み合わせた複合制御などを用いてもよい。また、位置制御においては、例えば速度制御を内包したカスケード制御などを用いてもよい。
【0033】
検出器3は、モータ2の状態を検出する計測機器である。検出器3としては、モータ2の位置情報を検出するエンコーダ、レゾルバなどの計測機器、又はモータ2の速度情報を検出するタコジェネレータなどの計測機器を用いることができる。
【0034】
なお、制御指令11は外部から与えても、モータ駆動装置1内で生成してもよい。フィードバック値12は、モータ2の状態を示す値であれば特に限定されない。フィードバック値12は、例えば、エンコーダ、レゾルバなどからなる検出器3を用いた場合に得られる位置情報、又は、タコジェネレータなどからなる検出器3を用いた場合に得られる速度情報が用いられる。
【0035】
負荷特性模擬部15は、モータ2に接続される負荷の特性を模擬する処理部である。負荷特性模擬部15は、負荷の特性及びトルク指令14に基づいて模擬トルク指令16を生成する。模擬トルク指令16は、負荷が接続されている場合の動作をモータ2に模擬させる指令値である。本実施の形態では、負荷特性模擬部15は、負荷の特性として剛体特性を模擬する係数を有し、トルク指令に係数を乗算することで模擬トルク指令を生成する。
【0036】
モータ駆動部17は、模擬トルク指令16に基づいて、モータ2を制御する駆動部である。モータ駆動部17は、模擬トルク指令通りのトルクをモータ2が出力するように電流制御を行う。
【0037】
モータ駆動部17として、一般的には模擬トルク指令16から計算される電流指令とモータ電流の検出値との比較を行う電流制御部と、その出力である電圧指令を実際のモータに印加するためのPWM(Pulse Width Modulaton)制御回路とからなることが多い。しかし、この形態にとらわれるものではなく模擬トルク指令16を受けてモータ2を制御するものであれば特に限定されない。
【0038】
次に、本実施の形態に係る負荷特性模擬部15の導出方法について図2図3Cを用いて説明する。
【0039】
図2は、実施の形態1に係るモータ駆動装置1の模擬対象であるモータ駆動装置10の制御ブロック図である。図2に示されるように、本実施の形態に係るモータ駆動装置1の模擬対象であるモータ駆動装置10には、モータ2及び負荷装置4が接続されている。
【0040】
図2に示される模擬対象であるモータ駆動装置10は、負荷特性模擬部15がない点において、図1に示されるモータ駆動装置1と相違する。モータ駆動装置10においては、トルク指令14に基づいてモータ駆動部17がモータ2を制御する。モータ2に実際の負荷装置4が接続されている。図2に示される状態におけるモータ2の動作を図1の構成でシミュレーションすることが本開示の目的となる。
【0041】
図3Aは、図2に示される構成において負荷装置4を剛体系と仮定した場合の制御ブロック図である。図3Bは、図3Aに示される制御ブロック図の演算順序を交換した構成を示す制御ブロック図である。図3Cは、図3Bに示される制御ブロック図を変形した制御ブロック図である。
【0042】
図2に示されるモータ駆動部17及びモータ2は十分高速な応答特性を持つと仮定し、検出器3の出力をモータ速度とする。この場合、モータ駆動部17、モータ2及び検出器3は、図3Aに示されるようにモータイナーシャJmのみからなる剛体系としてモータ剛体特性演算部21の式で近似できる。モータ2と負荷装置4とが剛体結合されている場合、負荷イナーシャをJlとすれば、負荷装置4の特性は総イナーシャ比演算部41で代表できる。なお、図3Aに示される構成では、図2のモータ駆動部17が、モータ駆動装置1Aの外部のモータ2及び検出器3とともに剛体系を形成している。このため、モータ駆動装置1Aは、モータ制御部13だけを備え、モータ駆動部17を備えない。
【0043】
