IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ パナソニックIPマネジメント株式会社の特許一覧

特許7281718光検出器、固体撮像装置、及び、距離測定装置
<>
  • 特許-光検出器、固体撮像装置、及び、距離測定装置 図1
  • 特許-光検出器、固体撮像装置、及び、距離測定装置 図2
  • 特許-光検出器、固体撮像装置、及び、距離測定装置 図3
  • 特許-光検出器、固体撮像装置、及び、距離測定装置 図4
  • 特許-光検出器、固体撮像装置、及び、距離測定装置 図5
  • 特許-光検出器、固体撮像装置、及び、距離測定装置 図6
  • 特許-光検出器、固体撮像装置、及び、距離測定装置 図7
  • 特許-光検出器、固体撮像装置、及び、距離測定装置 図8
  • 特許-光検出器、固体撮像装置、及び、距離測定装置 図9
  • 特許-光検出器、固体撮像装置、及び、距離測定装置 図10
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-05-18
(45)【発行日】2023-05-26
(54)【発明の名称】光検出器、固体撮像装置、及び、距離測定装置
(51)【国際特許分類】
   H04N 25/62 20230101AFI20230519BHJP
   H04N 25/77 20230101ALI20230519BHJP
   H04N 25/705 20230101ALI20230519BHJP
   H01L 31/107 20060101ALI20230519BHJP
   H01L 31/10 20060101ALI20230519BHJP
   G01S 7/486 20200101ALI20230519BHJP
【FI】
H04N25/62
H04N25/77
H04N25/705
H01L31/10 B
H01L31/10 G
G01S7/486
【請求項の数】 10
(21)【出願番号】P 2021561258
(86)(22)【出願日】2020-11-06
(86)【国際出願番号】 JP2020041462
(87)【国際公開番号】W WO2021106521
(87)【国際公開日】2021-06-03
【審査請求日】2022-02-25
(31)【優先権主張番号】P 2019217324
(32)【優先日】2019-11-29
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】314012076
【氏名又は名称】パナソニックIPマネジメント株式会社
(74)【代理人】
【識別番号】100109210
【弁理士】
【氏名又は名称】新居 広守
(74)【代理人】
【識別番号】100137235
【弁理士】
【氏名又は名称】寺谷 英作
(74)【代理人】
【識別番号】100131417
【弁理士】
【氏名又は名称】道坂 伸一
(72)【発明者】
【氏名】石井 基範
【審査官】松永 隆志
(56)【参考文献】
【文献】特開2004-363437(JP,A)
【文献】国際公開第2018/216400(WO,A1)
【文献】特開2000-350103(JP,A)
【文献】国際公開第2018/118787(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H04N 23/00-25/79
H01L 31/107
H01L 31/10
G01S 7/486
(57)【特許請求の範囲】
【請求項1】
複数の画素と、
前記複数の画素に接続された共通リセット線と、を備え、
前記複数の画素のそれぞれは、
アバランシェフォトダイオードと、
ゲート及びソースが前記アバランシェフォトダイオードのカソードに接続されたクエンチングトランジスタと、
ソース及びドレインの一方が、前記クエンチングトランジスタのドレインに接続され、ソース及びドレインの他方が、前記共通リセット線に接続されたフォトダイオードリセットトランジスタと、を有する
光検出器。
【請求項2】
前記複数の画素のそれぞれは、更に、
前記アバランシェフォトダイオードにより生成された電荷を蓄積する電荷蓄積部と、
ソース及びドレインの一方が、前記アバランシェフォトダイオードのカソードに接続され、ソース及びドレインの他方が、前記電荷蓄積部に接続されたトランスファーゲートトランジスタと、を有する
請求項1に記載の光検出器。
【請求項3】
更に、前記複数の画素に接続された読み出し線を備え、
前記複数の画素のそれぞれは、更に、
ソース及びドレインの一方が、前記電荷蓄積部に接続されたリセットトランジスタと、
ゲートが前記電荷蓄積部に接続された増幅トランジスタと、
ソース及びドレインの一方が、前記増幅トランジスタのソース及びドレインの一方に接続され、ソース及びドレインの他方が、前記読み出し線に接続された選択トランジスタと、を有する
請求項2に記載の光検出器。
【請求項4】
前記複数の画素のそれぞれは、更に、前記アバランシェフォトダイオードのカソードと、前記クエンチングトランジスタの前記ゲート及び前記ソースとの間に、
前記クエンチングトランジスタの前記ゲート及び前記ソースに接続された、前記アバランシェフォトダイオードにより生成された電荷を蓄積する電荷蓄積部と、
ソース及びドレインの一方が、前記アバランシェフォトダイオードのカソードに接続され、ソース及びドレインの他方が、前記電荷蓄積部に接続されたトランスファーゲートトランジスタと、を有し
前記アバランシェフォトダイオードのカソードと前記クエンチングトランジスタの前記ゲート及び前記ソースとが、前記電荷蓄積部と前記トランスファーゲートトランジスタとを介して接続される
請求項1に記載の光検出器。
【請求項5】
更に、前記複数の画素に接続された読み出し線を備え、
前記複数の画素のそれぞれは、更に、
ゲートが前記電荷蓄積部に接続された増幅トランジスタと、
ソース及びドレインの一方が、前記増幅トランジスタのソース及びドレインの一方に接続され、ソース及びドレインの他方が、前記読み出し線に接続された選択トランジスタと、を有する
請求項4に記載の光検出器。
【請求項6】
前記複数の画素のそれぞれは、更に、
ソース及びドレインの一方が、前記電荷蓄積部に接続されたカウントトランジスタと、
前記カウントトランジスタのソース及びドレインの他方に接続されたカウントキャパシタと、を有する
請求項2から請求項5のいずれか1項に記載の光検出器。
【請求項7】
前記クエンチングトランジスタは、前記アバランシェフォトダイオードのカソードの電位が、アバランシェ増倍が停止する電位であるとき、弱反転状態である
請求項1から請求項6のいずれか1項に記載の光検出器。
【請求項8】
前記フォトダイオードリセットトランジスタがオン状態である場合に、前記アバランシェフォトダイオードのカソードから前記共通リセット線までの電気経路の時定数が、100ps以上である
