(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B1)
(11)【特許番号】
(24)【登録日】2023-05-22
(45)【発行日】2023-05-30
(54)【発明の名称】亜鉛電池
(51)【国際特許分類】
H01M 10/28 20060101AFI20230523BHJP
H01M 4/24 20060101ALI20230523BHJP
H01M 4/66 20060101ALI20230523BHJP
H01M 50/107 20210101ALI20230523BHJP
H01M 50/119 20210101ALI20230523BHJP
H01M 50/128 20210101ALI20230523BHJP
H01M 50/152 20210101ALI20230523BHJP
H01M 50/531 20210101ALI20230523BHJP
H01M 50/533 20210101ALI20230523BHJP
H01M 50/545 20210101ALI20230523BHJP
H01M 50/56 20210101ALI20230523BHJP
H01M 50/562 20210101ALI20230523BHJP
【FI】
H01M10/28 A
H01M4/24 H
H01M4/66 A
H01M50/107
H01M50/119
H01M50/128
H01M50/152
H01M50/531
H01M50/533
H01M50/545
H01M50/56
H01M50/562
(21)【出願番号】P 2022017150
(22)【出願日】2022-02-07
【審査請求日】2022-02-09
(73)【特許権者】
【識別番号】000237721
【氏名又は名称】FDK株式会社
(74)【代理人】
【識別番号】110002664
【氏名又は名称】弁理士法人相原国際知財事務所
(72)【発明者】
【氏名】村瀬 知志
(72)【発明者】
【氏名】鈴木 聡真
(72)【発明者】
【氏名】山口 同通
(72)【発明者】
【氏名】伊藤 武
(72)【発明者】
【氏名】遠藤 賢大
【審査官】松嶋 秀忠
(56)【参考文献】
【文献】特開2000-243433(JP,A)
【文献】特開2018-125089(JP,A)
【文献】特開2019-139986(JP,A)
【文献】特開2018-160387(JP,A)
【文献】特開平03-034256(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01M4/00-62
H01M10/00-04、06-34
H01M50/10-198
H01M50/598
(57)【特許請求の範囲】
【請求項1】
負極端子を兼ねており、上端に開口を有する有底円筒状の缶と、
前記缶内にアルカリ電解液とともに収容された電極群と、
正極端子、及び前記正極端子と電気的に接続された
蓋板を有しており、前記
蓋板の部分が前記開口に嵌合されて前記開口を封止する封口体と、を備えており、
前記電極群は、セパレータを介在させた状態で重ね合わされた正極及び負極が渦巻き状に巻回されて形成され、全体として円柱状をなし、
前記缶は、その内面にスズからなる表面層を有しており、
前記負極は、負極基材と、前記負極基材に保持された負極合剤とを含み、
前記負極基材は、金属製導電体からなる芯体と、前記芯体を覆うスズを主体とした表面層とを有しており、
前記負極合剤は、亜鉛、亜鉛合金及び亜鉛含有化合物のうちの少なくとも1種を含み、
前記電極群における前記缶の底部側に位置する下端面部には、前記負極の一部が部分的に突出した負極突出端縁部が位置付けられており、
前記負極突出端縁部は、前記缶の底部の内面に
、溶接されることなく直接接触している、亜鉛電池。
【請求項2】
前記負極突出端縁部は、前記缶の底部の内面に向かって
押圧された状態で直接接触している、請求項1に記載の亜鉛電池。
【請求項3】
前記電極群における前記缶の開口側に位置する上端面部には、前記正極の一部が部分的に突出した正極突出端部が位置付けられており、
前記正極突出端部には、円板状の正極集電体が電気的に接続されており、
前記正極集電体と、前記封口体における前記
蓋板との間には、前記正極集電体と前記
蓋板とを電気的に接続する集電リードが配設されており、
前記集電リードは、前記封口体の側に位置する頂壁と、前記頂壁に対向し、前記正極集電体の側に位置する底壁と、前記頂壁の側縁と前記底壁の側縁との間に延びており、互いに対向している一対の側壁とを有しており、前記
蓋板と前記正極集電体との間に圧縮された状態で配設され、前記電極群を前記缶の底部に向かって
押圧している、請求項1又は2に記載の亜鉛電池。
【請求項4】
前記缶は、ニッケルめっき鋼板に更にスズめっきが施された多層めっき鋼板からなる、請求項1~
3の何れかに記載の亜鉛電池。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、亜鉛電池に関する。
【背景技術】
【0002】
亜鉛電池は、負極活物質に亜鉛、亜鉛合金又は亜鉛含有化合物を用いる電池であり、電池の普及とともに古くから研究開発されてきた電池の一種である。亜鉛等を負極に用いる電池としては、一次電池、二次電池(蓄電池)等が挙げられ、例えば、正極活物質に空気中の酸素を用いる空気亜鉛電池、正極活物質にニッケル含有化合物を用いるニッケル亜鉛電池、正極活物質にマンガン含有化合物を用いるマンガン亜鉛電池や亜鉛イオン電池、正極活物質に銀含有化合物を用いる銀亜鉛電池等が研究及び開発されている。特に、空気亜鉛一次電池、マンガン亜鉛一次電池、銀亜鉛一次電池は実用化され、広く世界で使用されている。
【0003】
また、近年においては、各種のポータブル機器やハイブリッド電気自動車等の各種機器に電池が使用されるようになっており、電池の用途は拡大している。このような用途の拡大にともない、多くの産業向けの電池の開発や改良の重要性が高まっており、主に電池の性能やその二次電池化の面で優れた新たな電池の開発や改良が望まれている。このような状況において、亜鉛電池においては、高率で放電が行えるタイプの電池が開発されている。このような電池としては、例えば、以下に示すような円筒形の亜鉛電池が知られている。
【0004】
この亜鉛電池は、電極群が有底円筒形状の外装缶にアルカリ電解液とともに収容され、外装缶の開口部が正極端子を含む封口体により密閉されることにより形成される。
【0005】
上記した電極群は、セパレータを間に挟んだ状態で重ね合わされた正極及び負極が渦巻き状に巻回されて形成され、全体としてほぼ円柱形状をなしている。ここで、正極及び負極は、巻回作業に際し、互いに、電極群の軸線に沿う方向に僅かにずれた状態となるように配置されるとともに、これら正極及び負極の間には、所定サイズのセパレータが所定位置に配置される。そして、この状態で、正極、セパレータ及び負極は巻回される。その結果、電極群の一端面側から正極の端縁部が渦巻き状に突出し、電極群の他端面側から負極の端縁部が渦巻き状に突出する。
【0006】
突出した正極の端縁部には正極集電体が溶接され、突出した負極の端縁部には負極集電体が溶接される。これにより、正極集電体は正極と広い範囲で電気的に接続され、負極集電体は負極と広い範囲で電気的に接続されるので、集電効率が高められる。その結果、当該電池においては高率での放電が可能となる。
【0007】
