(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-05-18
(45)【発行日】2023-05-26
(54)【発明の名称】摺動部材およびすべり軸受
(51)【国際特許分類】
F16C 33/12 20060101AFI20230519BHJP
F16C 17/02 20060101ALI20230519BHJP
F16C 33/14 20060101ALI20230519BHJP
C22C 9/02 20060101ALN20230519BHJP
C22C 38/00 20060101ALN20230519BHJP
C22C 38/04 20060101ALN20230519BHJP
C25D 7/00 20060101ALN20230519BHJP
【FI】
F16C33/12 A
F16C17/02 Z
F16C33/14 Z
C22C9/02
C22C38/00 301Z
C22C38/04
C25D7/00 C
(21)【出願番号】P 2017128303
(22)【出願日】2017-06-30
【審査請求日】2019-12-20
【審判番号】
【審判請求日】2022-08-23
(73)【特許権者】
【識別番号】000207791
【氏名又は名称】大豊工業株式会社
(74)【代理人】
【識別番号】110000660
【氏名又は名称】Knowledge Partners弁理士法人
(72)【発明者】
【氏名】市川 真也
【合議体】
【審判長】平田 信勝
【審判官】保田 亨介
【審判官】尾崎 和寛
(56)【参考文献】
【文献】特開平5-25686(JP,A)
【文献】特開2006-266445(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
F16C 33/12
F16C 17/02
F16C 33/14
C22C 9/02
C22C 38/00
C22C 38/04
C25D 7/00
(57)【特許請求の範囲】
【請求項1】
基層上に被覆層が積層された摺動部材であって、
前記被覆層は、Biと前記基層からの拡散成分と不可避不純物とからなり、前記被覆層におけるBiの結晶成長方向が当該被覆層の表面である摺動面の直交方向に対して20度よりも大きく、かつ、90度以下の範囲で傾斜し、前記摺動面上での
相手材の摺動方向と前記結晶成長方向とのなす角度が70度未満であることを特徴とする摺動部材。
【請求項2】
基層上に被覆層が積層された摺動部材であって、
前記被覆層は、Biと前記基層からの拡散成分と不可避不純物とからなり、前記被覆層におけるBiの結晶成長方向が当該被覆層の表面である摺動面の直交方向に対して20度よりも大きく、かつ、90度以下の範囲で傾斜し、前記摺動面上での
相手材の摺動方向と前記結晶成長方向とのなす角度が110度よりも大きいことを特徴とする摺動部材。
【請求項3】
前記被覆層の結晶粒の前記結晶成長方向の長さを、当該結晶粒の前記結晶成長方向の直交方向の長さで除算したアスペクト比の平均値は、2以上かつ40以下である、
請求項1又は2に記載の摺動部材。
【請求項4】
基層上に被覆層が積層されたすべり軸受であって、
前記被覆層は、Biと前記基層からの拡散成分と不可避不純物とからなり、前記被覆層におけるBiの結晶成長方向が当該被覆層の表面である摺動面の直交方向に対して20度よりも大きく、かつ、90度以下の範囲で傾斜し、前記摺動面上での
相手材の摺動方向と前記結晶成長方向とのなす角度が70度未満であることを特徴とするすべり軸受。
【請求項5】
基層上に被覆層が積層されたすべり軸受であって、
前記被覆層は、Biと前記基層からの拡散成分と不可避不純物とからなり、前記被覆層におけるBiの結晶成長方向が当該被覆層の表面である摺動面の直交方向に対して20度よりも大きく、かつ、90度以下の範囲で傾斜し、前記摺動面上での
相手材の摺動方向と前記結晶成長方向とのなす角度が110度よりも大きいことを特徴とするすべり軸受。
【請求項6】