図3Aの制御ブロック図上で演算順序は交換可能である。したがって、負荷装置4の特性を代表する総イナーシャ比演算部41とモータ剛体特性演算部21との演算順序を交換し、総イナーシャ比演算部41をモータ駆動装置1Aに入れることができる。このように、総イナーシャ比演算部41をモータ駆動装置1Aに入れたモータ駆動装置1Bを用いる構成を図3Bに示す。
【0044】
ここで、総イナーシャ比演算部41を負荷特性模擬部15とし、一旦近似したモータ剛体特性演算部21を元のモータ駆動部17とモータ2と検出器3とに戻すことで、図3Cに示されるように、図1に示される制御ブロック図と等価な制御ブロック図を得ることができる。
【0045】
以上のように構成されたモータ駆動装置について、以下その動作及び作用を説明する。
【0046】
モータ駆動装置が負荷特性模擬部15を備えない場合は、トルク指令14はモータ2単体のモータ剛体特性演算部21を駆動するのに必要な値となる。一方、本実施の形態に係るモータ駆動装置1のように負荷特性模擬部15を備える場合には、負荷特性模擬部15は、負荷装置4の特性として剛体特性を模擬する係数を有し、トルク指令に当該係数を乗算することで模擬トルク指令を生成する。より具体的には、負荷特性模擬部15は、トルク指令14に1未満の係数Jm/(Jm+Jl)を乗じた模擬トルク指令16として出力するため、模擬トルク指令16は、トルク指令14より小さな値となる。そのため、実際にはモータ2に負荷装置4が接続されていないにもかかわらず、あたかも負荷装置4が接続されているかのように、モータ2はゆっくり加速する。その結果、フィードバック値12の変化もゆっくりとなるため、モータ制御部13は制御指令11に追従すべくより大きなトルク指令14を出力することとなる。以上のように、モータ駆動装置1が負荷特性模擬部15を備えることにより、モータ駆動装置1にモータ2だけを接続した状態で、総イナーシャ比演算部41を持つ負荷装置4がモータ2に接続された場合の動作シミュレーションが可能となる。このため、上記係数を変化させることで、負荷系を剛体とみなしたときの負荷イナーシャを模擬的に変化させるシミュレーションが可能となる。したがって、図1に示される構成にて、制御指令11、フィードバック値12及びトルク指令14をそのまま観測することで、図2に示される構成における制御指令11、フィードバック値12及びトルク指令14と同等の値を観測できる。
【0047】
なお、特許文献1の構成と比較して、本実施の形態に係る構成の方がモータ駆動部17、モータ2及び検出器3として実機を用いた分だけ、より精度のよいシミュレーションが可能となる。
【0048】
以上のように、本実施の形態に係るモータ駆動装置1は、モータ2を駆動するモータ駆動装置1であって、制御指令11からトルク指令14を生成するモータ制御部13と、モータ2に接続される負荷の特性及びトルク指令14に基づいて模擬トルク指令16を生成することによって、負荷の特性を模擬する負荷特性模擬部15と、模擬トルク指令16に基づいてモータ2を制御するモータ駆動部17とを備える。
【0049】
すなわち、本実施の形態に係るモータ駆動装置1は、負荷特性を模擬する負荷特性模擬部15から出力される模擬トルク指令に基づいてモータ2を駆動することで、モータ2に負荷装置4を接続した状態のシミュレーションを行うことができる。さらに、本実施の形態では、モータ駆動装置の駆動系及び負荷系のうち、駆動系においてモータ2の実機を用いることで、モータの数学モデルを用いる従来の構成より精度のよいシミュレーションが可能となる。
【0050】
なお、モータ駆動部の制御は、通常モータ制御部の演算より高速で行なわれる。このため、これをソフトウェアブロックのシミュレーションモデルで実現するための計算負荷は膨大となる。したがって、評価装置のコストアップにつながる。また、駆動系及びモータ特性には、理論上近似が困難な非線形特性があり、実用的な精度でシミュレーションしきれない場合もある。これらのいずれの問題も、本実施の形態に係るモータ駆動装置1を用いれば解決し得る。
