IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ザ・ブロード・インスティテュート・インコーポレイテッドの特許一覧

<>
  • 特許-新生物ワクチン用製剤 図1
  • 特許-新生物ワクチン用製剤 図2
  • 特許-新生物ワクチン用製剤 図3
  • 特許-新生物ワクチン用製剤 図4
  • 特許-新生物ワクチン用製剤 図5
  • 特許-新生物ワクチン用製剤 図6
  • 特許-新生物ワクチン用製剤 図7
  • 特許-新生物ワクチン用製剤 図8
  • 特許-新生物ワクチン用製剤 図9
  • 特許-新生物ワクチン用製剤 図10
  • 特許-新生物ワクチン用製剤 図11
  • 特許-新生物ワクチン用製剤 図12
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-05-24
(45)【発行日】2023-06-01
(54)【発明の名称】新生物ワクチン用製剤
(51)【国際特許分類】
   A61K 39/00 20060101AFI20230525BHJP
   A61K 9/08 20060101ALI20230525BHJP
   A61K 9/19 20060101ALI20230525BHJP
   A61K 47/12 20060101ALI20230525BHJP
   A61K 47/20 20060101ALI20230525BHJP
   A61K 47/26 20060101ALI20230525BHJP
   A61P 37/04 20060101ALI20230525BHJP
   A61P 35/00 20060101ALI20230525BHJP
【FI】
A61K39/00 G ZNA
A61K9/08
A61K9/19
A61K47/12
A61K47/20
A61K47/26
A61P37/04
A61P35/00
【請求項の数】 13
【外国語出願】
(21)【出願番号】P 2021073429
(22)【出願日】2021-04-23
(62)【分割の表示】P 2019043731の分割
【原出願日】2014-12-05
(65)【公開番号】P2021113218
(43)【公開日】2021-08-05
【審査請求日】2021-05-13
(31)【優先権主張番号】61/913,172
(32)【優先日】2013-12-06
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】515236259
【氏名又は名称】ザ・ブロード・インスティテュート・インコーポレイテッド
(74)【代理人】
【識別番号】100118902
【弁理士】
【氏名又は名称】山本 修
(74)【代理人】
【識別番号】100106208
【弁理士】
【氏名又は名称】宮前 徹
(74)【代理人】
【識別番号】100196508
【弁理士】
【氏名又は名称】松尾 淳一
(74)【代理人】
【識別番号】100135415
【弁理士】
【氏名又は名称】中濱 明子
(72)【発明者】
【氏名】エドワード・エフ・フリッチュ
(72)【発明者】
【氏名】カリアッパナダール・ネライアッパン
(72)【発明者】
【氏名】インドゥ・ジャヴェリ
【審査官】新熊 忠信
(56)【参考文献】
【文献】特表2013-530943(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
A61K 39/00-39/44
A61K 38/00-38/58
A61K 9/00- 9/72
A61K 47/00-47/69
A61P 37/00
A61P 35/00
JSTPlus/JMEDPlus/JST7580(JDreamIII)
CAplus/MEDLINE/EMBASE/BIOSIS(STN)
(57)【特許請求の範囲】
【請求項1】
以下の(a)及び(b)のステップ:(a)水性成分であって、
(i)水;
(ii)コハク酸又はその薬学的に許容可能な塩である、又はクエン酸又はその薬学的に許容可能な塩である、pH調整剤;
(iii)1~4%ジメチルスルホキシドを含む薬学的に許容可能な担体;及び
(iv)等張化剤
を含む、水性成分を調製するステップ;
及び
(b)前記水性成分と、1つまたはそれ以上のネオ抗原ペプチド又はその薬学的に許容可能な塩とを組み合わせて医薬組成物を作するステップ
を含む、新生物ワクチン用ペプチド溶液を調製する方法であって、
前記1つ又はそれ以上のペプチド又はその薬学的に許容可能な塩のそれぞれが500n未満の親和性でクラスI HLAタンパク質に結合し、前記水性成分に可溶性であり、それぞれが医薬組成物中に50μg~1.5mgの量で存在し、そして、それぞれが8~50アミノ酸の長さを有する、及び、
前記1つまたはそれ以上のペプチド又はその薬学的に許容可能な塩のそれぞれが0.45未満の疎水性割合を有し、ここで、疎水性割合はペプチド中の疎水性アミノ酸の総数を当該ペプチド中のアミノ酸の総数で除算したものであり、疎水性アミノ酸は、アラニン、ロイシン、イソロイシン、バリン、メチオニン、フェニルアラニン及びトリプトファンである、前記方法。
【請求項2】
前記ペプチド溶液が、少なくとも3つ、又は4つ、又は5つのペプチドを含む、請求項1に記載の方法。
【請求項3】
前記新生物ワクチン用ペプチド溶液が、水、デキストロース、1mM~10mMコハク酸塩、及び1~4%ジメチルスルホキシドを含む、請求項1に記載の方法。
【請求項4】
前記組み合わせるステップの後に、前記新生物ワクチン用ペプチド溶液をろ過するステップをさらに含む、請求項1に記載の方法。
【請求項5】
前記新生物ワクチン用ペプチド溶液が凍結乾燥可能である、請求項4に記載の方法。
【請求項6】
新生物ワクチンの調製方法であって、
(a)請求項1に従ってペプチド溶液を調製するステップと;
(b)前記ペプチド溶液を免疫調節薬又はアジュバントの溶液と組み合わせるステップであって、それにより新生物ワクチンを調製するステップと
を含む方法。
【請求項7】
以下の(a)及び(b):
(a)水性成分であって、
(i)水;
(ii)コハク酸又はその薬学的に許容可能な塩である、又はクエン酸又はその薬学的に許容可能な塩である、pH調整剤;
(iii)1~4%ジメチルスルホキシドを含む薬学的に許容可能な担体;及び
(iv)等張化剤
を含む、水性成分;
及び
(b)1つ又はそれ以上のネオ抗原ペプチド又はその薬学的に許容可能な塩であって、それぞれが500n未満の親和性でクラスI HLAタンパク質に結合し、前記水性成分に可溶性であり、それぞれが医薬組成物中に50μg~1.5mgの量で存在し、そして、それぞれが8~50アミノ酸の長さを有する、1つ又はそれ以上のペプチド又はその薬学的に許容可能な塩
を含み、
前記1つまたはそれ以上のペプチド又はその薬学的に許容可能な塩のそれぞれが0.45未満の疎水性割合を有し、ここで、疎水性割合はペプチド中の疎水性アミノ酸の総数を当該ペプチド中のアミノ酸の総数で除算したものであり、疎水性アミノ酸は、アラニン、ロイシン、イソロイシン、バリン、メチオニン、フェニルアラニン及びトリプトファンである、
新生物の治療に使用するための水性医薬組成物であって、前記治療は新生物を有すると診断された対象に前記医薬組成物を対象に投与する第1のステップを含む、医薬組成物。
【請求項8】
前記治療が請求項7に記載の医薬組成物を前記対象に投与する第2のステップをさらに含み、該第2のステップで投与される医薬組成物は第1のステップにおける医薬組成物とは異なる、請求項7に記載の医薬組成物。
【請求項9】
前記治療が請求項7に記載の医薬組成物を前記対象に投与する第3のステップをさらに含み、該第3のステップで投与される医薬組成物は第1及び第2のステップにおける医薬組成物とは異なる、請求項8に記載の医薬組成物。
【請求項10】
前記治療が請求項7に記載の医薬組成物を前記対象に投与する第4のステップをさらに含み、該第4のステップで投与される医薬組成物は第1、第2、及び第3のステップにおける医薬組成物とは異なる、請求項9に記載の医薬組成物。
【請求項11】
以下の(a)及び(b):
(a)水性成分であって、
(i)水;
(ii) コハク酸又はその薬学的に許容可能な塩である、又はクエン酸又はその薬学的に許容可能な塩である、pH調整剤;
(iii)1~4%ジメチルスルホキシドを含む薬学的に許容可能な担体;及び
(iv)等張化剤
を含む、水性成分;
及び
(b)1つ又はそれ以上のネオ抗原ペプチド又はその薬学的に許容可能な塩であって、それぞれが500n未満の親和性でクラスI HLAタンパク質に結合し、前記水性成分に可溶性であり、それぞれが医薬組成物中に50μg~1.5mgの量で存在し、そして、それぞれが8~50アミノ酸の長さを有する、1つ又はそれ以上のペプチド又はその薬学的に許容可能な塩
を含み、
前記1つまたはそれ以上のペプチド又はその薬学的に許容可能な塩のそれぞれが0.45未満の疎水性割合を有し、ここで、疎水性割合はペプチド中の疎水性アミノ酸の総数を当該ペプチド中のアミノ酸の総数で除算したものであり、疎水性アミノ酸は、アラニン、ロイシン、イソロイシン、バリン、メチオニン、フェニルアラニン及びトリプトファンである、
水性医薬組成物の、新生物の治療のための医薬の製造における使用であって、前記治療は新生物を有すると診断された対象に前記医薬組成物を対象に投与する第1のステップを含む、使用。
【請求項12】
以下の(a)(b)(c)を含む新生物の治療に使用するためのキット:
(a)請求項1~5のいずれか一項に記載の方法により製造された医薬組成物;
(b)少なくとも1つのフリーズドライ又は凍結乾燥されたペプチドの再構成のための溶液;及び
(c)再構成のための指示書。
【請求項13】
前記溶液がアジュバントを含有する、請求項12に記載のキット。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願及び参照による援用
本願は、2013年12月6日に出願された米国仮特許出願第61/913,172号明細書の利益及びそれに対する優先権を主張する。
【0002】
前述の出願、及び当該出願の又はその審査手続における全ての引用文献(「出願引用文献」)及び出願引用文献で引用又は参照される全ての文献、及び本明細書で引用又は参照される全ての文献(「本明細書引用文献」)、及び本明細書引用文献で引用又は参照される全ての文献は、本明細書又は参照によって本明細書に援用される任意の文献で言及される任意の製品に関する任意の製造者の指示書、説明書、製品仕様書、及びプロダクトシートと共に、本明細書によって参照により本明細書に援用され、及び本発明の実施において用いられ得る。より具体的には、参照される文献は全て、個別の文献それぞれが参照によって援用されることが具体的且つ個別的に示されたものとみなすのと同程度に参照によって援用される。
【0003】
本発明は、新生物の治療用製剤に関する。より詳細には、本発明は、対象における新生物を治療するための腫瘍ワクチン用製剤に関する。
【0004】
本発明は、国立衛生研究所(National Institutes of Health)から付与された助成金番号第NIH/NCI-1R01CA155010-02号及び同第NHLBI-5R01HL103532-03号に基づく連邦政府の支援を受けて行われた。連邦政府は本発明に一定の権利を有する。
【背景技術】
【0005】
毎年約160万人の米国人が新生物と診断され、2013年には米国内で約58万人がこの疾患により死亡することが予想される。ここ数十年で新生物の検出、診断、及び治療は著しく向上しており、それにより多くの種類の新生物に関して生存率が著しく上昇している。しかしながら、新生物と診断された人のうち、治療開始後5年でなおも生存している者は約60%に過ぎず、そのため新生物は米国における主な死亡原因の第2位となっている。
【0006】
現在、種々の既存の癌療法が、アブレーション技法(例えば、外科手技、極低温/熱処置、超音波、高周波、及び放射線)及び化学的技法(例えば、医薬品、細胞傷害剤/化学療法剤、モノクローナル抗体、及びそれらの様々な組み合わせ)を含め、いくつも存在している。残念ながら、かかる治療法は多くの場合に深刻なリスク、毒性の副作用、及び極めて高いコストを伴うことに加え、有効性も不確かである。
【0007】
患者自身の免疫系によって癌性細胞を標的化しようとする癌療法(例えば、癌ワクチン)について、かかる治療法は本明細書に記載する欠点のいくつかを軽減/解消し得ることから、関心が高まっている。癌ワクチンは、典型的には腫瘍抗原及び免疫刺激性分子(例えば、サイトカイン又はTLRリガンド)で構成され、これらが一緒になって働き抗原特異的細胞傷害性T細胞を誘導することで、T細胞が腫瘍細胞を標的化して破壊する。現在の癌ワクチンは、典型的には共通腫瘍抗原を含有し、これは多くの個体に見られる腫瘍で選択的に発現又は過剰発現する天然タンパク質(即ち、-個体における全ての正常細胞のDNAによりコードされるタンパク質)である。かかる共通腫瘍抗原は特定の型の腫瘍を同定するには有用であるが、特定の腫瘍型に対するT細胞応答を標的化する免疫原としては、免疫を弱める自己トレランス効果に供されるため理想的でない。腫瘍特異的及び患者特異的ネオ抗原を含有するワクチンは、共通腫瘍抗原を含むワクチンの欠点の幾つかを解消し得る。
【先行技術文献】
【特許文献】
【0008】
【文献】米国特許出願公開第20110293637号明細書
【文献】国際公開第2012/159643号パンフレット
【文献】国際公開第2012/159754号パンフレット
【非特許文献】
【0009】
【文献】First-in-human evaluation of t he safety and immunogenicity of a reco mbinant adenovirus serotype 26 HIV-1 E nv vaccine(IPCAVD 001))」.J Infect Dis. 2013 Jan 15;207(2):240-7
【発明の概要】
【発明が解決しようとする課題】
【0010】
一般に、どのワクチンも、使用前にワクチンが分解したり、又は劣化したりすることが決してないように十分な長さの有効期間を有しなければならない。保存安定性にはまた、保存中にワクチンの成分が溶液から沈殿してはならないことも要求される。しかしながら、十分な保存安定性を実現することは困難であり得る。従って、新規ワクチン用製剤が必要とされている。
【0011】
本願における任意の文献の引用又は特定は、かかる文献が本発明に対する先行技術として利用可能であることを認めるものではない。
【課題を解決するための手段】
【0012】
本発明は、新生物の治療用新生物ワクチン又は免疫原性組成物に関し、より詳細には、対象における腫瘍を治療するための腫瘍特異的且つ患者特異的ネオ抗原のプールを含むワクチン製剤に関する。
【0013】
一態様において、本発明は、少なくとも1つのネオ抗原ペプチド又はその薬学的に許容可能な塩と;pH調整剤と;薬学的に許容可能な担体とを含む医薬組成物を提供する。
【0014】
特定の実施形態において、本医薬組成物はワクチン組成物である。
【0015】
特定の実施形態において、本医薬組成物は少なくとも2つのネオ抗原ペプチドを含む。特定の実施形態において、本医薬組成物は少なくとも3つのネオ抗原ペプチドを含む。特定の実施形態において、本医薬組成物は少なくとも4つのネオ抗原ペプチドを含む。特定の実施形態において、本医薬組成物は少なくとも5つのネオ抗原ペプチドを含む。新生物ワクチン又は免疫原性組成物は、有利には少なくとも4つの異なるネオ抗原を含み(及び異なる抗原とは、各抗原が異なるネオエピトープを有することが意図される)、例えば、少なくとも4又は5又は6又は7又は8又は9又は10又は11又は12又は13又は14又は15又は16又は17又は18又は19又は20又は21又は22又は23又は24又は25又は26又は27又は28又は29又は30又は31又は32又は33又は34又は35又は36又は37又は38又は39又は40又はそれ以上の異なるネオ抗原が、新生物ワクチン又は免疫原性組成物中にあってもよい。
【0016】
特定の実施形態において、ネオ抗原ペプチドは約5~約50アミノ酸長の範囲である。
別の関連する実施形態において、ネオ抗原ペプチドは約15~約35アミノ酸長の範囲である。典型的には、長さは約15又は20アミノ酸超、例えば15~50又は約75アミノ酸である。
【0017】
一実施形態において、新生物ワクチン又は免疫原性組成物はpH調整剤と薬学的に許容可能な担体とをさらに含む。
【0018】
特定の実施形態において、pH調整剤は塩基である。特定の実施形態において、pH調整剤はジカルボン酸塩又はトリカルボン酸塩である。特定の実施形態において、pH調整剤はコハク酸塩である。特定の実施形態において、pH調整剤はクエン酸塩である。
【0019】
特定の実施形態において、コハク酸又はその薬学的に許容可能な塩はコハク酸二ナトリウムを含む。
【0020】
特定の実施形態において、コハク酸塩は製剤中に約1mM~約10mMの濃度で存在する。特定の実施形態において、コハク酸塩は製剤中に約2mM~約5mMの濃度で存在する。
【0021】
特定の実施形態において、薬学的に許容可能な担体は水を含む。
【0022】
特定の実施形態において、薬学的に許容可能な担体はデキストロースをさらに含む。
【0023】
特定の実施形態において、薬学的に許容可能な担体はトレハロースをさらに含む。
【0024】
特定の実施形態において、薬学的に許容可能な担体はスクロースをさらに含む。
【0025】
特定の実施形態において、薬学的に許容可能な担体はジメチルスルホキシドをさらに含む。
【0026】
特定の実施形態において、本医薬組成物は免疫調節薬又はアジュバントをさらに含む。一実施形態において、本方法は、免疫調節薬又はアジュバントの投与をさらに含む。別の関連する実施形態において、免疫調節薬又はアジュバントは、ポリICLC、1018 ISS、アルミニウム塩、Amplivax、AS15、BCG、CP-870,893、CpG7909、CyaA、dSLIM、GM-CSF、IC30、IC31、イミキモド、ImuFact IMP321、IS Patch、ISS、ISCOMATRIX、JuvImmune、LipoVac、MF59、モノホスホリルリピドA、Montanide IMS 1312、Montanide ISA 206、Montanide ISA 50V、Montanide ISA-51、OK-432、OM-174、OM-197-MP-EC、ONTAK、PEPTEL、ベクター系、PLGAマイクロパーティクル、レシキモド、SRL172、ビロソーム及び他のウイルス様粒子、YF-17D、VEGFトラップ、R848、βグルカン、Pam3Cys、及びAquila社のQS21 stimulonからなる群から選択される。別のさらなる実施形態において、免疫調節薬又はアジュバントはポリICLCである。
【0027】
これらのポリマーを水に溶解させると酸性溶液になり、これを好ましくは生理的pHに中和することにより、ワクチン又は免疫原性組成物又はその抗原若しくはベクターを配合するためのアジュバント溶液が得られる。このときポリマーのカルボキシル基は部分的にCOOである。
【0028】
好ましくは、本発明に係るアジュバントの溶液、特にカルボマーの溶液は、蒸留水中に
好ましくは塩化ナトリウムの存在下で調製され、得られる溶液は酸性pHである。このストック溶液は、NaClなどの塩を入れた水、好ましくは生理食塩水(NaCl 9g/l)の(所望の終濃度に達するための)所要分量、又はその実質的な一部にそれを一度に又は幾つかの部分量ずつ加え、同時に又は続いて好ましくはNaOHなどの塩基で中和(pH7.3~7.4)することにより希釈される。この生理的pHの溶液は、特にフリーズドライ又は凍結乾燥形態で保存されたワクチンの再構成時に用いられる。
【0029】
最終的なワクチン組成物のポリマー濃度は、0.01%~2%w/v、より詳細には0.06~1%w/v、好ましくは0.1~0.6%w/vである。
【0030】
別の態様において、本発明は、新生物ワクチンである医薬組成物を提供し、これは、1つ~5つのネオ抗原ペプチド又はその薬学的に許容可能な塩;1~3%ジメチルスルホキシド;3.6~3.7%デキストロース水溶液;3.6~3.7mMコハク酸又はその塩;0.5mg/mlポリI:ポリC;0.375mg/mlポリ-L-リジン;1.25mg/mlカルボキシメチルセルロースナトリウム;及び0.225%塩化ナトリウムを含む。特定の実施形態において、1つ~5つのネオ抗原ペプチド又はその薬学的に許容可能な塩の各々は、各々約300μg/mlの濃度で存在する。
【0031】
別の態様において、本発明は、新生物ワクチン用ネオ抗原ペプチド溶液の調製方法を提供し、本方法は、少なくとも1つのネオ抗原ペプチド又はその薬学的に許容可能な塩を含む溶液を提供するステップと;少なくとも1つのネオ抗原ペプチド又はその薬学的に許容可能な塩を含む溶液をコハク酸又はその薬学的に許容可能な塩を含む溶液と組み合わせるステップであって、それにより新生物ワクチン用ペプチド溶液を調製するステップを含む。
【0032】
特定の実施形態において、少なくとも1つのネオ抗原ペプチド又はその薬学的に許容可能な塩を含む溶液は、少なくとも2つ(又は3つ、又は4つ、又は5つ)のネオ抗原ペプチドを含む。特定の実施形態において、新生物ワクチン用ペプチド溶液は、水、デキストロース又はトレハロース又はスクロース、コハク酸塩、及びジメチルスルホキシドを含む。特定の実施形態において、本方法は、組み合わせるステップの後に、新生物ワクチン用ペプチド溶液をろ過するステップをさらに含む。
【0033】
別の態様において、本発明は、新生物ワクチンの調製方法を提供し、本方法は、新生物ワクチン用ペプチド溶液を提供するステップと;ペプチド溶液を免疫調節薬(immunodulator)又はアジュバントの溶液と組み合わせるステップであって、それにより新生物ワクチンを調製するステップとを含む。
【0034】
別の態様において、本発明は、本明細書に記載されるいずれかの方法(例えば、上記に記載する方法)によって作製される新生物ワクチンを提供する。
【0035】
別の態様において、本発明は、少なくとも1つのネオ抗原ペプチド又はその薬学的に許容可能な塩と;コハク酸又はその薬学的に許容可能な塩とを含む新生物ワクチン用ネオ抗原ペプチド溶液を提供する。
【0036】
別の態様において、本発明は、新生物を有すると診断された対象の治療方法を提供し、本方法は、本発明の医薬組成物(例えば、本明細書に記載される医薬組成物)を対象に投与するステップであって、それにより新生物を治療するステップを含む。
【0037】
特定の実施形態において、本方法は、本発明の第2の医薬組成物(例えば、本明細書に記載される医薬組成物)を対象に投与するステップをさらに含む。
【0038】
特定の実施形態において、本方法は、本発明の第3の医薬組成物(例えば、本明細書に記載される医薬組成物)を対象に投与するステップをさらに含む。
【0039】
特定の実施形態において、本方法は、本発明の第4の医薬組成物(例えば、本明細書に記載される医薬組成物)を対象に投与するステップをさらに含む。
【0040】
新生物ワクチン又は免疫原性組成物の投与は、ワンタイムスケジュール(one time schedule)、例えば、毎週、隔週、3週間毎、毎月、隔月、1年の4分の1毎(3ヵ月毎)、1年の3分の1毎(4ヵ月毎)、5ヵ月毎、年2回(6ヵ月毎)、7ヵ月毎、8ヵ月毎、9ヵ月毎、10ヵ月毎、11ヵ月毎、毎年などであり得る。
【0041】
新生物ワクチン又は免疫原性組成物は、各々がネオ抗原の一部を含有するサブ組成物によって投与することができ、サブ組成物は対象又は患者の異なる場所に投与することができる;例えば、20の異なるネオ抗原を含む組成物は、各々が20の異なるネオ抗原のうちの5つを含有する4つのサブ組成物で投与することができ、及びこの4つのサブ組成物は、患者又は対象の流入領域リンパ節又はその近傍に各サブ組成物の送達を試みて、患者の流入領域リンパ節又はその近傍、例えば上下肢の各々(例えば、患者の各体側の大腿又は大腿上部又は殿部近傍又は腰部)に各サブ組成物の送達を試みるように投与することができる。当然ながら、位置の数、ひいてはサブ組成物の数は様々であってよく、例えば、当業者は、脾臓又はその近傍に第5の投与点を有するような投与を考えてもよく、当業者は、1つのみ、2つ又は3つ(例えば、各上肢及び片方の下肢、下肢の各々及び片方の上肢、下肢の各々及び上肢なし、又は両上肢のみ)が使用されるように位置を変えることができる。
【0042】
前述の様々な間隔で投与されるワクチン又は免疫原性組成物は異なる製剤であってもよく、単回投与の間に対象又は患者の異なる場所に投与されるサブ組成物は異なる組成物であってもよい。例えば、初回投与が全抗原ワクチン又は免疫原性組成物であってもよく、及び次の又は以降の投与が、インビボで1つ又は複数の抗原の発現を有するベクター(例えば、ウイルスベクター又はプラスミド)であってもよい。同様に、異なるサブ組成物を患者又は対象の異なる場所に投与するに際しては、一部のサブ組成物が全抗原を含んでもよく、及び一部のサブ組成物が、インビボで1つ又は複数の抗原の発現を有するベクター(例えば、ウイルスベクター又はプラスミド)を含んでもよい。また、一部の組成物及びサブ組成物が、インビボで1つ又は複数の抗原の発現を有するベクター(例えば、ウイルスベクター又はプラスミド)と全抗原との両方を含んでもよい。インビボで1つ又は複数の抗原の発現を有する一部のベクター(例えばポックスウイルス)が免疫刺激効果又はアジュバント効果を有することができ、ひいてはかかるベクターを含有する組成物又はサブ組成物は自己アジュバント性であり得る。また、投与によって免疫系に対する抗原の提示のされ方の性質を切り替えることにより、免疫系を「プライミング」し、次に「ブースト」することができる。また本文書では、「ワクチン」と言うとき、本発明は免疫原性組成物を包含することが意図され、及び患者又は対象と言うとき、かかる個体は本明細書に開示される治療、投与、組成物、及び概して本発明を必要としている患者又は対象であることが意図される。
【0043】
さらに、本発明は、任意のタイプの発現ベクター、例えばウイルス発現ベクター、例えば、ポックスウイルス(例えば、オルトポックスウイルス又はアビポックスウイルス、例えばワクシニアウイルス、例えば改変ワクシニアアンカラ又はMVA、MVA-BN、国際公開第A-92/15672号パンフレットに係るNYVAC、鶏痘、例えば、TROVAX、カナリア痘、例えば、ALVAC(国際公開第A-95/27780号パンフレット及び国際公開第A-92/15672号パンフレット)、鳩痘、豚痘など)、アデノウイルス、AAV、ヘルペスウイルス、及びレンチウイルス;又はプラスミド又はDNA又は核酸分子ベクターの使用に適用される。ポックスウイルスベクターなどの、細胞質である一部のベクターが有利であり得る。しかしながらアデノウイルス、AAV及びレンチウイルスもまた、本発明の実施において使用するのに有利であり得る。
【0044】
即時使用可能な、特に再構成されるワクチン又は免疫原性組成物において、ベクター、例えばウイルスベクターは、本開示及び当該技術分野における知識(本明細書に引用される特許及び科学文献にあるものなど)からの当業者の範囲内にある分量で存在する。
【0045】
全抗原又はベクター、例えば組換え生ワクチンは、概してその保存を可能にするフリーズドライ形態で存在し、使用直前に、本明細書で考察するとおりのアジュバントを含み得る溶媒又は賦形剤中に再構成される。
【0046】
従って本発明の主題はまた、別個に包装されたフリーズドライワクチンと、有利には本明細書で考察するとおりのアジュバント化合物を含む、フリーズドライワクチンの再構成用溶液とを含むワクチン接種又は免疫化セット又はキットである。
【0047】
本発明の主題はまた、本発明におけるワクチン又は免疫原性組成物を、例えば非経口経路、好ましくは皮下、筋肉内又は皮内経路によるか又は粘膜経路によって1つ以上の投与速度で投与するステップを含むか又はそれから本質的になるか又はそれからなるワクチン接種又は免疫化方法である。任意選択で、この方法は、フリーズドライワクチン又は免疫原性組成物(例えば、凍結乾燥全抗原又はベクターの場合)を、有利にはアジュバントも含む溶液に再構成する予備ステップを含む。
【0048】
一実施形態において、対象は、非ホジキンリンパ腫(NHL)、腎明細胞癌(ccRCC)、メラノーマ、肉腫、白血病又は膀胱癌、結腸癌、脳癌、乳癌、頭頸部癌、子宮内膜癌、肺癌、卵巣癌、膵癌又は前立腺癌からなる群から選択される新生物に罹患している。別の実施形態において、新生物は転移性である。さらなる実施形態において、対象は検出可能な新生物を有しないが、疾患再発リスクが高い。さらなる関連する実施形態において、対象は過去に自家造血幹細胞移植(AHSCT)を受けたことがある。
【0049】
一実施形態において、新生物ワクチン又は免疫原性組成物の投与はプライム/ブースト投薬レジメンである。別の実施形態において、新生物ワクチン又は免疫原性組成物の投与は、プライミングとしては1週目、2週目、3週目又は4週目である。別のさらなる実施形態において、新生物ワクチン又は免疫原性組成物の投与は、ブーストとしては2ヵ月目、3ヵ月目、4ヵ月目又は5ヵ月目である。
【0050】
一実施形態において、ワクチン又は免疫原性組成物は、各ネオ抗原ペプチドに関して70kgの個体当たり約10μg~1mgの用量で投与される。別の実施形態において、ワクチン又は免疫原性組成物は、各ネオ抗原ペプチドに関して70kgの個体当たり約10μg~2000μgの平均週用量レベルで投与される。
【0051】
一実施形態において、ワクチン又は免疫原性組成物は静脈内投与又は皮下投与される。
【0052】
別の態様において、本発明は、少なくとも1つのネオ抗原ペプチド又はその薬学的に許容可能な塩と;コハク酸又はその薬学的に許容可能な塩とを含む新生物ワクチン用ネオ抗原ペプチド溶液を提供する。
【0053】
本発明は、米国特許出願公開第20110293637号明細書(参照により本明細書に援用される)にあるとおりの方法、例えば、複数の少なくとも4つの対象特異的ペプチ
ドを同定して、投与時に複数の少なくとも4つの対象特異的ペプチドを対象の免疫系に提示する対象特異的免疫原性組成物を調製する方法であって、対象が腫瘍を有し、及び対象特異的ペプチドが対象及び対象の腫瘍に特異的であり、前記方法が、
(i)非腫瘍試料には存在しない複数の少なくとも4つの腫瘍特異的非サイレント突然変異を、
対象の腫瘍の試料の核酸配列決定及び
対象の非腫瘍試料の核酸配列決定
によることを含め、同定するステップと;
(ii)同定された非サイレント突然変異から、対象の腫瘍に特異的なエピトープである異なる腫瘍ネオエピトープを各々が有する複数の少なくとも4つの対象特異的ペプチドを、同定された複数の腫瘍特異的突然変異から選択するステップであって
各ネオエピトープが非腫瘍試料に存在しない腫瘍特異的非サイレント突然変異の発現産物であり、各ネオエピトープが対象のHLAタンパク質に結合し、
対象特異的ペプチドとHLAタンパク質の結合を決定するステップ
を含む、選択するステップと
(iii)投与時に複数の少なくとも4つの対象特異的ペプチドが対象の免疫系に提示されるように対象特異的免疫原性組成物を対象への投与用に製剤化するステップと
を含み、
選択するステップ又は製剤化するステップは、
対象特異的免疫原性組成物に、同定されたネオORFの発現産物を含む対象特異的ペプチドを含めるステップであって、ネオORFが、新規オープンリーディングフレームを作り出す非腫瘍試料に存在しない腫瘍特異的非サイレント突然変異である、ステップと、
対象特異的免疫原性組成物に、同定された点突然変異の発現産物を含み且つ決定された500nM未満のIC50での対象のHLAタンパク質との結合性を有する対象特異的ペプチドを含めるステップ
の少なくとも1つを含み、
それにより、複数の少なくとも4つの対象特異的ペプチドが同定され、及び投与時に対象の免疫系に複数の少なくとも4つの対象特異的ペプチドを提示する対象特異的免疫原性組成物(対象特異的ペプチドは対象及び対象の腫瘍に特異的である)が調製される、方法;又はネオ抗原の同定方法であって、
a.癌を有する対象の発現遺伝子における腫瘍特異的突然変異を同定するステップ;
b.ステップ(a)で同定された前記突然変異が点突然変異である場合:
i.ステップ(a)で同定された突然変異を有する変異ペプチドを同定するステップであって、前記変異ペプチドは野生型ペプチドより高い親和性でクラスI HLAタンパク質に結合し;及び500nm未満のIC50を有する、ステップ;
c.ステップ(a)で同定された前記突然変異がスプライス部位、フレームシフト、リードスルー又は遺伝子融合突然変異である場合:
i.ステップ(a)で同定された突然変異によってコードされる変異ポリペプチドを同定するステップであって、前記変異ポリペプチドはクラスI HLAタンパク質に結合する、ステップを含む方法;又は対象において腫瘍特異的免疫応答を誘導する方法であって、同定された1つ以上のペプチド又はポリペプチドとアジュバントとを投与するステップを含む方法;又は癌に関して対象をワクチン接種するか又は治療する方法であって、
a.対象の発現遺伝子における複数の腫瘍特異的突然変異を同定するステップであって、前記同定された突然変異が:
i.点突然変異であるとき、その点突然変異を有する変異ペプチドをさらに同定するステップ;及び/又は
ii.スプライス部位、フレームシフト、リードスルー又は遺伝子融合突然変異であるとき、その突然変異によってコードされる変異ポリペプチドをさらに同定するステップ;b.クラスI HLAタンパク質に結合するステップ(a)で同定された1つ以上の変異ペプチド又はポリペプチドを選択するステップと;
c.抗腫瘍CD8 T細胞を活性化させる能力を有するステップ(b)で同定された1つ以上の変異ペプチド又はポリペプチドを選択するステップと;
d.ステップ(c)で選択された1つ以上のペプチド又はポリペプチドでパルスした1つ以上のペプチド又はポリペプチド、自家樹状細胞又は抗原提示細胞を対象に投与するステップ;又はある1つ又は複数の同定されたペプチドを含む医薬組成物を調製するステップとを含む方法を実施すること、及び本明細書で考察するとおりの1つ又は複数の方法を実施することを含む。従って、本明細書における新生物ワクチン又は免疫原性組成物は、米国特許出願公開第20110293637号明細書にあるとおりであってもよい。
【0054】
従って、本発明の目的は、本出願人らが権利を留保し、且つ任意の以前に公知の製品、プロセス、又は方法のディスクレーマー(disclaimer)を本明細書によって開示するように、以前に公知のいかなる製品、製品の作製プロセス、又は製品の使用方法も本発明の範囲内に包含しないことである。さらに、本発明は、本出願人らが権利を留保し、且つ任意の以前に記載された製品、製品の作製プロセス、又は製品の使用方法のディスクレーマー(disclaimer)を本明細書によって開示するように、米国特許商標庁(USPTO)(米国特許法第112条第一段落)又は欧州特許庁(EPO)(EPC第83条)の明細書の記載及び実施可能要件を満たさないいかなる製品、製品の作製プロセス、又は製品の使用方法も本発明の範囲内に包含しないよう意図されることが注記される。
【0055】
本開示及び特に特許請求の範囲及び/又は段落において、「含む(comprises)」、「含まれた(comprised)」、「含んでいる(comprising)」などの用語は、米国特許法に帰する意味を有し得る;例えば、それらは、「包含する(includes)」、「包含された(included)」、「包含している(including)」などを意味し得ること;及び「~から本質的になっている(consisting essentially of)」及び「~から本質的になる(consists essentially of)」などの用語は、米国特許法に帰する意味を有し、例えば、それらは明示的に記載されない要素を許容するが、先行技術に見られる要素又は本発明の基本的な若しくは新規の特徴に影響を与える要素は除外することが注記される。
【0056】
これら及び他の実施形態が開示され、又は以下の詳細な説明から明らかであり、及びそこに包含される。
【0057】
特許又は出願書類には、少なくとも1つのカラーで作成された図面が含まれる。カラー図面を含むこの特許又は特許出願公報の写しは、請求に応じて必要な手数料が支払われ次第当局によって提供される。
【0058】
以下の詳細な説明は、本発明を記載される具体的な実施形態のみに限定することは意図せず、例として提供されるものであり、参照により本明細書に援用される添付の図面と併せることで最良に理解され得る。
【図面の簡単な説明】
【0059】
図1】個別化された癌ワクチン又は免疫原性組成物の作製のフロープロセスを示す。
図2】癌患者用の癌ワクチン又は免疫原性組成物を作成するための治療前ステップのフロープロセスを示す。
図3】本発明の例示的実施形態に係る、プライムブースト法に基づく免疫スケジュールを示す。最初の約3週間にわたって頻回の免疫化が行われ、免疫応答のプライミング期の間における初期の高い抗原曝露が維持され得る。次に患者を8週間休ませることにより記憶T細胞を生じさせ、次にそれらのT細胞をブーストすることにより、強力な継続的応答が維持される。
図4】本発明の例示的態様に係る、一次免疫学的エンドポイントを指示するタイムラインを示す。
図5】本発明の例示的実施形態に係る、個別のネオ抗原ペプチドを4つのサブグループのプールにする製剤処理を示す略図を示す。
図6】ネオ抗原製剤を使用してマウス樹状細胞を刺激した後の複数の主要免疫マーカーの誘導レベルを評価する定量的PCRの結果を示す。
図7】5%デキストロース及び0.8%DMSOのMDSC分析を示す。
図8】10%トレハロース及び0.8%DMSOのMDSC分析を示す。
図9】10%スクロース及び0.8%DMSOのMDSC分析を示す。
図10】例示的凍結乾燥の圧力プロファイルを示す。
図11】例示的凍結乾燥の温度プロファイルを示す。
図12】本発明の例示的製剤を使用した凍結乾燥ケーキの外観を示す。
【発明を実施するための形態】
【0060】
定義
本発明の理解を助けるため、本明細書にいくつかの用語及び語句を定義する:
【0061】
具体的に記載されるか又は文脈から明らかである場合を除き、本明細書で使用されるとき、用語「約」は、当該技術分野における通常の許容差の範囲内、例えば平均値の2標準偏差以内であると理解される。約は、記載される値の50%、45%、40%、35%、30%、25%、20%、15%、10%、9%、8%、7%、6%、5%、4%、3%、2%、1%、0.5%、0.1%、0.05%、又は0.01%以内と理解することができる。文脈から別段明らかでない限り、本明細書に提供される全ての数値が約の用語によって修飾されている。
【0062】
具体的に記載されるか又は文脈から明らかである場合を除き、本明細書で使用されるとき、用語「又は」は、包含的であるものと理解される。具体的に記載されるか又は文脈から明らかである場合を除き、本明細書で使用されるとき、用語「a」、「an」、及び「the」は、単数形又は複数形であるものと理解される。
【0063】
「薬剤」とは、任意の小分子化学的化合物、抗体、核酸分子、又はポリペプチド、又はそれらの断片が意味される。
【0064】
「改善する」とは、疾患(例えば、新生物、腫瘍等)の発症又は進行を低下させ、抑制し、減弱させ、減少させ、停止させ、又は安定化させることが意味される。
【0065】
「改変」とは、本明細書に記載されるような当該技術分野で公知の標準的な方法により検出するときの遺伝子又はポリペプチドの発現レベル又は活性の変化(増加又は減少)が意味される。本明細書で使用されるとき、改変には、発現レベルの10%の変化、好ましくは発現レベルの25%の変化、より好ましくは40%の変化、及び最も好ましくは50%又はそれ以上の変化が含まれる。
【0066】
「類似体」とは、同一ではないが、類似の機能的又は構造的特徴を有する分子が意味される。例えば、腫瘍特異的ネオ抗原ポリペプチド類似体は、対応する天然に存在する腫瘍特異的ネオ抗原ポリペプチドの生物学的活性を保持する一方で、天然に存在するポリペプチドと比べて類似体の機能を増強する特定の生化学的修飾を有する。かかる生化学的修飾は、類似体のプロテアーゼ耐性、膜透過性、又は半減期を、例えばリガンド結合を変えることなしに増加させ得る。類似体には非天然アミノ酸が含まれ得る。
【0067】
用語「ネオ抗原」又は「ネオ抗原性の」は、ゲノムによりコードされるタンパク質のアミノ酸配列を改変する1つ又は複数の腫瘍特異的突然変異によって生じる腫瘍抗原クラスを意味する。
【0068】
「新生物」とは、不適切に高いレベルの細胞分裂、不適切に低いレベルのアポトーシス、又はその両方によって引き起こされるか又はそれをもたらす任意の疾患が意味される。例えば癌は、新生物の例である。癌の例としては、限定なしに、白血病(例えば、急性白血病、急性リンパ性白血病、急性骨髄性白血病、急性骨髄芽球性白血病、急性前骨髄球性白血病、急性骨髄単球性白血病、急性単球性白血病、急性赤白血病、慢性白血病、慢性骨髄性白血病、慢性リンパ性白血病)、真性赤血球増加症、リンパ腫(例えば、ホジキン病、非ホジキン病)、ワルデンシュトレームマクログロブリン血症、重鎖病、及び固形腫瘍、例えば肉腫及び癌腫(例えば、線維肉腫、粘液肉腫、脂肪肉腫、軟骨肉腫、骨肉腫、脊索腫、血管肉腫、内皮肉腫、リンパ管肉腫、リンパ管内皮肉腫、滑膜腫、中皮腫、ユーイング腫瘍、平滑筋肉腫、横紋筋肉腫、結腸癌、膵癌、乳癌、卵巣癌、前立腺癌、扁平上皮癌、基底細胞癌、腺癌、汗腺癌、皮脂腺癌、乳頭癌、乳頭腺癌、嚢胞腺癌、髄様癌、気管支原性癌、腎細胞癌、肝細胞癌、胆管(nile duct)癌、絨毛癌、セミノーマ、胚性癌腫、ウィルムス腫瘍、子宮頸癌、子宮癌、精巣癌、肺癌、小細胞肺癌、膀胱癌、上皮癌、神経膠腫、星状細胞腫、髄芽腫、頭蓋咽頭腫、上衣腫、松果体腫、血管芽細胞腫、聴神経腫、乏突起膠腫(oligodenroglioma)、シュワン腫、髄膜腫、メラノーマ、神経芽細胞腫、及び網膜芽細胞腫)が挙げられる。リンパ増殖性障害もまた増殖性疾患と考えられる。
【0069】
用語「新生物ワクチン」は、新生物/腫瘍特異的ネオ抗原、例えば少なくとも2つ、少なくとも3つ、少なくとも4つ、少なくとも5つ、又はそれ以上のネオ抗原ペプチドのプール試料を指すことが意図される。「ワクチン」は、疾患(例えば、新生物/腫瘍)の予防及び/又は治療用の免疫を生じさせる組成物を意味するものと理解されるべきである。従って、ワクチンは、抗原を含む薬剤であって、ヒト又は動物においてワクチン接種により特定の防御及び保護物質を生じさせるために使用されることが意図される薬剤である。「新生物ワクチン組成物」は、薬学的に許容可能な賦形剤、担体又は希釈剤を含み得る。
【0070】
用語「薬学的に許容可能」は、ヒトを含めた動物における使用が連邦政府又は州政府の規制当局によって承認済み又は承認見込みであるか、或いは米国薬局方又は他の一般に認められている薬局方に収載されていることを指す。
【0071】
「薬学的に許容可能な賦形剤、担体又は希釈剤」は、対象に薬剤と共に投与することのできる、且つ治療量の薬剤を送達するのに十分な用量で投与したときにも薬剤の薬理活性を損なわず非毒性である賦形剤、担体又は希釈剤を指す。
【0072】
本明細書に記載されるとおりのプールされた腫瘍特異的ネオ抗原の「薬学的に許容可能な塩」は、ヒト又は動物の組織と接触して使用しても過度の毒性、刺激作用、アレルギー反応、又は他の問題又は合併症なしに好適であると当該技術分野で一般に考えられている酸性塩又は塩基性塩であってもよい。かかる塩としては、アミンなどの塩基性残基の無機塩類及び有機酸塩類、並びにカルボン酸などの酸性残基のアルカリ塩類又は有機塩類が挙げられる。具体的な薬学的塩としては、限定はされないが、塩酸、リン酸、臭化水素酸、リンゴ酸、グリコール酸、フマル酸、硫酸、スルファミン酸、スルファニル酸、ギ酸、トルエンスルホン酸、メタンスルホン酸、ベンゼンスルホン酸、エタンジスルホン酸、2-ヒドロキシエチルスルホン酸、硝酸、安息香酸、2-アセトキシ安息香酸、クエン酸、酒石酸、乳酸、ステアリン酸、サリチル酸、グルタミン酸、アスコルビン酸、パモン酸、コハク酸、フマル酸、マレイン酸、プロピオン酸、ヒドロキシマレイン酸、ヨウ化水素酸、
フェニル酢酸、アルカン酸、例えば、酢酸、HOOC-(CH-COOH(式中、nは0~4である)などの酸の塩が挙げられる。同様に、薬学的に許容可能なカチオンとしては、限定はされないが、ナトリウム、カリウム、カルシウム、アルミニウム、リチウム及びアンモニウムが挙げられる。当業者は、Remington’s Pharmaceutical Sciences,17th ed.,Mack Publishing Company,Easton,PA,p.1418(1985)に掲載されるものを含め、本明細書に提供されるプールされた腫瘍特異的ネオ抗原のさらなる薬学的に許容可能な塩を、この開示及び当該技術分野における知識から認識するであろう。一般に、薬学的に許容可能な酸性塩又は塩基性塩は、任意の従来の化学的方法により、塩基部分又は酸部分を含有する親化合物から合成することができる。簡潔に言えば、かかる塩は、遊離酸又は遊離塩基の形態のこれらの化合物を適切な溶媒中で化学量論量の適切な塩基又は酸と反応させることにより調製し得る。
【0073】
「ポリペプチド」又は「ペプチド」とは、天然でそれに付随する成分から分離されているポリペプチドが意味される。典型的には、ポリペプチドに天然でそれと結び付いているタンパク質及び天然に存在する有機分子の少なくとも60重量%が存在しないとき、そのポリペプチドは単離されている。好ましくは、この調製物は、少なくとも75重量%、より好ましくは少なくとも90重量%、及び最も好ましくは少なくとも99重量%がポリペプチドである。単離ポリペプチドは、例えば、天然の供給源から抽出することによるか、かかるポリペプチドをコードする組換え核酸を発現させることによるか;又はタンパク質を化学的に合成することによって入手し得る。純度は、任意の適切な方法、例えば、カラムクロマトグラフィー、ポリアクリルアミドゲル電気泳動によるか、又はHPLC分析によって計測することができる。
【0074】
本明細書で使用されるとき、用語「予防する」、「予防している」、「予防」、「予防的治療」などは、疾患又は病態に罹っていないが、それを発症するリスクがある又はそれを発症し易い対象において疾患又は病態が発症する可能性を低減することを指す。
【0075】
用語「プライム/ブースト」又は「プライム/ブースト投薬レジメン」は、ワクチン又は免疫原性若しくは免疫学的組成物の逐次投与を指すことが意図される。プライミング投与(プライミング)は、第1のワクチン又は免疫原性若しくは免疫学的組成物タイプの投与であり、1回、2回以上の投与を含み得る。ブースト投与は、第2のワクチン又は免疫原性若しくは免疫学的組成物タイプの投与であり、1回、2回以上の投与を含み得るとともに、例えば、年1回の投与を含み得るか、又はそれから本質的になり得る。特定の実施形態において、新生物ワクチン又は免疫原性組成物の投与はプライム/ブースト投薬レジメンである。
【0076】
本明細書に提供される範囲は、その範囲内の全ての値の省略表現であると理解される。例えば、1~50の範囲は、1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49、又は50からなる群からの任意の数、数の組み合わせ、又は部分範囲、並びに前述の整数の間に介在する全ての小数値、例えば、1.1、1.2、1.3、1.4、1.5、1.6、1.7、1.8、及び1.9などを含むものと理解される。部分範囲に関して、その範囲のいずれかの端点から延びる「入れ子の部分範囲」が特に企図される。例えば、1~50の例示的範囲の入れ子の部分範囲は、一方の向きに1~10、1~20、1~30、及び1~40、又は他方の向きに50~40、50~30、50~20、及び50~10を含み得る。
【0077】
「受容体」は、リガンド結合能を有する生体分子又は分子分類を意味すると理解される
べきである。受容体は、細胞、細胞形成又は生物において情報を伝達する働きをし得る。受容体は少なくとも1つの受容体単位を含み、2つ以上の受容体単位を含むことが多く、ここで各受容体単位は、タンパク質分子、詳細には糖タンパク質分子からなり得る。受容体はリガンドの構造を補完する構造を有し、リガンドを結合パートナーとして複合体を形成し得る。細胞の表面上でリガンドと結合した後、受容体の立体構造が変化することによってシグナル情報が伝達され得る。本発明によれば、受容体は、リガンド、詳細には好適な長さのペプチド又はペプチド断片と受容体/リガンド複合体を形成する能力を有するMHCクラスI及びIIの特定のタンパク質を指し得る。
【0078】
「受容体/リガンド複合体」はまた、「受容体/ペプチド複合体」又は「受容体/ペプチド断片複合体」、詳細にはクラスI又はクラスIIのペプチド提示又はペプチド断片提示MHC分子も意味すると理解されるべきである。
【0079】
「低減する」とは、少なくとも10%、25%、50%、75%、又は100%の負の変化が意味される。
【0080】
「参照」とは、標準又は対照条件が意味される。
【0081】
「参照配列」は、配列比較の基礎として用いられる定義された配列である。参照配列は、特定の配列のサブセット、又はその全体;例えば、完全長cDNA又はゲノム配列のセグメント、又は完全なcDNA又はゲノム配列であってもよい。ポリペプチドに関しては、参照ポリペプチド配列の長さは概して少なくとも約10~2,000アミノ酸、10~1,500、10~1,000、10~500、又は10~100であり得る。好ましくは、参照ポリペプチド配列の長さは少なくとも約10~50アミノ酸、より好ましくは少なくとも約10~40アミノ酸、さらにより好ましくは約10~30アミノ酸、約10~20アミノ酸、約15~25アミノ酸、又は約20アミノ酸であり得る。核酸に関しては、参照核酸配列の長さは概して少なくとも約50ヌクレオチド、好ましくは少なくとも約60ヌクレオチド、より好ましくは少なくとも約75ヌクレオチド、及びさらにより好ましくは約100ヌクレオチド又は約300ヌクレオチド又はそれに近い若しくはそれらの間にある任意の整数であり得る。
【0082】
「特異的に結合する」とは、ポリペプチドを認識及び結合するが、試料中、例えば生体試料中の他の分子は実質的に認識及び結合しない化合物又は抗体が意味される。
【0083】
本発明の方法において有用な核酸分子には、本発明のポリペプチド又はその断片をコードする任意の核酸分子が含まれる。かかる核酸分子は、内在性核酸配列と100%同一である必要はないが、典型的には実質的な同一性を呈し得る。内在性配列と「実質的な同一性」を有するポリヌクレオチドは、典型的には二本鎖核酸分子の少なくとも一方の鎖とのハイブリダイズ能を有する。「ハイブリダイズする」とは、様々なストリンジェンシー条件下において相補的なポリヌクレオチド配列(例えば、本明細書に記載される遺伝子)、又はその一部分の間で対合して二本鎖分子を形成することが意味される(例えば、Wahl,G.M.and S.L.Berger(1987)Methods Enzymol.152:399;Kimmel,A.R.(1987)Methods Enzymol.152:507を参照)。
【0084】
例えば、ストリンジェントな塩濃度は、通常、約750mM NaCl及び75mM クエン酸三ナトリウム未満、好ましくは約500mM NaCl及び50mM クエン酸三ナトリウム未満、より好ましくは約250mM NaCl及び25mM クエン酸三ナトリウム未満であり得る。低ストリンジェンシーハイブリダイゼーションは、有機溶媒、例えばホルムアミドが存在しないときに達成することができ、一方、高ストリンジェンシ
ーハイブリダイゼーションは、少なくとも約35%のホルムアミド、より好ましくは少なくとも約50%のホルムアミドの存在下で達成することができる。ストリンジェントな温度条件としては、通常、少なくとも約30℃、より好ましくは少なくとも約37℃、最も好ましくは少なくとも約42℃の温度を挙げることができる。種々のさらなるパラメータ、例えばハイブリダイゼーション時間、デタージェント、例えばドデシル硫酸ナトリウム(SDS)の濃度、及び担体DNAを含めるか又は含めないかは、当業者に周知されている。これらの様々な条件を必要に応じて組み合わせることにより、様々なストリンジェンシーレベルが実現する。好ましい実施形態では、ハイブリダイゼーションは、750mM NaCl、75mM クエン酸三ナトリウム、及び1%SDS中30℃で行われ得る。より好ましい実施形態において、ハイブリダイゼーションは、500mM NaCl、50mM クエン酸三ナトリウム、1%SDS、35%ホルムアミド、及び100μg/ml変性サケ精子DNA(ssDNA)中37℃で行われ得る。最も好ましい実施形態において、ハイブリダイゼーションは、250mM NaCl、25mM クエン酸三ナトリウム、1%SDS、50%ホルムアミド、及び200μg/ml ssDNA中42℃で行われ得る。これらの条件に関する有用な変形例は、当業者には容易に明らかであろう。
【0085】
多くの適用について、ハイブリダイゼーションに続く洗浄ステップもまたストリンジェンシーの点で異なり得る。洗浄ストリンジェンシー条件は塩濃度及び温度によって規定され得る。上記のとおり、洗浄ストリンジェンシーは、塩濃度を低下させるか、又は温度を上昇させることにより増加させることができる。例えば、洗浄ステップに関するストリンジェントな塩濃度は、好ましくは約30mM NaCl及び3mM クエン酸三ナトリウム未満、最も好ましくは約15mM NaCl及び1.5mM クエン酸三ナトリウム未満であり得る。洗浄ステップに関するストリンジェントな温度条件としては、通常、少なくとも約25℃、より好ましくは少なくとも約42℃、さらにより好ましくは少なくとも約68℃の温度を挙げることができる。好ましい実施形態において、洗浄ステップは、30mM NaCl、3mM クエン酸三ナトリウム、及び0.1%SDS中25℃で行われ得る。より好ましい実施形態において、洗浄ステップは、15mM NaCl、1.5mM クエン酸三ナトリウム、及び0.1%SDS中42℃で行われ得る。より好ましい実施形態において、洗浄ステップは、15mM NaCl、1.5mM クエン酸三ナトリウム、及び0.1%SDS中68℃で行われ得る。これらの条件に関するさらなる変形例は、当業者には容易に明らかであろう。ハイブリダイゼーション技法は当業者に周知されており、例えば、Benton and Davis(Science 196:180,1977);Grunstein and Hogness(Proc.Natl.Acad.Sci.,USA 72:3961,1975);Ausubel et al.(Current Protocols in Molecular Biology,Wiley Interscience,New York,2001);Berger and Kimmel(Guide to Molecular Cloning
Techniques,1987,Academic Press,New York);及びSambrook et al.,Molecular Cloning:A Laboratory Manual,Cold Spring Harbor Laboratory Press,New Yorkに記載されている。
【0086】
用語「対象」は、治療、観察、又は実験の対象となる動物を指す。単に例として、対象には、限定はされないが、哺乳動物、例えば限定はされないがヒト又は非ヒト哺乳動物、例えば非ヒト霊長類、ウシ、ウマ、イヌ、ヒツジ、又はネコが含まれる。
【0087】
「実質的に同一」とは、参照アミノ酸配列(例えば、本明細書に記載されるアミノ酸配列のいずれか一つ)又は核酸配列(例えば、本明細書に記載される核酸配列のいずれか一つ)と少なくとも50%の同一性を呈するポリペプチド又は核酸分子が意味される。好ましくは、かかる配列は、比較に使用される配列とアミノ酸又は核酸レベルで少なくとも6
0%、より好ましくは80%又は85%、及びより好ましくは90%、95%又はさらには99%同一である。
【0088】
配列同一性は、典型的には配列解析ソフトウェア(例えば、ジェネティクス・コンピューター・グループ(Genetics Computer Group)、ウィスコンシン大学バイオテクノロジーセンター(University of Wisconsin Biotechnology Center)、1710 University Avenue,Madison,Wis.53705の配列解析ソフトウェアパッケージ、BLAST、BESTFIT、GAP、又はPILEUP/PRETTYBOXプログラム)を使用して測られる。かかるソフトウェアは、様々な置換、欠失、及び/又は他の修飾に相同性の程度を割り当てることにより、同一の又は類似した配列をマッチさせる。保存的置換は、典型的には以下のグループ内での置換を含む:グリシン、アラニン;バリン、イソロイシン、ロイシン;アスパラギン酸、グルタミン酸、アスパラギン、グルタミン;セリン、スレオニン;リジン、アルギニン;及びフェニルアラニン、チロシン。同一性の程度を決定する例示的手法では、BLASTプログラムが、近縁の配列を示すe-3~e-100の確率スコアで用いられ得る。
【0089】
「T細胞エピトープ」は、クラスI又はIIのMHC分子によってペプチド提示MHC分子又はMHC複合体の形態で結合され得るとともに、次にこの形態でナイーブT細胞、細胞傷害性Tリンパ球又はTヘルパー細胞によって認識及び結合され得るペプチド配列を意味すると理解されるべきである。
【0090】
用語「治療する」、「治療された」、「治療すること」、「治療」などは、障害及び/又はそれに関連する症状(例えば、新生物又は腫瘍)の低減又は改善を指すことが意図される。「治療すること」には、「軽減すること」という概念が含まれ、軽減とは、癌に関連する任意の症状又は他の病的影響及び/又は癌療法に関連する副作用の発生若しくは再発頻度、又は重症度を低下させることを指す。用語「治療すること」にはまた、「管理すること」という概念も包含され、管理とは、患者における特定の疾患又は障害の重症度を低減すること又はその再発を遅延させること、例えば疾患に罹患していたことのある患者における寛解期間を延長させることを指す。除外されるわけではないが、障害又は病態を治療するとは、障害、病態、又はそれに関連する症状の完全な消失を要するものではないことは理解されるであろう。
【0091】
用語「治療効果」は、障害(例えば、新生物又は腫瘍)の症状の1つ以上又はそれに関連する病理の何らかの軽減程度を指す。「治療有効量」は、本明細書で使用されるとき、かかる治療がない場合に予想される以上に、かかる障害を有する患者の生存を延ばし、障害の1つ以上の徴候又は症状を低減し、予防し又は遅延させるなどにおいて細胞又は対象への単回又は頻回用量投与時に有効となる薬剤の量を指す。「治療有効量」は、治療効果を実現するために必要な量の適格性を決めることが意図される。当該技術分野の通常の技術を有する医師又は獣医師は、必要な医薬組成物の「治療有効量」(例えば、ED50)を容易に決定し及び処方することができる。例えば、医師又は獣医師は、医薬組成物中に用いられる本発明の化合物の用量を、所望の治療効果を実現するために必要な用量より低いレベルで開始し、所望の効果が実現するまで投薬量を徐々に増加させてもよい。
【0092】
医薬組成物は、典型的には1日体重1キログラム当たり約0.0001mg~約200mgの化合物の投薬量を提供しなければならない。例えば、ヒト患者に対する全身投与の投薬量は、0.01~10μg/kg、20~80μg/kg、5~50μg/kg、75~150μg/kg、100~500μg/kg、250~750μg/kg、500~1000μg/kg、1~10mg/kg、5~50mg/kg、25~75mg/kg、50~100mg/kg、100~250mg/kg、50~100mg/kg、250~500mg/kg、500~750mg/kg、750~1000mg/kg、1000~1500mg/kg、1500~2000mg/kg、5mg/kg、20mg/kg、50mg/kg、100mg/kg、200mg/kgの範囲であり得る。医薬投薬量単位剤形は、投薬量単位剤形当たり約0.001mg~約5000mg、例えば約100~約2500mgの化合物又は必須成分の組み合わせを提供するように調製される。
【0093】
「ワクチン」は、疾患(例えば、新生物/腫瘍)の予防及び/又は治療のための免疫を生じさせる組成物を意味すると理解されるべきである。従って、ワクチンは、抗原を含み、且つヒト又は動物においてワクチン接種により特定の防御及び保護物質を生じさせるために使用されることが意図される薬剤である。
【0094】
本明細書の可変基の任意の定義における化学基のリストの記載には、列挙される基の任意の単一の基又は組み合わせとしての当該可変基の定義が含まれる。本明細書における可変基又は態様に関する実施形態の記載には、任意の単一の実施形態としての実施形態又は任意の他の実施形態若しくはその一部と組み合わせた実施形態が含まれる。
【0095】
本明細書に提供される任意の組成物又は方法は、本明細書に提供される他の組成物及び方法のいずれかの1つ以上と組み合わせることができる。
【0096】
本発明は、複数の新生物/腫瘍特異的ネオ抗原を含む医薬組成物(例えば、癌ワクチン)の治療有効量を対象(例えば、ヒトなどの哺乳動物)に投与することによる、新生物、より詳細には腫瘍を治療するためのワクチン及び方法に関する。本明細書にさらに詳細に記載するとおり、全ゲノム/エクソームシーケンシングを用いることにより個々の患者の新生物/腫瘍にユニークに存在する全ての又はほぼ全ての突然変異ネオ抗原を同定することができ、この一群の突然変異ネオ抗原を分析することにより、患者の新生物/腫瘍を治療するための個別化された癌ワクチン又は免疫原性組成物として使用される特異的な最適化されたネオ抗原サブセットを同定し得る。例えば、各患者の新生物/腫瘍DNA及び正常DNAをシーケンシングして腫瘍特異的突然変異を同定することにより、新生物/腫瘍特異的ネオ抗原の集団を同定してもよく、及び患者のHLAアロタイプを同定することができる。次に新生物/腫瘍特異的ネオ抗原及びそれらのコグネイト天然抗原の集団を、バリデートされたアルゴリズムを使用してどの腫瘍特異的突然変異が患者のHLAアロタイプに結合し得るエピトープを作り出すかを予測するバイオインフォマティクス解析に供し得る。この解析に基づき、患者毎にそれらの突然変異のサブセットに対応する複数のペプチドが設計及び合成され、患者を免疫する際の癌ワクチン又は免疫原性組成物として使用するためまとめてプールされ得る。このネオ抗原であるペプチドは、アジュバント(例えば、ポリICLC)又は別の抗新生物剤と併用し得る。理論によって拘束されるものではないが、これらのネオ抗原は中枢性胸腺トレランスを回避し(従ってより強力な抗腫瘍T細胞応答が可能となる)、一方で自己免疫の可能性を(例えば、正常な自己抗原の標的化を回避することにより)低下させるものと予想される。
【0097】
免疫系は、2つの機能的サブシステムに分類することができる:自然免疫系及び獲得免疫系。自然免疫系は感染に対する防御の最前線であり、最も潜在的能力のある病原体が、例えば認識し得る感染を引き起こし得る前にこの系によって速やかに中和される。獲得免疫系は、抗原と称される、侵入生物の分子構造に応答する。獲得免疫応答には、体液性免疫応答及び細胞媒介性免疫応答を含む2種類がある。体液性免疫応答では、B細胞によって体液中に分泌される抗体が病原体由来抗原に結合し、種々の機序、例えば補体媒介性溶解を介した病原体の排除をもたらす。細胞媒介性免疫応答では、他の細胞を破壊する能力を有するT細胞が活性化される。例えば、疾患に関連するタンパク質が細胞中に存在する場合、それらのタンパク質が細胞内でタンパク質分解によってペプチドに断片化される。
次にこのように形成された抗原又はペプチドに特定の細胞タンパク質が付着してそれらを細胞の表面に輸送し、そこでそれらの抗原又はペプチドが身体の分子防御機構、詳細にはT細胞に提示される。細胞傷害性T細胞はこれらの抗原を認識し、そうした抗原を有する細胞を死滅させる。
【0098】