前記被覆層の結晶粒の前記結晶成長方向の長さを、当該結晶粒の前記結晶成長方向の直交方向の長さで除算したアスペクト比の平均値は、2以上かつ40以下である、
請求項4又は5に記載のすべり軸受。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、摺動面にて相手材が摺動する摺動部材およびすべり軸受に関する。
【背景技術】
【0002】
被覆層によって被覆された摺動部材が知られている(特許文献1、参照。)。特許文献1において、結晶粒の長軸方向が摺動面の直角となるように被覆層が形成されている。これにより、結晶粒の長軸方向で相手材の荷重を受けるようにすることができ、耐疲労性にとって良い結果をもたらすことが記載されている。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
特許文献1のように、結晶粒の長軸方向が摺動面の直角となるように被覆層を形成すると、摺動面の方向と結晶粒の短軸方向とが平行となる。その結果、摺動面においては、結晶粒の短軸方向の幅の周期で結晶粒界が存在することとなる。摺動面に結晶粒界が多く存在すると、繰り返し荷重を受けた際に粒界にて、へき開破壊が生じる可能性が高くなるというデメリットもある。すなわち、結晶粒の長軸方向が摺動面の直角となるように被覆層を形成すると、耐疲労性が低下するという問題があった。
本発明は、前記課題にかんがみてなされたもので、耐疲労性を向上させることが可能な技術を提供することを目的とする。
【課題を解決するための手段】
【0005】
前記の目的を達成するため、本発明の摺動部材およびすべり軸受は、基層上に被覆層が積層された摺動部材であって、被覆層の結晶成長方向が当該被覆層の表面である摺動面の直交方向に対して20度よりも大きく傾斜している。
【0006】
前記の構成において、被覆層の結晶成長方向を摺動面の直交方向に対して傾斜させることにより、結晶粒の大きさを変化させることなく、摺動面に露出する被覆層の結晶粒界の量を調整することができる。ここで、摺動面に露出する被覆層の結晶粒界は疲労破壊の起点となり得る。そのため、摺動面に露出する被覆層の結晶粒界の量を小さくすることにより、耐疲労性を向上させることができる。結晶粒そのものを粗大化させなくても済むため、被覆層の強度を維持することができる。
【0007】
ここで、被覆層は、Bi,Sn,Pb,InまたはSbで形成されてもよい。Bi,Sn,Pb,In,Sbは、いずれも硬度(例えばモース硬度)が小さく、なじみ性を確保するための材料として好適である。一方、基層は、被覆層よりも硬い材料で形成されるのが望ましい。基層は、単一元素の金属で形成されてもよいし、合金で形成されてもよいし、マトリクス中に各種粒子が分散した材料で形成されてもよい。
【0008】
被覆層の結晶成長方向の摺動面の直交方向に対する傾斜角は、耐摩耗性と耐疲労性の双方を勘案して決定されることが望ましい。すなわち、傾斜角を小さくすることにより耐摩耗性を重視することができ、傾斜角を大きくすることにより耐疲労性を重視することができる。例えば、傾斜角を30度よりも大きくすることにより、耐疲労性を重視してもよい。
【0009】
また、被覆層の結晶粒の結晶成長方向の長さを、当該結晶粒の結晶成長方向の直交方向の長さで除算したアスペクト比の平均値は、2以上かつ40以下であってもよい。このように、結晶粒の形状を細長な形状とすることにより、より効果的に摺動面に露出する結晶粒界の量を調整することができる。また、アスペクト比の平均値を10以上かつ20以下とすることが、より望ましい。
【図面の簡単な説明】
【0010】
【
図1】本発明の実施形態にかかる摺動部材の斜視図である。
【発明を実施するための形態】
【0011】
ここでは、下記の順序に従って本発明の実施の形態について説明する。
(1)第1実施形態:
(1-1)摺動部材の構成:
(1-2)計測方法:
(1-3)摺動部材の製造方法:
(2)他の実施形態:
【0012】
(1)第1実施形態:
(1-1)摺動部材の構成:
図1は、本発明の一実施形態にかかる摺動部材1の斜視図である。摺動部材1は、裏金10とライニング11とオーバーレイ12とを含む。摺動部材1は、中空状の円筒を直径方向に2等分した半割形状の金属部材であり、断面が半円弧状となっている。2個の摺動部材1を円筒状になるように組み合わせることにより、すべり軸受Aが形成される。すべり軸受Aは内部に形成される中空部分にて円柱状の相手軸2(エンジンのクランクシャフト)を軸受けする。相手軸2の外径はすべり軸受Aの内径よりもわずかに小さく形成されている。相手軸2の外周面と、すべり軸受Aの内周面との間に形成される隙間に潤滑油(エンジンオイル)が供給される。その際に、すべり軸受Aの内周面上を相手軸2の外周面が摺動する。
【0013】
摺動部材1は、曲率中心から遠い順に、裏金10とライニング11とオーバーレイ12とが順に積層された構造を有する。従って、裏金10が摺動部材1の最外層を構成し、オーバーレイ12が摺動部材1の最内層を構成する。裏金10とライニング11とオーバーレイ12とは、それぞれ円周方向において一定の厚みを有している。裏金10の厚みは1.8mmであり、ライニング11の厚みは0.2mmであり、オーバーレイ12の厚みは10μmである。オーバーレイ12の曲率中心側の表面の半径の2倍(摺動部材1の内径)は73mmである。以下、内側とは摺動部材1の曲率中心側を意味し、外側とは摺動部材1の曲率中心と反対側を意味することとする。オーバーレイ12の内側の表面は、相手軸2の摺動面を構成する。
【0014】
裏金10は、Cを0.15wt%含有し、Mnを0.06wt%含有し、残部がFeからなる鋼で形成されている。なお、裏金10は、ライニング11とオーバーレイ12とを介して相手軸2からの荷重を支持できる材料で形成されればよく、必ずしも鋼で形成されなくてもよい。
【0015】
ライニング11は、裏金10の内側に積層された層であり、本発明の基層を構成する。ライニング11は、Snを10wt%含有し、Biを8wt%含有し、残部がCuと不可避不純物とからなる。ライニング11の不可避不純物はMg,Ti,B,Pb,Cr等であり、精錬もしくはスクラップにおいて混入する不純物である。不可避不純物の含有量は、全体で1.0wt%以下である。
【0016】
オーバーレイ12は、ライニング11の内側の表面上に積層された層であり、本発明の被覆層を構成する。オーバーレイ12は、Biとライニング11からの拡散成分と不可避不純物とからなり、不可避不純物の含有量は1.0wt%以下である。
【0017】
図2は、摺動部材1の断面模式図である。同図において、摺動部材1の軸方向の垂直断面が示されている。ライニング11上にオーバーレイ12が形成されており、ライニング11とオーバーレイ12との境界線X(破線)が直線状となっている。厳密には境界線Xは円弧状となるが、摺動部材1の曲率に対して十分に小さい領域を図示しており、境界線Xを直線と見なしている。境界線Xは、ライニング11とオーバーレイ12との界面上の線である。
【0018】
図2に示すように、オーバーレイ12の結晶粒12aは、柱状の形状を有している。単一の結晶粒12aの輪郭線上の2点を接続する線分のうち、長さが最大となる線分を長軸LAとし、当該長軸LAの中点にて当該長軸LAに直交する結晶粒12a上の線分を短軸SAとする。また、各結晶粒12aにおける長軸LAの長さを短軸SAで除算した比の平均値を平均アスペクト比とする。結晶粒12aの平均アスペクト比は10であった。さらに、各結晶粒12aにおける長軸LAの方向(摺動面Sに近づく方向)を結晶成長方向とし、各結晶粒12aにおける結晶成長方向の算術平均値を平均結晶成長方向とする。本実施形態における平均結晶成長方向は、摺動面Sに対して傾斜角θ(θ=25度)だけ傾斜した方向であった。また、平均結晶成長方向のベクトルである成長ベクトルGと、摺動面Sにおける相手軸2の摺動方向のベクトルである摺動ベクトルBとのなす角が115度(90+θ)となっている。
【0019】
図2において、オーバーレイ12のうち、境界線Xを1・cosθμmだけ摺動面S側に平行移動させた線と、当該境界線Xを2・cosθμmだけ摺動面S側に平行移動させた線によって挟まれた範囲を評価範囲Eとする。本実施形態では、評価範囲Eの幅方向の長さを9μmとした。