請求項1から請求項7のいずれか1項に記載の光検出器。
【請求項9】
請求項1から請求項8のいずれか1項に記載の光検出器を含む固体撮像装置であって、
前記複数の画素が行列状に配置された画素アレイと、
前記複数の画素から、行単位で信号を読み出す列回路と、
前記列回路が信号を読み出す対象とする行を選択する垂直転送回路と、
前記複数の画素の全てに共通の信号線を駆動する全画素駆動ドライバと、
前記列回路により読み出された信号を転送する水平転送回路と、
前記水平転送回路により転送された信号を外部に出力する出力アンプと、を備える
固体撮像装置。
【請求項10】
被写体に照射する光を発光する光源と、
請求項9に記載の固体撮像装置であって、前記被写体による、前記光源から発光された光の反射光を受光する固体撮像装置と、
前記固体撮像装置から出力される信号に基づいて、前記被写体までの距離を算出する信号処理装置と、を備える
距離測定装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、光検出器、固体撮像装置、及び、距離測定装置に関する。
【背景技術】
【0002】
従来、アバランシェフォトダイオードを用いた光検出器が知られている(例えば、特許文献1参照)。
【先行技術文献】
【特許文献】
【0003】
【文献】国際公開第2018/216400号
【発明の概要】
【発明が解決しようとする課題】
【0004】
本開示は、アバランシェフォトダイオードのカソードの電位を精度よくリセットすることができる光検出器等を提供する。
【課題を解決するための手段】
【0005】
本開示の一態様に係る光検出器は、複数の画素と、前記複数の画素に接続された共通リセット線と、を備え、前記複数の画素のそれぞれは、アバランシェフォトダイオードと、ゲート及びソースが前記アバランシェフォトダイオードのカソードに接続されたクエンチングトランジスタと、ソース及びドレインの一方が、前記クエンチングトランジスタのドレインに接続され、ソース及びドレインの他方が、前記共通リセット線に接続されたフォトダイオードリセットトランジスタと、を有する。
【0006】
本開示の一態様に係る固体撮像装置は、上記光検出器を含む固体撮像装置であって、前記複数の画素が行列状に配置された画素アレイと、前記複数の画素から、行単位で信号を読み出す列回路と、前記列回路が信号を読み出す対象とする行を選択する垂直転送回路と、前記複数の画素の全てに共通の信号線を駆動する全画素駆動ドライバと、前記列回路により読み出された信号を転送する水平転送回路と、前記水平転送回路により転送された信号を外部に出力する出力アンプと、を備える。
【0007】
本開示の一態様に係る距離測定装置は、被写体に照射する光を発光する光源と、上記固体撮像装置であって、前記被写体による、前記光源から発光された光の反射光を受光する固体撮像装置と、前記固体撮像装置から出力される信号に基づいて、前記被写体までの距離を算出する信号処理装置と、を備える。
【発明の効果】
【0008】
本開示によれば、アバランシェフォトダイオードのカソードの電位を精度よくリセットすることができる。
【図面の簡単な説明】
【0009】
図1図1は、実施の形態1に係る光検出器が備える画素の構成を示す回路図である。
図2図2は、実施の形態1に係る光検出器が行う動作の一例を示すシーケンス図である。
図3図3は、実施の形態2に係る光検出器が備える画素の構成を示す回路図である。
図4図4は、実施の形態2に係る光検出器が行う動作の一例を示すシーケンス図である。
図5図5は、実施の形態3に係る光検出器が備える画素の構成を示す回路図である。
図6図6は、実施の形態4に係る光検出器が備える画素の構成を示す回路図である。
図7図7は、実施の形態5に係る距離測定装置の構成を示すブロック図である。
図8図8は、実施の形態5に係る距離測定装置が行う、サブレンジ画像を撮像する動作の一例を示すシーケンス図その1である。
図9図9は、実施の形態5に係る距離測定装置が行う、サブレンジ画像を撮像する動作の一例を示すシーケンス図その2である。
図10図10は、比較例に係る光検出器が備える画素の構成を示す回路図である。
【発明を実施するための形態】
【0010】
(本開示の一態様を得るに至った経緯)
従来、光検出器は、画像を高感度、高精細に撮像することに注力されてきたが、それに加えて光検出器からの距離情報も取得できる機能を併せ持つものも近年登場してきた。画像に距離情報が加われば光検出器の撮影対象の3次元的な情報が感知できることになる。例えば、人物を撮影すれば、しぐさ(ジェスチャー)を3次元的に検知できるので、様々な機器の入力装置として使用できる。さらに例示すると、自動車に搭載すれば、自車の周囲に存在する物体、人物等との距離を認識できるので衝突防止や自動運転などに応用できる。
【0011】
光検出器から物体までの距離測定に使用される数々の方法の中に、光を光検出器付近から物体に向けて照射してから、物体により反射し光検出器に帰還するまでの時間を測定するTOF(Time Of Flight)法がある。この方法によると、光源を強くすれば、遠方の物体までの距離を高分解能で測定できる。
【0012】
遠方の物体までの距離を測定するためには、物体からの微弱になる反射光を検出できるだけの高感度を光検出器が持つことが必要である。さらに、反射光が光検出器に到達したタイミングを検出出来ることも必要となる。これら2つの要求を満たすには、例えば、以下に述べる構成の、アバランシェフォトダイオードを備える光検出器が考えられる。
【0013】
図10は、比較例に係る光検出器が備える画素501の構成を示す回路図である。
【0014】
図10に示すように、比較例に係る光検出器は、複数の画素501に加えて、複数の画素501に接続された共通リセット線504と、複数の画素501に接続された読み出し線512とを備える。
【0015】
共通リセット線504は、接続される画素501に含まれるアバランシェフォトダイオード502(後述)のカソードにリセット電位を与えるための信号線であり、リセット電位を供給する電源に接続される。
【0016】
読み出し線512は、接続される画素501に含まれる電荷蓄積部505(後述)に蓄積される電荷に対応する信号を、画素501の外部に読み出すための信号線である。
【0017】
画素501は、アバランシェフォトダイオード502と、フォトダイオードリセットトランジスタ503と、電荷蓄積部505と、トランスファーゲートトランジスタ508と、リセットトランジスタ509と、増幅トランジスタ510と、選択トランジスタ511とを含んで構成される。
【0018】
アバランシェフォトダイオード502は、アバランシェ増倍と呼ばれる現象を利用して受光感度を上昇させたフォトダイオードである。アバランシェフォトダイオード502は、入射光があると、微弱光であっても生成した電子をアバランシェ増倍し、カソードに大きな電圧振幅を生じる。