ペプチドを細胞表面に輸送して提示する分子は、主要組織適合遺伝子複合体(MHC)のタンパク質と称される。MHCタンパク質は、MHCクラスI及びMHCクラスIIと称される2種類に分類される。これらの2つのMHCクラスのタンパク質の構造は極めて類似している;しかしながら、これらは非常に異なる機能を有する。MHCクラスIのタンパク質は、多くの腫瘍細胞を含め、体のほぼ全ての細胞の表面上に存在する。MHCクラスIタンパク質には、通常、内因性タンパク質由来又は細胞内に存在する病原体由来の抗原が負荷され、次にそれがナイーブ又は細胞傷害性Tリンパ球(CTL)に提示される。MHCクラスIIタンパク質は、樹状細胞、Bリンパ球、マクロファージ及び他の抗原提示細胞上に存在する。MHCクラスIIタンパク質は主に、外部抗原供給源から、即ち細胞の外側でプロセシングされるペプチドをTヘルパー(Th)細胞に提示する。MHCクラスIタンパク質が結合するペプチドのほとんどは、生物自身の健常宿主細胞に生じる細胞質タンパク質に由来し、通常は免疫応答を刺激しない。従って、クラスIのかかる自己ペプチド提示MHC分子を認識する細胞傷害性Tリンパ球は胸腺(中枢性トレランス)で除去されるか、又は胸腺から放出された後に除去又は不活性化され、即ち寛容化される(末梢性トレランス)。MHC分子は、非寛容化Tリンパ球にペプチドを提示するとき、免疫応答を刺激する能力を有する。細胞傷害性Tリンパ球は、その表面にT細胞受容体(TCR)及びCD8分子の両方を有する。T細胞受容体は、MHCクラスIの分子と複合体化したペプチドを認識及び結合する能力を有する。各細胞傷害性Tリンパ球は、特異的なMHC/ペプチド複合体との結合能を有するユニークなT細胞受容体を発現する。
【0099】
ペプチド抗原は、細胞表面に提示される前に、小胞体内で競合的親和性結合によってMHCクラスIの分子に付着する。ここで、個々のペプチド抗原の親和性は、そのアミノ酸配列及びアミノ酸配列内の定義された位置における特異的結合モチーフの存在に直接関係する。かかるペプチドの配列が分かっている場合、罹患細胞に対する免疫系を、例えばペプチドワクチンを使用して操作することが可能である。
【0100】
治癒的且つ腫瘍特異的免疫療法薬の開発を妨げる重大な障害の一つは、自己免疫を回避するための高度に特異的且つ制限的な腫瘍抗原の同定及び選択である。悪性細胞内での遺伝子変化(例えば、逆位、転座、欠失、ミスセンス突然変異、スプライス部位突然変異等)の結果として生じる腫瘍ネオ抗原は、最も腫瘍特異的な抗原クラスに相当する。ネオ抗原は、その同定、最適化されたネオ抗原の選択、及びワクチン又は免疫原性組成物に使用されるネオ抗原の作製が技術的に困難であるため、癌ワクチン又は免疫原性組成物に使用されることはほとんどなかった。これらの問題は以下によって対処され得る:
・各患者の対応する生殖系列試料に対する腫瘍の全ゲノム、全エクソーム(例えば、捕捉されたエクソンのみ)、又はRNAシーケンシングを用いてDNAレベルで新生物/腫瘍における全ての又はほぼ全ての突然変異を同定すること;
・同定された突然変異を1つ以上のペプチド-MHC結合予測アルゴリズムで解析し、新生物/腫瘍内で発現する、且つ患者HLA対立遺伝子と結合し得る複数の候補ネオ抗原T細胞エピトープを作成すること;及び
・一組のあらゆるネオORFペプチド及び予測結合ペプチドから選択された複数の候補ネオ抗原ペプチドを、癌ワクチン又は免疫原性組成物で使用するために合成すること。
【0101】
例えば、シーケンシング情報を治療ワクチンに変えるには、以下が含まれる:
(1)個体のHLA分子に結合し得る個人的突然変異ペプチドの予測。どの特定の突然変異を免疫原として利用するべきかを効率的に選択するには、患者HLA型の同定と、ど
の突然変異ペプチドが患者のHLA対立遺伝子に効率的に結合し得るかを予測する能力とが必要である。近年、バリデートされた結合及び非結合ペプチドによるニューラルネットワークベースの学習手法によって、主要なHLA-A及び-B対立遺伝子に関する予測アルゴリズムの精度が進歩している。
(2)薬物をロングペプチドのマルチエピトープワクチンとして製剤化すること。現実に可能な限り多くの突然変異エピトープを標的にすることにより、免疫系の多大な能力が活用され、特定の免疫標的化遺伝子産物の下方制御による免疫エスケープの機会が阻止され、及びエピトープ予測手法の既知の不正確さが補償される。合成ペプチドは、複数の免疫原を効率的に調製し且つ突然変異体エピトープの同定を有効なワクチンに迅速に変えるための特に有用な手段を提供する。ペプチドは夾雑細菌又は動物性物質を含有しない試薬を利用して容易に化学的に合成し、簡単に精製することができる。サイズが小さいため、タンパク質の突然変異領域に明確に焦点を合わせることが可能であり、また、他の成分(非突然変異タンパク質又はウイルスベクター抗原)からの無関係な抗原競合も低下する。
(3)強力なワクチンアジュバントとの併用。有効なワクチンには、免疫応答を惹起する強力なアジュバントが必要である。以下に記載するとおり、TLR3アゴニスト並びにMDA5及びRIG3のRNAヘリカーゼドメインであるポリICLCが、ワクチンアジュバントに望ましい幾つかの特性を示している。それらの特性には、インビボでの免疫細胞の局所及び全身活性化の誘導、刺激ケモカイン及びサイトカインの産生、並びにDCによる抗原提示の刺激が含まれる。さらに、ポリICLCは、ヒトにおいて持続的なCD4+及びCD8+応答を誘導することができる。重要なことに、ポリICLCを伴いワクチン接種した対象と、極めて有効性の高い複製コンピテント黄熱病ワクチンの投与を受けたことがあるボランティアとにおいて、転写経路及びシグナル伝達経路の上方調節の点で顕著な類似性が認められた。さらに、最近の第1相研究では、(Montanideに加えて)NY-ES0-1ペプチドワクチンと組み合わせてポリICLCで免疫した卵巣癌患者の90%超がCD4+及びCD8+ T細胞の誘導並びにペプチドに対する抗体反応を示した。同時に、ポリICLCは現在までに25件を上回る臨床試験で広範に試験されており、比較的安全な毒性プロファイルを呈している。本発明の利点は本明細書にさらに記載される。
【0102】
本明細書に記載されるとおり、動物及びヒトの両方において、免疫応答の誘導に突然変異エピトープが有効であること及び自発的腫瘍退縮又は長期生存の症例が突然変異エピトープに対するCD8+ T細胞応答と相関すること(Buckwalter and Srivastava PK.「「それが抗原である、ばかげたことに」及びヒト癌のワクチン療法の10年にわたる他のレッスン(“It is the antigen(s),stupid” and other lessons from over a decade of vaccitherapy of human cancer)」.Seminars in immunology 20:296-300(2008);Karanikas et al,「長期生存肺癌患者の血中におけるHLA四量体で検出可能な腫瘍特異的突然変異抗原に対する細胞溶解性Tリンパ球の高頻度(High frequency of cytolytic T lymphocytes directed against a tumor-specific mutated antigen detectable with HLA tetramers in the blood of a lung carcinoma patient with long survival)」.Cancer Res.61:3718-3724(2001);Lennerz et al,「ヒトメラノーマに対する自己T細胞の応答は突然変異ネオ抗原によって支配される(The response of autologous T cells to a human melanoma is dominated by mutated neo-antigens)」.Proc Natl Acad Sci U S A.102:16013(2005))及びマウス及びヒトにおける優勢な突然変異抗原の発現の改変に対する「免疫編集」を追跡し得る
こと(Matsushita et al,「癌エクソーム解析は癌免疫編集のT細胞依存性機序を明らかにする(Cancer exome analysis reveals a T-cell-dependent mechanism of cancer
immunoediting)」 Nature 482:400(2012);DuPage et al,「腫瘍特異的抗原の発現が癌免疫編集の根底にある(Expression of tumor-specific antigens underlies cancer immunoediting)」 Nature 482:405(2012);及びSampson et al,「新しく診断された膠芽腫患者の上皮成長因子受容体変異体IIIペプチドワクチン接種に伴う長期無進行生存後の免疫エスケープ(Immunologic escape after prolonged progression-free survival with epidermal growth factor receptor variant III peptide vaccination in patients with newly diagnosed glioblastoma)」 J Clin Oncol.28:4722-4729(2010))のエビデンスが多数ある。一実施形態において、癌患者の突然変異エピトープが決定される。
【0103】
一実施形態において、突然変異エピトープは、癌患者由来の腫瘍組織及び健常組織のゲノム及び/又はエクソームを次世代シーケンシング技術を用いてシーケンシングすることにより決定される。別の実施形態において、その突然変異頻度及びネオ抗原として働く能力に基づき選択される遺伝子が、次世代シーケンシング技術を用いてシーケンシングされる。次世代シーケンシングは、ゲノムシーケンシング、ゲノムリシーケンシング、トランスクリプトームプロファイリング(RNA-Seq)、DNA-タンパク質相互作用(ChIPシーケンシング)、及びエピゲノムキャラクタリゼーションに適用される(de Magalhaes JP,Finch CE,Janssens G(2010).「加齢研究における次世代シーケンシング:新たに現れつつある手法、問題、落とし穴及び可能な解決法(Next-generation sequencing in aging research:emerging applications,problems,pitfalls and possible solutions)」.Ageing Research Reviews 9(3):315-323;Hall N(May 2007).「最新シーケンシング技術及び微生物学におけるその広範な影響(Advanced sequencing technologies and their wider impact in microbiology)」.J.Exp.Biol.209(Pt 9):1518-1525;Church GM(January 2006).「皆のためのゲノム(Genomes for all)」.Sci.Am.294(1):46-54;ten Bosch JR,Grody WW(2008).「次世代の最新情報(Keeping Up with the Next Generation)」.The Journal of Molecular Diagnostics 10(6):484-492;Tucker T,Marra M,Friedman JM(2009).「超並列シーケンシング:ゲノムマシーンにおける次なる目玉(Massively Parallel Sequencing:The Next Big Thing in Genetic Medicine)」.The American Journal of Human Genetics 85(2):142-154)。次世代シーケンシングは、現在、個々の腫瘍におけるコード突然変異、最も一般的には単一アミノ酸変化(例えばミスセンス突然変異)及び頻度は低いが、フレームシフト挿入/欠失/遺伝子融合、終止コドンにおけるリードスルー突然変異、及び不適切にスプライスされたイントロンの翻訳(例えば、ネオORF)により生成されるアミノ酸の新規ストレッチなど、特徴的な突然変異の存在を迅速に明らかにすることができる。ネオORFは、その配列の全体が免疫系にとって完全に新規であり、従ってウイルス性又は細菌性の外来抗原に類似しているため、免疫原として特に有益である。従って、ネオORFは:(1)腫瘍に対して高度に特異的である(即ちいかなる正常細胞においても発現がない);及び(2)中枢性トレランスを回避し、それによりネオ抗原特異的CTLの前駆体頻度を増加させることができる。例えば、最近、ヒトパピローマウイルス(HPV)から誘導されたペプチドで、治療的抗癌ワクチン又は免疫原性組成物において類似外来配列を利用する力が実証された。ウイルス性癌遺伝子E6及びE7に由来するHPVペプチド混合物のワクチン接種を3~4回受けた新生物発生前のウイルス誘導性疾患を有する19人の患者の約50%が、完全寛解を24ヶ月以上維持した(Kenter et al,「外陰上皮内新生物に関するHPV-16オンコプロテインに対するワクチン接種(Vaccination against HPV-16 Oncoproteins for Vulvar Intraepithelial Neoplasia)」 NEJM 361:1838(2009))。
【0104】
シーケンシング技術により、腫瘍は各々、遺伝子のタンパク質コード内容を改変する複数の患者特異的突然変異を含むことが明らかになっている。かかる突然変異は、単一アミノ酸変化(ミスセンス突然変異によって引き起こされる)から、フレームシフト、終止コドンのリードスルー又はイントロン領域の翻訳(新規オープンリーディングフレーム突然変異;ネオORF)に起因する新規アミノ酸配列の長い領域の付加にまで及ぶ改変タンパク質を作り出す。これらの突然変異タンパク質は、天然タンパク質と異なり自己トレランスの免疫抑制効果を受けないため、腫瘍に対する宿主の免疫応答にとって有用な標的である。従って、突然変異タンパク質は免疫原性である可能性が一層高く、また患者の正常細胞と比較して腫瘍細胞に対する特異性もより高い。
【0105】
腫瘍特異的ネオ抗原を同定する代替的方法は、タンパク質の直接シーケンシングである。タンデム質量分析法(MS/MS))を含めた多次元MS技法(MSn)を用いる酵素消化物のタンパク質シーケンシングもまた、本発明のネオ抗原の同定に用いることができる。かかるプロテオミクス手法は、迅速で高度に自動化された解析を可能にする(例えば、K.Gevaert and J.Vandekerckhove,Electrophoresis 21:1145-1154(2000)を参照)。さらに、本発明の範囲内で、未知のタンパク質のハイスループットなデノボシーケンシング方法を用いて患者の腫瘍のプロテオームを解析し、発現したネオ抗原を同定し得ることが企図される。例えば、メタショットガンタンパク質シーケンシングを用いて発現したネオ抗原を同定し得る(例えば、Guthals et al.(2012)「メタコンティグアセンブリによるショットガンタンパク質シーケンシング(Shotgun Protein Sequencing with Meta-contig Assembly)」,Molecular and Cellular Proteomics 11(10):1084-96を参照)。
【0106】
腫瘍特異的ネオ抗原はまた、MHC多量体を使用してネオ抗原特異的T細胞応答を同定して同定することもできる。例えば、患者試料におけるネオ抗原特異的T細胞応答のハイスループット解析を、MHC四量体ベースのスクリーニング技法を用いて実施してもよい(例えば、Hombrink et al.(2011)「MHC四量体ベースのスクリーニングによる潜在的マイナー組織適合抗原のハイスループット同定:実現可能性と限界(High-Throughput Identification of Potential Minor Histocompatibility Antigens by MHC Tetramer-Based Screening:Feasibility and Limitations)」6(8):1-11;Hadrup et al.(2009)「MHC多量体の多次元コーディングによる抗原特異的T細胞応答の並列検出(Parallel detection of antigen-specific T-cell responses by multidimensional encoding of MHC multimers)」,Nature Methods,6(7):520-26;van Rooij et al.(2013)「腫瘍エクソーム解析がイピリムマブ応答性メラノーマにおけるネオ抗原特異的T細胞応答性を明らかにする(Tumor exome analysis reveals neoantigen-specific T-cell reactivity in an Ipilimumab-responsive melanoma)」,Journal of Clinical Oncology,31:1-4;及びHeemskerk et al.(2013)「癌アンチゲノム(The cancer antigenome)」,EMBO Journal,32(2):194-203を参照)。かかる四量体ベースのスクリーニング技法は腫瘍特異的ネオ抗原の初期同定に用いられるか、或いは患者がどのようなネオ抗原に既に曝露されたことがあるかを評価する二次スクリーニングプロトコルとして用いられ、それにより本発明の候補ネオ抗原の選択を促進し得る。
【0107】
一実施形態において、癌患者における突然変異の存在を決定することから得られるシーケンシングデータを分析して、個人のHLA分子に結合することができる個人的な突然変異ペプチドが予測される。一実施形態において、データはコンピュータを使用して分析される。別の実施形態において、配列データはネオ抗原の存在に関して分析される。一実施形態において、ネオ抗原は、MHC分子に対するその親和性によって決定される。どの特定の突然変異を免疫原として利用するべきかを効率的に選択するには、患者HLA型の同定と、どの突然変異ペプチドが患者のHLA対立遺伝子に効率的に結合し得るかを予測する能力とが必要である。近年、バリデートされた結合及び非結合ペプチドによるニューラルネットワークベースの学習手法によって、主要なHLA-A及び-B対立遺伝子に関する予測アルゴリズムの精度が進歩している。どのミスセンス突然変異が患者のコグネイトMHC分子との強力な結合ペプチドを生じるかを予測する近年改良されたアルゴリズムを利用して、各患者に最適な突然変異エピトープ(ネオORF及びミスセンスの両方)を代表する一組のペプチドを同定し、優先順位を付けることができる(Zhang et al,「免疫学における機械学習競争-HLAクラスI結合ペプチドの予測(Machine learning competition in immunology-Prediction of HLA class I binding peptides)」 J Immunol Methods 374:1(2011);Lundegaard et al 「ニューラルネットワークベースの方法を用いたエピトープの予測(Prediction of epitopes using neural network based methods)」 J Immunol Methods 374:26(2011))。
【0108】
現実に可能な限り多くの突然変異エピトープを標的にすることにより、免疫系の多大な能力が活用され、特定の免疫標的化遺伝子産物の下方制御による免疫エスケープの機会が阻止され、及びエピトープ予測手法の既知の不正確さが補償される。合成ペプチドは、複数の免疫原を効率的に調製し且つ突然変異体エピトープの同定を有効なワクチン又は免疫原性組成物に迅速に変えるための特に有用な手段を提供する。ペプチドは夾雑細菌又は動物性物質を含有しない試薬を利用して容易に化学的に合成し、簡単に精製することができる。サイズが小さいため、タンパク質の突然変異領域に明確に焦点を合わせることが可能であり、また、他の成分(非突然変異タンパク質又はウイルスベクター抗原)からの無関係な抗原競合も低下する。
【0109】
一実施形態において、薬物製剤はロングペプチドのマルチエピトープワクチン又は免疫原性組成物である。かかる「ロング」ペプチドは樹状細胞などのプロフェッショナル抗原提示細胞において効率的なインターナリゼーション、プロセシング及び交差提示を受け、且つヒトにおいてCTLを誘導することが示されている(Melief and van
der Burg,「合成ロングペプチドワクチンによる樹立された(前)悪性疾患の
免疫療法(Immunotherapy of established (pre)malignant disease by synthetic long peptide vaccines)」 Nature Rev Cancer 8:351(2008))。一実施形態において、少なくとも1つのペプチドが免疫化用に調製される。好ましい実施形態において、20以上のペプチドが免疫化用に調製される。一実施形態において、ネオ抗原ペプチドは約5~約50アミノ酸長の範囲である。別の実施形態において、約15~約35アミノ酸長のペプチドが合成される。好ましい実施形態において、ネオ抗原ペプチドは約20~約35アミノ酸長の範囲である。
【0110】
腫瘍特異的ネオ抗原の作製
本発明は、少なくとも一部には、患者の免疫系に腫瘍特異的ネオ抗原のプールを提示する能力に基づく。当業者は、本開示及び当該技術分野における知識から、かかる腫瘍特異的ネオ抗原を作製する種々の方法があることを理解するであろう。一般に、かかる腫瘍特異的ネオ抗原は、インビトロ又はインビボのいずれでも作製し得る。腫瘍特異的ネオ抗原はインビトロでペプチド又はポリペプチドとして作製されてもよく、次にそれが個別化された新生物ワクチン又は免疫原性組成物に製剤化され、対象に投与されてもよい。本明細書にさらに詳細に記載するとおり、かかるインビトロ作製は、例えば、種々の細菌、真核生物、又はウイルス組換え発現系のいずれかにおけるDNA又はRNA分子からのペプチド/ポリペプチドのペプチド合成又は発現と、続く発現したペプチド/ポリペプチドの精製など、当業者に公知の種々の方法によって行われ得る。或いは、腫瘍特異的ネオ抗原は、腫瘍特異的ネオ抗原をコードする分子(例えば、DNA、RNA、ウイルス発現系など)を対象に導入し、導入後にコードされた腫瘍特異的ネオ抗原が発現することによりインビボで作製されてもよい。ネオ抗原のインビトロ及びインビボ作製方法はまた、本明細書において、それが医薬組成物及び送達方法に関するときさらに記載される。
【0111】
インビトロペプチド/ポリペプチド合成
タンパク質又はペプチドは、標準的な分子生物学的技法によるタンパク質、ポリペプチド又はペプチドの発現、天然供給源からのタンパク質又はペプチドの単離、インビトロ翻訳、又はタンパク質又はペプチドの化学合成を含め、当業者に公知の任意の技法によって作製することができる。様々な遺伝子に対応するヌクレオチド及びタンパク質、ポリペプチド及びペプチド配列は既に開示されており、当業者に公知のコンピュータ化されたデータベースを参照することができる。一つのかかるデータベースは、国立衛生研究所(National Institutes of Health)ウェブサイトにある国立バイオテクノロジー情報センター(National Center for Biotechnology Information)のGenbank及びGenPeptデータベースである。既知の遺伝子のコード領域は、本明細書に開示される技法を用いて、又は当業者に公知であろうとおりに増幅し及び/又は発現させることができる。或いは、様々な市販のタンパク質、ポリペプチド及びペプチド調製物が当業者に公知である。
【0112】
ペプチドは、夾雑細菌又は動物性物質を含有しない試薬を利用して容易に化学的に合成することができる(Merrifield RB:「固相ペプチド合成I.テトラペプチドの合成(Solid phase peptide synthesis.I.The
synthesis of a tetrapeptide)」.J.Am.Chem.Soc.85:2149-54,1963)。特定の実施形態において、ネオ抗原ペプチドは、(1)均一合成及び開裂条件を用いたマルチチャネル機器でのパラレル固相合成;(2)RP-HPLCカラムでのカラムストリッピングによる精製;及びペプチド間での再洗浄、但し交換なし;続いて(3)最も情報価値の高い、限られた一組のアッセイによる分析によって調製される。個々の患者の一組のペプチドに関して医薬品の製造管理及び品質管理に関する基準(GMP)のフットプリントを定義付けることができ、従ってスイート切り替え手順が必要となるのは、異なる患者のペプチド合成間のみである。
【0113】
或いは、本発明のネオ抗原ペプチドをコードする核酸(例えばポリヌクレオチド)を使用して、ネオ抗原ペプチドをインビトロで作製してもよい。ポリヌクレオチドは、例えば、DNA、cDNA、PNA、CNA、RNA、一本鎖及び/又は二本鎖のいずれかの、又は天然の若しくは安定化した形態のポリヌクレオチド、例えばホスホロチオエート(phosphorothiate)骨格を有するポリヌクレオチドなど、又はそれらの組み合わせであってよく、それがペプチドをコードする限りはイントロンを含んでも、又は含まなくてもよい。一実施形態では、インビトロ翻訳を用いてペプチドが作製される。当業者が利用し得る多くの例示的システムが存在する(例えば、Retic Lysate IVTキット、Life Technologies、Waltham、MA)。
【0114】
ポリペプチドの発現能を有する発現ベクターもまた調製することができる。種々の細胞型に対する発現ベクターが当該技術分野において周知されており、過度の実験を行うことなく選択し得る。概して、DNAがプラスミドなどの発現ベクターに、発現に適切な向き及び正しいリーディングフレームで挿入される。必要であれば、DNAは、所望の宿主(例えば、細菌)によって認識される適切な転写及び翻訳調節制御ヌクレオチド配列に連結されてもよく、しかしかかる制御は概して発現ベクターにおいて利用可能である。次にベクターは、標準的な技法を用いてクローニング用の宿主細菌に導入される(例えば、Sambrook et al.(1989)Molecular Cloning,A Laboratory Manual,Cold Spring Harbor Laboratory,Cold Spring Harbor,N.Y.を参照)。
【0115】
単離ポリヌクレオチドを含む発現ベクター、並びに発現ベクターを含む宿主細胞もまた企図される。ネオ抗原ペプチドは、所望のネオ抗原ペプチドをコードするRNA又はcDNA分子の形態で提供され得る。本発明の1つ以上のネオ抗原ペプチドが、単一の発現ベクターによって提供され得る。
【0116】
用語「ポリペプチドをコードするポリヌクレオチド」は、ポリペプチドのコード配列のみを含むポリヌクレオチド並びにさらなるコード配列及び/又は非コード配列を含むポリヌクレオチドを包含する。ポリヌクレオチドはRNAの形態又はDNAの形態であってもよい。DNAにはcDNA、ゲノムDNA、及び合成DNAが含まれ;二本鎖又は一本鎖であってもよく、一本鎖の場合にはコード鎖又は非コード鎖(アンチセンス鎖)であってもよい。
【0117】
実施形態において、ポリヌクレオチドは、例えば宿主細胞からのポリペプチドの発現及び/又は分泌を助けるポリヌクレオチド(例えば、細胞からのポリペプチドの輸送を制御するための分泌配列として機能するリーダー配列)と同じリーディングフレームで融合した腫瘍特異的ネオ抗原ペプチドのコード配列を含み得る。リーダー配列を有するポリペプチドはプレタンパク質であり、成熟形態のポリペプチドを形成するため宿主細胞によって切断されるリーダー配列を有し得る。
【0118】
実施形態において、ポリヌクレオチドは、例えばコードされたポリペプチドの精製を可能にして、次にそれが個別化された新生物ワクチン又は免疫原性組成物に組み込まれ得るようにするマーカー配列に同じリーディングフレームで融合した腫瘍特異的ネオ抗原ペプチドのコード配列を含み得る。例えば、マーカー配列は、細菌宿主の場合には、マーカーと融合した成熟ポリペプチドの精製を提供するpQE-9ベクターにより供給されるヘキサヒスチジンタグであってよく、又はマーカー配列は、哺乳類宿主(例えば、COS-7細胞)が使用されるとき、インフルエンザヘマグルチニンタンパク質に由来するヘマグルチニン(HA)タグであってもよい。さらなるタグとしては、限定はされないが、カルモジュリンタグ、FLAGタグ、Mycタグ、Sタグ、SBPタグ、Softag 1、S
oftag 3、V5タグ、Xpressタグ、イソペプタグ(Isopeptag)、SpyTag、ビオチンカルボキシルキャリアータンパク質(BCCP)タグ、GSTタグ、蛍光タンパク質タグ(例えば、緑色蛍光タンパク質タグ)、マルトース結合タンパク質タグ、Nusタグ、Strepタグ、チオレドキシンタグ、TCタグ、Tyタグなどが挙げられる。
【0119】
実施形態において、ポリヌクレオチドは、複数のネオ抗原ペプチドの産生能を有する単一のコンカテマー化したネオ抗原ペプチドコンストラクトを作成するため同じリーディングフレームで融合した腫瘍特異的ネオ抗原ペプチドの1つ以上のコード配列を含み得る。
【0120】
特定の実施形態において、本発明の腫瘍特異的ネオ抗原ペプチドをコードするポリヌクレオチドと少なくとも60%同一、少なくとも65%同一、少なくとも70%同一、少なくとも75%同一、少なくとも80%同一、少なくとも85%同一、少なくとも90%同一、少なくとも95%同一、又は少なくとも96%、97%、98%又は99%同一のヌクレオチド配列を有する単離核酸分子が提供され得る。
【0121】
参照ヌクレオチド配列と少なくとも例えば95%「同一」のヌクレオチド配列を有するポリヌクレオチドとは、ポリヌクレオチドのヌクレオチド配列が参照配列に対して、ポリヌクレオチド配列に参照ヌクレオチド配列の100ヌクレオチドにつき最大5個の点突然変異が含まれ得ることを除き同一であることが意図される。換言すれば、参照ヌクレオチド配列と少なくとも95%同一のヌクレオチド配列を有するポリヌクレオチドを得るには、参照配列中のヌクレオチドの最大5%が欠失しているか又は別のヌクレオチドに置換されていてもよく、又は参照配列中の全ヌクレオチドの最大5%の数のヌクレオチドが参照配列に挿入されていてもよい。参照配列のこれらの突然変異は参照ヌクレオチド配列のアミノ末端又はカルボキシ末端位置又はそれらの末端位置の間のどこかに、参照配列中のヌクレオチド間に個々に散在して、或いは参照配列内で1つ以上の隣接するまとまりとして存在し得る。
【0122】
実際問題として、任意の特定の核酸分子が参照配列と少なくとも80%同一、少なくとも85%同一、少なくとも90%同一、及び一部の実施形態では、少なくとも95%、96%、97%、98%、又は99%同一であるかどうかは、Bestfitプログラム(ウィスコンシン配列解析パッケージ(Wisconsin Sequence Analysis Package)、バージョン8 Unix版、Genetics Computer Group、University Research Park,575 Science Drive,Madison,WI 53711)などの公知のコンピュータプログラムを使用して従来法で決定することができる。Bestfitは、Smith and Waterman,Advances in Applied Mathematics 2:482-489(1981)の局所的相同性アルゴリズムを使用して2つの配列間における最良の相同性セグメントを見付け出す。Bestfit又は任意の他の配列アラインメントプログラムを使用して特定の配列が本発明に係る参照配列と例えば95%同一であるかどうかを決定するとき、パラメータの設定は、参照ヌクレオチド配列の全長にわたって同一性のパーセンテージが計算され、且つ参照配列中のヌクレオチド総数の最大5%の相同性のギャップが許容されるように行われる。
【0123】
本明細書に記載される単離された腫瘍特異的ネオ抗原ペプチドは、当該技術分野において公知の任意の好適な方法によりインビトロで(例えば実験室で)産生することができる。かかる方法は、直接のタンパク質合成方法から、単離ポリペプチド配列をコードするDNA配列を構築し且つそれらの配列を好適な形質転換宿主において発現させるにまでに及ぶ。一部の実施形態では、DNA配列は組換え技術を用いて、目的の野生型タンパク質をコードするDNA配列を単離又は合成することにより構築される。場合により、部位特異的突然変異誘発によって配列に突然変異を誘発し、その機能性類似体を提供し得る。例えば、Zoeller et al.,Proc.Nat’l.Acad.Sci.USA 81:5662-5066(1984)及び米国特許第4,588,585号明細書を参照のこと。