【0051】
さらに、本実施の形態に係るモータ駆動装置1にモータ2の実機を接続する場合には、実際にモータ2が動作する。このため、シミュレーション結果として実機動作で生じうる音、振動などを再現できる。したがって、臨場感あふれるモータ駆動装置1のシミュレーションを提供することができる。このようなモータ駆動装置1をさまざまな機能のデモ装置、ゲイン調整のトレーニング装置などとして用いることで、より現場での作業に即した対応を学ぶことができる。
【0052】
(実施の形態2)
実施の形態2に係るモータ駆動装置について説明する。本実施の形態に係るモータ駆動装置は、負荷装置を2慣性系と仮定する点において実施の形態1に係るモータ駆動装置と相違し、その他の点において一致する。以下、本実施の形態に係るモータ駆動装置について、実施の形態1に係るモータ駆動装置1との相違点を中心に図4A図4Dを用いて説明する。
【0053】
図4Aは、図2に示される構成において負荷装置4を2慣性系と仮定した場合の制御ブロック図である。図4Bは、図4Aに示される制御ブロック図を変形した制御ブロック図である。図4Cは、図4Bに示される制御ブロック図を変形した制御ブロック図である。図4Dは、実施の形態2に係るモータ駆動装置101の制御ブロック図である。
【0054】
図4Aに示される制御ブロック図は、図3Aに示される制御ブロック図と同じ前提のもとに、モータ駆動部17、モータ2及び検出器3をモータ剛体特性演算部21で近似している。図4Aに示されるように、2慣性系ではモータ剛体特性演算部21への入力がトルク指令14そのものでなく、トルク指令14からねじれトルク42を減算したものとなる。ねじれトルク42は、ダンパ係数D及びばね係数Kで近似することによって模擬したシャフト特性演算部44を用いて得られる値である。ねじれトルク42は、モータ速度であるフィードバック値12と負荷装置4側の負荷速度43との差を、シャフト特性演算部44に入力した場合に得られるシャフト特性演算部44の出力である。ここで、負荷速度43は、ねじれトルク42から外乱トルク45を減算した結果を、負荷イナーシャJlを持つ負荷剛体特性演算部46に入力した場合に得られる負荷剛体特性演算部46の出力である。
【0055】
図4Aに示される制御ブロック図で外乱トルク45を0として変形すると、トルク指令14を入力とするモータ剛体特性演算部21と、その出力からモータ速度であるフィードバック値12までの共振特性を表す2次フィルタ47の第1伝達関数、負荷装置側の負荷速度43までの共振特性を表す2次フィルタ48の第2伝達関数からなる、図4Bの制御ブロック図が導き出される。図4Bの共振周波数ω、反共振周波数ω、共振減衰比ζ及び反共振減衰比ζは、シャフト特性演算部44のダンパ係数D及びバネ係数K、並びに、モータイナーシャJm及び負荷イナーシャJlから、下式で表される。
【0056】
【数1】
【0057】
【数2】
【0058】
【数3】
【0059】
【数4】
【0060】
ここで、図4Bに示される負荷速度43の推定は差し当たって不要なため、図4Bに示される制御ブロック図から2次フィルタ48(つまり、第2伝達関数で表されるフィルタ)を取り除く。さらに、2次フィルタ47(つまり、第1伝達関数で表されるフィルタ)をモータ駆動装置1A内に移動する。これによって、図4Cに示されるように、制御ブロック図は、モータ制御部13及び2次フィルタ47を備えるモータ駆動装置101Cと、モータ剛体特性演算部21とを用いて表される。
【0061】
最終的に、2次フィルタ47を負荷特性模擬部115として、モータ剛体特性演算部21を元のモータ駆動部17とモータ2と検出器3とに戻す。これによって、図1に示される制御ブロック図と同様の構成を有する図4Dに示される制御ブロック図が得られる。図4Dに示されるモータ駆動装置101は、負荷特性模擬部115の演算式において実施の形態1に係るモータ駆動装置1と相違し、その他の点において一致する。