【0019】
フォトダイオードリセットトランジスタ503は、アバランシェフォトダイオード502のカソードをリセット電位とするためのトランジスタであって、ソース及びドレインの一方がアバランシェフォトダイオード502のカソードに接続され、ソース及びドレインの他方が、共通リセット線504に接続される。フォトダイオードリセットトランジスタ503をオン状態とすることで、アバランシェフォトダイオード502のカソードをリセット電位とすることができる。
【0020】
電荷蓄積部505は、アバランシェフォトダイオード502により生成された電荷を蓄積する。電荷蓄積部505は、fFオーダの容量が重畳されている。
【0021】
トランスファーゲートトランジスタ508は、アバランシェフォトダイオード502により生成された電荷を電荷蓄積部505に転送するためのトランジスタであって、ソース及びドレインの一方がアバランシェフォトダイオード502のカソードに接続され、ソース及びドレインの他方が、電荷蓄積部505に接続される。トランスファーゲートトランジスタ508をオン状態とすることで、アバランシェフォトダイオード502により生成された電荷を電荷蓄積部505に転送することができる。
【0022】
リセットトランジスタ509は、電荷蓄積部505をリセット電位とするためのトランジスタであって、ソース及びドレインの一方が電荷蓄積部505に接続される。ソース及びドレインの他方は、例えば、共通リセット線504に接続されてもよいし、リセット電位を供給する他の電源に接続された信号線に接続されてもよい。リセットトランジスタ509をオン状態とすることで、電荷蓄積部505をリセット電位とすることができる。
【0023】
増幅トランジスタ510は、電荷蓄積部505の電位に対応する信号を選択トランジスタ511に出力するためのトランジスタであって、ゲートが電荷蓄積部505に接続される。
【0024】
選択トランジスタ511は、増幅トランジスタ510が出力する信号を読み出し線512に出力するためのトランジスタであって、ソース及びドレインの一方が増幅トランジスタのソース及びドレインの一方に接続され、ソース及びドレインの他方が、読み出し線512に接続される。選択トランジスタ511をオン状態とすることで、増幅トランジスタ510が出力する信号を読み出し線512に出力することができる。
【0025】
発明者は、上記構成の比較例に係る光検出器では、以下の問題があることを見出した。
【0026】
上記構成の比較例に係る光検出器を、TOF法を利用して被写体までの距離を測定する距離測定装置に適用する場合、露光タイミングの直前に、全ての画素501のフォトダイオードリセットトランジスタ503を同時にオン状態として、全ての画素501のアバランシェフォトダイオード502のカソードをリセット電位とする必要がある。全ての画素501のアバランシェフォトダイオード502のカソードをリセット電位とする期間、すなわち、全ての画素501のフォトダイオードリセットトランジスタ503をオン状態としている期間に、ある画素501のアバランシェフォトダイオード502でアバランシェ増倍が生じた場合には、その増倍電荷は、共通リセット線504を介して、隣接する画素501のアバランシェフォトダイオード502のカソードまで達してしまう。このため、その隣接する画素501のアバランシェフォトダイオード502のカソードを正しくリセット電位とすることができないという不具合が生じる。以下、上記不具合が生じる現象のことを「隣接画素への電荷流入問題」と称する。
【0027】
そこで、発明者は、複数の画素501のアバランシェフォトダイオード502のカソードをリセット電位とする期間において、ある画素501のアバランシェフォトダイオード502でアバランシェ増倍が生じた場合でも、他の画素501のアバランシェフォトダイオード502のカソードを正しくリセット電位にすべく、鋭意検討、実験等を行った。そして、下記本開示の一態様に係る光検出器等に想到した。
【0028】
本開示の一態様に係る光検出器は、複数の画素と、前記複数の画素に接続された共通リセット線と、を備え、前記複数の画素のそれぞれは、アバランシェフォトダイオードと、ゲート及びソースが前記アバランシェフォトダイオードのカソードに接続されたクエンチングトランジスタと、ソース及びドレインの一方が、前記クエンチングトランジスタのドレインに接続され、ソース及びドレインの他方が、前記共通リセット線に接続されたフォトダイオードリセットトランジスタと、を有する。
【0029】
上記構成の光検出器よれば、複数の画素のフォトダイオードリセットトランジスタをオン状態としている期間において、ある画素のアバランシェフォトダイオードでアバランシェ増倍が生じたとしても、クエンチングトランジスタによって、その増倍電荷の共通リセット線への流入が抑制される。従って、上記構成の光検出器によれば、アバランシェフォトダイオードのカソードの電位を精度よくリセットすることができる。
【0030】
また、前記複数の画素のそれぞれは、更に、前記アバランシェフォトダイオードにより生成された電荷を蓄積する電荷蓄積部と、ソース及びドレインの一方が、前記アバランシェフォトダイオードのカソードに接続され、ソース及びドレインの他方が、前記電荷蓄積部に接続されたトランスファーゲートトランジスタと、を有するとしてもよい。
【0031】
これにより、アバランシェフォトダイオードにより生成された電荷を電荷蓄積部に蓄積することができる。
【0032】
また、更に、前記複数の画素に接続された読み出し線を備え、前記複数の画素のそれぞれは、更に、ソース及びドレインの一方が、前記電荷蓄積部に接続されたリセットトランジスタと、ゲートが前記電荷蓄積部に接続された増幅トランジスタと、ソース及びドレインの一方が、前記増幅トランジスタのソース及びドレインの一方に接続され、ソース及びドレインの他方が、前記読み出し線に接続された選択トランジスタと、を有するとしてもよい。
【0033】
これにより、電荷蓄積部に蓄積された電荷に対応する信号を画素の外部に読み出すことができる。
【0034】
また、前記複数の画素のそれぞれは、更に、前記アバランシェフォトダイオードのカソードと、前記クエンチングトランジスタの前記ゲート及び前記ソースとの間に、前記クエンチングトランジスタの前記ゲート及び前記ソースに接続された、前記アバランシェフォトダイオードにより生成された電荷を蓄積する電荷蓄積部と、ソース及びドレインの一方が、前記アバランシェフォトダイオードのカソードに接続され、ソース及びドレインの他方が、前記電荷蓄積部に接続されたトランスファーゲートトランジスタと、を有し前記アバランシェフォトダイオードのカソードと前記クエンチングトランジスタの前記ゲート及び前記ソースとが、前記電荷蓄積部と前記トランスファーゲートトランジスタとを介して接続されるとしてもよい。
【0035】
これにより、アバランシェフォトダイオードにより生成された電荷を電荷蓄積部に蓄積することができる。