【0124】
実施形態において、目的のポリペプチドをコードするDNA配列は、オリゴヌクレオチドシンセサイザーを使用した化学合成によって構築され得る。かかるオリゴヌクレオチドは、所望のポリペプチドのアミノ酸配列に基づき、且つ目的の組換えポリペプチドを産生する宿主細胞に好ましいコドンを選択して設計することができる。目的の単離ポリペプチドをコードする単離ポリヌクレオチド配列の合成には、標準方法を適用し得る。例えば、完全なアミノ酸配列を使用して逆翻訳された遺伝子を構築することができる。さらに、特定の単離ポリペプチドをコードするヌクレオチド配列を含むDNAオリゴマーを合成することができる。例えば、所望のポリペプチドの一部分をコードするいくつかの小型オリゴヌクレオチドを合成し、次にライゲートすることができる。個々のオリゴヌクレオチドは、典型的には相補的アセンブリのための5’又は3’オーバーハングを含む。
【0125】
アセンブリ(例えば、合成、部位特異的突然変異誘発、又は別の方法による)の後、目的とする特定の単離ポリペプチドをコードするポリヌクレオチド配列を発現ベクターに挿入し、場合により所望の宿主でのタンパク質の発現に適切な発現制御配列に動作可能に連結される。アセンブリが適切であることは、ヌクレオチドシーケンシング、制限酵素マッピング、及び好適な宿主における生物学的に活性なポリペプチドの発現によって確認することができる。当該技術分野において周知のとおり、宿主においてトランスフェクト遺伝子の高い発現レベルを達成するため、選択の発現宿主で機能する転写及び翻訳発現制御配列に動作可能を遺伝子に連結することができる。
【0126】
組換え発現ベクターを使用して、腫瘍特異的ネオ抗原ペプチドをコードするDNAを増幅し及び発現させてもよい。組換え発現ベクターは複製可能なDNAコンストラクトであり、哺乳類、微生物、ウイルス又は昆虫遺伝子に由来する好適な転写又は翻訳調節エレメントに動作可能に連結された腫瘍特異的ネオ抗原ペプチド又は生物学的に同等な類似体をコードする合成の又はcDNA由来のDNA断片を有する。転写単位は概して、本明細書にさらに詳細に記載するとおり、(1)遺伝子発現において調節的役割を有する1つ又は複数の遺伝子エレメント、例えば転写プロモーター又はエンハンサーと、(2)mRNAに転写され且つタンパク質に翻訳される構造配列又はコード配列と、(3)適切な転写及び翻訳開始及び終結配列とのアセンブリを含む。かかる調節エレメントは、転写を制御するオペレーター配列を含み得る。宿主での複製能(通常は複製起点によって付与される)、及び形質転換体の認識を促進するための選択遺伝子が、さらに組み込まれ得る。DNA領域は、それらが互いに機能的に関係しているとき、動作可能に連結されている。例えば、シグナルペプチド(分泌リーダー)のDNAは、それがポリペプチドの分泌に関与する前駆体として発現する場合には、ポリペプチドのDNAに動作可能に連結されている;プロモーターは、それが配列の転写を制御する場合には、コード配列に動作可能に連結されている;又はリボソーム結合部位は、それが翻訳を可能にする位置にある場合には、コード配列に動作可能に連結されている。概して、動作可能に連結されているとは、隣接することを意味し、分泌リーダーの場合には、隣接すること及びリーディングフレームにあることを意味する。酵母発現系での使用が意図される構造エレメントは、宿主細胞による翻訳タンパク質の細胞外分泌を可能にするリーダー配列を含む。或いは、組換えタンパク質がリーダー配列又は輸送配列なしに発現する場合、それはN末端メチオニン残基を含み得る。場合により、発現した組換えタンパク質からこの残基が続いて切断されることで、最終産物がもたらされ得る。
【0127】
真核生物宿主、特に哺乳動物又はヒトに有用な発現ベクターとしては、例えば、SV4
0、ウシパピローマウイルス、アデノウイルス及びサイトメガロウイルス由来の発現制御配列を含むベクターが挙げられる。細菌宿主に有用な発現ベクターとしては、公知の細菌プラスミド、例えば、pCR 1、pBR322、pMB9を含む大腸菌(Escherichia coli)由来のプラスミド及びそれらの誘導体、より広い宿主域のプラスミド、例えばM13及び繊維状一本鎖DNAファージが挙げられる。
【0128】
ポリペプチドの発現に好適な宿主細胞としては、適切なプロモーターの制御下にある原核細胞、酵母細胞、昆虫細胞又は高等真核細胞が挙げられる。原核生物には、グラム陰性生物又はグラム陽性生物、例えば大腸菌(E.coli)又はバチルス属(Bacilli)が含まれる。高等真核細胞には、哺乳類起源の樹立細胞株が含まれる。無細胞翻訳系もまた用いることができる。細菌、真菌、酵母、及び哺乳類細胞宿主での使用に適切なクローニング及び発現ベクターは、当該技術分野において周知されている(Pouwels
et al.,Cloning Vectors:A Laboratory Manual,Elsevier,N.Y.,1985を参照)。
【0129】
様々な哺乳類又は昆虫細胞培養系もまた、有利には組換えタンパク質を発現させるために用いられる。哺乳類細胞における組換えタンパク質の発現は、かかるタンパク質が概して正しく折り畳まれ、適切に修飾され、且つ完全に機能性であるため、実施することができる。好適な哺乳類宿主細胞系の例としては、Gluzman(Cell 23:175,1981)によって記載されるサル腎細胞のCOS-7系、並びに適切なベクターの発現能を有する他の細胞系、例えば、L細胞、C127、3T3、チャイニーズハムスター卵巣(CHO)、293、HeLa及びBHK細胞系が挙げられる。哺乳類発現ベクターは非転写エレメント、例えば、複製起点、発現させる遺伝子に連結される好適なプロモーター及びエンハンサー、並びに他の5’又は3’フランキング非転写配列、及び5’又は3’非翻訳配列、例えば必須リボソーム結合部位、ポリアデニル化部位、スプライス供与・受容部位、及び転写終結配列を含み得る。昆虫細胞において異種タンパク質を産生するためのバキュロウイルスシステムが、Luckow and Summers,Bio/Technology 6:47(1988)によってレビューされている。
【0130】
形質転換宿主により産生されたタンパク質は、任意の好適な方法により精製することができる。かかる標準方法には、クロマトグラフィー(例えば、イオン交換、アフィニティー及びサイズ排除カラムクロマトグラフィーなど)、遠心、溶解度差、又は任意の他の標準的なタンパク質精製技法によることが含まれる。アフィニティータグ、例えば、ヘキサヒスチジン、マルトース結合ドメイン、インフルエンザコート配列、グルタチオン-S-トランスフェラーゼなどをタンパク質に結合させると、適切なアフィニティーカラムに通すことによる容易な精製が可能となり得る。単離されたタンパク質はまた、タンパク質分解、核磁気共鳴及びX線結晶学などの技法を用いて物理的に特徴付けることができる。
【0131】
例えば、組換えタンパク質を培養培地中に分泌するシステムからの上清を、初めに、市販のタンパク質濃縮フィルタ、例えばAmicon又はMillipore Pellicon限外ろ過ユニットを使用して濃縮することができる。濃縮ステップの後、濃縮物を好適な精製マトリックスに加えることができる。或いは、陰イオン交換樹脂、例えばペンダントジエチルアミノエチル(DEAE)基を有するマトリックス又は基質を用いることができる。マトリックスは、アクリルアミド、アガロース、デキストラン、セルロース又はタンパク質精製において一般的に用いられる他の種類であってもよい。或いは、陽イオン交換ステップを用いることができる。好適な陽イオン交換体としては、スルホプロピル基又はカルボキシメチル基を含む様々な不溶性マトリックスが挙げられる。最後に、疎水性RP-HPLC媒体、例えばペンダントメチル基又は他の脂肪族基を有するシリカゲルを用いる1つ以上の逆相高速液体クロマトグラフィー(RP-HPLC)ステップを用いて癌幹細胞タンパク質-Fc組成物をさらに精製することができる。前述の精製ステップ
の一部又は全てを様々な組み合わせで用いて均一な組換えタンパク質を提供することもできる。
【0132】
細菌培養物において産生された組換えタンパク質は、例えば、初めに細胞ペレットから抽出し、続いて1回以上濃縮し、塩析し、水溶性イオン交換又はサイズ排除クロマトグラフィーステップを行うことにより単離し得る。最終的な精製ステップには高速液体クロマトグラフィー(HPLC)が用いられてもよい。組換えタンパク質の発現に用いられる微生物細胞は、凍結融解サイクリング、音波処理、機械的破壊、又は細胞溶解剤の使用を含む任意の好都合な方法によって破壊することができる。
【0133】
インビボペプチド/ポリペプチド合成
本発明はまた、ネオ抗原ペプチド/ポリペプチドをそれを必要としている対象に例えばDNA/RNAワクチンの形態でインビボで送達するための媒体としての核酸分子の使用も企図する(例えば、本明細書によって全体として参照により援用される国際公開第2012/159643号パンフレット、及び国際公開第2012/159754号パンフレットを参照)。
【0134】
一実施形態において、ネオ抗原は、それを必要としている患者にプラスミドを使用して投与され得る。これらは、通常は強力なウイルスプロモーターからなって目的の遺伝子(又は相補DNA)のインビボ転写及び翻訳を駆動するプラスミドである(Mor,et al.,(1995).The Journal of Immunology 155(4):2039-2046)。時に、mRNA安定性を改善し、ひいてはタンパク質発現を増加させるため、イントロンAが含まれ得る(Leitner et al.(1997).The Journal of Immunology 159(12):6112-6119)。プラスミドはまた、ウシ成長ホルモン又はウサギβ-グロブリンポリアデニル化配列などの強力なポリアデニル化/転写終結シグナルも含む(Alarcon et al.,(1999).Adv.Parasitol.Advances in Parasitology 42:343-410;Robinson et al.,(2000).Adv.Virus Res.Advances in Virus Research 55:1-74;Boehmet al.,(1996).Journal of Immunological Methods 193(1):29-40)。時に、2つ以上の免疫原を発現させるため、又は免疫原と免疫刺激性タンパク質とを発現させるため、マルチシストロンベクターが構築される(Lewis et al.,(1999).Advances in Virus Research(Academic Press)54:129-88)。
【0135】
プラスミドは、免疫原がそこから発現する「媒体」であるため、タンパク質発現が最大となるようにベクター設計を最適化することは必須である(Lewis et al.,(1999).Advances in Virus Research(Academic Press)54:129-88)。タンパク質発現を増強する一つの方法は、病原性mRNAのコドン使用頻度を真核細胞に対して最適化することによる。別の考慮すべき点は、プロモーターの選択である。かかるプロモーターはSV40プロモーター又はラウス肉腫ウイルス(RSV)であり得る。
【0136】
プラスミドは、幾つもの異なる方法によって動物組織に導入し得る。2つの最も一般的な手法は、標準的な皮下針を使用した生理食塩水中のDNAの注射、及び遺伝子銃送達である。DNAワクチンプラスミドの構築及び続くこれらの2つの方法による宿主へのその送達に関する基本的な概略が、Scientific American(Weiner
et al.,(1999)Scientific American 281(1):34-41)に示される。生理食塩水中での注射は、通常、骨格筋において筋肉内に(IM)行われるか、又は皮内に(ID)行われ、DNAは細胞外間隙に送達される。これは電気穿孔によるか、ブピバカインなどのミオトキシンで筋繊維に一時的に損傷を与えることによるか;又は生理食塩水若しくはショ糖の高張液を使用することにより補助し得る(Alarcon et al.,(1999).Adv.Parasitol.Advances in Parasitology 42:343-410)。この送達方法に対する免疫応答は、針の種類、針の位置合わせ、注射速度、注射容積、筋肉型、並びに注射を受ける動物の年齢、性別及び生理的条件を含め、多くの要因の影響を受け得る(Alarcon et al.,(1999).Adv.Parasitol.Advances in Parasitology 42:343-410)。
【0137】
もう一つの一般的に用いられる送達方法である遺伝子銃送達は、金又はタングステンマイクロパーティクル上に吸着させたプラスミドDNA(pDNA)を、加速剤として圧縮ヘリウムを使用して弾道学的に加速させて標的細胞に入れ込む(Alarcon et al.,(1999).Adv.Parasitol.Advances in Parasitology 42:343-410;Lewis et al.,(1999).Advances in Virus Research(Academic Press)54:129-88)。
【0138】
代替的な送達方法としては、鼻粘膜及び肺粘膜などの粘膜表面に対するネイキッドDNAのエアロゾル滴下(Lewis et al.,(1999).Advances in Virus Research(Academic Press)54:129-88)、並びに眼及び腟粘膜に対するpDNAの局所投与(Lewis et al.,(1999)Advances in Virus Research(Academic Press)54:129-88)を挙げることができる。粘膜表面送達はまた、カチオン性リポソーム-DNA調製物、生分解性ミクロスフェア、腸粘膜に対する経口投与用の弱毒化赤痢菌属(Shigella)又はリステリア属(Listeria)ベクター、及び組換えアデノウイルスベクターを使用しても実現されている。
【0139】
有効な免疫応答を生じさせるために必要なDNAの用量は送達方法によって決まる。生理食塩水注射では10μg~1mgの様々な量のDNAが必要となるが、遺伝子銃送達では有効な免疫応答を生じさせるために筋肉内生理食塩水注射の100~1000分の1のDNAでよい。概して、0.2μg~20μgが必要であり、しかしながら16ng程の少ない分量も報告されている。これらの分量は種毎に異なり、例えばマウスで必要なDNAは霊長類の約10分の1である。生理食塩水注射では、DNAが標的組織の細胞外間隙(通常は筋肉)に送達され、そこで細胞によって取り込まれる前に物理的障壁(少し例を挙げるだけでも、基底膜及び大量の結合組織など)を乗り越えなければならないため、より多くのDNAが必要であるが、遺伝子銃送達では、DNAが細胞に直接撃ち込まれ、従って「無駄」は少なくなる(例えば、Sedegah et al.,(1994).Proceedings of the National Academy of Sciences of the United States of America 91(21):9866-9870;Daheshiaet al.,(1997).The Journal of Immunology 159(4):1945-1952;Chen et al.,(1998).The Journal of Immunology 160(5):2425-2432;Sizemore(1995)Science 270(5234):299-302;Fynan et al.,(1993)Proc.Natl.Acad.Sci.U.S.A.90(24):11478-82を参照)。
【0140】
一実施形態において、新生物ワクチン又は免疫原性組成物は、例えば本発明に従い同定されるとおりの1つ以上のネオ抗原ペプチド/ポリペプチドをコードする別個のDNAプ
ラスミドを含み得る。本明細書において考察するとおり、発現ベクターの正確な選択は、発現させるペプチド/ポリペプチドに依存することができ、十分に当業者の技術の範囲内である。DNAコンストラクト(例えば、筋細胞においてエピソーム性、非複製、非組込み形態のもの)の予想される持続性が、防御期間の増加をもたらすと予想される。
【0141】
本発明の1つ以上のネオ抗原ペプチドは、ウイルスベースのシステム(例えば、アデノウイルスシステム、アデノ随伴ウイルス(AAV)ベクター、ポックスウイルス、又はレンチウイルス)を使用してインビボでコードされ及び発現してもよい。一実施形態において、新生物ワクチン又は免疫原性組成物は、例えばアデノウイルスなど、それを必要としているヒト患者で使用されるウイルスベースのベクターを含み得る(例えば、Baden
et al.「組換えアデノウイルス血清型26型HIV-1 Envワクチン(IPCAVD 001)の安全性及び免疫原性のファースト・イン・ヒューマン評価(First-in-human evaluation of the safety and
immunogenicity of a recombinant adenovirus serotype 26 HIV-1 Env vaccine(IPCAVD
001))」.J Infect Dis.2013 Jan 15;207(2):240-7(本明細書によって全体として参照により援用される)を参照)。アデノ随伴ウイルス、アデノウイルス、及びレンチウイルス送達に使用することのできるプラスミドは、以前記載されている(例えば、米国特許第6,955,808号明細書及び同第6,943,019号明細書、及び米国特許出願公開第20080254008号明細書(本明細書によって参照により援用される)を参照)。
【0142】
本発明の実施において使用し得るベクターの中でも、レトロウイルス遺伝子導入方法では細胞の宿主ゲノムに組込みが可能であり、多くの場合に、挿入されたトランス遺伝子の長期発現をもたらす。好ましい実施形態において、レトロウイルスはレンチウイルスである。加えて、多くの異なる細胞型及び標的組織において高い形質導入効率が観察されている。レトロウイルスの向性は外来性エンベロープタンパク質を導入して変えることができ、標的細胞の潜在的な標的集団を拡大し得る。レトロウイルスはまた、挿入されたトランス遺伝子の条件付き発現が可能となるように操作することもでき、従って特定の細胞型のみをレンチウイルスに感染させ得る。細胞型特異的プロモーターを使用して特定の細胞型における発現を標的化することができる。レンチウイルスベクターはレトロウイルスベクターである(ひいては本発明の実施においてはレンチウイルスベクター及びレトロウイルスベクターの両方を使用し得る)。さらに、レンチウイルスベクターは、非分裂細胞を形質導入し又は感染させることが可能であり、且つ典型的には高ウイルス価を生じるため好ましい。従ってレトロウイルス遺伝子導入システムの選択は、標的組織に依存し得る。レトロウイルスベクターは、最大6~10kbの外来配列のパッケージング能力を有するシス作用性長末端反復配列を含む。ベクターの複製及びパッケージングには最小限のシス作用性LTRが十分であり、次にはこれを使用して所望の核酸を標的細胞に組み込むと、永続的な発現がもたらされる。本発明の実施において使用し得る広く用いられているレトロウイルスベクターとしては、マウス白血病ウイルス(MuLV)、テナガザル白血病ウイルス(GaLV)、サル免疫不全ウイルス(SIV)、ヒト免疫不全ウイルス(HIV)をベースとするもの、及びそれらの組み合わせが挙げられる(例えば、Buchscher et al.,(1992)J.Virol.66:2731-2739;Johann et al.,(1992)J.Virol.66:1635-1640;Sommnerfelt et al.,(1990)Virol.176:58-59;Wilson et al.,(1998)J.Virol.63:2374-2378;Miller et al.,(1991)J.Virol.65:2220-2224;PCT/US94/05700号明細書を参照)。Zou et al.は、くも膜下腔内カテーテルによって1×10形質導入単位(TU)/mlの力価を有する約10μlの組換えレンチウイルスを投与した。この種の投薬量は、本発明におけるレトロウイルス
ベクター又はレンチウイルスベクターの使用向けに適合させ又は推定することができる。
【0143】
また、本発明の実施においては、最小非霊長類レンチウイルスベクター、例えばウマ伝染性貧血ウイルス(EIAV)をベースとするレンチウイルスベクターも有用である(例えば、Balagaan,(2006)J Gene Med;8:275-285,オンライン発行 21 November 2005 in Wiley InterScience(www.interscience.wiley.com).DOI:10.1002/jgm.845を参照)。このベクターは、標的遺伝子の発現を駆動するサイトメガロウイルス(CMV)プロモーターを有し得る。従って、本発明は、本発明の実施において有用なベクターの中でも特に:レトロウイルスベクター及びレンチウイルスベクターを含むウイルスベクターを企図する。
【0144】
また、本発明の実施においてはアデノウイルスベクターも有用である。一つの利点は、組換えアデノウイルスがインビトロ及びインビボで種々の哺乳類細胞及び組織において組換え遺伝子を効率的に移入して発現させることが可能で、移入された核酸の高発現をもたらす点である。さらに、静止細胞を生産的に感染させる能力が、組換えアデノウイルスベクターの有用性を広げる。加えて、発現レベルが高く、免疫応答を生じさせるのに十分なレベルの核酸産物の発現が確実となる(例えば、米国特許第7,029,848号明細書(本明細書によって参照により援用される)を参照)。
【0145】
本明細書のある実施形態において、送達はアデノウイルスを介し、アデノウイルスは、少なくとも1×10粒子(粒子単位、puとも称される)のアデノウイルスベクターを含有する単一ブースター用量であり得る。本明細書のある実施形態において、用量は、好ましくは少なくとも約1×10粒子(例えば、約1×10~1×1012粒子)、より好ましくは少なくとも約1×10粒子、より好ましくは少なくとも約1×10粒子(例えば、約1×10~1×1011粒子又は約1×10~1×1012粒子)、及び最も好ましくは少なくとも約1×10粒子(例えば、約1×10~1×1010粒子又は約1×10~1×1012粒子)、又はさらには少なくとも約1×1010粒子(例えば、約1×1010~1×1012粒子)のアデノウイルスベクターである。或いは、用量は、約1×1014粒子以下、好ましくは約1×1013粒子以下、さらにより好ましくは約1×1012粒子以下、さらにより好ましくは約1×1011粒子以下、及び最も好ましくは約1×1010粒子以下(例えば、約1×10粒子(articles)以下)を含む。従って、用量は、例えば、約1×10粒子単位(pu)、約2×10pu、約4×10pu、約1×10pu、約2×10pu、約4×10pu、約1×10pu、約2×10pu、約4×10pu、約1×10pu、約2×10pu、約4×10pu、約1×1010pu、約2×1010pu、約4×1010pu、約1×1011pu、約2×1011pu、約4×1011pu、約1×1012pu、約2×1012pu、又は約4×1012puのアデノウイルスベクターを有する単一用量のアデノウイルスベクターを含み得る。例えば、2013年6月4日に付与されたNabel,et.al.に対する米国特許第8,454,972 B2号明細書(参照にって本明細書に援用される)のアデノウイルスベクター、及びその第29欄36~58行にある投薬量を参照のこと。本明細書のある実施形態において、アデノウイルスは複数回用量で送達される。
【0146】
インビボ送達の観点では、AAVは宿主ゲノムに組み込まれないため毒性が低く、且つ挿入突然変異誘発を引き起こす可能性が低いことが理由で、他のウイルスベクターと比べて有利である。AAVはパッケージング限界が4.5又は4.75Kbである。コンストラクトが4.5又は4.75Kbより大きいと、ウイルス産生が大幅に低下する。核酸分子発現の駆動に使用することのできるプロモーターが多数ある。AAV ITRはプロモーターとして働くことができ、追加のプロモーターエレメントの必要性がないため有利である。遍在的な発現には、以下のプロモーターを使用することができる:CMV、CAG、CBh、PGK、SV40、フェリチン重鎖又は軽鎖等。脳での発現には、以下のプロモーターを使用することができる:あらゆるニューロンに対するシナプシンI、興奮性ニューロンに対するCaMKIIα、GABA作動性ニューロンに対するGAD67又はGAD65又はVGAT等。RNA合成の駆動に使用されるプロモーターとしては、U6又はH1などのPol IIIプロモーターを挙げることができる。ガイドRNA(gRNA)の発現に、Pol IIプロモーター及びイントロンカセットを使用することができる。
【0147】
AAVに関して、AAVはAAV1、AAV2、AAV5又はそれらの任意の組み合わせであってもよい。AAVは、標的とする細胞に関連して選択することができる;例えば、脳又は神経細胞の標的化には、AAV血清型1、2、5又はハイブリッドカプシドAAV1、AAV2、AAV5又はそれらの任意の組み合わせを選択することができ;及び心臓組織の標的化には、AAV4を選択することができる。AAV8は肝臓への送達に有用である。上記のプロモーター及びベクターは、個々に好ましい。
【0148】
本明細書のある実施形態において、送達はAAVを介する。ヒトに対するAAVのインビボ送達の治療上有効な投薬量は、約1×1010~約1×1050個の機能性AAV/ml溶液を含有する約20~約50mlの範囲の生理食塩水であると考えられる。投薬量は、治療利益と任意の副作用との均衡をとるように調整され得る。本明細書のある実施形態において、AAV用量は、概して約1×10~1×1050ゲノムAAV、約1×10~1×1020ゲノムAAV、約1×1010~約1×1016ゲノム、又は約1×1011~約1×1016ゲノムAAVの濃度範囲にある。ヒト投薬量は約1×1013ゲノムAAVであり得る。かかる濃度は、約0.001ml~約100ml、約0.05~約50ml、又は約10~約25mlの担体溶液で送達され得る。好ましい実施形態において、約2×1013ウイルスゲノム/ミリリットルの力価のAAVが使用され、マウスの線条体半球の各々が1回の500ナノリットル注射を受ける。他の有効な投薬量は、当業者であれば用量反応曲線を作成する常法の試験によって容易に確立することができる。例えば、2013年3月26日に付与されたHajjar,et al.に対する米国特許第8,404,658 B2号明細書、第27欄45~60行を参照のこと。
【0149】
別の実施形態において、新生物ワクチン又は免疫原性組成物に対する細胞性免疫応答の有効な活性化は、非病原性微生物においてワクチン又は免疫原性組成物中の関連性のあるネオ抗原が発現することによって実現し得る。かかる微生物の周知されている例は、ウシ型結核菌(Mycobacterium bovis)BCG、サルモネラ属(Salmonella)及びシュードモナス属(Pseudomona)である(米国特許第6,991,797号明細書(本明細書によって全体として参照により援用される)を参照)。
【0150】
別の実施形態では、新生物ワクチン又は免疫原性組成物にポックスウイルスが使用される。ポックスウイルスには、オルトポックスウイルス、アビポックス、ワクシニア、MVA、NYVAC、カナリア痘、ALVAC、鶏痘、TROVAC等が含まれる(例えば、Verardiet al.,Hum Vaccin Immunother.2012
Jul;8(7):961-70;及びMoss,Vaccine.2013;31(39):4220-4222を参照)。ポックスウイルス発現ベクターは1982年に報告され、すぐにワクチン開発並びに数多くの分野の研究で広く使用されるようになった。このベクターの利点としては、簡単な構築、多量の外来DNAを収容する能力、及び高い発現レベルが挙げられる。
【0151】
別の実施形態では、新生物ワクチン又は免疫原性組成物にワクシニアウイルスを使用し
てネオ抗原を発現させる(Rolph et al.,「ワクチン及び免疫学的ツールとしての組換えウイルス(Recombinant viruses as vaccines and immunological tools)」.Curr Opin Immunol 9:517-524,1997)。組換えワクシニアウイルスは感染宿主細胞の細胞質内での複製能を有し、従って目的のポリペプチドが免疫応答を誘導し得る。さらに、ポックスウイルスが、免疫細胞、詳細には抗原提示細胞に直接感染することにより主要組織適合遺伝子複合体クラスI経路によって処理するためのコードされた抗原を標的化することが可能であるため、またその自己アジュバント能力のため、ワクチン又は免疫原性組成物ベクターとして広く用いられている。
【0152】
別の実施形態では、ALVACが新生物ワクチン又は免疫原性組成物におけるベクターとして使用される。ALVACは、外来性トランス遺伝子を発現するように修飾することのできるカナリア痘ウイルスであり、原核生物抗原及び真核生物抗原の両方に対するワクチン接種方法として用いられている(Horig H,Lee DS,Conkright W,et al.「ヒト癌胎児性抗原及びB7.1共刺激分子を発現する組換えカナリア痘ウイルス(ALVAC)ワクチンの第I相臨床試験(Phase I clinical trial of a recombinant canarypoxvirus (ALVAC) vaccine expressing human carcinoembryonic antigen and the B7.1 co-stimulatory molecule)」.Cancer Immunol Immunother 2000;49:504-14;von Mehren M,Arlen P,Tsang KY,et al.「再発性CEA発現腺癌患者における癌胎児性抗原(CEA)及びB7.1トランス遺伝子の両方を含むデュアル遺伝子組換えアビポックスワクチンのパイロットスタディ(Pilot study of a dual gene recombinant avipox vaccine containing both carcinoembryonic antigen (CEA) and B7.1 transgenes in patients with recurrent CEA-expressing adenocarcinomas)」.Clin Cancer Res 2000;6:2219-28;Musey L,Ding Y,Elizaga M,et al.「筋肉内投与したHIV-1ワクチン接種はHIV-1未感染個体において全身及び粘膜T細胞免疫の両方を誘発することができる(HIV-1 vaccination administered intramuscularly can induce both systemic and mucosal T cell immunity in HIV-1-uninfected individuals)」.J Immunol 2003;171:1094-101;Paoletti E.「ワクチン接種に対するポックスウイルスベクターの適用:最新情報(Applications of pox virus vectors to vaccination:an update)」.Proc Natl Acad Sci U S A 1996;93:11349-53;米国特許第7,255,862号明細書)。第I相臨床試験では、腫瘍抗原CEAを発現するALVACウイルスが選択された患者において優れた安全性プロファイルを示し、CEA特異的T細胞応答の増加をもたらした;しかしながら、他覚的臨床反応は観察されなかった(Marshall JL,Hawkins MJ,Tsang KY,et al.「ヒト癌胎児性抗原を発現する複製欠損アビポックス組換えワクチンの癌患者における第I相試験(Phase I study in cancer patients of a replication-defective avipox recombinant vaccine that expresses human carcinoembryonic antigen)」.J Clin Oncol 1999;17:332-7)。