図3は、評価範囲EにおけるCuの平均濃度を示すグラフである。オーバーレイ12に含まれるCuは、ライニング11からの拡散成分である。
図3に示すように、後述する熱処理を行う前では評価範囲EにおけるCuの平均濃度が3.0wt%であったのに対し、後述する熱処理を行った後では評価範囲EにおけるCuの平均濃度が8.2wt%となった。評価範囲Eにおいては、もともとライニング11のCuが拡散しているが、熱処理を行うことによりライニング11のCuがさらに拡散してCuの濃度が高くなる。
【0020】
オーバーレイ12において、ライニング11との界面から遠くなるほど、ライニング11からの拡散成分としてのCuの濃度が小さくなる。なお、ライニング11に含まれるSnもCuと同様にオーバーレイ12内に拡散している。
【0021】
図2において、評価範囲Eを境界線Xの方向に分割した分割範囲eごとにCuの濃度を計測し、分割範囲eごとのCuの濃度の標準偏差を算出した。その結果、分割範囲eごとのCuの濃度の標準偏差は、5.6wt%であった。境界線Xの方向における分割範囲eの幅は、境界線Xの方向におけるBiの結晶粒の平均幅と同じである。Biの結晶粒の平均幅は、各結晶粒12aの短軸SAの長さの算術平均値である。なお、
図3は、傾斜角θが0度である場合の測定結果を示しているが、評価範囲Eを傾斜角θに基づいて設定することで同様の測定結果が得られると考えられる。具体的に、評価範囲Eは、境界線Xから摺動面S方向に傾斜角θだけ傾いて延びる結晶粒12aの平均的な粒界上における境界線Xからの距離が1~2μmとなる範囲に設定されている。すなわち、評価範囲Eは、傾斜角θに拘わらず、ライニング11から原子が粒界を拡散する際の拡散距離が1~2μmとなる範囲に設定されている。
【0022】
図4は、摺動部材1の断面写真である。同図において、色(グレー)が濃いほど、Cuの濃度が高いことを意味する。同図に示すように、境界線Xよりもオーバーレイ12側においてCuの濃度が高濃度となっている突出部Pが存在している。この突出部Pは、結晶粒12aの粒界のうち、
図4の断面に露出している部分であると考えられる。つまり、オーバーレイ12において、結晶粒12aの粒界において結晶粒12aの粒内よりも高濃度でCuが拡散しており、
図4の断面のうち結晶粒12aの粒界が露出している部分が突出部Pとして表れることとなる。このことは、評価範囲Eを境界線Xの方向に分割した分割範囲eごとのCuの濃度の標準偏差は5.6wt%と大きいことによっても裏付けられる。なお、
図4は、傾斜角θが0度である場合の摺動部材1の断面写真である。
【0023】
以上説明した本実施形態において、被覆層としてのオーバーレイ12の結晶成長方向を摺動面Sの直交方向に対して傾斜させることにより、結晶粒12aの大きさを変化させることなく、摺動面Sに露出するオーバーレイ12の結晶粒界の量を調整することができる。ここで、摺動面Sに露出するオーバーレイ12の結晶粒界は疲労破壊の起点となり得る。そのため、摺動面Sに露出するオーバーレイ12の結晶粒界の量を小さくすることにより、耐疲労性を向上させることができる。結晶粒12aの短軸SAの長さの平均値をZとした場合、摺動面Sの一直線上に露出する結晶粒界の周期Yは(Z/cosθ)となる。従って、摺動面Sの一直線上における結晶粒界の密度は1/Y=cosθ/Zで与えられる。0度≦θ≦90度の範囲でcosθは単調減少となるため、傾斜角θを大きくすることにより、摺動面S上における結晶粒界の密度を小さくすることができる。
【0024】
また、被覆層の結晶粒の結晶成長方向の長さを、当該結晶粒の結晶成長方向の直交方向の長さで除算したアスペクト比の平均値を10とすることにより、より効果的に摺動面Sに露出する結晶粒界の量を調整することができる。
【0025】
(1-2)計測方法:
上述した実施形態において示した各数値を以下の手法によって計測した。摺動部材1の各層を構成する元素の質量は、ICP発光分光分析装置(島津社製ICPS-8100)によって計測した。
【0026】