この円筒形の亜鉛電池の組み立ての手順としては、例えば、まず、外装缶内に電極群を挿入し、外装缶の底壁内面と負極集電体とが溶接される。これにより、負極端子を兼ねる外装缶と負極とが電気的に接続された状態となる。次いで、正極集電体の所定位置に、金属製の薄板からなる正極リボンの一端が溶接される。更に、正極リボンの他端が封口体の所定位置に溶接される。これにより、正極端子と正極とが電気的に接続された状態となる。その後、封口体が外装缶の上端開口部に絶縁ガスケットを介在させた状態で装着され、外装缶の上端開口部がかしめ加工されることにより、当該外装缶が密閉される。これにより円筒形の亜鉛電池が形成される。
【0008】
上記したような正極リボンは、封口体への溶接をし易くするために、比較的長めのものが用いられる。また、封口体が外装缶の上端開口部に装着されたとき、正極リボンは、外装缶内で封口体と電極群との間に屈曲するようにして収容される。このため、正極リボンは、屈曲し易いように比較的薄いものが用いられる。
【0009】
ところで、近年、亜鉛電池に対しては、より高性能化が望まれており、特に、自己放電の少ない電池の開発が望まれている。
【0010】
亜鉛電池においては、負極に含まれる亜鉛と、この亜鉛とは異種の金属材料からなる外装缶や負極集電体や負極芯体との間でアルカリ電解液を介して局部電池反応が起こり、自己放電が進む問題がある。
【0011】
亜鉛電池の自己放電を抑制するために、負極芯体に用いる金属に関し、水素発生過電圧が大きい金属を採用することが行われている。負極芯体に用いる金属として水素発生過電圧が大きいものを用いると局部電池反応が進行し難くなり、その結果、電池の自己放電を抑制することができる。
【0012】
亜鉛電池の負極芯体としては、一般的に発泡銅、銅パンチングメタル、銅エキスパンドメタル等が採用されている。銅は、水素発生過電圧が比較的高く、また、導電率が高い材料でもあるので、亜鉛電池の自己放電を抑制でき、放電特性の向上にも寄与する。
【0013】
また、水素発生過電圧がより高いスズを上記した発泡銅、銅パンチングメタル、銅エキスパンドメタル等にめっきすることで、亜鉛電池の自己放電抑制の効果を更に高めることが行われている(例えば、特許文献1及び2参照)。
【0014】
更に、外装缶や負極集電体の素材には、通常、ニッケルめっき鋼板が採用されている。このニッケルめっき鋼板に対してもスズめっきを施すことにより、自己放電抑制の効果を高めることが行われている。
【先行技術文献】
【特許文献】
【0015】
【文献】特開平11-026013号公報
【文献】特開2019-139986号公報
【発明の概要】
【発明が解決しようとする課題】
【0016】
ところで、上記したような高率での放電が可能な亜鉛電池においては、負極の端縁部と負極集電体との間、負極集電体と外装缶の底壁内面との間が溶接されている。この溶接にともない形成された溶接部においては、部分的にスズめっき層が消失し、Ni、Fe、Cuなどの下地金属が露出することがある。このように、下地金属が露出すると、スズめっきによる自己放電抑制効果が十分に発揮されない不具合が生じることがある。
【0017】
つまり、高率での放電が可能な亜鉛電池においては、自己放電の抑制が未だ十分なものとはなっていない。
【0018】
本発明は、上記の事情に基づいてなされたものであり、その目的とするところは、従来よりも自己放電を抑制することができ、且つ高率での放電も可能な亜鉛電池を提供することにある。
【課題を解決するための手段】
【0019】
本発明によれば、負極端子を兼ねており、上端に開口を有する有底円筒状の缶と、前記缶内にアルカリ電解液とともに収容された電極群と、正極端子、及び前記正極端子と電気的に接続された蓋板を有しており、前記蓋板の部分が前記開口に嵌合されて前記開口を封止する封口体と、を備えており、前記電極群は、セパレータを介在させた状態で重ね合わされた正極及び負極が渦巻き状に巻回されて形成され、全体として円柱状をなし、前記缶は、その内面にスズからなる表面層を有しており、前記負極は、負極基材と、前記負極基材に保持された負極合剤とを含み、前記負極基材は、金属製導電体からなる芯体と、前記芯体を覆うスズを主体とした表面層とを有しており、前記負極合剤は、亜鉛、亜鉛合金及び亜鉛含有化合物のうちの少なくとも1種を含み、前記電極群における前記缶の底部側に位置する下端面部には、前記負極の一部が部分的に突出した負極突出端縁部が位置付けられており、前記負極突出端縁部は、前記缶の底部の内面に、溶接されることなく直接接触している、亜鉛電池が提供される。
【発明の効果】
【0020】
本発明の亜鉛電池は、負極端子を兼ねており、上端に開口を有する有底円筒状の缶と、前記缶内にアルカリ電解液とともに収容された電極群と、正極端子、及び前記正極端子と電気的に接続された蓋板を有しており、前記蓋板の部分が前記開口に嵌合されて前記開口を封止する封口体と、を備えており、前記電極群は、セパレータを介在させた状態で重ね合わされた正極及び負極が渦巻き状に巻回されて形成され、全体として円柱状をなし、前記缶は、その内面にスズからなる表面層を有しており、前記負極は、負極基材と、前記負極基材に保持された負極合剤とを含み、前記負極基材は、金属製導電体からなる芯体と、前記芯体を覆うスズを主体とした表面層とを有しており、前記負極合剤は、亜鉛、亜鉛合金及び亜鉛含有化合物のうちの少なくとも1種を含み、前記電極群における前記缶の底部側に位置する下端面部には、前記負極の一部が部分的に突出した負極突出端縁部が位置付けられており、前記負極突出端縁部は、前記缶の底部の内面に、溶接されることなく直接接触している。この構成により、本発明の亜鉛電池は、従来よりも自己放電を抑制することができ、且つ高率での放電も可能となる。
【図面の簡単な説明】
【0021】
【
図1】一実施形態に係るニッケル亜鉛二次電池を示した断面図である。
【
図3】頂壁側を上にした状態の集電リードを示した斜視図である。
【
図4】底壁側を上にした状態の集電リードを示した斜視図である。
【
図5】集電リードの中間製品を示した平面図である。
【
図6】電極群が外装缶の中に収容された状態を示した断面図である。
【
図7】外装缶の中に収容された電極群に正極集電体を溶接した状態を示した断面図である。
【
図8】正極集電体が溶接された電極群が収容された外装缶、この外装缶に挿入される集電リード、及び外装缶の開口に嵌め合わされる封口体を示した断面図である。
【
図9】活性化を行った際の充放電カーブを示したグラフである。
【
図10】第1回目の慣らし充放電を行った際の充放電カーブを示したグラフである。
【
図11】第2回目の慣らし充放電を行った際の充放電カーブを示したグラフである。
【
図12】放電電流を0.2Cとしたときの放電レート試験の結果を示したグラフである。
【
図13】放電電流を0.5Cとしたときの放電レート試験の結果を示したグラフである。
【
図14】放電電流を1.0Cとしたときの放電レート試験の結果を示したグラフである。
【
図15】放電電流を5.0Cとしたときの放電レート試験の結果を示したグラフである。
【
図16】放電電流を10Cとしたときの放電レート試験の結果を示したグラフである。
【
図17】放電電流を15Cとしたときの放電レート試験の結果を示したグラフである。
【
図18】放電電流を20Cとしたときの放電レート試験の結果を示したグラフである。
【
図19】落下試験において、電池の落下の回数と交流抵抗値との関係を示したグラフである。
【
図20】落下試験において、2回目の落下後の比較例2の電池のCT画像を示す写真である。
【発明を実施するための形態】