【0153】
別の実施形態では、改変ワクシニアアンカラ(MVA)ウイルスが、ネオ抗原ワクチン
又は免疫原性組成物のウイルスベクターとして用いられ得る。MVAはオルトポックスウイルスファミリーのメンバーであり、ニワトリ胚線維芽細胞でワクシニアウイルスのアンカラ株(CVA)を約570代にわたり連続継代することによって作成されている(レビューは、Mayr,A.,et al.,Infection 3,6-14,1975を参照)。このような継代の結果として、得られるMVAウイルスはCVAと比較して31キロベース少ないゲノム情報を含み、極めて宿主細胞制限的である(Meyer,H.et al.,J.Gen.Virol.72,1031-1038,1991)。MVAは、その極度の弱毒化、即ちビルレンス又は感染能の低下によって特徴付けられ、しかし優れた免疫原性はなおも保持している。種々の動物モデルで試験したとき、免疫抑制個体であってもMVAは無毒性であることが証明された。さらに、MVA-BN(登録商標)-HER2が、HER-2陽性乳癌の治療用に設計された免疫療法薬候補であり、現在、臨床試験中である(Mandl et al.,Cancer Immunol Immunother.Jan 2012;61(1):19-29)。組換えMVAを作製及び使用する方法は記載されている(例えば、米国特許第8,309,098号明細書及び同第5,185,146号明細書(本明細書によってその全体が援用される)を参照)。
【0154】
別の実施形態では、改変ワクシニアウイルスコペンハーゲン株、NYVAC及びNYVAC変種が、ベクターとして用いられる(米国特許第7,255,862号明細書;国際公開第95/30018号パンフレット;米国特許第5,364,773号明細書及び同第5,494,807号明細書(本明細書によって全体として参照により援用される)を参照)。
【0155】
一実施形態では、ワクチン又は免疫原性組成物の組換えウイルス粒子が、それを必要としている患者に投与される。発現するネオ抗原の投薬量は、数マイクログラム~数百マイクログラム、例えば5~500μgの範囲であり得る。ワクチン又は免疫原性組成物は、そのような投薬量レベルで発現を実現するのに好適な任意の量で投与することができる。ウイルス粒子は少なくとも約103.5pfuの量でそれを必要としている患者に投与され、又は細胞にトランスフェクトされ得る;従って、ウイルス粒子は、好ましくは少なくとも約10pfu~約10pfuでそれを必要としている患者に投与されるか、又は細胞を感染させ若しくは細胞にトランスフェクトされる;しかしながら、それを必要としている患者に少なくとも約10pfuを投与することができ、より好ましい投与量を少なくとも約10pfu~約10pfuとし得る。NYVACに関する用量は、ALVAC、MVA、MVA-BN、及びアビポックス、例えばカナリア痘及び鶏痘に関して適用可能である。
【0156】
ワクチン又は免疫原性組成物アジュバント
有効なワクチン又は免疫原性組成物は、有利には、免疫応答を惹起するため強力なアジュバントを含む。本明細書に記載されるとおり、TLR3アゴニスト並びにMDA5及びRIG3のRNAヘリカーゼドメインであるポリICLCが、ワクチン又は免疫原性組成物アジュバントに望ましい幾つかの特性を示している。それらの特性には、インビボでの免疫細胞の局所及び全身活性化の誘導、刺激ケモカイン及びサイトカインの産生、並びにDCによる抗原提示の刺激が含まれる。さらに、ポリICLCは、ヒトにおいて持続的なCD4+及びCD8+応答を誘導することができる。重要なことに、ポリICLCをワクチン接種した対象と、極めて有効性の高い複製コンピテント黄熱病ワクチンの投与を受けたことがあるボランティアとにおいて、転写経路及びシグナル伝達経路の上方調節の点で顕著な類似性が認められた。さらに、最近の第1相研究では、(Montanideに加えて)NY-ESO-1ペプチドワクチンと組み合わせてポリICLCで免疫した卵巣癌患者の90%超がCD4+及びCD8+ T細胞の誘導並びにペプチドに対する抗体反応を示した。同時に、ポリICLCは現在までに25件を上回る臨床試験で広範に試験されており、比較的安全な毒性プロファイルを呈している。強力且つ特異的な免疫原に加え、ネオ抗原ペプチドはアジュバント(例えばポリICLC)又は別の抗新生物剤と併用し得る。理論によって拘束されるものではないが、これらのネオ抗原は中枢性胸腺トレランスを回避し(従ってより強力な抗腫瘍T細胞応答が可能となる)、一方で自己免疫の可能性を(例えば、正常な自己抗原の標的化を回避することにより)低下させるものと予想される。有効な免疫応答は、有利には免疫系を活性化させるため強力なアジュバントを含む(Speiser and Romero,「癌免疫療法のための分子的に定義されたワクチン、及び防御T細胞免疫(Molecularly defined vaccines for cancer immunotherapy,and protective T cell immunity)」 Seminars in Immunol 22:144(2010))。例えば、Toll様受容体(TLR)が、自然免疫系、次には適応免疫系を有効に誘導する、微生物性及びウイルス性病原体「危険シグナル」の強力なセンサーとして登場している(Bhardwaj and Gnjatic,「TLRアゴニスト:それは優れたアジュバントか?(TLR AGONISTS:Are They Good Adjuvants?)」 Cancer J.16:382-391(2010))。TLRアゴニストの中でも、ポリICLC(合成二本鎖RNA模倣体)は、骨髄由来樹状細胞の最も強力なアクチベータの一つである。ヒトボランティア試験において、ポリICLCは安全で、且つ末梢血細胞において、最も強力な弱毒生ウイルスワクチンの一つである黄熱病ワクチンYF-17Dによって誘導されるものと同等の遺伝子発現プロファイルを誘導することが示されている(Caskey et al,「合成二本鎖RNAはヒトにおいて生菌ウイルスワクチンと同様の自然免疫応答を誘導する(Synthetic double-stranded RNA induces innate immune responses similar to a live viral vaccine in humans)」 J Exp Med 208:2357(2011))。好ましい実施形態において、Oncovir,Incにより調製されるポリICLCのGMP製剤であるHiltonol(登録商標)がアジュバントとして利用される。他の実施形態では、本明細書に記載される他のアジュバントが想定される。例えば、水中油、油中水又は多相W/O/W;例えば、米国特許第7,608,279号明細書及びAucouturier et al,Vaccine 19(2001),2666-2672、及びそれらの引用文献を参照のこと。
【0157】
適応
本明細書の免疫原性組成物又はワクチンによって治療し得る癌及び癌病態の例としては、限定はされないが、癌である、又は癌の発症リスクがあると診断された、それを必要としている患者が挙げられる。対象は、固形腫瘍、例えば、乳房、卵巣、前立腺、肺、腎臓、胃、結腸、精巣、頭頸部、膵臓、脳、メラノーマ、及び他の組織臓器腫瘍、並びに血液腫瘍、例えば、急性骨髄性白血病、慢性骨髄性白血病、慢性リンパ性白血病、T細胞リンパ性白血病、及びB細胞リンパ腫を含めたリンパ腫及び白血病、脳及び中枢神経系の腫瘍(例えば、髄膜、脳、脊髄、脳神経及び他のCNS部位の腫瘍、例えば、膠芽腫又は髄芽細胞腫);頭部及び/又は頸部癌、乳房腫瘍、循環系の腫瘍(例えば、心臓、縦隔及び胸膜、及び他の胸腔内臓器、血管腫瘍、及び腫瘍関連血管組織);血液及びリンパ系の腫瘍(例えば、ホジキン病、非ホジキン病リンパ腫、バーキットリンパ腫、AIDS関連リンパ腫、悪性免疫増殖性疾患、多発性骨髄腫、及び悪性形質細胞新生物、リンパ性白血病、骨髄性白血病、急性又は慢性リンパ性白血病、単球性白血病、特定の細胞型の他の白血病、不特定細胞型の白血病、リンパ組織、造血組織及び関連組織の不特定の悪性新生物、例えばびまん性大細胞型リンパ腫、T細胞リンパ腫又は皮膚T細胞リンパ腫);排泄系(例えば、腎臓、腎盂、尿管、膀胱、及び他の泌尿器)の腫瘍;胃腸管(例えば、食道、胃、小腸、結腸、結腸直腸、直腸S状結腸移行部、直腸、肛門、及び肛門管)の腫瘍;肝臓及び肝内胆管、胆嚢、及び他の胆道部位、膵臓、及び他の消化器に関わる腫瘍;口腔(例えば、口唇、舌、歯肉、口腔底、口蓋、耳下腺、唾液腺、扁桃腺、中咽頭、鼻咽頭、梨状窩(puriform sinus)、下咽頭、及び他の口腔部位)の腫瘍;生殖器系(例えば、外陰部、腟、子宮頸、子宮、卵巣、及び他の女性生殖器関連部位、胎盤、陰茎、前立腺、精巣、及び他の男性生殖器関連部位)の腫瘍;気道(例えば、鼻腔、中耳、副鼻腔、喉頭、気管、気管支及び肺、例えば小細胞肺癌及び非小細胞肺癌)の腫瘍;骨格系(例えば、体肢、骨関節軟骨及び他の部位の骨及び関節軟骨)の腫瘍;皮膚の腫瘍(例えば、皮膚悪性メラノーマ、非メラノーマ皮膚癌、皮膚基底細胞癌、皮膚扁平上皮癌、中皮腫、カポジ肉腫);及び末梢神経及び自律神経系を含む他の組織、結合組織及び軟部組織、後腹膜(retroperitoneoum)及び腹膜、眼、甲状腺、副腎、並びに他の内分泌腺及び関連構造が関わる腫瘍、リンパ節の二次性及び不特定悪性新生物、呼吸器系及び消化器系の二次性悪性新生物及び他の部位の二次性悪性新生物を有し得る。
【0158】
特に、非ホジキンリンパ腫(NHL)、腎明細胞癌(ccRCC)、転移性メラノーマ、肉腫、白血病又は膀胱癌、結腸癌、脳癌、乳癌、頭頸部癌、子宮内膜癌、肺癌、卵巣癌、膵癌又は前立腺癌の治療が興味深い。特定の実施形態において、メラノーマは高リスクメラノーマである。
【0159】
本免疫原性組成物又はワクチンを使用して治療することのできる癌には、とりわけ、他の化学療法薬による治療に難治性の症例が含まれ得る。用語「難治性」は、本明細書で使用されるとき、別の化学療法剤による治療後に抗増殖反応を全く又はごく弱くしか示さない(例えば、腫瘍成長の阻害が全く又はごく弱くしかない)癌(及び/又はその転移)を指す。これらは、他の化学療法薬では十分に治療できない癌である。難治性の癌には、(i)患者の治療において1つ以上の化学療法薬が既に不奏効となっている癌のみならず、(ii)他の手段、例えば生検及び化学療法薬の存在下における培養によって難治性であることが示され得る癌もまた包含される。
【0160】
本明細書に記載される免疫原性組成物又はワクチンはまた、それを必要としている患者であって、これまでに治療を受けたことのない患者の治療にも適用可能である。
【0161】
本明細書に記載される免疫原性組成物又はワクチンはまた、対象に新生物は検出されないものの疾患再発リスクが高い場合にも適用可能である。
【0162】
また、自家造血幹細胞移植(AHSCT)を受けたことのあるそれを必要としている患者、詳細には、AHSCTを受けた後に残存疾患を示す患者の治療も特に興味深い。AHSCT後の状況は、少量の残存疾患、恒常性増殖状態に対する免疫細胞の注入、及びいかなる再発を遅延させる標準治療もないことによって特徴付けられる。これらの特徴は、記載される新生物ワクチン又は免疫原性組成物を使用して疾患再発を遅延させるまたとない機会を提供する。
【0163】
医薬組成物/送達方法
本発明はまた、本発明に係る1つ以上の化合物(その薬学的に許容可能な塩を含む)の有効量を、場合により薬学的に許容可能な担体、賦形剤又は添加剤との組み合わせで含む医薬組成物にも関する。
【0164】
腫瘍特異的ネオ抗原ペプチドは単独の医薬活性薬剤として投与することができるが、また1つ以上の他の薬剤及び/又は補助剤と組み合わせて使用されてもよい。組み合わせとして投与される場合、治療剤は、同じ又は異なる時点で投与される別個の組成物として製剤化されてもよく、又は治療剤は単一の組成物として投与されてもよい。
【0165】
本組成物は、1日1回、1日2回、2日に1回、3日に1回、4日に1回、5日に1回、6日に1回、7日に1回、2週間に1回、3週間に1回、4週間に1回、2ヵ月に1回、6ヵ月に1回、又は1年に1回投与され得る。投与間隔は、個々の患者の必要性に応じて調整することができる。長い投与間隔には、徐放製剤又はデポー製剤を使用することができる。
【0166】
本発明の組成物は急性の疾患及び疾患病態の治療に使用することができ、また慢性病態の治療にも使用し得る。詳細には、本発明の組成物は、新生物の治療又は予防方法において使用される。特定の実施形態において、本発明の化合物は、2週間、3週間、1ヶ月、2ヶ月、3ヶ月、4ヶ月、5ヶ月、6ヶ月、1年、2年、3年、4年、又は5年、10年、又は15年を超える期間;又は例えば、範囲の下端が14日~15年の間の任意の期間であり、且つ範囲の上端が15日~20年の間である日単位、月単位又は年単位の任意の期間範囲(例えば、4週間~15年、6ヶ月~20年)にわたり投与される。ある場合には、患者の生涯にわたり本発明の化合物が投与されることが有利であり得る。好ましい実施形態において、患者は疾患又は障害の進行を確認するためモニタされ、それに従い用量が調整される。好ましい実施形態において、本発明に係る治療は、少なくとも2週間、3週間、1ヶ月間、2ヶ月間、3ヶ月間、4ヶ月間、5ヶ月間、6ヶ月間、1年間、2年間、3年間、4年間、又は5年間、10年間、15年間、20年間、又は対象の生涯にわたり有効である。
【0167】
腫瘍特異的ネオ抗原ペプチドは、従来の薬学的に許容可能な担体、補助剤、及び媒体を含有する投薬量単位製剤で、注入により、経口的に、非経口的に、吸入スプレーにより、経直腸的に、経腟的に、又は局所的に投与されてもよい。用語の非経口とは、本明細書で使用されるとき、1つ又は複数のリンパ節内、皮下、静脈内、筋肉内、胸骨内、輸液法、腹腔内、眼又は眼球、硝子体内、頬内、経皮、鼻腔内、頭蓋内及び硬膜内を含む脳内、足首関節、膝関節、股関節、肩関節、肘関節、手首関節を含む関節内、腫瘍内に直接など、及び坐薬形態を含む。
【0168】
外科的切除は、手術を用いて縦隔腫瘍、神経原性腫瘍、又は胚細胞腫瘍、又は胸腺腫などの癌の異常組織を除去する。特定の実施形態において、新生物ワクチン又は免疫原性組成物の投与は腫瘍切除の1、2、3、4、5、6、7、8、9、10、11、12、13、14、15週間後又はそれ以上後に開始される。好ましくは、新生物ワクチン又は免疫原性組成物の投与は腫瘍切除の4、5、6、7、8、9、10、11又は12週間後に開始される。
【0169】
プライム/ブーストレジメンは、ワクチン又は免疫原性若しくは免疫学的組成物の逐次投与を指す。特定の実施形態において、新生物ワクチン又は免疫原性組成物の投与はプライム/ブースト投薬レジメンであり、例えば新生物ワクチン又は免疫原性組成物の投与は、プライミングとしては1週目、2週目、3週目又は4週目であり、及び新生物ワクチン又は免疫原性組成物の投与は、ブーストとしては2ヵ月目、3ヵ月目又は4ヵ月目である。別の実施形態において、異種プライム-ブースト戦略を用いてより高い細胞傷害性T細胞応答が誘発される(Schneider et al.,「異種プライム-ブースト免疫化戦略を用いたCD8+ T細胞の誘導(Induction of CD8+ T cells using heterologous prime-boost immunisation strategies)」,Immunological Reviews Volume 170,Issue 1,pages 29-38,August 1999を参照)。別の実施形態では、ネオ抗原をコードするDNAを使用したプライミングの後に、タンパク質のブーストが続く。別の実施形態では、タンパク質を使用したプライミングの後に、ネオ抗原をコードするウイルスによるブーストが続く。別の実施形態では、ネオ抗原をコードするウイルスを使用してプライミングが行われ、別のウイルスを使用してブーストが行われる。別の実施形態において、タンパク質を使用してプライミングが行われ、DNAを使用してブーストが行われる。好ましい実施形態において、DNAワクチン又は免疫原性組成物を使用してT細胞応答がプライミングされ、組換えウイルスワクチン又は免疫原性組成物を使用してその応答がブーストされる。別の好ましい実施形態において、ウイルスワクチン又は免疫原性組成物はタンパク質又はDNAワクチン又は免疫原性組成物と共投与され、タンパク質又はDNAワクチン又は免疫原性組成物のアジュバントとして働く。次に患者は、ウイルスワクチン又は免疫原性組成物、タンパク質、又はDNAワクチン又は免疫原性組成物のいずれかでブーストされ得る(Hutchings et al.,「タンパク質とウイルスワクチンとの併用は強力な細胞性及び体液性免疫応答並びにマウスマラリア攻撃感染からの防御の増強を誘導する(Combination of protein and viral vaccines induces potent cellular and humoral immune responses and enhanced protection from murine malaria challenge)」.Infect Immun.2007 Dec;75(12):5819-26.Epub 2007 Oct 1を参照)。
【0170】
医薬組成物は、ヒト及び他の哺乳動物を含めた、それを必要としている患者への投与用医薬剤を作製するための従来の薬学方法に従い処理することができる。
【0171】
ネオ抗原ペプチドの改変はペプチドの溶解度、バイオアベイラビリティ及び代謝速度に影響を及ぼし、従って活性種の送達の制御をもたらし得る。溶解度は、ネオ抗原ペプチドを調製し、且つ十分に当業者の常法の技術の範囲内にある公知の方法によって試験することにより評価し得る。
【0172】
予想外にも、コハク酸又はその薬学的に許容可能な塩(コハク酸塩)を含む医薬組成物が、ネオ抗原ペプチドに関して溶解度の向上をもたらし得ることが分かっている。従って、一態様において、本発明は、少なくとも1つのネオ抗原ペプチド又はその薬学的に許容可能な塩と;pH調整剤(塩基、例えばジカルボン酸塩又はトリカルボン酸塩、例えばコハク酸又はクエン酸の薬学的に許容可能な塩など)と;薬学的に許容可能な担体とを含む医薬組成物を提供する。かかる医薬組成物は、少なくとも1つのネオ抗原ペプチドを含む溶液を塩基、例えばジカルボン酸塩又はトリカルボン酸塩、例えばコハク酸又はクエン酸の薬学的に許容可能な塩(コハク酸ナトリウムなど)と組み合わせることによるか、又は少なくとも1つのネオ抗原ペプチドを含む溶液を、塩基、例えばジカルボン酸塩又はトリカルボン酸塩、例えばコハク酸又はクエン酸の薬学的に許容可能な塩(例えばコハク酸塩緩衝溶液を含む)を含む溶液と組み合わせることによって調製し得る。特定の実施形態において、本医薬組成物はコハク酸ナトリウムを含む。特定の実施形態において、pH調整剤(クエン酸塩又はコハク酸塩など)は組成物中に約1mM~約10mMの濃度で存在し、及び特定の実施形態において、約1.5mM~約7.5mM、又は約2.0~約6.0mM、又は約3.75~約5.0mMの濃度で存在する。
【0173】
本医薬組成物の特定の実施形態において、薬学的に許容可能な担体は水を含む。特定の実施形態において、薬学的に許容可能な担体はデキストロースをさらに含む。特定の実施形態において、薬学的に許容可能な担体はジメチルスルホキシドをさらに含む。特定の実施形態において、本医薬組成物は免疫調節薬又はアジュバントをさらに含む。特定の実施形態において、免疫調節薬(immunodulator)又はアジュバントは、ポリICLC、1018 ISS、アルミニウム塩、Amplivax、AS15、BCG、CP-870,893、CpG7909、CyaA、dSLIM、GM-CSF、IC30、IC31、イミキモド、ImuFact IMP321、IS Patch、ISS、ISCOMATRIX、JuvImmune、LipoVac、MF59、モノホスホリルリピドA、Montanide IMS 1312、Montanide ISA 206、Montanide ISA 50V、Montanide ISA-51、OK-432、OM-174、OM-197-MP-EC、ONTAK、PEPTEL、ベクター系、PLGAマイクロパーティクル、レシキモド、SRL172、ビロソーム及び他のウイルス様粒子、YF-17D、VEGFトラップ、R848、βグルカン、Pam3Cys、及びAquila社のQS21 stimulonからなる群から選択される。特定の実施形態において、免疫調節薬又はアジュバントはポリICLCを含む。
【0174】
キサンテノン誘導体、例えば、バジメザン又はAsA404(5,6-ジメチルキサンテノン(dimethylaxanthenone)-4-酢酸(DMXAA)としても知られる)などもまた、本発明の実施形態に係るアジュバントとして用いられ得る。或いは、かかる誘導体はまた、本発明のワクチン又は免疫原性組成物と並行して例えば全身性又は腫瘍内送達を介して投与され、腫瘍部位で免疫を刺激し得る。理論によって拘束されるものではないが、かかるキサンテノン誘導体は、IFN遺伝子刺激因子(STING)受容体を介してインターフェロン(IFN)産生を刺激することにより作用すると考えられる(例えば、Conlon et al.(2013)「マウスSTINGは血管破裂剤5,6-ジメチルキサンテノン-4-酢酸に応答して結合し及びシグナル伝達するが、ヒトSTINGはこれを行わない(Mouse,but not Human STING,Binds and Signals in Response to the Vascular Disrupting Agent 5,6-Dimethylxanthenone-4-Acetic Acid)」,Journal of Immunology,190:5216-25及びKim et al.(2013)「抗癌フラボノイドはマウス選択的STINGアゴニストである(Anticancer Flavonoids are Mouse-Selective STING Agonists)」,8:1396-1401)を参照)。
【0175】
ワクチン又は免疫学的組成物はまた、アクリル系又はメタクリル系ポリマー及び無水マレイン酸・アルケニル誘導体共重合体から選択されるアジュバント化合物も含み得る。詳細には、それは、アクリル酸又はメタクリル酸が糖又は多価アルコールのポリアルケニルエーテルで架橋されたポリマー(カルボマー)、詳細にはアリルスクロース又はアリルペンタエリスリトールで架橋されたポリマーである。それはまた、無水マレイン酸及びエチレンが例えばジビニルエーテルで架橋された共重合体であってもよい(米国特許第6,713,068号明細書(本明細書によって全体として参照により援用される)を参照)。
【0176】
特定の実施形態において、pH調整剤は、本明細書に記載されるとおりのアジュバント又は免疫調節薬を安定化させることができる。
【0177】
特定の実施形態において、医薬組成物は、1つ~5つのペプチド、ジメチルスルホキシド(DMSO)、デキストロース(又はトレハロース又はスクロース)、水、コハク酸塩、ポリI:ポリC、ポリ-L-リジン、カルボキシメチルセルロース、及び塩化物を含む。特定の実施形態において、1つ~5つのペプチドの各々は300μg/mlの濃度で存在する。特定の実施形態において、本医薬組成物は≦3体積%のDMSOを含む。特定の実施形態において、本医薬組成物は水中3.6~3.7%のデキストロースを含む。特定の実施形態において、本医薬組成物は3.6~3.7mMのコハク酸塩(例えばコハク酸二ナトリウム)又はその塩を含む。特定の実施形態において、本医薬組成物は0.5mg/mlのポリI:ポリCを含む。特定の実施形態において、本医薬組成物は0.375mg/mlのポリ-L-リジンを含む。特定の実施形態において、本医薬組成物は1.25mg/mlのカルボキシメチルセルロースナトリウムを含む。特定の実施形態において、本医薬組成物は0.225%の塩化ナトリウムを含む。
【0178】
医薬組成物は、本明細書に記載される腫瘍特異的ネオ抗原ペプチドを、本明細書に記載されている疾患及び病態(例えば、新生物/腫瘍)の治療に治療上有効な量で、場合によ
り薬学的に許容可能な添加剤、担体及び/又は賦形剤と組み合わせて含む。当業者は、本開示及び当該技術分野における知識から、本発明に係る1つ以上の化合物の治療有効量が、治療しようとする病態、その重症度、用いられる治療レジメン、使用する薬剤の薬物動態、並びに治療される患者(動物又はヒト)によって異なり得ることを認識するであろう。
【0179】
本発明に係る医薬組成物を調製するため、本発明に係る化合物の1つ以上の治療有効量は、好ましくは、用量が作製されるように従来の医薬配合技法に従い薬学的に許容可能な担体と徹底的に混合される。担体は、例えば、数ある中でもとりわけ、眼球、経口、局所又は非経口、例えば、ゲル、クリーム、軟膏、ローション及び時限放出植込み型製剤など、投与に望ましい調製形態に応じて多種多様な形態をとり得る。経口剤形として医薬組成物を調製する際には、任意の通常の医薬媒体が用いられ得る。従って、懸濁液、エリキシル剤及び溶液などの液体経口製剤には、水、グリコール、油、アルコール、香味剤、保存剤、着色剤などを含めた好適な担体及び添加剤が用いられ得る。散剤、錠剤、カプセルなどの固形経口製剤には、及び坐薬などの固形製剤には、デンプン、糖担体、例えばデキストロース、マンニトール、ラクトース及び関連する担体、希釈剤、造粒剤、潤滑剤、結合剤、崩壊剤などを含めた好適な担体及び添加剤が用いられ得る。必要であれば、錠剤又はカプセルは腸溶性コーティングされてもよく、又は標準的な技法によって徐放性であってもよい。
【0180】
活性化合物は、薬学的に許容可能な担体又は希釈剤中に、治療される患者に重大な毒性作用を引き起こすことなしに所望の徴候に治療上有効な量を患者に送達するのに十分な量で含まれる。
【0181】
経口組成物は、概して不活性希釈剤又は食用担体を含む。経口組成物はゼラチンカプセルに封入されるか又は錠剤に圧縮され得る。経口治療薬投与の目的上、活性化合物又はそのプロドラッグ誘導体は賦形剤と添合され、錠剤、トローチ、又はカプセルの形態で使用され得る。薬剤適合性を有する結合剤、及び/又は補助剤材料が組成物の一部として含まれてもよい。
【0182】
錠剤、丸薬、カプセル、トローチなどは、以下の成分、又は類似した性質の化合物のいずれかを含有し得る:微結晶性セルロース、トラガカントゴム又はゼラチンなどの結合剤;デンプン又はラクトースなどの賦形剤、アルギン酸又はコーンスターチなどの分散剤;ステアリン酸マグネシウムなどの潤滑剤;コロイド状二酸化ケイ素などの滑剤;スクロース又はサッカリンなどの甘味剤;又はペパーミント、サリチル酸メチル、又はオレンジ香味料などの香味剤。投薬量単位剤形がカプセルである場合、それは、本明細書に記載される材料に加えて、脂肪油などの液体担体を含有し得る。加えて、投薬量単位剤形は、投薬量単位の物理的形態を修飾する様々な他の材料、例えば、糖、シェラック、又は腸溶剤のコーティングを含有し得る。
【0183】
経口投与に好適な本発明の製剤は、カプセル、カシェ剤又は錠剤など、各々が所定量の活性成分を含有する個別的な単位として;散剤又は顆粒として;水性液体又は非水性液体中の溶液又は懸濁液として;又は水中油型液体エマルション又は油中水型エマルションとして及びボーラスとして等、提供されてもよい。
【0184】
錠剤は、圧縮又は成形によって、場合により1つ以上の補助成分を伴い作製されてもよい。圧縮錠剤は、散剤又は顆粒などの自由流動形態の活性成分を、場合により結合剤、潤滑剤、不活性希釈剤、保存剤、表面活性剤又は分散剤と混合して、好適な機械で圧縮することにより調製し得る。成形錠剤は、不活性な液体希釈剤で湿らせた粉末状化合物の混合物を好適な機械で成形することにより作製し得る。錠剤は場合によりコーティングされる
か又は割線が入れられてもよく、中の活性成分の持続放出又は制御放出を提供するように製剤化されてもよい。
【0185】
薬学的に活性な成分のかかる持続放出又は制御放出組成物を製剤化する方法は当該技術分野において公知であり、いくつかの交付済み米国特許に記載されており、その一部としては、限定はされないが、米国特許第3,870,790号明細書;同第4,226,859号明細書;同第4,369,172号明細書;同第4,842,866号明細書及び同第5,705,190号明細書(これらの開示は全体として参照により本明細書に援用される)が挙げられる。コーティングは、化合物を腸に送達するために使用することができる(例えば、米国特許第6,638,534号明細書、同第5,541,171号明細書、同第5,217,720号明細書、及び同第6,569,457号明細書、及びこれらに引用される文献を参照のこと)。
【0186】
活性化合物又はその薬学的に許容可能な塩はまた、エリキシル剤、懸濁液、シロップ、オブラート、チューインガムなどの構成成分として投与されてもよい。シロップは、活性化合物に加えて、甘味剤としてのスクロース又はフルクトース及び特定の保存剤、色素並びに着色料及び香味料を含有し得る。
【0187】
眼球、非経口、皮内、皮下、又は局所適用に使用される溶液又は懸濁液は以下の構成成分を含み得る:滅菌希釈剤、例えば注入用水、生理食塩溶液、固定油、ポリエチレングリコール、グリセリン、プロピレングリコール又は他の合成溶媒;抗細菌剤、例えばベンジルアルコール又はメチルパラベン;抗酸化剤、例えばアスコルビン酸又は亜硫酸水素ナトリウム;キレート剤、例えばエチレンジアミン四酢酸;緩衝剤、例えば酢酸塩、クエン酸塩又はリン酸塩及び塩化ナトリウム又はデキストロースなどの張性を調整する薬剤。
【0188】
特定の実施形態において、薬学的に許容可能な担体は、任意選択で追加的な共溶媒を伴う水性溶媒、即ち水を含む溶媒である。例示的な薬学的に許容可能な担体としては、水、緩衝水溶液(リン酸緩衝生理食塩水(PBS)など、及び5%デキストロース水溶液(D5W)又は10%トレハロース又は10%スクロースが挙げられる。特定の実施形態において、水性溶媒には、例えば約1~4%、又は1~3%の量のジメチルスルホキシド(DMSO)がさらに含まれる。特定の実施形態において、薬学的に許容可能な担体は等張性である(即ち、血漿などの体液と実質的に同じ浸透圧を有する)。
【0189】
一実施形態において、活性化合物は、インプラント及びマイクロカプセル化されたデリバリーシステムを含め、制御放出製剤など、化合物を体内からの急速な排出から保護する担体と共に調製される。エチレン酢酸ビニル、ポリ酸無水物、ポリグリコール酸、コラーゲン、ポリオルトエステル、ポリ乳酸、及びポリ乳酸-co-グリコール酸(PLGA)などの生分解性生体適合性ポリマーが用いられてもよい。かかる製剤の調製方法は、この開示及び当該技術分野における知識を考慮して当業者の範囲内である。
【0190】
当業者は、錠剤に加えて、活性成分の持続放出又は制御放出を提供するため他の剤形を製剤化し得ることを、この開示及び当該技術分野における知識から認識する。かかる剤形としては、限定はされないが、カプセル、顆粒及びジェルキャップが挙げられる。
【0191】
リポソーム懸濁液もまた薬学的に許容可能な担体であり得る。これは当業者に公知の方法により調製することができる。例えば、リポソーム製剤は、適切な1つ又は複数の脂質を無機溶媒中に溶解し、次に溶媒を蒸発させて、容器の表面に乾燥した脂質の薄膜を残すことにより調製し得る。次に容器に活性化合物の水溶液が導入される。次に容器を手で旋回させて容器の側面から脂質材料を遊離させ、脂質凝集物を分散させると、それによりリポソーム懸濁液が形成される。当業者に周知されている他の調製方法もまた、本発明のこ
の態様で用いることができる。
【0192】
製剤は、好都合には単位投薬量剤形で提供されてもよく、従来の製薬技法によって調製されてもよい。かかる技法は、活性成分と1つ又は複数の医薬担体又は1つ又は複数の賦形剤とを会合させるステップを含む。一般に、製剤は、活性成分を液体担体と一様に且つ徹底的に会合させることによるか、又は固体担体を微粉化することによるか又は両方により、及び次に、必要であれば生成物を成形することにより調製される。
【0193】
口内における局所投与に好適な製剤及び組成物には、香味付けされた基剤、通常スクロース及びアカシア又はトラガカント中に成分を含むロゼンジ;ゼラチン及びグリセリンなどの不活性基剤、又はスクロース及びアカシア中に活性成分を含むトローチ;及び投与しようとする成分を好適な液体担体中に含む洗口剤が含まれる。