【0036】
また、更に、前記複数の画素に接続された読み出し線を備え、前記複数の画素のそれぞれは、更に、ゲートが前記電荷蓄積部に接続された増幅トランジスタと、ソース及びドレインの一方が、前記増幅トランジスタのソース及びドレインの一方に接続され、ソース及びドレインの他方が、前記読み出し線に接続された選択トランジスタと、を有するとしてもよい。
【0037】
これにより、電荷蓄積部に蓄積された電荷に対応する信号を画素の外部に読み出すことができる。
【0038】
また、前記複数の画素のそれぞれは、更に、ソース及びドレインの一方が、前記電荷蓄積部に接続されたカウントトランジスタと、前記カウントトランジスタのソース及びドレインの他方に接続されたカウントキャパシタと、を有するとしてもよい。
【0039】
これにより、電荷蓄積部に蓄積された電荷を、カウントキャパシタに転送することができる。
【0040】
また、前記クエンチングトランジスタは、前記アバランシェフォトダイオードのカソードの電位が、アバランシェ増倍が停止する電位であるとき、弱反転状態であるとしてもよい。
【0041】
これにより、アバランシェフォトダイオードと共通リセット線との間に流れる電荷量を、弱反転状態のクエンチングトランジスタに流れる電荷量以下とすることができる。
【0042】
また、前記フォトダイオードリセットトランジスタがオン状態である場合に、前記アバランシェフォトダイオードのカソードから前記共通リセット線までの電気経路の時定数が、100ps以上であるとしてもよい。
【0043】
これにより、アバランシェフォトダイオードと共通リセット線との間に流れる電荷量を、100ps以上の時定数によって定まる電荷量以下とすることができる。
【0044】
本開示の一態様に係る固体撮像装置は、上記光検出器を含む固体撮像装置であって、前記複数の画素が行列状に配置された画素アレイと、前記複数の画素から、行単位で信号を読み出す列回路と、前記列回路が信号を読み出す対象とする行を選択する垂直転送回路と、前記複数の画素の全てに共通の信号線を駆動する全画素駆動ドライバと、前記列回路により読み出された信号を転送する水平転送回路と、前記水平転送回路により転送された信号を外部に出力する出力アンプと、を備える。
【0045】
上記構成の固体撮像装置によれば、複数の画素のフォトダイオードリセットトランジスタをオン状態としている期間において、ある画素のアバランシェフォトダイオードでアバランシェ増倍が生じたとしても、クエンチングトランジスタによって、その増倍電荷の共通リセット線への流入が抑制される。従って、上記構成の固体撮像装置によれば、アバランシェフォトダイオードのカソードの電位を精度よくリセットすることができる。
【0046】
本開示の一態様に係る距離測定装置は、被写体に照射する光を発光する光源と、上記固体撮像装置であって、前記被写体による、前記光源から発光された光の反射光を受光する固体撮像装置と、前記固体撮像装置から出力される信号に基づいて、前記被写体までの距離を算出する信号処理装置と、を備える。
【0047】
上記構成の距離測定装置によれば、複数の画素のフォトダイオードリセットトランジスタをオン状態としている期間において、ある画素のアバランシェフォトダイオードでアバランシェ増倍が生じたとしても、クエンチングトランジスタによって、その増倍電荷の共通リセット線への流入が抑制される。従って、上記構成の距離測定装置によれば、アバランシェフォトダイオードのカソードの電位を精度よくリセットすることができる。
【0048】
以下、本開示の一態様に係る光検出器等の具体例について、図面を参照しながら説明する。なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、などは、一例であり、本開示を限定する主旨ではない。
【0049】
なお、各図は模式図であり、必ずしも厳密に図示されたものではない。また、各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略または簡略化される場合がある。
【0050】
(実施の形態1)
図1は、実施の形態1に係る光検出器の構成を示す回路図である。
【0051】
図1に示すように、実施の形態に係る光検出器は、複数の画素101に加えて、複数の画素101に接続された共通リセット線104と、複数の画素101に接続された読み出し線113とを備える。
【0052】
共通リセット線104は、接続される画素101に含まれるアバランシェフォトダイオード102(後述)のカソードにリセット電位を与えるための信号線であり、リセット電位を供給する電源に接続される。
【0053】
読み出し線113は、接続される画素101に含まれる電荷蓄積部105(後述)に蓄積される電荷に対応する信号を、画素101の外部に読み出すための信号線である。
【0054】
画素101は、アバランシェフォトダイオード102と、フォトダイオードリセットトランジスタ103と、電荷蓄積部105と、トランスファーゲートトランジスタ108と、リセットトランジスタ109と、増幅トランジスタ110と、選択トランジスタ111と、クエンチングトランジスタ112とを含んで構成される。
【0055】
画素101は、例えば、行列状に配置される。
【0056】
アバランシェフォトダイオード102は、アバランシェ増倍と呼ばれる現象を利用して受光感度を上昇させたフォトダイオードである。アバランシェフォトダイオード102は、入射光があると、微弱光であっても生成した電子をアバランシェ増倍し、カソードに大きな電圧振幅を生じる。
【0057】
フォトダイオードリセットトランジスタ103は、アバランシェフォトダイオード502のカソードを、クエンチングトランジスタ112を介してリセット電位とするためのトランジスタであって、ソース及びドレインの一方がクエンチングトランジスタのドレインに接続され、ソース及びドレインの他方が、共通リセット線104に接続される。フォトダイオードリセットトランジスタ103をオン状態とすることで、アバランシェフォトダイオード102のカソードを、クエンチングトランジスタ112を介してリセット電位とすることができる。
【0058】
電荷蓄積部105は、アバランシェフォトダイオード102により生成された電荷を蓄積する。電荷蓄積部105は、fFオーダの容量が重畳されている。
【0059】
トランスファーゲートトランジスタ108は、アバランシェフォトダイオード102により生成された電荷を電荷蓄積部105に転送するためのトランジスタであって、ソース及びドレインの一方がアバランシェフォトダイオード102のカソードに接続され、ソース及びドレインの他方が、電荷蓄積部105に接続される。トランスファーゲートトランジスタ108をオン状態とすることで、アバランシェフォトダイオード102により生成された電荷を電荷蓄積部105に転送することができる。
【0060】