【0022】
以下、一実施形態に係るニッケル亜鉛二次電池(以下、電池とも表記する)1を、図面を参照して説明する。
【0023】
電池1は、例えば、4/3FAサイズの円筒形の電池である。詳しくは、
図1に示すように、電池1は、上端が開口した有底円筒形状をなす缶(外装缶)2を備え、外装缶2は導電性を有し、その底壁90は負極端子として機能する。外装缶2の材料としては、特に限定されるものではないが、いわゆるSPCC(冷間圧延鋼板)に相当する鋼の薄板に厚さが2μmのNiめっきが施されたNiめっき鋼板を好適な材料として例示することができる。より好ましくは、ニッケルめっき鋼板に更にスズめっきが施された多層めっき鋼板を用いる。外装缶2の中には、所定量のアルカリ電解液(図示せず)とともに電極群4が収容されている。
【0024】
図1に示すように、外装缶2の開口3は封口体14によって閉塞されている。封口体14は、導電性を有する円板形状の蓋板16、蓋板16上に配設された弁体20及び同じく蓋板16上に配設された正極端子22を含んでいる。
【0025】
蓋板16の外周部には、この蓋板16を囲むようにリング形状の絶縁ガスケット18が配置され、絶縁ガスケット18及び蓋板16は外装缶2の開口縁部17をかしめ加工することにより外装缶2の開口縁部17に固定されている。即ち、蓋板16及び絶縁ガスケット18は互いに協働して外装缶2の開口3を封止している。
【0026】
ここで、蓋板16は、中央に排気孔19を有し、そして、蓋板16の外面16aの上には、排気孔19を閉塞するようにゴム製の弁体20が配置されている。
【0027】
更に、蓋板16の外面16aの上には弁体20を覆うように正極端子22が電気的に接続されている。
【0028】
この正極端子22は、円筒状の周壁24と、この周壁24の一方端に位置付けられた開口25と、この開口25の周縁に設けられたフランジ26と、開口25の反対側の他方端に位置付けられた端壁27と、を有している。この正極端子22は弁体20を蓋板16に向けて押圧している。また、この正極端子22は、周壁24にガス抜き孔23を有している。
【0029】
通常時、排気孔19は弁体20によって気密に閉じられている。一方、外装缶2の内部にガスが発生し、ガスの圧力が高まれば、弁体20はガスの圧力によって圧縮され、排気孔19が開かれる。その結果、外装缶2内から排気孔19及び正極端子22のガス抜き孔23を介して外部にガスが放出される。つまり、排気孔19、弁体20及び正極端子22のガス抜き孔23は電池1のための安全弁を形成している。
【0030】
電極群4は、それぞれ帯状の正極6、負極8及びセパレータ10を含み、これらは正極6と負極8との間にセパレータ10が挟み込まれた状態で渦巻状に巻回されている。即ち、セパレータ10を介して正極6及び負極8が互いに重ね合わされている。このような電極群4は、全体としては円柱形状をなしている。ここで、電極群4の最外周は負極8の一部(最外周部)により形成されている。つまり、電極群4の最外周にはセパレータ10は存在しておらず、負極8が露出している。
【0031】
この電極群4においては、一方の端面から正極6の端縁部が渦巻状に突出しており、他方の端面から負極8の端縁部が渦巻状に突出している。ここで、突出している正極6の端縁部を正極突出端縁部32とし、突出している負極8の端縁部を負極突出端縁部12とする。この正極突出端縁部32には、後述する正極集電体28が溶接される。
【0032】
正極6は、多孔質構造を有する導電性の正極芯材と、この正極芯材に保持された正極合剤とを含んでいる。上記したような正極芯材としては、例えば、3次元網目状の骨格を有するニッケル製の金属体である。この金属体の骨格は正極芯材の全体にわたって広がっており、この骨格の隙間により連通孔が形成されている。そして、この連通孔の中に正極合剤が充填されている。このような金属体としては、例えば、発泡ニッケルを用いることができる。
【0033】
正極合剤は、正極活物質、正極添加剤及び結着剤を含む。この結着剤は、正極活物質、及び正極添加剤を互いに結着させるとともに正極活物質、及び正極添加剤を正極芯材に結着させる働きをする。ここで、結着剤としては、例えば、親水性若しくは疎水性のポリマーをそれぞれ挙げることができる。
【0034】
正極活物質としては、水酸化ニッケルが用いられる。この水酸化ニッケルの形態としては、粉末状のものが用いられる。つまり、水酸化ニッケル粒子の集合体である水酸化ニッケル粉末が用いられる。この水酸化ニッケル粒子は、高次化されている水酸化ニッケル粒子を採用することが好ましい。
【0035】
上記した水酸化ニッケル粒子は、Co、Zn、Cd等を固溶しているものを用いることが好ましい。
【0036】
また、上記した水酸化ニッケル粒子は、表面がコバルト化合物を含む表面層で覆われている態様とすることが好ましい。この表面層としては、3価以上に高次化されたコバルト化合物を含む高次コバルト化合物層を採用することが好ましい。
【0037】
上記した高次コバルト化合物層は、導電性に優れており、導電性ネットワークを形成する。この高次コバルト化合物層としては、3価以上に高次化されたオキシ水酸化コバルト(CoOOH)などのコバルト化合物を含む層を採用することが好ましい。
【0038】
次に、正極添加剤としては、酸化イットリウムが挙げられる。また、酸化コバルト、金属コバルト、水酸化コバルト等のコバルト化合物、金属亜鉛、酸化亜鉛、水酸化亜鉛等の亜鉛化合物、酸化エルビウム等の希土類化合物等を用いることも好ましい。
【0039】
正極6は、例えば、以下のようにして製造することができる。
まず、上記したようにして得られた正極活物質粒子の集合体である正極活物質粉末に、正極添加剤、水及び結着剤を添加して混練し、正極合剤スラリーを調製する。得られた正極合剤スラリーは、例えば、発泡ニッケルに充填され、その後乾燥処理が施される。乾燥処理後、水酸化ニッケル粒子等が充填された発泡ニッケルは、ロール圧延されてから裁断される。これにより、正極の中間製品が得られる。この正極の中間製品は、全体として長方形状をなしている。そして、この正極の中間製品における正極突出端縁部32となるべき所定の端縁部については、正極合剤の除去が行われ、正極基材がむき出しの状態とされる。次いで、正極合剤が除去された端縁部は、正極の中間製品の厚さ方向に圧縮加工され正極突出端縁部32となる。このように圧縮加工されることにより、正極基材は、稠密な状態となるので、この正極突出端縁部32は溶接がし易い状態となる。また、正極突出端縁部32にNiめっき鋼の薄板を接合することにより、正極突出端縁部32を更に溶接し易くする場合もある。このようにして、正極突出端縁部32を有する正極6が得られる。ここで、正極合剤の除去方法としては、特に限定はされないが、例えば、超音波振動を与えることにより除去する方法が好適に用いられる。なお、正極突出端縁部32以外の領域には、正極合剤が充填されたままの状態である。
【0040】
次に、負極8について説明する。
負極8は、帯状をなす導電性の負極基材を有し、この負極基材に負極合剤が保持されている。
【0041】
負極基材は、帯状の金属材からなる芯体と、この芯体を覆うスズの薄膜とを含んでいる。上記した芯体としては、多数の貫通孔を有する金属材が用いられ、例えば、発泡銅、銅パンチングメタル、銅エキスパンドメタル等を挙げることができる。また、上記したスズの薄膜としては、スズのめっき膜、スズの蒸着膜等を挙げることができる。
【0042】
負極合剤は、負極基材の貫通孔内に充填されるばかりでなく、負極基材の両面上にも層状にして保持されている。