【0194】
皮膚への局所投与に好適な製剤は、投与しようとする成分を薬学的に許容可能な担体中に含む軟膏、クリーム、ゲル及びペーストとして提供され得る。好ましい局所デリバリーシステムは、投与しようとする成分を含有する経皮パッチである。
【0195】
直腸投与用の製剤は、例えばカカオ脂又はサリチル酸塩を含む好適な基剤を伴う坐薬として提供され得る。
【0196】
担体が固体である場合の経鼻投与に好適な製剤は、例えば20~500ミクロンの範囲の粒度を有する粗末を含み、これは、嗅薬の投与方法で、即ち鼻に当てるように保持された粉末の容器から鼻道を介して急速吸入することにより投与される。担体が液体である場合の好適な製剤は、例えば鼻腔内スプレーとして又は点鼻液としての投与用液体であり、活性成分の水性又は油性溶液を含む。
【0197】
腟内投与に好適な製剤は、活性成分に加えて、当該技術分野において適切であることが知られているとおりの担体を含有するペッサリー、タンポン、クリーム、ゲル、ペースト、泡又はスプレー製剤として提供され得る。
【0198】
非経口製剤は、ガラス製又はプラスチック製のアンプル、使い捨てシリンジ又は頻回用量バイアルに封入され得る。静脈内投与される場合、好ましい担体としては、例えば生理食塩水又はリン酸緩衝生理食塩水(PBS)が挙げられる。
【0199】
非経口製剤については、担体は通常、滅菌水又は塩化ナトリウム水溶液を含むが、分散を助けるものを含めた他の成分が含まれてもよい。当然ながら、滅菌水が使用され、且つ無菌のまま維持される場合、組成物及び担体もまた滅菌される。また注射用懸濁液が調製されてもよく、この場合、適切な液体担体、懸濁剤などが用いられ得る。
【0200】
非経口投与に好適な製剤は、抗酸化剤、緩衝剤、静菌剤及び製剤を意図されるレシピエントの血液と等張性にする溶質を含有し得る水性及び非水性滅菌注射溶液;並びに懸濁剤及び増粘剤を含み得る水性及び非水性滅菌懸濁液を含む。これらの製剤は、単位用量又は複数用量容器、例えば密閉されたアンプル及びバイアルで提供されてもよく、使用直前に滅菌液体担体、例えば注射用水の添加のみを必要とするフリーズドライ(凍結乾燥)状態で保存され得る。即時調合注射溶液及び懸濁液は、これまでに記載されている種類の滅菌粉末、顆粒及び錠剤から調製され得る。
【0201】
活性化合物の投与は連続投与(静脈内点滴)から1日数回の経口投与(例えば、Q.I.D.)にまで及び得るとともに、眼内又は眼球経路を含め、数ある投与経路の中でもとりわけ、経口、局所、眼内又は眼球、非経口、筋肉内、静脈内、皮下、経皮(浸透促進剤を含み得る)、頬側及び坐薬投与を含み得る。
【0202】
新生物ワクチン又は免疫原性組成物は、従来の薬学的に許容可能な担体、補助剤、及び媒体を含有する投薬量単位製剤で、注射により、経口的に、非経口的に、吸入スプレーにより、直腸内に、腟内に、又は局所的に投与されてもよい。用語の非経口とは、本明細書で使用されるとき、1つ又は複数のリンパ節内、皮下、静脈内、筋肉内、胸骨内、輸液法、腹腔内、眼又は眼球、硝子体内、頬内、経皮、鼻腔内、頭蓋内及び硬膜内を含む脳内、足首関節、膝関節、股関節、肩関節、肘関節、手首関節を含む関節内、腫瘍内に直接など、及び坐薬形態を含む。
【0203】
目的の部位に主題の組成物を提供するため、注入、カテーテルの使用、トロカール、プロジェクタイル、プルロニックゲル、ステント、持続性薬物放出ポリマー又は内部アクセスを提供する他の装置など、様々な技法を用いることができる。患者から摘出したため臓器又は組織にアクセス可能である場合、かかる臓器又は組織が主題の組成物を含有する媒体浴中に入れられてもよく、主題の組成物が臓器に塗布されてもよく、又は任意の好都合な方法で適用されてもよい。
【0204】
腫瘍特異的ネオ抗原ペプチドは、所望の局所的又は全身性生理又は薬理効果の達成において有効な組成物の制御及び持続放出に好適な装置によって投与され得る。この方法は、薬剤の放出が所望される領域に持続放出型薬物送達システムを位置決めするステップと、薬剤を装置から所望の治療領域へと移動させるステップとを含む。
【0205】
腫瘍特異的ネオ抗原ペプチドは、少なくとも1つの公知の他の治療剤、又は前記薬剤の薬学的に許容可能な塩と併用して利用されてもよい。用いることのできる公知の治療剤の例としては、限定はされないが、コルチコステロイド(例えば、コルチゾン、プレドニゾン、デキサメタゾン)、非ステロイド系抗炎症薬(NSAIDs)(例えば、イブプロフェン、セレコキシブ、アスピリン、インドメタシン(indomethicin)、ナプロキセン)、アルキル化剤、例えば、ブスルファン、シスプラチン、マイトマイシンC、及びカルボプラチン;抗有糸分裂剤、例えば、コルヒチン、ビンブラスチン、パクリタキセル、及びドセタキセル;トポI阻害薬、例えば、カンプトテシン及びトポテカン;トポII阻害薬、例えば、ドキソルビシン及びエトポシド;及び/又はRNA/DNA代謝拮抗薬、例えば、5-アザシチジン、5-フルオロウラシル及びメトトレキサート;DNA代謝拮抗薬、例えば、5-フルオロ-2’-デオキシ-ウリジン、ara-C、ヒドロキシウレア及びチオグアニン;抗体、例えば、HERCEPTIN及びRITUXANが挙げられる。
【0206】
本明細書に詳細に挙げた成分に加えて、本発明の製剤は、問題の製剤タイプを考慮した当該技術分野における従来の他の薬剤を含み得ることが理解されなければならず、例えば、経口投与に好適なものが香味剤を含み得る。
【0207】
薬学的に許容可能な塩の形態は、本発明に係る医薬組成物に含めるのに好ましい化学的形態の本発明に係る化合物であり得る。
【0208】
本化合物又はその誘導体は、これらの薬剤のプロドラッグ形態を含め、薬学的に許容可能な塩の形態で提供されてもよい。本明細書で使用されるとき、用語の薬学的に許容可能な塩又は複合体とは、親化合物の所望の生物学的活性を保持し且つ正常細胞に対して限られた毒性効果を呈する本発明に係る活性化合物の適切な塩又は複合体を指す。かかる塩の非限定的な例は、とりわけ、(a)無機酸(例えば、塩酸、臭化水素酸、硫酸、リン酸、硝酸など)と形成される酸付加塩、及び酢酸、シュウ酸、酒石酸、コハク酸、リンゴ酸、アスコルビン酸、安息香酸、タンニン酸、パモン酸、アルギン酸、及びポリグルタミン酸
などの有機酸と形成される塩;(b)数ある中でもとりわけ、亜鉛、カルシウム、ナトリウム、カリウムなどの金属カチオンと形成される塩基付加塩などである。
【0209】
本明細書における化合物は市販されており、又は合成することができる。当業者は理解し得るとおり、本明細書の式の化合物を合成するさらなる方法が当業者には明らかである。加えて、様々な合成のステップを別の順番又は順序で実施して所望の化合物を得てもよい。本明細書に記載される化合物の合成において有用な合成化学変換及び保護基の方法論(保護及び脱保護)は当該技術分野において公知であり、例えば、R.Larock,Comprehensive Organic Transformations,2nd.Ed.,Wiley-VCH Publishers(1999);T.W.Greene and P.G.M.Wuts,Protective Groups in Organic Synthesis,3rd.Ed.,John Wiley and Sons(1999);L.Fieser and M.Fieser,Fieser and Fieser’s Reagents for Organic Synthesis,John Wiley and Sons(1999);及びL.Paquette,ed.,Encyclopedia of Reagents for Organic Synthesis,John Wiley and Sons(1995)、及びこれらの続版に記載されるものが含まれる。
【0210】
本発明の腫瘍特異的ネオ抗原ペプチドと共に含まれ得るさらなる薬剤は、1つ以上の不斉中心を含有してもよく、従ってラセミ体及びラセミ混合物、単一エナンチオマー、個々のジアステレオマー及びジアステレオマー混合物として存在し得る。これらの化合物のかかる異性体形態は全て、本発明に明示的に含まれる。本発明の化合物はまた、複数の互変異性型で表されてもよく、そのような場合、本発明は、本明細書に記載される化合物の全ての互変異性型を明示的に含む(例えば、環系のアルキル化は複数の部位のアルキル化をもたらすことができ、本発明はかかる反応生成物の全てのを明示的に含む)。かかる化合物の全てのかかる異性体形態が、本発明に明示的に含まれる。本明細書に記載される化合物の全ての結晶形態が、本発明に明示的に含まれる。
【0211】
投薬量
本明細書に記載される薬剤が医薬品としてヒト又は動物に投与されるとき、それらはそれ自体で投与することも、又は薬学的に許容可能な担体、賦形剤、若しくは希釈剤と組み合わせた活性成分を含有する医薬組成物として投与することもできる。
【0212】
本発明の医薬組成物中の活性成分の実際の投薬量レベル及び時間的投与経過は、特定の患者、組成物、及び投与方法について、患者に毒性となることなく所望の治療応答を実現するのに有効な活性成分の量が達成されるように変えることができる。概して、本発明の薬剤又は医薬組成物は、ウイルス感染症及び/又は自己免疫疾患に関連する症状を軽減し又は消失させるのに十分な量で投与される。
【0213】
薬剤の好ましい用量は、患者が忍容し得る、且つ重篤な又は許容できない副作用を生じない最大量である。例示的用量範囲としては、1日0.01mg~250mg、1日0.01mg~100mg、1日1mg~100mg、1日10mg~100mg、1日1mg~10mg、及び1日0.01mg~10mgが挙げられる。薬剤の好ましい用量は、患者が忍容し得る、且つ重篤な又は許容できない副作用を生じない最大量である。実施形態において、薬剤は、1日体重1キログラム当たり約10マイクログラム~約100mg、1日約0.1~約10mg/kg、又は1日約1.0mg~約10mg/kg体重の濃度で投与される。
【0214】
実施形態において、医薬組成物は、1~10mgの範囲の量、例えば、1、2、3、4
、5、6、7、8、9、又は10mgの薬剤を含む。
【0215】
実施形態において、治療上有効な投薬量は、約0.1ng/ml乃至約50~100mg/mlの血清中薬剤濃度を生じる。医薬組成物5は、典型的には1日体重1キログラム当たり約0.001mg~約2000mgの化合物の投薬量を提供しなければならない。例えば、ヒト患者に対する全身投与の投薬量は、1~10mg/kg、20~80mg/kg、5~50μg/kg、75~150μg/kg、100~500mg/kg、250~750mg/kg、500~1000mg/kg、1~10mg/kg、5~50mg/kg、25~75mg/kg、50~100mg/kg、100~250mg/kg、50~100mg/kg、250~500mg/kg、500~750mg/kg、750~1000mg/kg、1000~1500mg/kg、10 1500~2000mg/kgの範囲、5mg/kg、20mg/kg、50mg/kg、100mg/kg、500mg/kg、1000mg/kg、1500mg/kg、又は2000mg/kgであり得る。医薬投薬量単位剤形は、投薬量単位剤形当たり約1mg~約5000mg、例えば約100~約2500mgの化合物又は必須成分の組み合わせを提供するように調製される。
【0216】
実施形態において、約50nM~約1μMの薬剤が対象に投与される。関連する実施形態において、約50~100nM、50~250nM、100~500nM、250~500nM、250~750nM、500~750nM、500nM~1μM、又は750nM~1μMの薬剤が対象に投与される。
【0217】
有効量の決定は、特に本明細書に提供される詳細な開示を踏まえれば、十分に当業者の能力の範囲内にある。概して、薬剤の効果のある又は有効な量は、初めに低用量の薬剤を投与し、次に治療対象において所望の効果(例えば、ウイルス感染症又は自己免疫疾患に関連する症状の軽減又は消失)が最小の又は許容される毒性の副作用で観察されるまで投与用量又は投薬量を漸増させることにより決定される。本発明の医薬組成物の投与に適切な用量及び投薬スケジュールを決定するために適用可能な方法は、例えば、Goodman and Gilman’s The Pharmacological Basis
of Therapeutics,Goodman et al.,eds.,11th Edition,McGraw-Hill 2005、及びRemington:The Science and Practice of Pharmacy,20th
and 21st Editions,Gennaro and University of the Sciences in Philadelphia,Eds.,Lippencott Williams & Wilkins(2003及び2005)(これらの各々が本明細書によって参照により援用される)に記載されている。
【0218】
好ましい単位投薬量製剤は、投与される成分の1日用量又は単位、本明細書に記載されるとおりの、1日サブ用量、又はそれらの適切な割合を含有するものである。
【0219】
本発明の腫瘍特異的ネオ抗原ペプチド及び/又は本発明の組成物で障害又は疾患を治療するための投薬量レジメンは、疾患のタイプ、患者の年齢、体重、性別、医学的状態、病態の重症度、投与経路、及び用いられる詳細な化合物を含めた種々の要因に基づく。従って、投薬量レジメンは幅広く異なり得るが、標準方法を用いて常法で決定することができる。
【0220】
対象に投与される量及び投薬レジメンは、投与方法、治療される病態の性質、治療される対象の体重及び処方医師の判断など、多くの要因に依存し得る;かかる要因は全て、この開示及び当該技術分野における知識から当業者の範囲内にある。
【0221】
本発明に係る治療活性を有する製剤中に含まれる化合物の量は、疾患又は病態の治療に有効な量である。一般に、剤形中における好ましい本化合物の治療有効量は、通常、使用される化合物、治療される病態又は感染及び投与経路に応じて、患者の約0.025mg/kg/日弱~約2.5g/kg/日、好ましくは約0.1mg/kg/日~約100mg/kg/日又はそれよりかなり多い範囲であるが、この投薬量範囲の例外が本発明により企図され得る。その最も好ましい形態では、本発明に係る化合物は約1mg/kg/日~約100mg/kg/日の範囲の量で投与される。化合物の投薬量は、治療される病態、詳細な化合物、及び他の臨床学的因子、例えば患者の体重及び状態並びに化合物の投与経路に依存し得る。本発明はヒト及び家畜の両方への使用に適用を有することが理解されるべきである。
【0222】
ヒトへの経口投与について、約0.1~100mg/kg/日、好ましくは約1~100mg/kg/日の投薬量が概して十分である。
【0223】
薬物送達が局所的ではなく全身性である場合、この投薬量範囲は、概して患者において約0.04未満~約400マイクログラム/cc血液又はそれ以上の範囲の活性化合物の有効血中レベル濃度を生じる。
化合物は、好都合には、限定はされないが、単位投薬量剤形当たり0.001~3000mg、好ましくは0.05~500mgの活性成分を含有するものを含め、任意の好適な単位投薬量剤形で投与される。10~250mgの経口投薬量が通常好都合である。
【0224】
特定の例示的実施形態によれば、本ワクチン又は免疫原性組成物は、ネオ抗原ペプチド当たり約10μg~1mgの用量で投与される。特定の例示的実施形態によれば、本ワクチン又は免疫原性組成物は、ネオ抗原ペプチド当たり約10μg~2000μgの平均週用量レベルで投与される。
【0225】
薬物組成物中の活性化合物の濃度は、薬物の吸収、分布、不活性化、及び排泄率並びに当業者に公知の他の要因に依存し得る。投薬量の値はまた、軽減しようとする病態の重症度によっても変わり得ることに留意すべきである。さらに、任意の特定の対象について、具体的な投薬量レジメンは個別の必要性及び組成物投与の投与者又は監督者の専門的な判断に従い時間とともに調整されなければならないこと、及び本明細書に示す濃度範囲は例示に過ぎず、特許請求される組成物の範囲又は実施を限定する意図はないことが理解されるべきである。活性成分は一度に投与されてもよく、又は複数の少量の用量に分割して種々の時間間隔で投与されてもよい。
【0226】
本発明は、本明細書に記載される少なくとも1つの腫瘍特異的ネオ抗原を含有する医薬組成物を提供する。実施形態において、この医薬組成物は、薬学的に許容可能な担体、賦形剤、又は希釈剤を含有し、これには、それ自体は組成物の投与を受ける対象に有害な免疫応答の発生を引き起こさない、且つ過度の毒性なしに投与され得る任意の医薬品が含まれる。本明細書で使用されるとき、用語「薬学的に許容可能」は、哺乳動物、より詳細にはヒトでの使用について連邦政府若しくは州政府の規制当局によって承認済みであるか、又は米国薬局方、欧州薬局方若しくは他の一般に認められている薬局方に収載されていることを意味する。これらの組成物はウイルス感染症及び/又は自己免疫疾患の治療及び/又は予防に有用であり得る。
【0227】
薬学的に許容可能な担体、希釈剤、及び他の賦形剤に関する周到な考察が、Remington’s Pharmaceutical Sciences(17th ed.,Mack Publishing Company)及びRemington:The Science and Practice of Pharmacy(21st ed.,Lippincott Williams & Wilkins)(これらは本明細書によって参照により援用される)に提供されている。医薬組成物の配合は投与方法に適していなければならない。実施形態において、医薬組成物はヒトへの投与に好適であり、無菌、粒子状物質不含及び/又は非発熱性であり得る。
【0228】
薬学的に許容可能な担体、賦形剤、又は希釈剤としては、限定されないが、生理食塩水、緩衝生理食塩水、デキストロース、水、グリセロール、エタノール、滅菌等張緩衝水溶液、及びそれらの組み合わせが挙げられる。
【0229】
湿潤剤、乳化剤及び潤滑剤、例えばラウリル硫酸ナトリウム及びステアリン酸マグネシウム、並びに着色剤、離型剤、コーティング剤、甘味剤、香味剤及び芳香剤、保存剤、及び抗酸化剤もまた組成物中に存在し得る。
【0230】
薬学的に許容可能な抗酸化剤の例としては、限定はされないが、以下が挙げられる:(1)水溶性抗酸化剤、例えば、アスコルビン酸、塩酸システイン、重硫酸ナトリウム、メタ重亜硫酸ナトリウム、亜硫酸ナトリウムなど;(2)油溶性抗酸化剤、例えば、パルミチン酸アスコルビル、ブチル化ヒドロキシアニソール(BHA)、ブチル化ヒドロキシトルエン(BHT)、レシチン、没食子酸プロピル、α-トコフェロールなど;及び(3)金属キレート剤、例えば、クエン酸、エチレンジアミン四酢酸(EDTA)、ソルビトール、酒石酸、リン酸など。
【0231】
実施形態において、医薬組成物は、再構成に好適な凍結乾燥粉末などの固体形態、液体溶液、懸濁液、エマルション、錠剤、丸薬、カプセル、持続放出製剤、又は散剤で提供される。
【0232】
実施形態において、医薬組成物は液体形態で、例えば、医薬組成物中の活性成分の分量及び濃度を指示する密閉容器内に提供される。関連する実施形態では、液体形態の医薬組成物がハーメチックシール容器に提供される。
【0233】
本発明の医薬組成物を製剤化する方法は従来どおりであり、当該技術分野において周知されている(Remington及びRemington’sを参照)。当業者は、所望の特性(例えば、投与経路、バイオセーフティ、及び放出プロファイル)を有する医薬組成物を容易に製剤化することができる。
【0234】
医薬組成物の調製方法は、活性成分と薬学的に許容可能な担体、及び場合により1つ以上の補助成分とを会合させるステップを含む。医薬組成物は、活性成分を液体担体と一様に且つ徹底的に会合させることによるか、又は固体担体を微粉化することによるか、又は両方により、及び次に、必要であれば生成物を成形することにより調製し得る。医薬組成物の調製に関するさらなる方法論が、多層剤形の調製を含め、Ansel’s Pharmaceutical Dosage Forms and Drug Delivery Systems(9th ed.,Lippincott Williams & Wilkins)(本明細書によって参照により援用される)に記載されている。
【0235】
経口投与に好適な医薬組成物は、カプセル、カシェ剤、丸薬、錠剤、ロゼンジ(香味付けされた基剤、通常スクロース及びアカシア又はトラガカントを使用する)、散剤、顆粒の形態であっても、或いは水性又は非水性液体中の溶液又は懸濁液として、或いは水中油型又は油中水型液体エマルションとして、又はエリキシル剤又はシロップとして、又はトローチとして(ゼラチン及びグリセリンなどの不活性基剤、又はスクロース及びアカシアを使用する)及び/又は洗口剤としての形態などであってもよく、各々が、1つ又は複数の活性成分として本明細書に記載される1つ又は複数の化合物、その誘導体、又はその薬学的に許容可能な塩又はプロドラッグの所定量を含有する。活性成分はまた、ボーラス、
舐剤、又はペーストとして投与されてもよい。
【0236】
経口投与用の固形剤形(例えば、カプセル、錠剤、丸薬、糖衣剤、散剤、顆粒など)では、活性成分は、1つ以上の薬学的に許容可能な担体、賦形剤、又は希釈剤、例えば、クエン酸ナトリウム又はリン酸二カルシウム、及び/又は以下のいずれかと混合される:(1)充填剤又は増量剤、例えば、デンプン、ラクトース、スクロース、グルコース、マンニトール、及び/又はケイ酸;(2)結合剤、例えば、カルボキシメチルセルロース、アルギン酸塩、ゼラチン、ポリビニルピロリドン、スクロース及び/又はアカシアなど;(3)保湿剤、例えば、グリセロール;(4)崩壊剤、例えば、寒天、炭酸カルシウム、ジャガイモ又はタピオカデンプン、アルギン酸、ある種のケイ酸塩、及び炭酸ナトリウム;(5)溶解抑制剤、例えば、パラフィン;(6)吸収促進剤、例えば、第4級アンモニウム化合物;(7)湿潤剤、例えば、アセチルアルコール及びモノステアリン酸グリセロール;(8)吸収剤、例えば、カオリン及びベントナイト粘土;(9)潤滑剤、例えば、タルク、ステアリン酸カルシウム、ステアリン酸マグネシウム、固体ポリエチレングリコール、ラウリル硫酸ナトリウム、及びそれらの混合物;及び(10)着色剤。カプセル、錠剤、及び丸薬の場合、医薬組成物は緩衝剤も含み得る。同様のタイプの固体組成物はまた、ソフト及びハード充填ゼラチンカプセル中における充填剤、及び賦形剤、例えばラクトース又は乳糖、並びに高分子量ポリエチレングリコールなどを使用して調製することもできる。
【0237】
錠剤は、圧縮又は成形によって、場合により1つ以上の補助成分を伴い作製されてもよい。圧縮錠剤は、結合剤(例えば、ゼラチン又はヒドロキシプロピルメチルセルロース)、潤滑剤、不活性希釈剤、保存剤、崩壊剤(例えば、デンプングリコール酸ナトリウム又は架橋カルボキシメチルセルロースナトリウム)、表面活性剤、及び/又は分散剤を使用して調製することができる。成形錠剤は、不活性な液体希釈剤で湿らせた粉末状活性成分の混合物を好適な機械で成形することにより作製し得る。
【0238】
錠剤、並びに糖衣剤、カプセル、丸薬、及び顆粒などの他の固形剤形は、場合により割線が入れられてもよく、又は腸溶性コーティング及び当該技術分野において周知されている他のコーティングなどのコーティング及びシェルを伴い調製されてもよい。
【0239】
一部の実施形態では、活性成分の効果を延ばすため、皮下又は筋肉内注射からの化合物の吸収を遅延させることが望ましい。これは、難水溶性である結晶性又は非晶質物質の液体懸濁物を使用することにより達成し得る。このとき活性成分の吸収速度はその溶解速度に依存し、次に溶解速度は結晶の大きさ及び結晶形に依存し得る。或いは、非経口投与される活性成分の吸収遅延は、化合物を油媒体中に溶解又は懸濁することにより達成される。加えて、注射用医薬剤形の持続的吸収は、モノステアリン酸アルミニウム及びゼラチンなどの吸収を遅延させる薬剤を取り入れることによりもたらされ得る。
【0240】
制御放出非経口組成物は、水性懸濁液、マイクロスフェア、マイクロカプセル、磁性マイクロスフェア、油剤、油懸濁液、エマルションの形態であってもよく、又は活性成分が1つ又は複数の生体適合性担体、リポソーム、ナノ粒子、インプラント又は輸液用器具に組み込まれてもよい。
【0241】
マイクロスフェア及び/又はマイクロカプセルの調製に使用される材料には、生分解性/生体内侵食性ポリマー、例えば、ポリグラクチン、ポリ-(イソブチルシアノアクリレート)、ポリ(2-ヒドロキシエチル-L-グルタミン)及びポリ(乳酸)が含まれる。
【0242】
制御放出非経口製剤を製剤化する際に用い得る生体適合性担体には、デキストランなどの炭水化物、アルブミン、リポタンパク質又は抗体などのタンパク質が含まれる。
【0243】
インプラントに使用される材料は、非生分解性、例えば、ポリジメチルシロキサンであるか、又は生分解性、例えば、ポリ(カプロラクトン)、ポリ(乳酸)、ポリ(グリコール酸)又はポリ(オルトエステル)などであり得る。
【0244】
実施形態において、1つ又は複数の活性成分はエアロゾルによって投与される。これは、化合物を含有する水性エアロゾル、リポソーム製剤、又は固体粒子を調製することにより達成される。非水性(例えば、フルオロカーボン噴射剤)懸濁液が用いられてもよい。医薬組成物はまた、化合物の分解をもたらし得る剪断に薬剤が曝露されることを最小限に抑え得る音波ネブライザーを使用して投与することもできる。
【0245】
通常、水性エアロゾルは、1つ又は複数の活性成分の水溶液又は水性懸濁液を従来の薬学的に許容可能な担体及び安定剤と共に配合することにより作製される。担体及び安定剤は特定の化合物の要件によって異なるが、典型的には、非イオン性界面活性剤(Tween、Pluronic、又はポリエチレングリコール)、無害のタンパク質、例えば、血清アルブミン、ソルビタンエステル、オレイン酸、レシチン、グリシンなどのアミノ酸、緩衝剤、塩類、糖類又は糖アルコール類を含む。エアロゾルは概して等張液から調製される。
【0246】
1つ又は複数の活性成分の局所投与又は経皮投与用剤形には、散剤、スプレー、軟膏、ペースト、クリーム、ローション、ゲル、溶液、パッチ及び吸入薬が含まれる。1つ又は複数の活性成分は、無菌条件下で薬学的に許容可能な担体と、及び適宜、任意の保存剤、緩衝剤、又は噴射剤と混合することができる。
【0247】
本発明での使用に好適な経皮パッチが、Transdermal Drug Delivery:Developmental Issues and Research Initiatives(Marcel Dekker Inc.,1989)及び米国特許第4,743,249号明細書、同第4,906,169号明細書、同第5,198,223号明細書、同第4,816,540号明細書、同第5,422,119号明細書、同第5,023,084号明細書(これらは本明細書によって参照により援用される)に開示されている。経皮パッチはまた、経陰嚢パッチを含め、当該技術分野において周知されている任意の経皮パッチであってよい。かかる経皮パッチ中の医薬組成物は、当該技術分野において周知の1つ以上の吸収促進剤又は皮膚透過促進剤を含有し得る(例えば、米国特許第4,379,454号明細書及び同第4,973,468号明細書(これらは本明細書によって参照により援用される)を参照)。本発明で使用される経皮的治療薬システムは、イオントフォレシス、拡散、又はこれらの2つの効果の併用に基づき得る。
【0248】
経皮パッチは、身体への1つ又は複数の活性成分の制御送達を提供するというさらなる利点を有する。かかる剤形は、1つ又は複数の活性成分を適切な媒体中に溶解又は分散させることにより作製し得る。吸収促進剤を使用して、皮膚を通じた活性成分のフラックスを増加させることもできる。かかるフラックスの速度は、律速膜を提供するか、或いは1つ又は複数の活性成分をポリマーマトリックス又はゲル中に分散させるかのいずれかによって制御し得る。
【0249】
かかる医薬組成物は、クリーム、軟膏、ローション、リニメント剤、ゲル、ハイドロゲル、溶液、懸濁液、スティック、スプレー、ペースト、硬膏及び他の種類の経皮薬物デリバリーシステムの形態であってもよい。この組成物はまた、薬学的に許容可能な担体又は賦形剤、例えば、乳化剤、抗酸化剤、緩衝剤、保存剤、保湿剤、浸透促進剤、キレート剤、ゲル形成剤、軟膏基剤、香料、及び皮膚保護剤も含み得る。
【0250】
乳化剤の例としては、限定はされないが、天然に存在するゴム、例えばアカシアゴム又はトラガカントゴム、天然に存在するホスファチド、例えば大豆レシチン及びモノオレイン酸ソルビタン誘導体が挙げられる。
【0251】
抗酸化剤の例としては、限定はされないが、ブチル化ヒドロキシアニソール(BHA)、アスコルビン酸及びその誘導体、トコフェロール及びその誘導体、及びシステインが挙げられる。
【0252】
保存剤の例としては、限定はされないが、パラベン、例えばp-ヒドロキシ安息香酸メチル又はプロピル及び塩化ベンザルコニウムが挙げられる。
【0253】
保湿剤の例としては、限定はされないが、グリセリン、プロピレングリコール、ソルビトール及び尿素が挙げられる。
【0254】
浸透促進剤の例としては、限定はされないが、プロピレングリコール、DMSO、トリエタノールアミン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、2-ピロリドン及びその誘導体、テトラヒドロフルフリルアルコール、プロピレングリコール、モノラウリン酸プロピレングリコール又はラウリン酸メチルを含むジエチレングリコールモノエチル又はモノメチルエーテル、ユーカリプトール、レシチン、TRANSCUTOL、及びAZONEが挙げられる。
【0255】
キレート剤の例としては、限定はされないが、EDTAナトリウム、クエン酸及びリン酸が挙げられる。
【0256】
ゲル形成剤の例としては、限定はされないが、カルボポール、セルロース誘導体、ベントナイト、アルギン酸塩、ゼラチン及びポリビニルピロリドンが挙げられる。
【0257】
1つ又は複数の活性成分に加えて、本発明の軟膏、ペースト、クリーム、及びゲルは、賦形剤、例えば、動物性及び植物性脂肪、油、ワックス、パラフィン、デンプン、トラガカント、セルロース誘導体、ポリエチレングリコール、シリコーン、ベントナイト、ケイ酸、タルク及び酸化亜鉛、又はこれらの混合物を含有し得る。
【0258】
散剤及びスプレーは、賦形剤、例えば、ラクトース、タルク、ケイ酸、水酸化アルミニウム、ケイ酸カルシウム及びポリアミド粉末、又はこれらの物質の混合物を含有し得る。スプレーは、従来の噴射剤、例えばクロロフルオロ炭化水素、及び揮発性非置換炭化水素、例えばブタン及びプロパンをさらに含有し得る。
【0259】
注射用デポー形態は、ポリラクチド-ポリグリコリドなどの生分解性ポリマー中に本発明の1つ又は複数の化合物のマイクロカプセルマトリックスを形成することにより作製される。化合物とポリマーの比率、及び用いられる特定のポリマーの性質に応じて、化合物の放出速度を制御することができる。他の生分解性ポリマーの例としては、ポリ(オルトエステル)及びポリ(無水物)が挙げられる。デポー注射用製剤はまた、生体組織と適合性のあるリポソーム又はマイクロエマルション中に薬物を封入することによっても調製される。
【0260】
皮下インプラントは当該技術分野において周知されており、本発明での使用に好適である。皮下植え込み方法は、好ましくは非刺激性で、機械的に弾性がある。インプラントは、マトリックスタイプ、リザーバタイプ、又はそれらのハイブリッドであってもよい。マトリックスタイプの装置において、担体材料は多孔質又は非多孔質、固体又は半固体、及び1つ又は複数の活性化合物に対して透過性又は不透過性であってもよい。担体材料は生分解性であってもよく、又は投与後にゆっくりと侵食し得る。場合によっては、マトリックスは非分解性であって、しかし代わりに担体材料が分解するマトリックスを通じた活性化合物の拡散に頼る。代替的な皮下インプラント方法はリザーバ装置を利用し、ここでは1つ又は複数の活性化合物が律速膜、例えば、成分濃度と無関係な(ゼロ次動態を有する)膜に取り囲まれている。律速膜に取り囲まれたマトリックスからなる装置もまた使用に好適である。
【0261】