リセットトランジスタ109は、電荷蓄積部105をリセット電位とするためのトランジスタであって、ソース及びドレインの一方が電荷蓄積部105に接続される。ソース及びドレインの他方は、例えば、共通リセット線104に接続されてもよいし、リセット電位を供給する他の電源に接続された信号線に接続されてもよい。リセットトランジスタ109をオン状態とすることで、電荷蓄積部105をリセット電位とすることができる。
【0061】
増幅トランジスタ110は、電荷蓄積部105の電位に対応する信号を選択トランジスタ111に出力するためのトランジスタであって、ゲートが電荷蓄積部105に接続される。
【0062】
選択トランジスタ111は、増幅トランジスタ110が出力する信号を読み出し線113に出力するためのトランジスタであって、ソース及びドレインの一方が増幅トランジスタのソース及びドレインの一方に接続され、ソース及びドレインの他方が、読み出し線113に接続される。選択トランジスタ111をオン状態とすることで、増幅トランジスタ110が出力する信号を読み出し線113に出力することができる。
【0063】
実施の形態1に係る光検出器が備える画素101と、比較例に係る光検出器が備える画素501とが本質的に異なる点は、画素101が、クエンチングトランジスタ112を備える点である。
【0064】
クエンチングトランジスタ112は、ゲート及びソースがアバランシェフォトダイオード102のカソードに接続される。
【0065】
アバランシェフォトダイオード102のカソードには正孔でなく、電子が生じるので、アバランシェフォトダイオード102のカソードの電位は、共通リセット線104の電位よりも高くなることはない。そのため、クエンチングトランジスタ112のソース-ドレイン間電流はほぼクエンチングトランジスタ112の閾値電圧によって決定される。
【0066】
実施の形態1に係る光検出器は、画素101が、クエンチングトランジスタ112を備えることで、上述の隣接画素への電荷流入問題を解決することができる。以下、その理由について説明する。
【0067】
フォトダイオードリセットトランジスタ103がオン状態である場合において、アバランシェフォトダイオード102でアバランシェ増倍が開始されたときを考える。
【0068】
アバランシェフォトダイオード102の大きさによって異なるが、一般的には、アバランシェ増倍過程は100psのオーダで継続する。
【0069】
クエンチングトランジスタ112に十分電流が流れない場合には、アバランシェ増倍によって生じた電荷は、アバランシェフォトダイオード102内のPN接合部分に蓄積されていく。そして、蓄積電荷によりPN接合部分に印加される電荷が弱められていき、やがて電界がアバランシェ増倍を生じる閾値を下回ると、アバランシェ増倍過程が停止する。
【0070】
これに対して、クエンチングトランジスタ112に十分電流が流れる場合には、アバランシェ増倍によって生じた電子は、フォトダイオードリセットトランジスタ103及びクエンチングトランジスタ112を介して共通リセット線104に流出する。このため、アバランシェフォトダイオード102内のPN接合部分のN側に電子が蓄積されず、PN接合部分に印加される電荷が弱められない。従って、上記アバランシェ増倍過程の停止が起こらずに、アバランシェ増倍過程の期間中、アバランシェフォトダイオード102のカソードから共通リセット線104へ電子の流出が継続する。その流出速度は、共通リセット線104の電荷排出能力を上回る程であるため、共通リセット線104の電位が下がる。共通リセット線104に接続される他の画素101では、共通リセット線104から、その画素101のアバランシェフォトダイオード102のカソードに電子が流入する。その後、フォトダイオードリセットトランジスタ103がオフ状態となってリセット期間が終了することとなるが、その画素101では、上記電子の流入により、アバランシェフォトダイオード102のカソードの電位が正しくリセットされない。
【0071】
上記構成の画素101において、クエンチングトランジスタ112を、アバランシェフォトダイオード102のカソードの電位が、アバランシェ増倍が停止する電位であるとき、弱反転状態であるように設定する。すると、フォトダイオードリセットトランジスタ103がオン状態である場合において、アバランシェフォトダイオード102でアバランシェ増倍が開始されたとしても、アバランシェ増倍によって生じた電荷の、フォトダイオードリセットトランジスタ103及びクエンチングトランジスタ112を介した共通リセット線104への流出には多くの時間がかかるようになる。上述したように、アバランシェフォトダイオード102の増倍過程は100psのオーダで終了するため、この期間内でほとんど電荷流出は起こらない。すなわち、近接画素への電荷流入問題の発生を防止できる。
【0072】
より具体的には、クエンチングトランジスタ112の設定として、アバランシェフォトダイオード102のアバランシェ増倍過程が起こる100ps間にほとんど電流が流れないようにする。すなわち、クエンチングトランジスタ112を、フォトダイオードリセットトランジスタ103がオン状態である場合に、アバランシェフォトダイオード102のカソードから共通リセット線104までの電気経路の時定数が100ps以上となるように設定すればよい。例えば、アバランシェフォトダイオード102の容量を10fFとすると、アバランシェフォトダイオード102のカソードが1V変化するためには、10fCの電荷が必要である。この電荷を100psで供給するためには、100μAの電流が必要である。従って、クエンチングトランジスタ112を、クエンチングトランジスタ112のゲート-ソース間電圧が0Vの時に流れる電流が100μA以下となるように設定すればよい。
【0073】
一方で、クエンチングトランジスタ112に流れる電流があまりにも小さい場合には、逆に、アバランシェフォトダイオード102のカソードの電位が正しくリセットされなくなる。正しくリセットされるようにするためには、リセット工程を行うリセット期間を、アバランシェフォトダイオード102のアバランシェ増倍過程の期間よりも長く確保する必要がある。その上で、リセット期間内に、アバランシェフォトダイオード102のカソードの電位が正しくリセットできるように、クエンチングトランジスタ112を設定すればよい。例えば、リセット期間を1μsとし、アバランシェフォトダイオード102のアバランシェ増倍時の振幅を1Vとし、アバランシェフォトダイオード102の容量を10fFとする。このとき、クエンチングトランジスタ112を、クエンチングトランジスタ112のゲート-ソース間電圧が0Vの時に流れる電流が0.1μA以上となるように設定すればよい。
【0074】
以下、実施の形態1に係る光検出器が行う動作について説明する。
【0075】
図2は、実施の形態1に係る光検出器が行う動作の一例を示すシーケンス図である。