【0043】
負極合剤は、負極活物質、負極添加剤、及び結着剤を含む。
負極活物質としては、亜鉛、亜鉛合金及び亜鉛含有化合物のうちの少なくとも1種を含む。ここで、亜鉛合金を構成する原材料としては、亜鉛の他にビスマス、アルミニウム、インジウム等を用いることが好ましい。亜鉛含有化合物としては、例えば、酸化亜鉛(1種/2種/3種)、水酸化亜鉛、硫化亜鉛、テトラヒドロキシ亜鉛イオン塩、亜鉛ハロゲン化物、酢酸亜鉛や酒石酸亜鉛、シュウ酸亜鉛をはじめとする亜鉛カルボキシラート化合物、亜鉛酸マグネシウム、亜鉛酸カルシウム、亜鉛酸バリウム、ホウ酸亜鉛、ケイ酸亜鉛、アルミン酸亜鉛、フッ化亜鉛、炭酸亜鉛、炭酸水素亜鉛、硝酸亜鉛、硫酸亜鉛等が挙げられる。
【0044】
負極活物質の形態としては、粉末状のものが用いられる。つまり、負極活物質の粒子の集合体である負極活物質粉末が用いられる。負極活物質の粒子の粒径は特に限定されるものではないが、好ましくは、亜鉛または亜鉛合金を使用の場合は平均粒径が10~1000μm、亜鉛含有化合物を使用の場合は0.1~100μmのものを用いる。なお、本明細書において、平均粒径とは、質量基準による積算が50%にあたる平均粒径を意味し、粒子径分布測定装置を用いてレーザー回折・散乱法により求められる。
【0045】
負極添加剤は、負極の特性を改善する働きをする。この負極添加剤としては、例えば、酸化ビスマス、水酸化ビスマス、酸化インジウム、水酸化インジウム、シュウ酸カリウムおよびそれらの水和物等を挙げることができる。
【0046】
結着剤は、負極活物質、負極添加剤等を互いに結着させると同時に負極活物質、負極添加剤等を負極芯体に結着させる働きをする。ここで、結着剤としては、ヒドロキシプロピルセルロース、カルボキシメチルセルロース、ポリビニルアルコール、ポリビニルピロリドン、ポリアクリル酸、ポリアクリル酸ナトリウム、ポリイミド、ポリアミドイミド、ポリアミド、スチレンブタジエンゴム、ポリエチレンオキシド、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ペルフルオロアルコキシフッ素樹脂、四フッ化エチレン・六フッ化プロピレン共重合体等を挙げることができ、これらのうち少なくとも1種を添加することが好ましい。特に、スチレンブタジエンゴムは結着効果が高いため使用することがより好ましい。なお、上記した結着剤については、後述する負極合剤ペーストを調製する際に、適切な粘性を付与する増粘剤としても機能する。
【0047】
負極8は、例えば、以下のようにして製造することができる。
まず、負極活物質(亜鉛等)の粒子の集合体である負極活物質粉末、負極添加剤、結着剤、及び水を混錬することにより、負極合剤のペーストを調製する。得られた負極合剤のペーストは負極基材に塗着され、乾燥処理が施される。乾燥後、負極活物質粉末、負極添加剤等を保持した負極基材にはロール圧延及び裁断が施される。これにより、負極の中間製品が得られる。この負極の中間製品は、全体として長方形状をなしている。そして、この負極の中間製品における負極突出端縁部12となるべき所定の端縁部については、負極合剤の除去が行われる。これにより、所定の端縁部は、負極基材がむき出しの状態とされた負極突出端縁部となる。このようにして、負極突出端縁部12を有する負極8が得られる。ここで、負極合剤の除去方法としては、特に限定はされないが、例えば、超音波振動を与えることにより除去することが好適に行われる。なお、負極突出端縁部12以外の領域には、負極合剤が保持されたままの状態である。
【0048】
次に、セパレータ10としては、例えば、ポリアミド繊維製不織布に親水性官能基を付与したもの、ポリエチレンやポリプロピレンなどのポリオレフィン繊維製不織布に親水性官能基を付与したもの等を用いることができる。例えば、スルホン化処理が施されてスルホン基が付与されたポリオレフィン繊維を主体とする不織布等を用いることが好ましい。ここで、スルホン基は、硫酸又は発煙硫酸等の硫酸基を含む酸を用いて不織布を処理することにより付与される。このようなスルホン基を有する繊維を含むセパレータを用いた電池は、優れた自己放電特性を発揮する。より好ましくは、不織布の上に、例えばポリオレフィン系微多孔膜に親水化処理を施したものを重ねて二重化する。これにより、内部短絡の発生を抑制できショート耐性をより高めることができる。
【0049】
以上のようにして製造された正極6及び負極8は、上記したセパレータ10を介在させた状態で、渦巻き状に巻回され、これにより電極群4が形成される。詳しくは、巻回の際、正極6及び負極8は、互いに、電極群4の軸線方向に沿う方向に僅かにずれた状態となるように配置されるとともに、これら正極6及び負極8の間には、所定サイズのセパレータ10が所定位置に配置され、この状態で巻回作業が行われる。その結果、円柱形状の電極群4が得られる。得られた電極群4の態様としては、電極群4の一端側においては、正極6の正極突出端縁部32が、セパレータ10を介して隣り合っている負極8よりも突出した状態となっており、電極群4の他端側においては、負極8の負極突出端縁部12が、セパレータ10を介して隣り合っている正極6よりも突出した状態となっている。
【0050】
なお、電極群4は、上記した正極6、負極8及びセパレータ10が、所定の外径寸法を有する巻芯により巻回されて形成され、巻回作業後は、この巻芯が抜き取られるので、電極群4の中央部には、この中央部を貫く中心貫通孔9が形成されている。
【0051】
上記した電極群4においては、当該電極群4の円柱形状における一方の端部を形成する正極突出端縁部32に正極集電体28が接続される。
【0052】
上記した正極集電体28については、特に限定されるものではなく、例えば、
図2に示すように、平面視形状が円形状の金属板が用いられる。詳しくは、正極集電体28は、全体として円形状の薄板であり、中央に円形の集電体中央貫通孔29と、この集電体中央貫通孔29を囲むように穿設された6個の貫通孔30とを含んでいる。貫通孔30は、打ち抜き加工で形成し、貫通孔30のエッジの部分に下方(電極群4側)へ延びる突起(バリ)を生じさせることが好ましい。更に、集電体中央貫通孔29の周囲の所定位置には、パンチプレス加工により、電極群4とは反対側に突出する集電体突起31を設けることが好ましい。この集電体突起31の個数は特に限定されないが、例えば、
図2に示すように4個設けることが好ましい。
【0053】
準備した正極集電体28は、電極群4の一端側の正極突出端縁部に溶接される。ここで、正極集電体28の材料としては、特に限定されるものではないが、いわゆるSPCC(冷間圧延鋼板)に相当する鋼の薄板に厚さが2μmのNiめっきが施されたNiめっき鋼板を好適な材料として例示することができる。
【0054】
電池1においては、
図1に示すように、正極集電体28と封口体14との間に集電リード34が介在し、この集電リード34が、電極群4の正極6に接続されている正極集電体28と、正極端子22を有する封口体14とを電気的に接続する。
【0055】
集電リード34は、
図1から明らかなように、封口体14の蓋板16に接続されている頂壁50と、正極集電体28に接続されている底壁36と、頂壁50の両側の端縁46、48及び底壁36の両側の端縁38、40の間にそれぞれ存在する一対の側壁42、44とを有している。
【0056】
ここで、集電リード34の材料としては、特に限定されるものではないが、いわゆるSPCC(冷間圧延鋼板)に相当する鋼の薄板に厚さが2μmのNiめっきが施されたNiめっき鋼板を好適な材料として例示することができる。