リザーバタイプ及びマトリックスタイプの両方の装置とも、ポリジメチルシロキサン、例えばSILASTIC、又は他のシリコーンゴムなどを含有し得る。マトリックス材料は、不溶性ポリプロピレン、ポリエチレン、ポリ塩化ビニル、エチルビニルアセテート、ポリスチレン及びポリメタクリレート、並びにパルミトステアリン酸グリセロール、ステアリン酸グリセロール、及びベヘン酸グリセロールタイプのグリセロールエステルであってもよい。材料は疎水性又は親水性ポリマーであってもよく、場合により可溶化剤を含有する。
【0262】
皮下インプラント装置は、例えば米国特許第5,035,891号明細書及び同第4,210,644号明細書(これらは本明細書によって参照により援用される)に記載されるとおりの、任意の好適なポリマーで作製された遅延放出カプセルであってもよい。
【0263】
一般には、放出の律速及び薬物化合物の皮膚透過を提供するために、少なくとも4つの異なる手法を適用することが可能である。これらの手法は以下である:膜による抑制システム、接着拡散制御システム、マトリックス分散型システム及びマイクロリザーバシステム。制御放出性の経皮及び/又は局所組成物は、これらの手法を好適に取り合わせることにより達成し得ることが理解される。
【0264】
膜による抑制システムでは、活性成分は、金属プラスチックラミネートなどの薬物不透過性ラミネートから成形された浅いコンパートメントと、微孔性又は非多孔質高分子膜、例えばエチレン-酢酸ビニル共重合体などの律速高分子膜とに完全にカプセル化されたリザーバ中に存在する。活性成分は律速高分子膜を通って放出される。薬物リザーバでは、活性成分は固体ポリマーマトリックス中に分散しているか、又はシリコーン液などの浸出不可能な粘稠液体媒体中に懸濁されているかのいずれかであり得る。高分子膜の外表面に接着性ポリマーの薄層が貼り付けられており、この経皮システムと皮膚表面との密着した接触を実現する。接着性ポリマーは、好ましくは、低アレルギー性で且つ活性薬物物質と適合性を有するポリマーである。
【0265】
接着拡散制御システムでは、活性成分のリザーバは、活性成分を接着性ポリマー中に直接分散させて、次に、例えば溶媒キャスティングにより、活性成分を含有する接着剤を実質的に薬物不透過性の金属プラスチック裏当てのフラットシート上に塗布して薄い薬物リザーバ層を形成することにより形成される。
【0266】
マトリックス分散型システムは、活性成分を親水性又は親油性ポリマーマトリックス中に実質的に均一に分散させることにより活性成分のリザーバが形成されることを特徴とする。次に薬物含有ポリマーが、実質的に十分に定義された表面積及び制御された厚さを有する円板に成形される。接着性ポリマーが周囲に沿って塗布され、円板の周りに接着剤のストリップが形成される。
【0267】
マイクロリザーバシステムは、リザーバシステムとマトリックス分散型システムとの組み合わせと考えることができる。この場合、活性物質のリザーバは、初めに薬物固体を水溶性ポリマーの水溶液中に懸濁し、次にこの薬物懸濁液を親油性ポリマー中に分散させて、非常に多数の浸出不可能な微小球体の薬物リザーバを形成することにより形成される。
【0268】
本明細書に記載の制御放出、長期放出、及び持続放出組成物のいずれも、約30分~約1週間、約30分~約72時間、約30分~24時間、約30分~12時間、約30分~6時間、約30分~4時間、及び約3時間~10時間で活性成分を放出するように製剤化することができる。実施形態において、1つ又は複数の活性成分の有効濃度は、医薬組成物を対象に投与した後、対象体内で4時間、6時間、8時間、10時間、12時間、16時間、24時間、48時間、72時間、又はそれ以上持続する。
【0269】
ワクチン又は免疫原性組成物
本発明は、特定のT細胞応答を生じさせる能力を有する免疫原性組成物、例えば新生物ワクチン又は免疫原性組成物に関する。新生物ワクチン又は免疫原性組成物は、本明細書に記載される方法によって同定される腫瘍特異的ネオ抗原に対応するネオ抗原ペプチド及び/又はネオ抗原ポリペプチドを含む。
【0270】
好適な新生物ワクチン又は免疫原性組成物は、好ましくは複数の腫瘍特異的ネオ抗原ペプチドを含み得る。ある実施形態において、ワクチン又は免疫原性組成物は、1~100組のペプチド、より好ましくは1~50のかかるペプチド、さらにより好ましくは10~30組のペプチド、さらにより好ましくは15~25のペプチドを含み得る。別の好ましい実施形態によれば、ワクチン又は免疫原性組成物は、少なくとも1つのペプチド、より好ましくは2つ、3つ、4つ、又は5つのペプチドを含むことができる。特定の実施形態において、ワクチン又は免疫原性組成物は、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、又は30の異なるペプチドを含むことができる。
【0271】
ワクチン又は免疫原性組成物に含める各ペプチドの最適量及び最適投与レジメンは、当業者が過度の実験を行うことなく決定することができる。例えば、ペプチド又はその変異体は、静脈内(i.v.)注射、皮下(s.c.)注射、皮内(i.d.)注射、腹腔内(i.p.)注射、筋肉内(i.m.)注射用に調製され得る。ペプチド注射の好ましい方法には、s.c、i.d.、i.p.、i.m.、及びi.v.が含まれる。DNA注射の好ましい方法には、i.d.、i.m.、s.c、i.p.及びi.v.が含まれる。例えば、1~500mg、50μg~1.5mg、好ましくは10μg~500μgのペプチド又はDNAの用量が投与されてもよく、それぞれのペプチド又はDNAに依存し得る。この範囲の用量は、過去の試験で成功裏に用いられた(Brunsvig P F,et al.,Cancer Immunol Immunother.2006;55(12):1553-1564;M.Staehler,et al.,ASCO meeting 2007;Abstract No 3017)。ワクチン又は免疫原性組成物の他の投与方法は当業者に公知である。
【0272】
本発明の一実施形態において、異なる腫瘍特異的ネオ抗原ペプチド及び/又はポリペプチドは、新生物ワクチン又は免疫原性組成物中に使用するために、患者の新生物/腫瘍に対する免疫攻撃が生じる可能性が最大となるように選択される。理論によって拘束されるものではないが、多様な腫瘍特異的ネオ抗原ペプチドを含めると、新生物/腫瘍に対して幅広いスケールの免疫攻撃が生じ得ると考えられる。一実施形態において、選択された腫瘍特異的ネオ抗原ペプチド/ポリペプチドはミスセンス突然変異によりコードされる。第2の実施形態において、選択された腫瘍特異的ネオ抗原ペプチド/ポリペプチドはミスセンス突然変異とネオORF突然変異との組み合わせによりコードされる。第3の実施形態において、選択された腫瘍特異的ネオ抗原ペプチド/ポリペプチドはネオORF突然変異よりコードされる。
【0273】
選択された腫瘍特異的ネオ抗原ペプチド/ポリペプチドがミスセンス突然変異によりコ
ードされる一実施形態において、ペプチド及び/又はポリペプチドは、患者の特定のMHC分子と会合するその能力に基づき選択される。ネオORF突然変異から誘導されるペプチド/ポリペプチドもまた、患者の特定のMHC分子と会合するその能力に基づき選択され得るが、また患者の特定のMHC分子と会合しないと予測される場合であっても選択することができる。
【0274】
ワクチン又は免疫原性組成物は、特異的な細胞傷害性T細胞応答及び/又は特異的なヘルパーT細胞応答を生じさせる能力を有する。
【0275】
ワクチン又は免疫原性組成物はアジュバント及び/又は担体をさらに含み得る。有用なアジュバント及び担体の例を本明細書に提供する。組成物中のペプチド及び/又はポリペプチドは、担体、例えば、ペプチドをT細胞に提示する能力を有するタンパク質又は例えば樹状細胞(DC)などの抗原提示細胞と会合することができる。
【0276】
アジュバントは、ワクチン又は免疫原性組成物に混合すると突然変異体ペプチドに対する免疫応答が増加するか又は他の形で修飾される任意の物質である。担体は、ネオ抗原ペプチドを会合させることが可能な足場構造、例えばポリペプチド又は多糖である。場合により、アジュバントは本発明のペプチド又はポリペプチドと共有結合的又は非共有結合的にコンジュゲートする。
【0277】
抗原に対する免疫応答を増加させるアジュバントの能力は、典型的には免疫介在性応答の顕著な増加、又は疾患症状の低減に現れる。例えば、体液性免疫の増加は、典型的には抗原に対して生じる抗体の力価の顕著な増加に現れ、T細胞活性の増加は、典型的には細胞増殖、又は細胞傷害性、又はサイトカイン分泌の増加に現れる。アジュバントはまた、例えば、一次体液性応答又はTh2応答を一次細胞性応答又はTh1応答に変化させることにより免疫応答も変え得る。
【0278】
好適なアジュバントとしては、限定はされないが、1018 ISS、アルミニウム塩、Amplivax、AS15、BCG、CP-870,893、CpG7909、CyaA、dSLIM、GM-CSF、IC30、IC31、イミキモド、ImuFact IMP321、ISパッチ、ISS、ISCOMATRIX、Juvlmmune、LipoVac、MF59、モノホスホリルリピドA、Montanide IMS 1312、Montanide ISA 206、Montanide ISA 50V、Montanide ISA-51、OK-432、OM-174、OM-197-MP-EC、ONTAK、PEPTEL.ベクター系、PLGマイクロパーティクル、レシキモド、SRL172、ビロソーム及び他のウイルス様粒子、YF-17D、VEGFトラップ、R848、βグルカン、Pam3Cys、サポニンに由来するAquila社のQS21 stimulon(Aquila Biotech、Worcester、Mass.,米国)、マイコバクテリア抽出物及び合成細菌細胞壁模倣体、及び他の専売アジュバント、例えば、RibiのDetox、Quil又はSuperfosが挙げられる。樹状細胞に特異的ないくつかの免疫学的アジュバント(例えば、MF59)及びそれらの製剤が以前記載されている(Dupuis M,et al.,Cell Immunol.1998;186(1):18-27;Allison A C;Dev Biol Stand.1998;92:3-11)。また、サイトカインを使用してもよい。いくつかのサイトカインが、リンパ組織への樹状細胞遊走に影響を及ぼすこと(例えば、TNF-α)、Tリンパ球に効率的な抗原提示細胞への樹状細胞の成熟を加速させること(例えば、GM-CSF、IL-1及びIL-4)(米国特許第5,849,589号明細書(具体的に全体として参照により本明細書に援用される))及び免疫アジュバントとして働くこと(例えば、IL-12)と直接関係付けられている(Gabrilovich D I,et al.,J Immunother Emphasis Tumor Immunol.1996(6):414-418)。
【0279】
トール様受容体(TLR)もまたアジュバントとして使用することができ、これは、「病原体関連分子パターン」(PAMPs)と称される多くの微生物が共有する保存モチーフを認識するパターン認識受容体(PRR)のファミリーの重要なメンバーである。これらの「危険シグナル」の認識により、自然及び適応免疫系の複数の要素が活性化する。TLRは、樹状細胞(DC)、マクロファージ、T及びB細胞、マスト細胞、及び顆粒球などの自然及び適応免疫系の細胞により発現され、細胞膜、リソソーム、エンドソーム、及びエンドリソソームなどの種々の細胞内コンパートメントに局在する。異なるTLRは別のPAMPsを認識する。例えば、TLR4は、細菌細胞壁に含まれるLPSによって活性化され、TLR9は、非メチル化細菌又はウイルスCpG DNAによって活性化され、及びTLR3は、二本鎖RNAによって活性化される。TLRリガンド結合は1つ以上の細胞内シグナル伝達経路の活性化を引き起こし、最終的に炎症及び免疫に関連する多くの主要分子(特に転写因子NF-κB及びI型インターフェロン)の産生をもたらす。TLR介在性DC活性化は、DC活性化の増進、食作用、活性化及び共刺激マーカー、例えばCD80、CD83、及びCD86の上方制御、流入領域リンパ節へのDCの遊走を可能にし且つT細胞に対する抗原提示を促進するCCR7の発現、並びにI型インターフェロン、IL-12、及びIL-6などのサイトカインの分泌増加を引き起こす。これらの下流イベントは全て、適応免疫応答の誘導に決定的に重要である。
【0280】
現在臨床開発中の最も有望な癌ワクチン又は免疫原性組成物アジュバントの中には、TLR9アゴニストCpG及び合成二本鎖RNA(dsRNA)TLR3リガンドポリICLCがある。前臨床試験では、ポリICLCが、LPS及びCpGと比較したとき、炎症誘発性サイトカインのその誘導及びIL-10の刺激の欠如、並びにDClにおける高レベルの共刺激分子の維持に起因して最も効力のあるTLRアジュバントであるものと見られる。さらに、ポリICLCは、最近、ヒトパピローマウイルス(HPV)16カプソマーからなるタンパク質ワクチン又は免疫原性組成物のアジュバントとして非ヒト霊長類(アカゲザル)においてCpGと直接比較された(Stahl-Hennig C,Eisenblatter M,Jasny E,et al.「合成二本鎖RNAはアカゲザルにおいてヒトパピローマウイルスに対するTヘルパー1及び体液性免疫応答を誘導するためのアジュバントである(Synthetic double-stranded RNAs are adjuvants for the induction of T helper 1 and humoral immune responses to human papillomavirus in rhesus macaques)」.PLoS pathogens.Apr 2009;5(4))。
【0281】
CpG免疫刺激オリゴヌクレオチドもまた、ワクチン又は免疫原性組成物セッティングでアジュバントの効果を増強することが報告されている。理論によって拘束されるものではないが、CpGオリゴヌクレオチドは、Toll様受容体(TLR)、主としてTLR9を介して自然(非適応)免疫系を活性化させることにより作用する。CpGにより惹起されたTLR9活性化は、ペプチド又はタンパク質抗原、生ウイルス又は死滅ウイルス、樹状細胞ワクチン、自己細胞ワクチン、並びに予防ワクチン及び治療ワクチンの両方の中の多糖コンジュゲートを含めた多様な抗原に対する抗原特異的体液性及び細胞性応答を増強する。さらに重要なことには、これは樹状細胞成熟及び分化を増強し、CD4 T細胞ヘルプがない場合であっても、Thl細胞の活性化の増進及び強力な細胞傷害性Tリンパ球(CTL)生成をもたらす。TLR9刺激によって誘導されるThlバイアスは、通常Th2バイアスを促進するミョウバン又は不完全フロイントアジュバント(IFA)などのワクチンアジュバントの存在下であっても維持される。CpGオリゴヌクレオチドは、他のアジュバントと共に、又は抗原が比較的弱い場合に強力な応答を誘導するために特に必要な製剤、例えばマイクロパーティクル、ナノ粒子、脂質エマルション又は同様の製剤
中にあって製剤化又は共投与されるとき、さらに高いアジュバント活性を示す。CpGオリゴヌクレオチドはまた、免疫応答を加速させ、いくつかの実験におけるCpGを含まない完全用量ワクチンに対する応答と同等の抗体応答で、抗原用量を約2桁低減することも可能にする(Arthur M.Krieg,Nature Reviews,Drug
Discovery,5,Jun.2006,471-484)。米国特許第6,406,705 B1号明細書は、CpGオリゴヌクレオチド、非核酸アジュバント及び抗原の併用により抗原特異的免疫応答が誘導されることを記載している。市販のCpG TLR9アンタゴニストはMologen(Berlin、独国)によるdSLIM(double Stem Loop Immunomodulator:二重ステムループ免疫調節薬)であり、これは本発明の医薬組成物の好ましい成分である。他のTLR結合分子、例えば、RNA結合TLR7、TLR8及び/又はTLR9もまた用いられ得る。
【0282】
有用なアジュバントの他の例としては、限定はされないが、化学的に修飾されたCpG(例えばCpR、Idera)、ポリ(I:C)(例えばポリi:CI2U)、非CpG細菌DNA又はRNA並びに免疫活性小分子及び抗体、例えば、シクロホスファミド、スニチニブ、ベバシズマブ、セレブレックス、NCX-4016、シルデナフィル、タダラフィル、バルデナフィル、ソラフィニブ(sorafinib)、XL-999、CP-547632、パゾパニブ、ZD2171、AZD2171、イピリムマブ、トレメリムマブ、及びSC58175が挙げられ、これらは治療的に及び/又はアジュバントとして作用し得る。本発明との関連において有用なアジュバント及び添加剤の量及び濃度は、当業者により必要以上に実験を行うことなく容易に決定され得る。さらなるアジュバントとしては、顆粒球マクロファージコロニー刺激因子(GM-CSF、サルグラモスチム)などのコロニー刺激因子が挙げられる。
【0283】
ポリICLCは、約5000ヌクレオチドの平均長さのポリI鎖とポリC鎖とからなる合成的に調製された二本鎖RNAであり、ポリリジン及びカルボキシメチルセルロースを添加することにより熱変性及び血清ヌクレアーゼによる加水分解に対して安定化されている。この化合物は、いずれもPAMPsファミリーのメンバーであるTLR3及びMDA5のRNAヘリカーゼドメインを活性化し、DC及びナチュラルキラー(NK)細胞の活性化並びにI型インターフェロン、サイトカイン、及びケモカインの「天然混合物」の産生を引き起こす。さらには、ポリICLCは、2つのIFN誘導性核酵素系2’5’-OAS及びP1/eIF2aキナーゼ(PKR(4-6)としても知られる)、並びにRIG-Iヘリカーゼ及びMDA5によって媒介されるより直接的な、広域宿主が標的化される抗感染効果、及び場合により抗腫瘍効果を及ぼす。
【0284】
げっ歯類及び非ヒト霊長類において、ポリICLCは、ウイルス抗原に対するT細胞応答、交差プライミング、並びに腫瘍特異的、ウイルス特異的、及び自己抗原特異的CD8T細胞の誘導を増強することが示された。非ヒト霊長類における最近の研究では、ポリICLCは、DC標的化又は非標的化HIV Gag p24タンパク質に対する抗体反応及びT細胞免疫の発生に必須であることが分かっており、ワクチンアジュバントとしてのその有効性が強調される。
【0285】
ヒト対象では、連続全血試料の転写解析により、ポリICLCの1回の単回皮下投与を受けた8人の健常ヒトボランティア間で遺伝子発現プロファイルが同様であり、プラセボを受ける4人の対象に対してこれらの8人の対象間に最大212個の遺伝子の発現差異があることが明らかになった。顕著なことに、ポリICLC遺伝子発現データを、極めて有効性の高い黄熱病ワクチンYF17Dで免疫されたボランティアからの先行データと比較すると、多数のカノニカルな転写及びシグナル伝達経路が、自然免疫系のものを含め、同じようにピーク時点で上方制御されたことが示された。
【0286】
つい最近、癌精巣抗原NY-ESO-1由来の合成オーバーラップロングペプチド(OLP)単独によるか又はMontanide-ISA-51との併用、又は1.4mgのポリICLC及びMontanideとの併用による皮下ワクチン接種の第1相研究で治療された2回目又は3回目の完全臨床寛解中の卵巣癌、卵管癌、及び原発性腹膜癌患者に関する免疫学的分析が報告された。ポリICLC及びMontanideを加えると、OLP単独又はOLP及びMontanideと比較してNY-ESO-1特異的CD4及びCD8T細胞の生成及び抗体反応が顕著に増強された。
【0287】
本発明に係るワクチン又は免疫原性組成物は2つ以上の異なるアジュバントを含み得る。さらに、本発明は、本明細書に記載のもののいずれかを含めた任意のアジュバント物質を含む治療組成物を包含する。また、ペプチド又はポリペプチドとアジュバントとを任意の適切な順番で別個に投与し得ることも企図される。
【0288】
担体は、アジュバントと独立して存在してもよい。担体は抗原に共有結合的に連結されてもよい。担体はまた、担体をコードするDNAを、抗原をコードするDNAとインフレームで挿入することにより、抗原に付加することもできる。担体の機能は、例えば、安定性を付与すること、生物学的活性を増加させること、又は血清中半減期を増加させることであり得る。半減期の延長は、適用回数を減らし、且つ用量を低減する助けとなり得るため、従って治療上の理由、また経済的理由からも有益である。さらに、担体は、T細胞に対するペプチドの提示を助け得る。担体は、当業者に公知の任意の好適な担体、例えばタンパク質又は抗原提示細胞であってよい。担体タンパク質は、限定はされないが、キーホールリンペットヘモシアニン、血清タンパク質、例えば、トランスフェリン、ウシ血清アルブミン、ヒト血清アルブミン、チログロブリン又はオボアルブミン、免疫グロブリン、又はホルモン、例えば、インスリン又はパルミチン酸であってもよい。ヒトの免疫化には、担体は、ヒトにとって許容可能且つ安全な生理学的に許容可能な担体であってもよい。しかしながら、破傷風トキソイド及び/又はジフテリア(diptheria)トキソイドが、本発明の一実施形態において好適な担体である。或いは、担体はデキストラン、例えばセファロースであってもよい。
【0289】
細胞傷害性T細胞(CTL)は、インタクトな外来抗原それ自体というよりむしろ、MHC分子に結合したペプチドの形態の抗原を認識する。MHC分子それ自体は抗原提示細胞の細胞表面に位置する。従って、CTLの活性化は、ペプチド抗原、MHC分子、及びAPCの三量体複合体が存在する場合に限り可能である。それに対応して、CTLは、CTLの活性化にペプチドのみが用いられる場合でなく、さらにそれぞれのMHC分子を有するAPCが加わる場合に免疫応答が増強され得る。従って、一部の実施形態では、本発明に係るワクチン又は免疫原性組成物は少なくとも1つの抗原提示細胞をさらに含有する。
【0290】
抗原提示細胞(又は刺激細胞)は、典型的にはその表面上にMHCクラスI又はII分子を有し、一実施形態では、それ自体はMHCクラスI又はII分子に選択の抗原を負荷する能力を実質的に有しない。本明細書にさらに詳細に記載するとおり、MHCクラスI又はII分子にインビトロで選択の抗原を容易に負荷し得る。
【0291】
CD8+細胞活性は、CD4+細胞を使用して増進させてもよい。多くの免疫ベースの抗癌療法が、CD8+及びCD4+ Tリンパ球の両方を使用して患者の腫瘍を標的化する場合に有効性が高まり得るため、腫瘍抗原のCD4T+細胞エピトープの同定が関心を集めている。CD4+細胞はCD8 T細胞応答を増強する能力を有する。動物モデルにおける多くの研究で、CD4+及びCD8+ T細胞の両方が抗腫瘍応答に関与するとき結果が良好になることが明確に実証されている(例えば、Nishimura et al.(1999)「生体内での腫瘍根絶における抗原特異的Tヘルパー1型(TH1)及
びTh2細胞の特徴的な役割(Distinct role of antigen-specific T helper type 1(TH1) and Th2 cells in tumor eradication in vivo)」.J Ex Med 190:617-27を参照)。異なる種類の癌に対する治療法の開発に適用可能な普遍的なCD4+ T細胞エピトープが同定されている(例えば、Kobayashi
et al.(2008)Current Opinion in Immunology 20:221-27を参照)。例えば、破傷風トキソイド由来のHLA-DR制限ヘルパーペプチドをメラノーマワクチンに使用したところ、CD4+ T細胞が非特異的に活性化された(例えば、Slingluff et al.(2007)「アジュバントセッティングにおけるメラノーマに対する2つの多ペプチドワクチンの無作為化第II相試験の免疫学的及び臨床的結果(Immunologic and Clinical
Outcomes of a Randomized Phase II Trial
of Two Multipeptide Vaccines for Melanoma in the Adjuvant Setting)」,Clinical Cancer Research 13(21):6386-95を参照)。本発明の範囲内で、かかるCD4+細胞は、その腫瘍特異性が異なる3つのレベルで適用可能であり得ることが企図される:1)普遍的CD4+エピトープ(例えば、破傷風トキソイド)を使用してCD8+細胞を増進し得る広域レベル;2)天然の腫瘍関連CD4+エピトープを使用してCD8+細胞を増進し得る中間的レベル;及び3)ネオ抗原CD4+エピトープを使用してCD8+細胞を患者特異的に増進し得る患者特異的レベル。
【0292】
CD8+細胞免疫はまた、ネオ抗原を負荷した樹状細胞(DC)ワクチンによっても生じさせ得る。DCはT細胞免疫を惹起する強力な抗原提示細胞であり、目的の1つ以上のペプチドを例えば直接的なペプチド注射によって負荷すると、癌ワクチンとして使用することができる。例えば、新しく転移性メラノーマと診断された患者が、3つのHLA-A*0201限定gp100メラノーマ抗原由来ペプチドに対し、IL-12p70産生患者DCワクチンを用いて、自己ペプチドでパルスしたCD40L/IFN-g活性化成熟DCにより免疫化されることが示された(例えば、Carreno et al(2013)「L-12p70産生患者DCワクチンはTc1分極免疫を誘発する(L-12p70-producing patient DC vaccine elicits Tc1-polarized immunity)」,Journal of Clinical Investigation,123(8):3383-94及びAli et al.(2009)「DCサブセット及びT細胞のインサイチュ調節がマウスにおいて腫瘍退縮を媒介する(In situ regulation of DC subsets and T cells mediates tumor regression in mice)」,Cancer Immunotherapy,1(8):1-10を参照)。本発明の範囲内で、ネオ抗原を負荷したDCは、合成TLR3アゴニストのポリイノシン・ポリシチジン酸-ポリ-L-リジンカルボキシメチルセルロース(ポリICLC)を使用してDCを刺激することで調製され得ることが企図される。ポリICLCは、CD83及びCD86の上方調節、インターロイキン-12(IL-12)、腫瘍壊死因子(TNF)、インターフェロンγ誘導タンパク質10(IP-10)、インターロイキン1(IL-1)、及びI型インターフェロン(IFN)の誘導、及び最小限のインターロイキン10(IL-10)産生によって評価するとき、ヒトDCに対する強力な個別的成熟刺激である。DCは、白血球アフェレーシスによって得られる凍結末梢血単核細胞(PBMC)から分化させることができ、一方PBMCはFicoll勾配遠心法によって単離し、アリコートで凍結し得る。
【0293】
例示として、以下の7日間活性化プロトコルを使用し得る。1日目-PBMCを解凍して組織培養フラスコにプレーティングし、組織培養インキュベーターにおいて37℃で1~2時間インキュベートした後、プラスチック表面に接着する単球を選択する。インキュ
ベーション後、リンパ球を洗い流し、接着した単球をインターロイキン-4(IL-4)及び顆粒球マクロファージコロニー刺激因子(GM-CSF)の存在下で5日間培養して未熟DCに分化させる。6日目、未熟DCを、ワクチンの品質に関する対照として働き、且つワクチンの免疫原性をブーストし得るキーホールリンペットヘモシアニン(KLH)タンパク質でパルスする。DCは刺激されると成熟し、それにペプチド抗原を負荷して一晩インキュベートする。7日目、細胞を洗浄し、4~20×10(6)個の細胞を含む1mlアリコートで速度制御フリーザーを使用して凍結する。DCを患者に注入する前に、最小限の規格に適合するようにDCのバッチに対するロット出荷試験を実施し得る(例えば、Sabado et al.(2013)「免疫療法のための腫瘍抗原を負荷した成熟樹状細胞の調製(Preparation of tumor antigen-loaded mature dendritic cells for immunotherapy)」,J.Vis Exp.Aug 1;(78).doi:10.3791/50085を参照)。
【0294】
DCワクチンを足場システムに組み込み、患者への送達を促進し得る。DCワクチンによる患者の新生物の治療的処置は生体材料システムを利用することができ、これが装置内に宿主樹状細胞を動員する因子を放出し、抗原が放出される間にアジュバント(例えば、危険シグナル)を局所的に提示することにより常在性の未熟DCを分化させ、且つ活性化された抗原負荷DCのリンパ節(又は所望の作用部位)への放出を促進し、そこでDCがT細胞と相互作用して、癌ネオ抗原に対する強力な細胞傷害性Tリンパ球応答が生じ得る。植込み型生体材料を使用して、新生物に対する強力な細胞傷害性Tリンパ球応答を患者特異的に生じさせてもよい。次にこの生体材料常在性樹状細胞が、生体材料からの抗原の放出に合わせて、感染を模倣する危険シグナルへの曝露により活性化され得る。活性化された樹状細胞は、次に生体材料からリンパ節に遊走し、細胞傷害性Tエフェクター応答を誘導する。この手法は、以前、腫瘍生検から調製したライセートを使用した前臨床試験において樹立メラノーマの退縮を引き起こすことが実証されており(例えば、Ali et al.(2209)「DCサブセット及びT細胞のインサイチュ調節がマウスにおいて腫瘍退縮を媒介する(In situ regulation of DC subsets and T cells mediates tumor regression in mice)」,Cancer Immunotherapy 1(8):1-10;Ali et al.(2009)「インサイチュで樹状細胞をプログラムする感染模倣材料(Infection-mimicking materials to program dendritic cells in situ)」.Nat Mater 8:151-8)、かかるワクチンは現在、ダナ・ファーバー癌研究所(Dana-Farber Cancer Institute)で最近開始された第I相臨床試験で試験されているところである。現在の提言では、この手法はまた、C6ラット神経膠腫モデルを使用して24、膠芽腫の退縮、並びに再燃を予防する強力な記憶応答の誘導をもたらすことも示されている。かかる植込み型のバイオマトリックスワクチンデリバリー足場が腫瘍特異的樹状細胞活性化を増幅し及び維持する能力は、従来の皮下又は節内ワクチン投与により達成され得るものと比べてよりロバストな抗腫瘍免疫感作をもたらし得る。
【0295】
好ましくは、抗原提示細胞は樹状細胞である。好適には、樹状細胞は、ネオ抗原ペプチドでパルスした自己樹状細胞である。このペプチドは、適切なT細胞応答を生じさせる任意の好適なペプチドであってもよい。腫瘍関連抗原由来のペプチドでパルスした自己樹状細胞を使用するT細胞療法が、Murphy et al.(1996)The Prostate 29,371-380及びTjua et al.(1997)The Prostate 32,272-278に開示されている。
【0296】
従って、本発明の一実施形態では、少なくとも1つの抗原提示細胞を含有するワクチン又は免疫原性組成物が本発明の1つ以上のペプチドでパルスされるか又はそれを負荷され
る。或いは、患者から単離された末梢血単核細胞(PBMC)がエキソビボでペプチドを負荷され、患者に注入し戻されてもよい。代替例として、抗原提示細胞が、本発明のペプチドをコードする発現コンストラクトを含む。ポリヌクレオチドは任意の好適なポリヌクレオチドであってもよく、樹状細胞を形質導入する能力を有し、従ってペプチドの提示及び免疫の誘導をもたらすことが好ましい。
【0297】
本発明の医薬組成物は、組成物中に存在するペプチドの選択、数及び/又は量が組織、癌、及び/又は患者特異的となるように作ることができる。例えば、ペプチドの正確な選択は、副作用を回避するように所与の組織における親タンパク質の発現パターンを指針とし得る。選択は、癌の具体的なタイプ、疾患の状態、以前の治療レジメン、患者の免疫状態、及び当然ながら、患者のHLA-ハプロタイプに依存し得る。さらに、本発明に係るワクチン又は免疫原性組成物は、特定の患者の個人的な必要性に従い、個人に合わせた成分を含有し得る。例として、特定の患者における関連するネオ抗原の発現、個人的なアレルギー又は他の治療に起因する望ましくない副作用、及び初回治療ラウンド又はスキーム後の二次治療の調整に従いペプチドの量を変えることが挙げられる。