【0076】
図2に示すように、実施の形態1に係る光検出器は、グローバル露光期間において、フォトダイオードリセットトランジスタ103のゲートに接続される信号線PRTを、全画素101同時にハイレベルにして、全画素101のアバランシェフォトダイオード102のカソードの電位のリセット動作を開始する。このとき、ある画素101のアバランシェフォトダイオード102でアバランシェ増倍が生じたとしても、そのアバランシェ増倍によって生じた電子は、その画素101のクエンチングトランジスタ112により、共通リセット線104に流出することが制限される。このため、隣接する画素101のアバランシェフォトダイオード102のカソードへの電子の流入が防止される。その後、実施の形態1に係る光検出器は、信号線PRTを全画素同時にローレベルにして、リセット動作を停止する。
【0077】
その後、実施の形態1に係る光検出器は、トランスファーゲートトランジスタ108のゲートに接続される信号線TRNを全画素101同時にハイレベルにして、全画素101のトランスファーゲートトランジスタ108をオン状態とする。この直後から、アバランシェフォトダイオード102で生じた増倍電荷は、電荷蓄積部105に転送される。その後、実施の形態1に係る光検出器は、信号線TRNを全画素同時にローレベルにする。この、信号線TRNがハイレベルとなる期間を、露光を行う期間に一致させることで、実施の形態1に係る光検出器による所望の露光動作が実現される。
【0078】
グローバル露光期間の後に、実施の形態1に係る光検出器は、各画素101の電荷蓄積部105に蓄積された電荷に対応する信号を、順次行送り動作(ローリング駆動動作)で読み出す。図2では、第k行目の読み出しの動作について図示している。
【0079】
実施の形態1に係る光検出器は、各行の読み出し動作において、選択トランジスタ111のゲートに接続される信号線SELを、対象とする行の画素101だけ同時にハイレベルにして、その行の画素101の選択トランジスタ111をオン状態とする。すると、電荷蓄積部105に蓄積された電荷に対応する信号(便宜上、この信号のことを「第1信号」と称する)が、増幅トランジスタ110から、読み出し線113に出力される。
【0080】
その後、実施の形態1に係る光検出器は、リセットトランジスタ109のゲートに接続される信号線RSTを、対象とする行の画素101だけ同時にハイレベルにして、その行の画素101のリセットトランジスタ109をオン状態とする。すると、電荷蓄積部105に蓄積された電荷が排出される。すると、電荷が排出された状態の電荷蓄積部105の電位に対応する信号(便宜上、この信号のことを「第2信号」とも称する)が、増幅トランジスタ110から、読み出し線113に出力される。
【0081】
その後、実施の形態1に係る光検出器は、信号線RSTを、その行の画素101だけ同時にローレベルにし、信号線SELを、その行の画素101だけ同時にローレベルにする。ここで、各行の読み出し動作が終了する。
【0082】
その後、実施の形態1に係る光検出器又は外部の装置が、出力された第1信号と第2信号とに対してCDS(Correlated Double Sampling)処理を行うことで、アバランシェフォトダイオード102が露光期間中にアバランシェ増倍を行ったか否かの情報が得られる。
【0083】
(実施の形態2)
図3は、実施の形態2に係る光検出器の構成を示す回路図である。以下では、実施の形態2に係る光検出器について、実施の形態1に係る光検出器の構成要素と同様の構成要素については、既に説明済みであるとして同じ符号を振ってその詳細な説明を省略し、実施の形態1に係る光検出器との相違点を中心に説明する。
【0084】
図3に示すように、実施の形態2に係る光検出器は、実施の形態1に係る光検出器と、画素101が画素201に変更されている点において異なる。
【0085】
画素201は、画素101に対して、カウントトランジスタ206と、カウントキャパシタ207とが追加されて構成される。
【0086】
カウントトランジスタ206は、電荷蓄積部105に蓄積された電荷をカウントキャパシタ207に転送するためのトランジスタであって、ソース及びドレインの一方が電荷蓄積部105に接続される。カウントトランジスタ206をオン状態とすることで、電荷蓄積部105に蓄積された電荷をカウントキャパシタ207に転送することができる。
【0087】
カウントキャパシタ207は、カウントトランジスタ206のソース及びドレインの他方に接続され、電荷蓄積部105から転送された電荷を蓄積する。カウントキャパシタ207の電位は、電荷蓄積部105から電荷を転送された回数に応じた電位となる。
【0088】
上記構成の実施の形態2に係る光検出器は、実施の形態1に係る光検出器と同様の理由により、隣接画素への電荷流入問題を解決することができる。
【0089】
以下、実施の形態2に係る光検出器が行う動作について説明する。
【0090】
図4は、実施の形態2に係る光検出器が行う動作の一例を示すシーケンス図である。ここで例示する動作は、TOF法を利用して、被写体までの距離を検知するために行う動作の一例である。ここでは、実施の形態2に係る光検出器は、被写体に照射する光(光パルス)を発光する光源を備え、複数の画素201が、被写体による、光源より発光された光の反射光を受光するとして説明する。
【0091】
図4に示すように、実施の形態2に係る光検出器は、第1パルス期間において、光源から光パルスを発光すると共に、信号線PRTを、全画素201同時にハイレベルにして、全画素201のアバランシェフォトダイオード102のカソードの電位のリセット動作を開始する。
【0092】
次に、実施の形態2に係る光検出器は、計測したい距離ゾーンの初めに対応するタイミング(その距離をdとし、光速をcとすると、2d/c後)に、信号線PTRを、全画素201同時にローレベルにして、リセット動作を停止すると共に、信号線TRNを、全画素201同時にハイレベルにして、全画素201のトランスファーゲートトランジスタ108をオン状態とする。この直後から、アバランシェフォトダイオード102で生じた増倍電荷は、電荷蓄積部105に転送される。その後、実施の形態2に係る光検出器は、計測したい距離ゾーンの終わりに対応するタイミングで、信号線TRNを全画素201同時にローレベルにして、アバランシェフォトダイオード102で生じた増倍電荷の、電荷蓄積部105への転送を終了させる。
【0093】
この一連の動作により、計測したい距離ゾーンに存在する被写体による反射光による増倍電荷のみが、電荷蓄積部105に蓄積される。
【0094】
その後、カウントトランジスタ206のゲートに接続される信号線CNTを全画素201同時にハイレベルにして、全画素201のカウントトランジスタ206をオン状態とする。このとき、電荷蓄積部105に増倍電荷が蓄積されている場合には、その増倍電荷が、カウントキャパシタ207に転送されて、カウントキャパシタ207の電位が下がる。ここで、第1パルス期間が終了する。