【0062】
以上のように構成されたモータ駆動装置101について、以下その動作、作用を説明する。
【0063】
負荷特性模擬部115は、周波数特性として、共振周波数ωにおいて共振減衰比ζに応じたピークを持ち、反共振周波数ωにおいて反共振減衰比ζに応じたディップを持つ。そのため、模擬トルク指令16もトルク指令14の共振周波数ω成分が増幅され、反共振周波数ω成分が減衰した値となる。これにより、実際にはモータ2単体しか接続されていないにもかかわらず、あたかも負荷装置4が接続されているかのようにフィードバック値12に共振周波数の振動が発生する。これに対応するため、モータ制御部13は通常反共振周波数ω以下に応答性が制限される。以上のように、本実施の形態に係る負荷特性模擬部115は、共振周波数ω、反共振周波数ω、共振減衰比ζ及び反共振減衰比ζの少なくとも一つをパラメータに持つ共振特性を模擬する2次フィルタを含む。モータ駆動装置101が、このような負荷特性模擬部115を備えることにより、モータ駆動装置101にモータ2だけを接続した状態で、図2に示される構成において、2慣性系の特性を持つ負荷装置4が接続された場合のシミュレーションが可能となる。したがって、図4Dの構成にて、制御指令11、フィードバック値12及びトルク指令14をそのまま観測することで、図2に示される構成における制御指令11、フィードバック値12及びトルク指令14と同等の値を観測できる。
【0064】
なお、2慣性系だけでなく、3慣性系及びそれ以上の多慣性系の特性を持つ負荷装置4を用いる場合においても、同様の式変形で、直列結合された複数の2次フィルタを含む負荷特性模擬部を得られる。このような負荷特性模擬部を備えるモータ駆動装置を用いることで、3慣性系及びそれ以上の多慣性系の特性のような複雑な共振特性を持つ負荷装置4をモータ2に接続した場合のシミュレーションが可能となる。
【0065】
(実施の形態3)
実施の形態3に係るモータ駆動装置について説明する。本実施の形態に係るモータ駆動装置は、負荷特性模擬部が模擬外乱トルクを受け付けることができる点において、実施の形態2に係るモータ駆動装置101と相違し、その他の点において一致する。以下、本実施の形態に係るモータ駆動装置について、実施の形態2に係るモータ駆動装置101との相違点を中心に図5図6Dを用いて説明する。
【0066】
図5は、実施の形態3に係るモータ駆動装置201の制御ブロック図である。図6Aは、図4Aに示される制御ブロック図において外乱トルク45を残して変形した制御ブロック図である。図6Bは、図6Aに示される制御ブロック図を変形した制御ブロック図である。図6Cは、図6Bに示される制御ブロック図を変形した制御ブロック図である。図6Dは、図6Cに示される制御ブロック図を変形した制御ブロック図である。
【0067】
図5に示されるように、本実施の形態に係るモータ駆動装置201は、実施の形態2に係るモータ駆動装置101と同様に、モータ制御部13と、負荷特性模擬部215と、モータ駆動部17とを備える。図5に示されるように、本実施の形態に係るモータ駆動装置201は、負荷特性模擬部215が模擬外乱トルク18の入力を受け付ける点において、実施の形態2に係るモータ駆動装置101と相違し、その他の点において一致する。
【0068】