【0057】
この集電リード34について、
図3、4を参照して詳しく説明する。なお、
図3においては、頂壁50が上側に、底壁36が下側になる状態で示しており、
図4においては、底壁36が上側に、頂壁50が下側になる状態で示している。
【0058】
頂壁50は、
図3から明らかなように、底壁36と対向する位置に位置付けられており、全体として長方形状をなしている。詳しくは、頂壁50は、その短辺方向の中央において長辺方向に沿って延びる頂壁スリット53により分割されている。つまり、頂壁50は、分割された一方の第1半体部52と、分割された他方の第2半体部54とを含んでいる。
【0059】
これら第1半体部52及び第2半体部54は、詳しくは、底壁36と対向する対向部52c、54cと、この対向部52c、54cから頂壁50の長手方向に延びる延出部52a、52b、54a、54bとを有している。
【0060】
第1半体部52の対向部52cにおける中央には、上記した頂壁スリット53に臨む半円形の第1半円切欠55が設けられている。また、第2半体部54の対向部54cにおける中央には、上記した頂壁スリット53に臨む半円形の第2半円切欠57が設けられている。これら第1半円切欠55及び第2半円切欠57は、互いに対向する位置に位置付けられており、全体として、ほぼ円形の頂壁貫通孔59を形成している。この頂壁貫通孔59は、集電リード34が封口体14に接合された際に、蓋板16の排気孔19と合致する。
【0061】
延出部52a、52b、54a、54bには、封口体14の側に向かって突出したリード突起58が設けられている。このリード突起58は、抵抗溶接を行う際に、溶接電流を集中させる部分として利用される。つまり、抵抗溶接では、集電リード34を封口体14に向けて加圧し、リード突起58が蓋板16に押し付けられた状態で電流を流す。この場合、リード突起58と、蓋板16における当接箇所との間で大電流が集中して流れることにより、この部分が発熱し、溶融して変形する。これにより、溶接部が形成され、集電リード34と封口体14との溶接が行われる。
【0062】
このリード突起58は、例えば、パンチプレス加工により形成される。なお、
図4における参照符号60は、延出部52a、52b、54a、54bにリード突起58を設ける際にリード突起58の裏側に生じた凹部を示す。
【0063】
これら延出部52a、52b、54a、54bは、底壁36と対向する対向部52c、54cから外側に延びており、底壁36と重なることを避けている。このため、集電リード34を封口体14に抵抗溶接する際に、底壁36と干渉することなく抵抗溶接機の電極棒を延出部52a、52b、54a、54bに当接させることができる。また、延出部52a、52b、54a、54bが、底壁36と対向する対向部52c、54cから外側に延びていることで、集電リード34が封口体14に接合された際に集電リード34の安定性を高める働きをする。
【0064】
側壁42、44は、
図3、4に示すように、頂壁50の両側の端縁46、48から底壁36の両側の端縁38、40へ延びている。側壁42、44の平面視形状としては、特に限定されるものではなく、例えば、矩形状、台形状等任意の形状を採用することができる。
【0065】
また、圧縮荷重が加えられた場合に集電リード34の変形を促すために、側壁42、44の形状は、外側に突出する湾曲形状とすることが好ましい。
【0066】
底壁36は、
図4に示すように、平面視形状が全体として正方形状をなしている。そして、底壁36の中央部分には、円形の底壁貫通孔51が設けられている。この底壁貫通孔51は、アルカリ電解液を外装缶2内へ注入する際に、電極群4へのアルカリ電解液の供給を阻害しないために設けられている。ここで、上記した正極集電体28と、集電リード34とが組み合わされた場合、集電体中央貫通孔29と、底壁貫通孔51とが合致する。
【0067】
上記した集電リード34は、例えば、以下のようにして製造することができる。
まず、金属製の薄板を加工することにより、
図5に示すような、平面視形状がほぼH形の薄板で形成された集電リード34の中間製品62を準備する。この中間製品62において、両側部に位置付けられた長尺部分が、第1半体部52となる第1半体部予定領域70及び第2半体部54となる第2半体部予定領域72である。第1半体部予定領域70及び第2半体部予定領域72の内側に連なる領域は、側壁42、44となる側壁予定領域74、76である。そして、側壁予定領域74と側壁予定領域76との間に挟まれた領域が、底壁36となる底壁予定領域78である。
【0068】
この中間製品62においては、パンチプレス加工により、第1半体部予定領域70及び第2半体部予定領域72のそれぞれの両端部における所定位置にリード突起58が設けられている。このリード突起58の部分は、抵抗溶接により溶融し、溶接部となる。
【0069】
また、中間製品62においては、打ち抜き加工により、第1半体部予定領域70及び第2半体部予定領域72の側縁の中央に第1半円切欠55及び第2半円切欠57が設けられており、底壁予定領域78の中央に底壁貫通孔51が穿設されている。
【0070】
上記したようなプレス加工及び打ち抜き加工を施すことによって得られた中間製品62においては、第1半体部予定領域70と側壁予定領域76との間に想定される折曲げ仮想線80、側壁予定領域76と底壁予定領域78との間に想定される折曲げ仮想線82、底壁予定領域78と側壁予定領域74との間に想定される折曲げ仮想線84、及び、側壁予定領域74と第2半体部予定領域72との間に想定される折曲げ仮想線86の部分を折り曲げることにより、
図3、4に示すような集電リード34を形成する。なお、側壁予定領域74、76については、湾曲形状に加工することが好ましい。
【0071】
なお、集電リード34を形成するにあたり、頂壁スリット53は、必ずしも形成する必要はなく、第1半体部52と、第2半体部54とを連結した形状としても構わない。
【0072】
次に、電池1の組み立て手順の一例について説明する。
まず、上記したような電極群4を準備する。そして、
図6に示すように、準備した電極群4を外装缶2の中に挿入し、電極群4を外装缶2の底壁に押し付け、負極突出端縁部12を外装缶2の底壁内面92に直接接触させる。また、電極群4の最外周には負極8が位置付けられているので、外装缶2の側壁内周面94は、電極群4の最外周の負極8と接触する。このように、負極端子を兼ねる外装缶2は、底壁内面92及び側壁内周面94において、負極8と電気的に接続される。
【0073】
次いで、
図7に示すように、電極群4の一方端側に正極集電体28を載置し、電極群4における正極突出端縁部32と正極集電体28とを抵抗溶接する。このとき、正極集電体28の貫通孔30のバリと正極突出端縁部32とが接触する部分に電流が集中して溶接部が形成され、正極6の正極突出端縁部32と正極集電体28とが溶接される。
【0074】
次いで、外装缶2内にアルカリ電解液を所定量注入する。外装缶2内に注入されたアルカリ電解液は、電極群4に保持され、その大部分はセパレータ10に保持される。このアルカリ電解液は、正極6と負極8との間での充放電の際の電気化学反応(充放電反応)を進行させる。このアルカリ電解液としては、KOH、NaOH及びLiOHのうちの少なくとも一種を溶質として含む水溶液を用いることが好ましい。またアルカリ電解液の濃度についても特には限定されず、例えば6N~7Nのものが用いられる。さらに、電池1は、ニッケル亜鉛二次電池であるので、上記したアルカリ電解液に酸化亜鉛を飽和濃度まで溶解させたものを用いることが好ましい。これにより、アルカリ電解液への負極からの亜鉛の溶け出しを抑制できる。