【0095】
この後、実施の形態2に係る光検出器は、第1パルス期間の動作と同様の動作を繰り返し行うことで、被写体を検出する確率を向上させることができる。
【0096】
各パルス期間において、信号線TRNがハイレベルの期間に、アバランシェフォトダイオード102でアバランシェ増倍が生じると、カウントキャパシタ207に増倍電荷が転送され、カウントキャパシタ207の電位が変化する。一方で、アバランシェ増倍が生じなければ、カウントキャパシタ207の電位は変化しない。すなわち、カウントキャパシタ207の電位は、アバランシェ増倍が生じた回数に一対一対応する電位となる。
【0097】
第1パルス期間の動作と同様の動作を繰り返し行った後に、実施の形態2に係る光検出器は、各画素101のカウントキャパシタ207に蓄積された電荷に対応する信号を、順次行送り動作(ローリング駆動動作)で読み出す。図4では、第k行目の読み出しの動作について図示している。
【0098】
実施の形態2に係る光検出器は、各行の読み出し動作において、選択トランジスタ111のゲートに接続される信号線SELを、対象とする行の画素201だけ同時にハイレベルにして、その行の画素201の選択トランジスタ111をオン状態とする。その後、信号線RSTを、その行の画素201だけ同時にハイレベルにして、その行の画素201のリセットトランジスタ109をオン状態とする。すると、電荷蓄積部105に蓄積された電荷が排出される。
【0099】
その後、信号線RSTを、その行の画素201だけ同時にローレベルにして、その行の画素201のリセットトランジスタ109をオフ状態とする。すると、電荷が排出された状態の電荷蓄積部105の電位に対応する第2信号が、増幅トランジスタ110から、読み出し線113に出力される。
【0100】
その後、信号線CNTを、その行の画素201だけ同時にハイレベルにして、その行の画素201のカウントトランジスタ206をオン状態とする。すると、カウントキャパシタ207に蓄積された電荷が、電荷蓄積部105に転送され、電荷蓄積部105に転送された電荷に対応する信号(便宜上、この信号のことを「第3信号」とも称する)が、増幅トランジスタ110から、読み出し線113に出力される。
【0101】
その後、実施の形態2に係る光検出器は、信号線RSTと信号線CNTとを、その行の画素201だけ同時にハイレベルにして、その行の画素201のリセットトランジスタ109とカウントトランジスタ206とをオン状態とする。すると、電荷蓄積部105及びカウントキャパシタ207に蓄積された電荷が排出される。
【0102】
その後、実施の形態2に係る光検出器は、信号線RSTと信号線CNTと信号線SELとを、その行の画素201だけ順次ローレベルにする。ここで、各行の読み出し動作が完了する。
【0103】
その後、実施の形態2に係る光検出器又は外部の装置が、出力された第3信号と第2信号とに対してCDS処理を行うことで、複数回繰り返されたパルス期間における信号線TRNがハイレベルの期間において、アバランシェフォトダイオード102がアバランシェ増倍を行った回数を示す情報が得られる。
【0104】
(実施の形態3)
図5は、実施の形態3に係る光検出器の構成を示す回路図である。以下では、実施の形態3に係る光検出器について、実施の形態1に係る光検出器の構成要素と同様の構成要素については、既に説明済みであるとして同じ符号を振ってその詳細な説明を省略し、実施の形態1に係る光検出器との相違点を中心に説明する。
【0105】
図5に示すように、実施の形態3に係る光検出器は、実施の形態1に係る光検出器と、画素101が画素301に変更されている点において異なる。
【0106】
画素301は、画素101に対して、リセットトランジスタ109が削除され、アバランシェフォトダイオード102と、クエンチングトランジスタ112のゲート及びソースとが、電荷蓄積部105とトランスファーゲートトランジスタ108とを介して接続されるよう、フォトダイオードリセットトランジスタ103とクエンチングトランジスタ112との配置位置が変更されて構成される。このため、電荷蓄積部105は、クエンチングトランジスタ112のゲート及びソースに接続され、トランスファーゲートトランジスタ108は、ソース及びドレインの他方が、電荷蓄積部105に接続される。
【0107】
画素301の上記構成により、フォトダイオードリセットトランジスタ103は、実施の形態1に係るリセットトランジスタ109の機能を兼用することができる。
【0108】
上記構成の画素301において、アバランシェフォトダイオード502のカソードの電位のリセットは、フォトダイオードリセットトランジスタ103とトランスファーゲートトランジスタ108とを同時にオン状態とすることで行う。
【0109】
上記構成の実施の形態3に係る光検出器は、実施の形態1に係る光検出器と同様の理由により、隣接画素への電荷流入問題を解決することができる。
【0110】
(実施の形態4)
図6は、実施の形態4に係る光検出器の構成を示す回路図である。以下では、実施の形態4に係る光検出器について、実施の形態3に係る光検出器の構成要素と同様の構成要素については、既に説明済みであるとして同じ符号を振ってその詳細な説明を省略し、実施の形態2に係る光検出器との相違点を中心に説明する。
【0111】
図6に示すように、実施の形態4に係る光検出器は、実施の形態3に係る光検出器と、画素301が画素401に変更されている点において異なる。
【0112】
画素401は、画素301に対して、カウントトランジスタ206と、カウントキャパシタ207とが追加されて構成される。
【0113】
カウントトランジスタ206は、ソース及びドレインの一方が電荷蓄積部105に接続される。
【0114】
カウントキャパシタ207は、カウントトランジスタ206のソース及びドレインの他方に接続される。
【0115】
上記構成の実施の形態4に係る光検出器は、実施の形態2に係る光検出器と同様の動作により、カウントキャパシタ207の電位を、アバランシェ増倍が生じた回数に一対一対応する電位とすることができる。
【0116】
また、上記構成の実施の形態4に係る光検出器は、実施の形態1に係る光検出器と同様の理由により、隣接画素への電荷流入問題を解決することができる。
【0117】
(実施の形態5)
図7は、実施の形態5に係る距離測定装置900の構成を示すブロック図である。
【0118】
図7に示すように、距離測定装置900は、固体撮像装置801と、信号処理装置809と、光源812とを備える。
【0119】
光源812は、被写体に照射する光を発光する。
【0120】
固体撮像装置801は、実施の形態2に係る光検出器を含んで構成され、被写体による、光源812から発光された光の反射光を受光する。
【0121】