この制御ブロック図の導出のために、実施の形態2で図4Aから図4Bへの変形時に省略した外乱トルク45をそのまま残して変形すると、第3伝達関数で表される2次フィルタ49と第4伝達関数で表される2次フィルタ50とを加えた図6Aに示される制御ブロック図のようになる。ここで負荷速度43の推定は差し当たって必要ないので、第2伝達関数で表される2次フィルタ48と、第4伝達関数で表される2次フィルタ50を削除すると、図6Bに示される制御ブロック図が得られる。図6Bに示される制御ブロック図において、上述の各実施の形態と同様にモータ剛体特性演算部21を残して、他のブロックをモータ駆動装置1A内に移動する。これにより、図6Cに示されるように、制御ブロック図は、モータ制御部13及び2次フィルタ47及び49を備えるモータ駆動装置201Cと、モータ剛体特性演算部21とを用いて表される。続いて、近似であるモータ剛体特性演算部21を元のモータ駆動部17とモータ2と検出器3とに戻し、外乱トルク45をモータ駆動装置201内部で生成する模擬外乱トルク18とすることで、図5と等価なブロック図6Dが得られる。図6Dに示されるように、本実施の形態に係るモータ駆動装置201の負荷特性模擬部215は、2次フィルタ47及び49を含む。
【0069】
以上のように、本実施の形態に係るモータ駆動装置201においては、負荷装置4の特性及びトルク指令14と、外乱トルクを模擬した模擬外乱トルク18とに基づいて模擬トルク指令16を生成する。このため、実機における外乱トルク45の影響をシミュレーションできる。
【0070】
(変形例など)
以上、本開示に係るモータ駆動装置について、各実施の形態に基づいて説明した。しかし、本開示は、上記実施の形態に限定されるものではない。
【0071】
例えば、本開示に係るモータ駆動装置の駆動対象は、回転モータに限定されるものではなく、リニアモータにおいても回転系の単位を直動系に置き換えるだけで適用できる。また、検出器をモータ2だけでなく、負荷装置4にも取り付けて、負荷の位置及び速度情報をフィードバック値12に加えるフルクローズ制御構成としても、さほど大きな変更を必要とせずに、モータ駆動装置のシミュレーションは可能である。
【0072】
また、検出器3の特性がシミュレーション用と実機用とで異なる場合に、それらの特性差を負荷特性模擬部15に取り込むことも可能である。
【0073】
その他、各実施の形態に対して当業者が思いつく各種変形を施して得られる形態、または、本開示の趣旨を逸脱しない範囲で各実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本開示に含まれる。
【産業上の利用可能性】
【0074】
本開示に係るモータ駆動装置は、負荷特性を模擬できるシミュレーション用のモータ駆動装置として利用できる。
【0075】
本開示に係るモータ駆動装置は、臨場感あふれるシミュレーションが可能であるため、さまざまな機能のデモ装置、ゲイン調整のトレーニング装置などとして特に有用である。
【0076】
本開示に係るモータ駆動装置の負荷特性模擬部は、負荷装置のさまざまな特性を模擬できる。したがって、負荷装置を接続しないと動作しない機能をテストする場合などに有用である。また、周波数特性測定機能などで負荷装置の特性を測定できたなら、実際の装置がある場所から遠く離れた遠隔地でモータとモータ駆動装置だけでシミュレーションを行い、最適な調整結果を実機に適用するといったアプローチも可能となる。したがって、車載装置の分野及び産業分野において、さまざまな応用が考えられる。
【符号の説明】
【0077】
1、1A、1B、10、101、101C、201、201C モータ駆動装置
2 モータ
3 検出器
4 負荷装置
11 制御指令
12 フィードバック値
13 モータ制御部
14 トルク指令
15、115、215 負荷特性模擬部
16 模擬トルク指令
17 モータ駆動部
18 模擬外乱トルク
21 モータ剛体特性演算部
41 総イナーシャ比演算部
42 ねじれトルク
43 負荷速度
44 シャフト特性演算部
45 外乱トルク
46 負荷剛体特性演算部
47、48、49、50 2次フィルタ
図1
図2
図3A
図3B
図3C
図4A
図4B
図4C
図4D
図5
図6A
図6B
図6C
図6D