【0075】
次いで、
図8中の矢印Aで示すように、外装缶2の中に集電リード34を挿入し、正極集電体28の上に載置する。
【0076】
更に、封口体14を準備する。この封口体14においては、蓋板16の周縁にリング形状の絶縁ガスケット18を嵌め合わせておく。そして、絶縁ガスケット18が組み合わされた封口体14を、
図8中の矢印Aで示すように、外装缶2の開口縁部17に嵌め合わせるとともに集電リード34の上に載置する。
【0077】
このように、正極集電体28、集電リード34、及び封口体14が接触した状態で、封口体14と正極集電体28とが互いに近付く方向に加圧しながら電流を流し、抵抗溶接(プロジェクション溶接)を行う。このとき、正極集電体28の集電体突起31と集電リード34の底壁36とが接触し、当該接触部分に電流が集中して溶接部が形成される。その結果、正極集電体28と集電リード34の底壁36とが溶接される。また、集電リード34のリード突起58と封口体14の蓋板16の内面16bとが接触する部分に電流が集中して溶接部が形成される。その結果、封口体14と集電リード34とが溶接される。
【0078】
溶接が終了すると、封口体14の蓋板16は、絶縁ガスケット18を介して外装缶2の上端開口部に位置付けられた状態となっているので、この状態のまま、引き続き外装缶2の周壁39における開口3から所定範囲の開口縁部17をかしめ加工する。これにより、封口体14が外装缶2の開口3の部分に固定され、外装缶2の開口3は封止される。このようにして、
図1に示すような電池1が得られる。得られた電池1は、初期活性化処理が施され、使用可能状態とされる。
【0079】
上記のような溶接の作業及びかしめ加工の作業により、集電リード34は、側壁42、44の部分が優先的に変形し、僅かに押し潰された状態で封口体と電極群4との間に存在することになる。その結果、電極群4は集電リード34により外装缶2の底壁90に向かって押圧され、負極突出端縁部12と外装缶2との間は、良好な接触状態が維持され、負極8と負極端子(外装缶2)との間の電気的接続が確立される。負極突出端縁部12と外装缶2との間の良好な接触状態が維持できれば、第1に、高率での放電が可能となる。第2に、負極集電体を省略することができる。負極集電体を省略できると、負極突出端縁部12に負極集電体を溶接し、更に、負極集電体と外装缶の底壁とを溶接することを省略できるので、溶接にともない下地金属が露出することによる自己放電の進行を抑えることができる。
【0080】
従来のような正極リボンを用いた場合は、電極群4が押さえられないので、電池に衝撃が加わると外装缶2の内部で電極群4が移動するおそれがある。電極群4が移動すると電気的接続が阻害され、内部抵抗が増加し、高率放電が出来なくなる。このような不具合を避けるために負極集電体を用い、負極突出端縁部と負極集電体との間、及び負極集電体と外装缶2の底壁との間を溶接すると、結局、溶接部にて下地金属が露出し、局部電池反応の発生にともなう自己放電の問題が生じてしまう。
【0081】
本実施形態に係る電池1は、自己放電の一因となる溶接が必要な負極集電体を省略することができるので、自己放電を抑制でき、しかも、良好な電気的接続も維持できるので高率放電特性にも優れている。
【0082】
[実施例]
1.電池の製造
(実施例1)
(1)正極の製造
正極活物質として準備されたコバルト被覆水酸化ニッケルの粉末100質量部に、酸化イットリウムの粉末0.5質量部、酸化ニオブの粉末0.3質量部、酸化亜鉛の粉末0.5質量部と、結着剤としてのヒドロキシプロピルセルロースの粉末を0.2質量%含む水50.0質量部とを添加して混練し、正極合剤のスラリーを調製した。
【0083】
ついで、この正極合剤のスラリーを正極芯材としてのシート状の発泡ニッケルに充填した。ここで、発泡ニッケルとしては、面密度(目付)が約350g/m2、多孔度が95%、厚みが1.3mmであるものを用いた。
【0084】
次いで、正極合剤のスラリーが充填された発泡ニッケルに乾燥処理を施した。その後、正極合剤が充填された発泡ニッケルの全体を圧延したのち、所定寸法に切断して、4/3FAサイズ用の正極6の中間製品を得た。得られた正極6の中間製品における正極突出端縁部32となるべき所定の端縁部に超音波振動を加えて正極合剤の除去を行い、正極芯材がむき出しの状態とした。次いで、正極合剤が除去された端縁部を、正極6の中間製品の厚さ方向に圧縮加工して正極突出端縁部32とした。このようにして、正極突出端縁部32を有する正極6を得た。なお、正極6の正極容量は2000mAhである。
【0085】
(2)負極の製造
酸化亜鉛の粉末100質量部、亜鉛の粉末25質量部、酸化ビスマスの粉末3質量部、酸化インジウムの粉末0.1質量部、シュウ酸カリウム一水和物の粉末2質量部、ヒドロキシプロピルセルロースの粉末1質量部、スチレンブタジエンゴムの水分散液(50%液)8質量部、及び水100質量部を添加して25℃の環境下において混練し、負極合剤ペーストを調製した。
【0086】
ここで、酸化亜鉛の粉末を構成する酸化亜鉛の粒子の平均粒径は0.75μm、亜鉛の粉末を構成する粒子の平均粒径は75μmであった。
【0087】
一方、負極基材を以下のようにして製造した。まず、負極基材の芯体として、銅パンチングメタルを準備した。この銅パンチングメタルは、厚さが60μmであり、直径1.5mmの丸孔が千鳥状に多数穿設されている。次いで、この銅パンチングメタルに従来の方法によりスズの電解めっきを施した。このとき、スズめっき膜の厚さは5.0μmとした。このようにして、スズめっき膜を有する銅パンチングメタルからなる負極基材を得た。
【0088】
上記のようにして得られた負極合剤ペーストを負極基材の両面に均等、且つ、厚さが一定となるように塗布した。
【0089】
負極合剤ペーストの乾燥後、負極合剤を保持した負極基材を圧延したのち、所定寸法に切断して、4/3FAサイズ用の負極8の中間製品を得た。得られた負極8の中間製品における負極突出端縁部12となるべき所定の端縁部に超音波振動を加えて負極合剤の除去を行い、負極基材がむき出しの状態となった端縁部を負極突出端縁部12とした。このようにして、負極突出端縁部12を有する負極8を得た。
【0090】
(3)電極群の製造
上記のようにして得られた正極6及び負極8をこれらの間にセパレータ10を挟んだ状態で渦巻状に巻回し、電極群4を製造した。詳しくは、巻回の際、正極6及び負極8を、互いに、電極群4の軸線方向に沿う方向に僅かにずれた状態となるように配置するとともに、これら正極6及び負極8の間の所定位置に、セパレータ10を配置し、この状態で巻回作業を行った。その結果、全体として中心貫通孔9を有する円柱形状をなしている電極群4を得た。得られた電極群4の態様としては、電極群4の一端側においては、正極6の正極突出端縁部32が、セパレータ10を介して隣り合っている負極8よりも突出した状態となっており、電極群4の他端側においては、負極8の負極突出端縁部12が、セパレータ10を介して隣り合っている正極6よりも突出した状態となっている。また、電極群4の最外周にはセパレータ10は存在しておらず、負極8が位置付けられている。つまり、電極群4の最外周は負極8が露出した状態である。
【0091】