各層の厚みは、以下の手順で計測した。まず、摺動部材1の軸方向の垂直断面をクロスセクションポリッシャ(日本電子製 IB-09010CP)で研磨した。そして、摺動部材1の断面を電子顕微鏡(日本電子製 JSM-6610A)によって7000倍の倍率で撮影することにより、観察画像(反射電子像)の画像データを得た。そして、観察画像を画像解析装置(ニレコ社製 ルーゼックス AP)によって解析することにより膜厚を計測した。
【0027】
さらに、摺動部材1の断面を電子顕微鏡(日本電子製 JSM-6610A)によって3000倍の倍率で撮影することにより解析画像を得た。そして、解析画像を画像解析装置(ニレコ社製 ルーゼクスAP)によって解析した。具体的に、画像解析装置によって、ライニング11とオーバーレイ12との界面をなすうねり曲線の平均線(JIS B 0601)を境界線Xとして特定した。さらに、画像解析装置によって、オーバーレイ12における各結晶粒12aの粒界を検出し、各結晶粒12aの長軸LAと短軸SAと結晶成長方向とを特定した。各結晶粒12aの粒界は、例えばエッジ検出によって検出できる。さらに、各結晶粒12aにおける長軸LAの長さを短軸SAで除算した比の平均値を平均アスペクト比として算出した。なお、円相当径が0.1μm未満となる結晶粒12aについては、アスペクト比の算出対象から除外した。
【0028】
また、
図2の評価範囲EにおけるCuの濃度を以下のように計測した。具体的に、上述したクロスセクションポリッシャで研磨した摺動部材1の断面を元素分析装置(日本電子製 JSM-6610AのEDS(エネルギー分散型X線分光器))によって分析することにより、評価範囲EにおけるCuの濃度を計測した。
【0029】
(1-3)摺動部材の製造方法:
まず、裏金10と同じ厚みを有する低炭素鋼の平面板を用意した。
次に、低炭素鋼で形成された平面板上に、ライニング11を構成する材料の粉末を散布する。具体的に、上述したライニング11における各成分の質量比となるように、Cuの粉末とBiの粉末とSnの粉末とを低炭素鋼の平面板上に散布した。ライニング11における各成分の質量比が満足できればよく、Cu-Bi,Cu-Sn等の合金粉末を低炭素鋼の平面板上に散布してもよい。粉末の粒径は、試験用ふるい(JIS Z8801)によって150μm以下に調整した。
【0030】
次に、低炭素鋼の平面板と、当該平面板上に散布した粉末とを焼結した。焼結温度を700~1000℃に制御し、不活性雰囲気中で焼結した。焼結後、冷却した。なお、ライニング11は必ずしも焼結によって形成されなくてもよく、鋳造等によって形成されてもよい。
【0031】
冷却が完了すると、低炭素鋼の平面板上にCu合金層が形成される。このCu合金層には、冷却中に析出した軟質のBi粒子が含まれることとなる。
次に、中空状の円筒を直径方向に2等分した形状となるように、Cu合金層が形成された低炭素鋼をプレス加工した。このとき、低炭素鋼の外径が摺動部材1の外径と一致するようにプレス加工した。
【0032】
次に、裏金10上に形成されたCu合金層の表面を切削加工した。このとき、裏金10上に形成されたCu合金層の厚みがライニング11と同一となるように、切削量を制御した。これにより、切削加工後のCu合金層によってライニング11が形成できる。切削加工は、例えば焼結ダイヤモンドで形成された切削工具材をセットした旋盤によって行った。切削加工後のライニング11の表面は、ライニング11とオーバーレイ12との界面を構成する。
【0033】
次に、ライニング11の表面上にBiを電気めっきによって10μmの厚みだけ積層することにより、オーバーレイ12を形成した。電気めっきの手順は以下のとおりとした。まず、ライニング11の表面を水洗した。さらに、ライニング11の表面を酸洗することにより、ライニング11の表面から不要な酸化物を除去した。その後、ライニング11の表面を、再度、水洗した。
【0034】