固体撮像装置801は、画素アレイ804と、列回路805と、垂直転送回路803と、全画素駆動ドライバ808と、水平転送回路806と、出力アンプ807とを備える。
【0122】
画素アレイ804は、実施の形態1に係る複数の画素201が行列状に配置されて構成される。
【0123】
列回路805は、複数の画素201から、行単位で信号を読み出す。列回路805は、更に、読み出した信号を増幅する列増幅回路と、CDS処理を行うCDS回路とを備えてもよい。
【0124】
垂直転送回路803は、列回路805が読み出す対象とする行を選択する。
【0125】
全画素駆動ドライバ808は、複数の画素201の全てに共通の信号線(例えば、信号線RST、信号線PTR等)を駆動する。
【0126】
水平転送回路806は、列回路805により読み出された信号を転送する。
【0127】
出力アンプ807は、水平転送回路806により転送された信号を外部に出力する。
【0128】
信号処理装置809は、固体撮像装置801から出力される信号に基づいて、被写体までの距離を算出する。信号処理装置809は、更に、光源812及び固体撮像装置801の動作を制御する。信号処理装置809は、更に、固体撮像装置801から出力される信号を処理し、画像等に変換してもよい。
【0129】
信号処理装置809は、制御回路810と、ロジックメモリ回路811とを備える。
【0130】
制御回路810は、固体撮像装置801の動作を制御すると共に、出力アンプ807から出力される信号を処理する。例えば、制御回路810は、出力アンプ807からの出力がアナログ信号である場合には、デジタル信号に変換する。
【0131】
ロジックメモリ回路811は、光源812の発光タイミングを制御すると共に、制御回路810から出力される信号に対して信号処理を行い、被写体までの距離を算出する。ロジックメモリ回路811は、例えば、信号処理結果を外部の計算機813に出力してもよい。
【0132】
上記構成の距離測定装置900は、光源812の発光タイミングと、固体撮像装置801の露光タイミングとを同期させて動作させることで、被写体までの距離を算出する。
【0133】
以下、距離測定装置900が行う被写体までの距離の算出について説明する。
【0134】
距離測定装置900は、距離測定の対象とする被写体のある、距離測定装置900からの距離範囲を複数に分割する。以下、分割した各距離範囲のことを「サブレンジ」と称する。そして、各サブレンジ内にある被写体だけを撮像した各サブレンジ画像を、固体撮像装置801により撮像する。その後、距離測定装置900は、固体撮像装置801により撮像された複数のサブレンジ画像を、ロジックメモリ回路811により合成し、距離情報と画像情報とを併せ持つ距離画像を算出する。そして、算出した距離画像に基づいて、距離測定の対象とする被写体までの距離を算出する。
【0135】
本開示において、サブレンジの数は、限定されるものではないが、ここでは、一例として、サブレンジが、サブレンジ1とサブレンジ2との2つであるとして説明する。
【0136】
サブレンジ1は、距離測定装置900からの距離がd1からd1+dwまでの距離範囲である。サブレンジ2は、距離測定装置900からの距離がd2からd2+dwまでの距離範囲である。
【0137】
距離測定装置900は、サブレンジ1に対応するサブレンジ画像1と、サブレンジ2に対応するサブレンジ画像2とを合成することで、距離の分解能dw、距離レンジd1~d2+dwを実現する。
【0138】
図8は、距離測定装置900が行う、サブレンジ画像1を撮像する動作の一例を示すシーケンス図である。
【0139】
図8に示されるように、距離測定装置900は、図4に示される実施の形態2に係る光検出器が行う動作と同様の動作を行うことで、サブレンジ画像1を撮像する。このため、ここでは、その詳細についての説明を省略するが、ここでの特徴は、光源812が光パルスを発光する時刻に対し、2d1/cだけ経過したタイミングで、信号線TRNを、全画素201同時にハイレベルにして、全画素201のトランスファーゲートトランジスタ108をオン状態とし、固体撮像装置801において露光を開始することである。そして、この状態をdwだけ保持した後、信号線TRNをローレベルにして、全画素201のトランスファーゲートトランジスタ108をオフ状態とする。これにより、距離測定装置900は、サブレンジ画像1を撮像する。
【0140】
図9は、距離測定装置900が行う、サブレンジ画像2を撮像する動作の一例を示すシーケンス図である。
【0141】
図9に示されるように、距離測定装置900は、図4に示される実施の形態2に係る光検出器が行う動作と同様の動作を行うことで、サブレンジ画像2を撮像する。このため、ここでは、その詳細についての説明を省略するが、ここでの特徴は、光源812が光パルスを発光する時刻に対し、2d2/cだけ経過したタイミングで、信号線TRNを、全画素201同時にハイレベルにして、全画素201のトランスファーゲートトランジスタ108をオン状態とし、固体撮像装置801において露光を開始することである。そして、この状態をdwだけ保持した後、信号線TRNをローレベルにして、全画素201のトランスファーゲートトランジスタ108をオフ状態とする。これにより、距離測定装置900は、サブレンジ画像2を撮像する。
【0142】
サブレンジ画像1とサブレンジ画像2とが撮像されると、ロジックメモリ回路811は、これらサブレンジ画像1とサブレンジ画像2とを合成して距離画像を算出し、算出した距離画像に基づいて、距離測定の対象とする被写体までの距離を算出する。
【0143】
(補足)
以上のように、本出願において開示する技術の例示として、実施の形態1~実施の形態5について説明した。しかしながら、本開示による技術は、これらに限定されず、本開示の趣旨を逸脱しない限り、適宜、変更、置き換え、付加、省略等を行った実施の形態又は変形例にも適用可能である。
【産業上の利用可能性】
【0144】
本開示に係る光検出器等は、光を検出する装置等に広く利用可能である。
【符号の説明】
【0145】
101、201、301 画素
102 アバランシェフォトダイオード
103 フォトダイオードリセットトランジスタ
104 共通リセット線
105 電荷蓄積部
108 トランスファーゲートトランジスタ
109 リセットトランジスタ
110 増幅トランジスタ
111 選択トランジスタ
112 クエンチングトランジスタ
113 読み出し線
206 カウントトランジスタ
207 カウントキャパシタ
801 固体撮像装置
803 垂直転送回路
804 画素アレイ
805 列回路
806 水平転送回路
807 出力アンプ
808 全画素駆動ドライバ
809 信号処理装置
810 制御回路
811 ロジックメモリ回路
812 光源
813 計算機
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10