ここで、電極群4の製造に使用したセパレータ10は、スルホン化処理が施されたポリオレフィン繊維製不織布の基布に親水化処理が施されたポリプロピレン製の微多孔膜を重ねて二重化した構造を有しており、その厚みは0.16mm(目付量74g/m2)であった。
【0092】
(4)正極集電体の製造
正極集電体の材料としては、いわゆるSPCC(冷間圧延鋼板)に相当する鋼の薄板(厚さが0.4mm)に厚さが2μmのNiめっきが施されたNiめっき鋼板を準備した。このNiめっき鋼板から、直径が15.0mmの円板を打ち抜き加工により製造した。このとき、当該円板においては、更に、
図2に示すように、中央に集電体中央貫通孔29を、集電体中央貫通孔29の周囲の所定位置に6個の貫通孔30を、それぞれ、円板の打ち抜き加工と同時に穿設した。また、集電体中央貫通孔29の周囲には、パンチプレス加工により、集電体突起31を設けた。このようにして正極集電体28を得た。
【0093】
(5)集電リードの製造
集電リード34の材料として、いわゆるSPCC(冷間圧延鋼板)に相当する鋼の薄板に厚さが2μmのNiめっきが施されたNiめっき鋼板を準備した。このNiめっき鋼板を加工することにより、
図5に示すような、平面視形状がほぼH形の薄板で形成された集電リード34の中間製品62を製造した。この中間製品62において、両側部に位置付けられた長尺部分が、第1半体部52となる第1半体部予定領域70及び第2半体部54となる第2半体部予定領域72である。第1半体部予定領域70及び第2半体部予定領域72の内側に連なる領域は、側壁42、44となる側壁予定領域74、76である。そして、側壁予定領域74と側壁予定領域76との間に挟まれた領域が、底壁36となる底壁予定領域78である。
【0094】
この中間製品62にパンチプレス加工を施すことにより、第1半体部予定領域70及び第2半体部予定領域72のそれぞれの両端部における所定位置にリード突起58を設けた。
【0095】
また、中間製品62に打ち抜き加工を施すことにより、第1半体部予定領域70及び第2半体部予定領域72の側縁の中央に第1半円切欠55及び第2半円切欠57を設け、底壁予定領域78の中央には底壁貫通孔51を穿設した。
【0096】
上記したようなプレス加工及び打ち抜き加工を施すことによって得られた中間製品62においては、第1半体部予定領域70と側壁予定領域76との間に想定される折曲げ仮想線80、側壁予定領域76と底壁予定領域78との間に想定される折曲げ仮想線82、底壁予定領域78と側壁予定領域74との間に想定される折曲げ仮想線84、及び、側壁予定領域74と第2半体部予定領域72との間に想定される折曲げ仮想線86の部分を折り曲げることにより、
図3、4に示すような集電リード34を製造した。なお、側壁予定領域74、76については、湾曲形状に加工した。
【0097】
ここで、中間製品62の厚さは0.30mmである。また、
図5に示される各部の寸法については、側壁最大幅W1は8.18mmであり、側壁高さL1は3.46mmである。そして、底壁予定領域78の矢印Xで示す方向の長さL2が6.4mmであり、第1半体部予定領域70及び第2半体部予定領域72における矢印Xで示す方向の長さL3が3.1mmであり、底壁予定領域78の矢印Yで示す方向の長さW2が7.5mmであり、第1半体部予定領域70及び第2半体部予定領域72における矢印Yで示す方向の長さW3が12.4mmである。また、底壁貫通孔51、第1半円切欠55及び第2半円切欠57の半径は、1.5mmである。
【0098】
(6)ニッケル亜鉛二次電池の組み立て
図6に示すように、準備した電極群4を外装缶2の中に収容した。このとき、電極群4の最外周には負極8が位置付けられており、この最外周の部分が外装缶2の側壁内周面94と接触することにより負極8と負極端子(外装缶2)とが電気的に接続される。更に、電極群4を外装缶2の中に押し込むことにより、電極群4の他方端に位置付けられている負極突出端縁部12が外装缶2の底壁内面92に直接接触した状態となる。これにより、負極8は、負極突出端縁部12を介して負極端子(外装缶2)と電気的に接続された状態となる。
【0099】
次いで、
図7に示すように、電極群4の一方端側に正極集電体28を載置し、電極群4における正極突出端縁部32と正極集電体28とを抵抗溶接した。このとき、正極集電体28の貫通孔30のバリと正極突出端縁部32とが接触する部分に電流が集中して溶接部が形成される。これにより、正極6の正極突出端縁部32と正極集電体28とが溶接された。
【0100】
次いで、アルカリ金属の水酸化物を溶質として含み、かつ酸化亜鉛を飽和した水溶液であるアルカリ電解液を準備し、このアルカリ電解液を外装缶2の中に4.336g注入した。このアルカリ電解液は、KOH、NaOH及びLiOHのモル混合比が、KOH:NaOH:LiOH=6:0:0.5であり、総規定度が6.5Nである。
【0101】
次いで、
図8中の矢印Aで示すように、外装缶2の中に集電リード34を挿入し、正極集電体28の上に載置した。
【0102】
一方、別工程にて、封口体14を準備した。このとき、封口体14においては、蓋板16の周縁にリング形状の絶縁ガスケット18を嵌め合わせておく。そして、絶縁ガスケット18が組み合わされた封口体14を、
図8中の矢印Aで示すように、外装缶2の開口縁部17に嵌め合わせるとともに集電リード34の上に載置した。
【0103】
このように、正極集電体28、集電リード34、及び封口体14が接触した状態で、封口体14と正極集電体28とが互いに近付く方向に加圧しながら電流を流し、プロジェクション溶接を行った。
【0104】
その後、封口体14の蓋板16は、絶縁ガスケット18を介して外装缶2の上端開口部に位置付けられた状態となっているので、この状態のまま、引き続き外装缶2の周壁39における開口3から所定範囲の開口縁部17をかしめ加工して、封口体14で外装缶2の開口を塞ぎ、電池容量を1600mAhとする4/3FAサイズの電池1を組み立てた。
【0105】
(比較例1)
負極集電体を負極突出端縁部12に抵抗溶接し、更に、負極集電体を外装缶2の底壁内面92に抵抗溶接したことを除いて、実施例1と同様にしてニッケル亜鉛二次電池を製造した。ここで、負極集電体は、正極集電体28と同じ材料を用い、直径を16.0mmとしたことを除いて正極集電体28と同じ形状とした。
【0106】
(比較例2)
集電リードの代わりに従来の正極リボンを使用して封口体14と正極集電体28とを電気的に接続したことを除いて、実施例1と同様にしてニッケル亜鉛二次電池を製造した。
【0107】
2.ニッケル亜鉛二次電池の評価
(1)前処理
(i)エージング
得られた電池1に対し、温度25℃の環境下にて、12時間放置するエージングを行った。
【0108】
(ii)活性化
エージング後の電池1に対し、温度25℃の環境下にて、0.1Cの充電電流で12.5時間の充電を行った後、15分間休止し、この15分間の休止後、0.2Cの放電電流で電池電圧が1.3Vになるまで放電させ、この放電後に15分間の休止を行うといった充放電作業を行った。なお、1C=1600mAとする。以下同様とする。
【0109】
(iii)慣らし充放電
活性化後の電池1に対し、温度25℃の環境下にて、0.6Cの充電電流で1時間充電し、次いで0.3Cの充電電流で1時間充電し、次いで0.1Cの充電電流で1時間充電した後、15分間休止し、この15分間の休止後、0.5Cの放電電流で電池電圧が1.3Vになるまで放電させ、この放電後に15分間の休止を行うといった充放電作業を1サイクルとする充放電サイクルを2回繰り返した。