以上の前処理が完了すると、めっき浴に浸漬させたライニング11に電流を供給することにより電気めっきを行った。メタンスルホン酸:50~250g/l、メタンスルホン酸Bi:5~40g/l(Bi濃度)、界面活性剤:0.5~50g/lとを含むめっき浴の浴組成とした。めっき浴の浴温度は、20~50℃とした。さらに、ライニング11に供給する電流は直流電流とし、その電流密度は0.5~7.5A/dm2とした。
【0035】
図5は、電気めっきの様子を示す斜視図である。同図に示すように、半円筒状に形成された裏金10とライニング11の内側の側面の端面付近から、当該側面に沿った方向にめっき液を流動させる噴流ノズルNZを配置する。さらに、裏金10とライニング11の曲率中心軸の方向に磁場を印加する。噴流ノズルNZが噴射するめっき液の流速を10m/sとし、磁場の磁束密度を2.0×10
-4Tとした。このようにすることにより、ライニング11の内側の側面に沿ってBiイオン(電流)を流すことができ、ローレンツ力によって当該Biイオンを曲率中心方向に加速することができる。従って、噴流ノズルNZによって与えられた慣性力とローレンツ力との組み合わせによって、ライニング11の内側の側面に沿ってBiイオンを安定した速度で移動させることができ、当該Biイオンが移動する方向に結晶成長方向を傾斜させることができる。なお、傾斜角θが大きいほど、めっき液の流速と磁束密度とを大きくすればよい。電気めっきの完了後に、水洗と乾燥を行った。
【0036】
次に、150℃を維持した状態で50時間にわたって熱処理することにより、ライニング11の成分をオーバーレイ12中に拡散させた。これにより、
図3のグラフで示すように、評価範囲Eにおけるライニング11からの拡散成分の濃度を熱処理後において増加させることができた。熱処理の温度は、被拡散元素の融点の65%以下の温度であることが望ましく、被拡散元素がBiである場合には175℃以下であることが望ましい。これにより、Biの結晶粒12a内にライニング11の成分が拡散することを防止し、Biの結晶粒12aの粒界にライニング11の成分を拡散させることができる。
【0037】
以上のようにして、摺動部材1を完成させると、2個の摺動部材1を円筒状に組み合わせることにより、すべり軸受Aを形成した。最後に、成長ベクトルGと摺動ベクトルBとのなす角が115度となるように、すべり軸受Aをエンジン等に取り付けた。
【0038】
(2)他の実施形態:
第1実施形態においては、成長ベクトルGと摺動ベクトルBとのなす角(90-θ)が70度未満となっている。このようにすることにより、Biの結晶粒12aを長軸LA方向の梁と見なした場合に、当該梁を撓ませる方向に相手軸2を摺動させることができる。従って、各結晶粒12aを変形しやすくすることができ、なじみ性を向上させることができる。
【0039】
また、
図6に示すように、成長ベクトルGと摺動ベクトルBとのなす角(90+θ)が110度よりも大きくなるように、すべり軸受Aをエンジン等に取り付けてもよい。この場合、摺動面Sに対して結晶成長方向が垂直に近づくように各結晶粒12aが変形することとなるため、変形時に結晶粒界の密度を増加させ、耐摩耗性を向上させることができる。
【0040】
前記実施形態においては、エンジンのクランクシャフトを軸受けするすべり軸受Aを構成する摺動部材1を例示したが、本発明の摺動部材1によって他の用途のすべり軸受Aを形成してもよい。例えば、本発明の摺動部材1によってトランスミッション用のギヤブシュやピストンピンブシュ・ボスブシュ等のラジアル軸受を形成してもよい。さらに、本発明の摺動部材は、スラスト軸受であってもよく、各種ワッシャであってもよいし、カーエアコンコンプレッサ用の斜板であってもよい。また、ライニング11のマトリクスはCu合金に限られず、相手軸2の硬さに応じてマトリクスの材料が選択されればよい。また、被覆層の材料はライニング11よりも軟らかい材料であればよく、例えばPb,Sn,In,Sbのいずれかであってもよい。
【符号の説明】
【0041】
1…摺動部材、2…相手軸、10…裏金、11…ライニング、12…オーバーレイ、12a…結晶粒、A…軸受、E…評価範囲、LA…長軸、P…突出部、S…摺動面、SA…短軸、X…境界線、e…分割範囲