【0110】
上記した(i)エージング、(ii)活性化、及び(iii)慣らし充放電の一連の作業による前処理を行い、電池1を使用可能状態とした。
【0111】
ここで、上記した活性化、第1回目の慣らし充放電、及び第2回目の慣らし充放電における充放電カーブを
図9、
図10、
図11にそれぞれ示した。なお、負極集電体が無しの充放電カーブは実線で示し、負極集電体が有りの充放電カーブは破線で示した。また、上記した慣らし充放電の前後における電池1の開路電圧(OCV)、交流内部抵抗、充電容量、放電容量、充放電効率、作動電圧を表1に示した。なお、実施例1及び比較例1の条件でそれぞれ2個の電池を製造し、これら2個の電池に対し前処理を行い、2個の電池の測定結果の平均値を表1に示した。
【0112】
【0113】
実施例1及び比較例1の電池における前処理時の各種のデータより、負極集電体の有無に関わらず各充放電カーブは一致していることがわかる。また、活性化、慣らし充放電前後の開路電圧、放電容量、交流抵抗も同等の結果となった。
【0114】
(2)各種試験
実施例1及び比較例1の条件でそれぞれ2個の電池を製造し、これら2個の電池に対し各種試験を行い、得られた試験結果の平均値から電池の評価を行った。
【0115】
(i)放電レート試験
前処理後の電池1に対し、温度25℃の環境下にて、0.6Cの充電電流で1時間の充電を行い、次いで0.3Cの充電電流で1時間の充電を行い、次いで、0.1Cの充電電流で1時間の充電を行った。
【0116】
次に、25℃の環境下で、特定放電電流として0.2Cの放電電流で電池電圧が1.3Vになるまで放電させた。
【0117】
次に、15分間休止したのち、25℃の環境下で0.2Cの放電電流で電池電圧が1.3Vになるまで放電させる残放電を行った。
【0118】
上記した特定放電電流の条件を0.5C、1.0C、5.0C、10C、15C、20Cと変化させ、それぞれの条件での電池電圧、電池温度、放電容量を求めた。その結果を
図12~
図18に示した。
【0119】
いずれの放電レートでも放電カーブはほとんど一致しており、10C以上の高レートでも放電容量の低下は僅かであった。
【0120】
(ii)自己放電試験
前処理済みの実施例1、比較例1の電池に対し、25℃の環境下にて、0.5Cの上限電流、1.9Vの上限電圧、公称容量(1600mA)の充電容量制限を設定した定電流定電圧(CCCV)充電を行った。このとき、充電率(State of Charge、以下SOCとも表記する)は100%とした。その後、15分間の休止をもうけたうえで、電池電圧が1.3Vになるまで0.5Cの定電流(CC)放電を行い、初期容量を求めた。
【0121】
次に、15分間の休止を行ったのち、0.5Cの上限電流、1.9Vの上限電圧、公称容量(1600mA)の充電容量制限を設定したCCCV充電を行った。このとき、SOCは100%とした。
【0122】
次に、35℃の環境下にて2週間放置し、再び25℃の室温環境下で電池電圧が1.3Vになるまで0.5CのCC放電を行い、2週間放置後の残存容量を求めた。
【0123】
また、放置期間を2週間から2ヶ月に変更したことを除いて、上記と同様にして、初期容量、残存容量(2ヶ月放置後の残存容量)を求めた。
【0124】
次に、以下に示す(I)式より残存率Rを求めた。得られた結果を表2に示した。
R[%]=(残存容量/初期容量)×100・・・(I)
ここで、残存率Rの値が大きいほど電池の容量が残っており自己放電が抑制されていることを示す。
【0125】
また、以下に示す(II)式より自己放電速度を求めた。得られた結果を表2に示した。
自己放電速度[SOC%/day]=(初期容量-残存容量)÷定格容量÷放置日数・・・(II)
ここで、自己放電速度の値が小さいほど自己放電の進行が遅く自己放電が抑制されていることを示す。
【0126】
【0127】
負極集電体有りに対し、負極集電体無しの方が放置後の残存率が高い結果となった。
これは、負極集電体を溶接しないことにより溶接部の下地金属の露出が無くなるため、局部電池反応による自己放電が低減されたためと考えられる。
【0128】
(iii)落下試験
実施例1及び比較例2の電池を床面から30cmの高さの部分より正極端子を下側にして垂直に自由落下させ、床面に衝突させた。
【0129】
次に、落下後の電池につき交流抵抗を測定した。
その後、同様にして落下及び交流抵抗の測定を繰り返した。落下の回数と交流抵抗値との関係を
図19のグラフに示した。
【0130】
図19の結果から、比較例2は、落下2回目の交流抵抗が急増していることがわかる。これに対し実施例1は3回目の落下後でも交流抵抗の急増は確認できなかった。
【0131】
図20に2回目の落下後の比較例2の電池のCT画像を示す。電極群の下端部(負極突出端縁部)と外装缶の底壁との間に隙間が生じており、接触が断たれていることを確認できた。このことから、従来の正極リボンを用いた比較例2での交流抵抗の急増は、落下により電極群と外装缶の底壁との間の接触が外れたことによるものと考えられる。これに対し、集電リードを用いた実施例1では交流抵抗の急増が見られなかったことから、3回の落下でも電極群と外装缶の底壁との接触は外れず、比較例2に対し接触安定性が高いと考えられる。
【0132】
(3)考察
放電レート試験では、負極集電体を溶接しないことによる放電容量の低下は小さく、許容できる結果であった。このことから、負極集電体を溶接することによる集電効果は小さく、電極群の最外周に位置する負極と外装缶の側壁内周面との直接接触、及び負極突出端縁部と外装缶の底壁の内面との直接接触によって十分に集電できていると考えられる。
【0133】
また負極集電体を省略し負極集電体を外装缶の底壁に溶接しないことにより自己放電特性が改善された。これは、溶接部が形成されることによる下地金属(Ni、Fe等)の露出が無いので局部電池反応が低減したためと推測される。
【0134】
以上より、電極群の最外周にて負極が露出するように配置して負極と外装缶の側壁内周面とを直接接触させ、且つ負極突出端縁部と外装缶の底壁の内面とを直接接触させることにより放電性を維持しながら自己放電特性を改善することができるといえる。
【0135】
なお、本発明は上記した実施形態や実施例に限定されることはなく、種々の変形が可能である。例えば、上記した実施形態では、ニッケル亜鉛二次電池について説明したが、本発明はこの態様に限定されるものではなく、電池の種類は、負極活物質に亜鉛を用いる電池であれば他の亜鉛二次電池や亜鉛一次電池であってもよい。
【0136】
更に、本発明において、電池のサイズは、特に限定されず、FAサイズ、AAサイズ等の他のサイズであってもよい。
【符号の説明】
【0137】
1 ニッケル亜鉛二次電池
2 外装缶
4 電極群
6 正極
8 負極
10 セパレータ
12 負極突出端縁部
28 正極集電体
32 正極突出端縁部
34 集電リード
【要約】
【課題】従来よりも自己放電を抑制することができ、且つ高率での放電も可能な亜鉛電池を提供する。
【解決手段】電池1は、外装缶2と、外装缶2内にアルカリ電解液とともに収容された電極群4と、外装缶2を封口する封口体14とを備え、電極群4は、正極6と、負極8とがセパレータ10を介して重ね合わされて渦巻き状に巻回されて形成され、全体として円柱状をなしており、電極群4における下端面部には、負極8の一部が部分的に突出した負極突出端縁部12が位置付けられており、負極突出端縁部12は、外装缶2の底壁90の内面に直接接触している。
【選択図】
図1