【0298】
本発明のペプチドを含む医薬組成物は、既に癌に罹患している個体に投与され得る。治療上の適用では、組成物は、腫瘍抗原に対する有効なCTL応答を誘発し且つ症状及び/又は合併症を治癒し又は少なくとも部分的に止めるのに十分な量で患者に投与される。これを達成するのに十分な量は、「治療有効用量」として定義される。この用途に有効な量は、例えば、ペプチド組成物、投与方法、治療される疾患の病期及び重症度、患者の体重及び全般的な健康状態、並びに処方医師の判断に依存し得るが、概して(治療的又は予防的投与のための)初回免疫化について、70kgの患者に対し約1.0μg~約50,000μgのペプチドの範囲であり、ブースト投薬量が続き、又は約1.0μg~約10,000μgのペプチドの範囲であり、患者の反応及び状態に応じて、及び場合により患者の血中の特定のCTL活性を計測することにより、数週間乃至数ヶ月間にわたりブーストレジメンが続く。本発明のペプチド及び組成物は、概して重篤な病状、即ち生命を脅かす又は潜在的に生命を脅かす状況、特に癌が転移している場合に用いられ得ることに留意しなければならない。治療用途では、腫瘍の検出又は外科的切除後可能な限り早期に投与を開始しなければならない。この後、少なくとも症状が実質的に寛解するまで、及びその後の期間にわたり、ブースト用量が続く。
【0299】
治療処置用の医薬組成物(例えば、ワクチン組成物)は、非経口、局所、経鼻、経口又は局所投与用であることが意図される。好ましくは、医薬組成物は非経口的に、例えば、静脈内、皮下、皮内、又は筋肉内に投与される。組成物は、腫瘍に対する局所的免疫応答を誘導するため外科的切除部位に投与されてもよい。本発明は、ペプチドの溶液を含む非経口投与用の組成物を提供し、ワクチン又は免疫原性組成物は、許容可能な担体、好ましくは水性担体中に溶解又は懸濁される。種々の水性担体、例えば、水、緩衝用水、0.9%生理食塩水、0.3%グリシン、ヒアルロン酸などを使用し得る。これらの組成物は、従来の周知されている滅菌技法により滅菌され得るか、又は滅菌ろ過され得る。得られた水溶液はそのまま使用するために包装されるか、又は凍結乾燥されてもよく、凍結乾燥製剤は投与前に滅菌溶液と組み合わされる。組成物は、生理学的条件を近似するため必要に応じて薬学的に許容可能な補助物質、例えば、pH調整剤及び緩衝剤、等張化剤、湿潤剤など、例えば、酢酸ナトリウム、乳酸ナトリウム、塩化ナトリウム、塩化カリウム、塩化カルシウム、ソルビタンモノラウレート、オレイン酸トリエタノールアミン等を含有し得る。
【0300】
ペプチドを含有するリポソーム懸濁液は、とりわけ、投与方法、送達されるペプチド、及び治療される疾患ステージにより異なる用量で、静脈内投与、局所(locally)投与、局所(topically)投与等され得る。免疫細胞に標的化するため、リガン
ド、例えば所望の免疫系細胞の細胞表面決定基に特異的な抗体又はその断片などをリポソームに組み込むことができる。
【0301】
固体組成物には、例えば、医薬品グレードのマンニトール、ラクトース、デンプン、ステアリン酸マグネシウム、サッカリンナトリウム、滑石、セルロース、グルコース、スクロース、炭酸マグネシウムなどを含む従来の又はナノ粒子の非毒性固体担体を使用することができる。経口投与に関して、薬学的に許容可能な非毒性組成物は、通常用いられる賦形剤、例えば既に列挙した担体のいずれか、及び略10~95%の活性成分、即ち本発明の1つ以上のペプチドを、より好ましくは25%~75%の濃度で添合することにより形成される。
【0302】
エアロゾル投与には、免疫原性ペプチドは好ましくは界面活性剤及び噴射剤と共に微粉化した形態で提供される。ペプチドの典型的な割合は重量単位で0.01%~20%、好ましくは1%~10%である。界面活性剤は当然ながら非毒性であり、好ましくは噴射剤に対して可溶性であり得る。かかる薬剤の代表例は、6~22個の炭素原子を含有する脂肪酸、例えば、カプロン酸、オクタン酸、ラウリン酸、パルミチン酸、ステアリン酸、リノール酸、リノレン酸、オレステリック酸(olesteric)及びオレイン酸などと脂肪族多価アルコール又はその環状無水物とのエステル又は部分エステルである。混合エステル、例えば混合又は天然グリセリドが用いられてもよい。界面活性剤は重量単位で組成物の0.1%~20%、好ましくは0.25~5%を占め得る。組成物の残りは通常の噴射剤である。例えば鼻腔内送達に対するレシチンのように、担体もまた必要に応じて含まれ得る。
【0303】
本発明のペプチド及びポリペプチドは、細菌又は動物性物質を含有しない試薬を利用して容易に化学的に合成することができる(Merrifield RB:「固相ペプチド合成I.テトラペプチドの合成(Solid phase peptide synthesis.I.The synthesis of a tetrapeptide)」.J.Am.Chem.Soc.85:2149-54,1963)。
【0304】
本発明のペプチド及びポリペプチドはまた、ベクター、例えば、本明細書において考察するとおりの核酸分子、例えば、RNA又はDNAプラスミド、ウイルスベクター、例えばポックスウイルス、例えば、オルソポックスウイルス、アビポックスウイルス、又はアデノウイルス、AAV又はレンチウイルスによって発現させてもよい。この手法には、本発明のペプチドをコードするヌクレオチド配列を発現させるためのベクターの使用が関わる。急性的若しくは慢性的に感染させた宿主又は非感染宿主に導入すると、ベクターが免疫原性ペプチドを発現し、従って宿主CTL応答を誘発する。
【0305】
治療又は免疫化のため、本発明のペプチドをコードする核酸及び任意選択で本明細書に記載されるペプチドの1つ以上を患者に投与することもできる。核酸を患者に送達するため、多くの方法が好都合に用いられている。例えば、核酸は「ネイキッドDNA」として直接送達することができる。この手法は、例えば、Wolff et al.,Science 247:1465-1468(1990)並びに米国特許第5,580,859号明細書及び同第5,589,466号明細書に記載されている。核酸はまた、例えば米国特許第5,204,253号明細書に記載されるとおりのバリスティックデリバリーを用いて投与されてもよい。DNA単独で構成される粒子が投与されてもよい。或いは、DNAは、金粒子などの粒子に接着させてもよい。概して、ワクチン又は免疫学的組成物のプラスミドは、宿主細胞、例えば哺乳類細胞からの抗原の発現又は発現及び分泌を制御する調節配列に作動可能に連結された抗原(例えば、1つ以上のネオ抗原)をコードするDNAを含むことができる;例えば、上流から下流に、プロモーター、例えば哺乳類ウイルスプロモーター(例えば、hCMV又はmCMVプロモーターなどのCMVプロモーター
、例えば初期中間プロモーター、又はSV40プロモーター-有用なプロモーターについては本明細書に引用又は援用される文書を参照)のDNA、分泌のための真核生物リーダーペプチドのDNA(例えば、組織プラスミノーゲン活性化因子)、1つ又は複数のネオ抗原のDNA、及びターミネーターをコードするDNA(例えば、ウシ成長ホルモン即ちbGHポリAをコードする遺伝子由来の3’UTR転写ターミネーター)。組成物は2つ以上のプラスミド又はベクターを含むことができ、従って各ベクターが異なるネオ抗原を含み、及びそれを発現する。また、そのテキストが有用であり得るWasmoenの米国特許第5,849,303号明細書、及びDaleの米国特許第5,811,104号明細書も言及される。DNA又はDNAプラスミド製剤は、カチオン性脂質と共に、又はその中に製剤化することができる;及び、カチオン性脂質、並びにアジュバントに関しては、Loosmoreの米国特許出願公開第2003/0104008号明細書もまた言及される。また、インビボで含み及び発現するDNAプラスミドの構築及び使用において用いることのできるDNAプラスミドの教示に関して、Audonnetの米国特許第6,228,846号明細書及び同第6,159,477号明細書における教示も頼ることができる。
【0306】
また、カチオン性化合物、例えばカチオン性脂質に複合体化した核酸を送達することもできる。脂質媒介性遺伝子デリバリー方法が、例えば、国際公開第1996/18372号パンフレット;国際公開第1993/24640号パンフレット;Mannino &
Gould-Fogerite,BioTechniques 6(7):682-691(1988);米国特許第5,279,833号明細書;国際公開第1991/06309号パンフレット;及びFeigner et al.,Proc.Natl.Acad.Sci.USA 84:7413-7414(1987)に記載されている。
【0307】
目的のペプチドをコードするRNA(例えば、mRNA)もまた送達に使用することができる(例えば、Kiken et al,2011;Su et al,2011を参照;また、米国特許第8278036号明細書;Halabi et al.J Clin Oncol(2003)21:1232-1237;Petsch et al,Nature Biotechnology 2012 Dec 7;30(12):1210-6も参照)。
【0308】
本発明の実施において使用し得るポックスウイルス、例えば、とりわけ、チョルドポックスウイルス亜科(Chordopoxvirinae)ポックスウイルス(脊椎動物のポックスウイルス)、例えば、オルソポックスウイルス及びアビポックスウイルス、例えばワクシニアウイルス(例えば、ワイス株、WR株(例えば、ATCC(登録商標)VR-1354)、コペンハーゲン株、NYVAC、NYVAC.1、NYVAC.2、MVA、MVA-BN)、カナリア痘ウイルス(例えば、ホイートリーC93株、ALVAC)、鶏痘ウイルス(例えば、FP9株、ウェブスター株、TROVAC)、鳩痘(dovepox)、鳩痘(pigeonpox)、ウズラ痘、及びアライグマ痘、その合成の又は天然に存在しない組換え体、その使用、並びにかかる組換え体の作製及び使用方法に関する情報は、以下などの科学文献及び特許文献に見出され得る:
・米国特許第4,603,112号明細書、同4,769,330号明細書、同5,110,587号明細書、同5,174,993号明細書、同5,364,773号明細書、同5,762,938号明細書、同5,494,807号明細書、同5,766,597号明細書、同7,767,449号明細書、同6,780,407号明細書、同6,537,594号明細書、同6,265,189号明細書、同6,214,353号明細書、同6,130,066号明細書、同6,004,777号明細書、同5,990,091号明細書、同5,942,235号明細書、同5,833,975号明細書、同5,766,597号明細書、同5,756,101号明細書、同7,045,313号明細書、同6,780,417号明細書、同8,470,598号明細書、同8,372,622号明細書、同8,268,329号明細書、同8,268,325号明細書、同8,236,560号明細書、同8,163,293号明細書、同7,964,398号明細書、同7,964,396号明細書、同7,964,395号明細書、同7,939,086号明細書、同7,923,017号明細書、同7,897,156号明細書、同7,892,533号明細書、同7,628,980号明細書、同7,459,270号明細書、同7,445,924号明細書、同7,384,644号明細書、同7,335,364号明細書、同7,189,536号明細書、同7,097,842号明細書、同6,913,752号明細書、同6,761,893号明細書、同6,682,743号明細書、同5,770,212号明細書、同5,766,882号明細書、及び同5,989,562号明細書、並びに
・Panicali,D.Proc.Natl.Acad.Sci.1982;79;4927-493,Panicali D.Proc.Natl.Acad.Sci.1983;80(17):5364-8,Mackett,M.Proc.Natl.Acad.Sci.1982;79:7415-7419,Smith GL.Proc.Natl.Acad.Sci.1983;80(23):7155-9,Smith GL.Nature 1983;302:490-5,Sullivan VJ.Gen.Vir.1987;68:2587-98,Perkus M Journal of Leukocyte Biology 1995;58:1-13,Yilma TD.Vaccine 1989;7:484-485,Brochier B.Nature 1991;354:520-22,Wiktor,TJ.Proc.Natl Acd.Sci.1984;81:7194-8,Rupprecht,CE.Proc.Natl Acd.Sci.1986;83:7947-50,Poulet,H Vaccine 2007;25(Jul):5606-12,Weyer J.Vaccine 2009;27(Nov):7198-201,Buller,RM Nature 1985;317(6040):813-5,Buller RM.J.Virol.1988;62(3):866-74,Flexner,C.Nature 1987;330(6145):259-62, Shida,H.J.Virol.1988;62(12):4474-80,Kotwal,GJ.J.Virol.1989;63(2):600-6,Child,SJ.Virology 1990;174(2):625-9,Mayr A.Zentralbl Bakteriol 1978;167(5,6):375-9,Antoine G.Virology.1998;244(2):365-96,Wyatt,LS.Virology 1998;251(2):334-42,Sancho,MC. J.Virol.2002;76(16);8313-34,Gallego-Gomez,JC.J.Virol.2003;77(19);10606-22),Goebel SJ.Virology 1990;(a,b) 179:247-66,Tartaglia,J.Virol.1992;188(1):217-32,Najera JL.J.Virol.2006;80(12):6033-47,Najera,JL.J.Virol.2006;80:6033-6047,Gomez,CE.J.Gen.Virol.2007;88:2473-78,Mooij,P.Jour.Of Virol.2008;82:2975-2988,Gomez,CE.Curr.Gene Ther.2011;11:189-217,Cox,W.Virology 1993;195:845-50,Perkus,M.Jour.Of Leukocyte Biology 1995;58:1-13,Blanchard TJ.J Gen Virology 1998;79(5):1159-67,Amara R.Science 2001;292:69-74, Hel,Z.,J.Immunol.2001;167:7180-9,Gherardi MM. J.Virol.2003;77:7048-57,Didierlaurent,A.Vaccine 2004;22:3395-3403, Bissht H.Proc.Nat.Aca.Sci.2004;101:6641-46,McCurdy
LH.Clin.Inf.Dis 2004;38:1749-53,Earl PL
.Nature 2004;428:182-85,Chen Z.J.Virol.2005;79:2678-2688,Najera JL.J.Virol.2006;80(12):6033-47,Nam JH.Acta.Virol.2007;51:125-30,Antonis AF.Vaccine 2007;25:4818-4827,B Weyer J.Vaccine 2007;25:4213-22,Ferrier-Rembert A.Vaccine 2008;26(14):1794-804,Corbett M.Proc.Natl.Acad.Sci.2008;105(6):2046-51,Kaufman HL.,J.Clin.Oncol.2004;22:2122-32,Amato,RJ.Clin.Cancer Res.2008;14(22):7504-10,Dreicer R.Invest New Drugs 2009;27(4):379-86,Kantoff PW.J.Clin.Oncol.2010,28,1099-1105,Amato RJ.J.Clin.Can.Res.2010;16(22):5539-47,Kim,DW.Hum.Vaccine.2010;6:784-791,Oudard,S.Cancer Immunol.Immunother.2011;60:261-71,Wyatt,LS.Aids Res. Hum.Retroviruses.2004;20:645-53,Gomez,CE.Virus Research 2004;105:11-22,Webster,DP.Proc.Natl.Acad.Sci.2005;102:4836-4,Huang,X.Vaccine 2007;25:8874-84,Gomez,CE.Vaccine 2007a;25:2863-85,Esteban M.Hum.Vaccine 2009;5:867-871,Gomez,CE.Curr.Gene therapy 2008;8(2):97-120,Whelan,KT.Plos one 2009;4(6):5934,Scriba,TJ.Eur.Jour.Immuno.2010;40(1):279-90,Corbett,M.Proc.Natl.Acad.Sci.2008;105:2046-2051,Midgley,CM.J.Gen.Virol.2008;89:2992-97,Von Krempelhuber,A.Vaccine 2010;28:1209-16,Perreau,M.J.Of Virol.2011;Oct:9854-62,Pantaleo,G.Curr Opin HIV-AIDS.2010;5:391-396,
(この各々が参照により本明細書に援用される)。
【0309】
本発明の実施において有用なアデノウイルスベクターに関しては、米国特許第6,955,808号明細書が言及される。使用されるアデノウイルスベクターは、Ad5、Ad35、Ad11、C6、及びC7ベクターからなる群から選択することができる。アデノウイルス5(「Ad5」)ゲノムの配列は公開されている(Chroboczek,J.,Bieber,F.,and Jacrot,B.(1992)「アデノウイルス5型のゲノムの配列及びアデノウイルス2型のゲノムとのその比較(The Sequence of the Genome of Adenovirus Type 5 and
Its Comparison with the Genome of Adenovirus Type 2)」,Virology 186,280-285;その内容は本明細書によって参照により援用される)。Ad35ベクターは、米国特許第6,974,695号明細書、同第6,913,922号明細書、及び同第6,869,794号明細書に記載される。Ad11ベクターは、米国特許第6,913,922号明細書に記載される。C6アデノウイルスベクターは、米国特許第6,780,407号明細書;同第6,537,594号明細書;同第6,309,647号明細書;同第6,265,189号明細書;同第6,156,567号明細書;同第6,090,393号明細書;同第5,942,235号明細書及び同第5,833,975号明細書に記載される。C7ベクターは、米国特許第6,277,558号明細書に記載される。E1欠損又は欠失、E3欠損又は欠失、及び/又はE4欠損又は欠失のアデノウイルスベクターもまた用いら
れ得る。E1欠損アデノウイルス突然変異体は非許容細胞において複製欠損であるか、或いはごく最低限でも高度に弱毒化されているため、E1領域に突然変異を有する特定のアデノウイルスは安全性マージンが改善されている。E3領域に突然変異を有するアデノウイルスは、アデノウイルスがMHCクラスI分子を下方調節する機構の破壊によって免疫原性が増強されている。E4突然変異を有するアデノウイルスは、後期遺伝子発現の抑制に起因して低いアデノウイルスベクターの免疫原性を有し得る。かかるベクターは、同じベクターを利用した反復的な再ワクチン接種が所望される場合に特に有用であり得る。本発明においては、E1、E3、E4、E1及びE3、及びE1及びE4が欠失した又は突然変異したアデノウイルスベクターを使用することができる。さらに、全てのウイルス遺伝子が欠失されている「ガットレス(gutless)」アデノウイルスベクターもまた、本発明において使用することができる。かかるベクターは、その複製にヘルパーウイルスを必要とし、且つ天然の環境には存在しない条件であるE1a及びCreの両方を発現する特定のヒト293細胞株を必要とする。かかる「ガットレス」ベクターは非免疫原性であり、従ってこのベクターは再ワクチン接種のため複数回接種し得る。「ガットレス」アデノウイルスベクターは、本発明のトランス遺伝子などの異種インサート/遺伝子の挿入に使用することができ、さらには、多数の異種インサート/遺伝子の共送達に使用することができる。
【0310】
本発明の実施において有用なレンチウイルスベクター系に関しては、米国特許第6428953号明細書、同第6165782号明細書、同第6013516号明細書、同第5994136号明細書、同第6312682号明細書、及び同第7,198,784号明細書、及びそれらの中の引用文献が言及される。
【0311】
本発明の実施において有用なAAVベクターに関しては、米国特許第5658785号明細書、同第7115391号明細書、同第7172893号明細書、同第6953690号明細書、同第6936466号明細書、同第6924128号明細書、同第6893865号明細書、同第6793926号明細書、同第6537540号明細書、同第6475769号明細書及び同第6258595号明細書、及びそれらの中の引用文献が言及される。
【0312】
別のベクターはBCG(カルメット・ゲラン桿菌)である。BCGベクターは、Stover et al.(Nature 351:456-460(1991))に記載される。本発明のペプチドの治療的投与又は免疫化に有用な多種多様な他のベクター、例えば、サルモネラ・チフィ(Salmonella typhi)ベクターなどが、本明細書の記載から当業者には明らかである。
【0313】
ベクターは、抗原投与によって誘発される用量及び/又は応答と同様のインビボ発現及び応答を有するように共投与することができる。
【0314】
本発明のペプチドをコードする核酸を投与する好ましい手段では、複数のエピトープをコードするミニ遺伝子コンストラクトが用いられる。ヒト細胞での発現用に選択されたCTLエピトープをコードするDNA配列(ミニ遺伝子)を作成するため、エピトープのアミノ酸配列が逆翻訳される。各アミノ酸のコドン選択の指針とするためヒトコドン使用頻度表を使用する。エピトープをコードするこれらのDNA配列は直接隣接しており、連続的なポリペプチド配列を作り出す。発現及び/又は免疫原性を最適化するため、ミニ遺伝子設計にさらなるエレメントを組み込んでもよい。逆翻訳され、且つミニ遺伝子配列に含めることのできるアミノ酸配列の例としては、以下が挙げられる:ヘルパーTリンパ球、エピトープ、リーダー(シグナル)配列、及び小胞体保留シグナル。加えて、CTLエピトープに隣接する合成の(例えばポリアラニン)又は天然に存在するフランキング配列を含めることにより、CTLエピトープのMHC提示を向上させ得る。
【0315】
ミニ遺伝子配列は、ミニ遺伝子のプラス鎖及びマイナス鎖をコードするオリゴヌクレオチドをアセンブルすることによりDNAに変換される。オーバーラップオリゴヌクレオチド(30~100塩基長)が、周知の技法を用いて適切な条件下で合成され、リン酸化され、精製され及びアニールされる。オリゴヌクレオチドの末端は、T4 DNAリガーゼを使用してつなぎ合わされる。CTLエピトープポリペプチドをコードするこの合成ミニ遺伝子は、次に所望の発現ベクターにクローニングされ得る。
【0316】
標的細胞における発現を確実にするため、当業者に周知の標準的な調節配列がベクターに含められる。いくつかのベクターエレメントが必要である:ミニ遺伝子挿入のための下流クローニング部位を含むプロモーター;効率的な転写終結のためのポリアデニル化シグナル;大腸菌(E.coli)複製起点;及び大腸菌(E.coli)選択可能マーカー(例えばアンピシリン又はカナマイシン耐性)。この目的のため数多くのプロモーター、例えばヒトサイトメガロウイルス(hCMV)プロモーターを使用することができる。他の好適なプロモーター配列に関しては、米国特許第5,580,859号明細書及び同第5,589,466号明細書を参照のこと。
【0317】
ミニ遺伝子発現及び免疫原性を最適化するため、さらなるベクター修飾が望ましいこともある。ある場合には、効率的な遺伝子発現のためイントロンが必要であり、1つ以上の合成の又は天然に存在するイントロンがミニ遺伝子の転写領域に組み込まれ得る。ミニ遺伝子発現を増加させるため、mRNA安定化配列を含めることもまた考えられ得る。最近、免疫刺激配列(ISS又はCpG)がDNAワクチンの免疫原性において役割を果たすことが提唱されている。これらの配列は、免疫原性を増強させることが見出された場合には、ベクター中、ミニ遺伝子コード配列の外側に含められ得る。
【0318】
一部の実施形態では、ミニ遺伝子によりコードされるエピトープと、免疫原性を増強又は低下させるために含められる第2のタンパク質との産生を可能にするバイシストロニック発現ベクターを使用することができる。有利には共発現した場合に免疫応答を増強し得るタンパク質又はポリペプチドの例には、サイトカイン(例えば、IL2、IL12、GM-CSF)、サイトカイン誘導分子(例えばLeIF)又は副刺激分子が含まれる。ヘルパー(HTL)エピトープを細胞内標的シグナルにつなぎ合わせ、CTLエピトープと別個に発現させてもよい。これは、CTLエピトープと異なる細胞コンパートメントへのHTLエピトープの誘導を可能にし得る。必要であれば、これはMHCクラスII経路へのHTLエピトープのより効率的な侵入、従ってCTL誘導の向上を促進し得る。CTL誘導と対照的に、免疫抑制分子(例えばTGF-β)の共発現により免疫応答を特に低下させることが、特定の疾患においては有益であり得る。
【0319】
発現ベクターが選択された後、ミニ遺伝子はプロモーターの下流のポリリンカー領域にクローニングされる。このプラスミドは適切な大腸菌(E.coli)株に形質転換され、標準的な技法を用いてDNAが調製される。ミニ遺伝子並びにベクター中に含まれる他の全てのエレメントの向き及びDNA配列は、制限酵素マッピング及びDNA配列解析を用いて確認される。正しいプラスミドを有する細菌細胞をマスターセルバンク及びワーキングセルバンクとして保存することができる。
【0320】
精製プラスミドDNAは、種々の製剤を使用して注射用に調製することができる。それらのうち最も単純なものは、滅菌リン酸緩衝生理食塩水(PBS)中での凍結乾燥DNAの再構成である。種々方法が記載されており、新技術が利用可能になり得る。本明細書に記載のとおり、核酸は好都合にはカチオン性脂質と製剤化される。加えて、糖脂質、融合性リポソーム、ペプチド及び保護性相互作用性非縮合性(protective,interactive,non-condensing:PINC)と総称される化合物を複
合体化してプラスミドDNAを精製し、安定性、筋内分散、又は特定の臓器若しくは細胞型への輸送などの変数に影響を与えることもできる。
【0321】
標的細胞感作を、ミニ遺伝子によりコードされるCTLエピトープの発現及びMHCクラスI提示に関する機能アッセイとして用いることができる。プラスミドDNAが、標準的なCTLクロム遊離アッセイの標的として好適な哺乳類細胞系に導入される。使用されるトランスフェクション方法は最終的な製剤に依存する。「ネイキッド」DNAには電気穿孔が使用されてもよく、一方、カチオン性脂質は直接的なインビトロトランスフェクションを可能にする。緑色蛍光タンパク質(GFP)を発現するプラスミドをコトランスフェクトして、蛍光活性化細胞選別(FACS)を用いたトランスフェクト細胞のエンリッチメントを可能にし得る。これらの細胞は、次にクロム-51標識され、エピトープ特異的CTL系の標的細胞として用いられる。51 Cr遊離によって検出される細胞溶解が、ミニ遺伝子によりコードされるCTLエピトープのMHC提示が生じたことを示す。
【0322】
生体内免疫原性は、ミニ遺伝子DNA製剤の機能を試験する第2の手法である。適切なヒトMHC分子を発現するトランスジェニックマウスをDNA製剤で免疫する。用量及び投与経路は製剤に依存する(例えばPBS中DNAにはIM、脂質複合体化DNAにはIP)。免疫化の21日後、脾細胞を回収し、各被験エピトープをコードするペプチドの存在下で1週間にわたり再刺激する。これらのエフェクター細胞(CTL)を、ペプチドが負荷されたクロム-51標識標的細胞の細胞溶解に関して標準的な技法を用いてアッセイする。ミニ遺伝子によりコードされるエピトープに対応するペプチドのMHC負荷により感作された標的細胞の溶解が、CTLの生体内誘導に関するDNAワクチン機能を実証する。
【0323】
ペプチドは、エキソビボでCTLを誘発するためにも用いられ得る。得られたCTLを使用して、他の従来型の治療法に応答しないか又はペプチドワクチン治療手法に応答しない、それを必要とする患者の慢性腫瘍を治療することができる。特定の腫瘍抗原に対するエキソビボCTL応答は、組織培養で患者のCTL前駆細胞(CTLp)を抗原提示細胞(APC)供給源及び適切なペプチドと共にインキュベートすることにより誘導される。適切なインキュベーション時間(典型的には1~4週間)の間にCTLpが活性化され、エフェクターCTLに成熟して拡大した後、細胞が患者に注入し戻され、そこでそれらがその特異的標的細胞(即ち、腫瘍細胞)を破壊する。特定の細胞傷害性T細胞の生成にインビトロ条件を最適化するため、刺激細胞の培養物は適切な無血清培地中に維持される。
【0324】
活性させる細胞、例えば前駆CD8+細胞と刺激細胞をインキュベートする前、刺激細胞の表面上で発現するヒトクラスI分子に負荷された状態となるのに十分な分量の、ある量の抗原ペプチドが刺激細胞培養物に加えられる。本発明では、ペプチドの十分な量とは、ペプチドが負荷された約200個、及び好ましくは200個以上のヒトクラスI MHC分子を各刺激細胞の表面上で発現させることが可能な量である。好ましくは、刺激細胞は、>2μg/mlのペプチドとインキュベートされる。例えば、刺激細胞は、>3、4、5、10、15μg/ml、又はそれ以上のペプチドとインキュベートされる。
【0325】
次に静止細胞又は前駆CD8+細胞は、培養下で、CD8+細胞を活性化するのに十分な期間にわたり適切な刺激細胞と共にインキュベートされる。好ましくは、CD8+細胞は抗原特異的様式で活性化される。静止細胞又は前駆CD8+(エフェクター)細胞と刺激細胞との比は個体毎に異なり得るとともに、さらに、培養条件に対する個体のリンパ球の従順さ並びに疾患状態の性質及び重症度又は記載の範囲内の治療様式が用いられる他の条件などの変数に依存し得る。しかしながら、好ましくは、リンパ球:刺激細胞比は約30:1~300:1の範囲である。エフェクター/刺激培養物は、治療上使用可能な又は有効な数のCD8+細胞を刺激するのに必要な時間にわたり維持され得る。
【0326】
インビトロでのCTL誘導には、APC上の対立遺伝子特異的MHCクラスI分子に結合しているペプチドの特異的認識が必要である。CTLの、特に一次免疫応答における刺激には、APC当たりの特異的MHC/ペプチド複合体の数が決定的に重要である。細胞当たりのペプチド/MHC複合体は少量であっても、CTLによる溶解を受け易い細胞にしたり、又は二次CTL応答を刺激したりするには十分であるが、一次応答中のCTL前駆体(pCTL)の活性化を成功させるには、大幅に多い数のMHC/ペプチド複合体が必要である。細胞上の空の主要組織適合性複合体分子にペプチドを負荷することにより、一次細胞傷害性Tリンパ球応答の誘導が可能となる。
【0327】
ヒトMHC対立遺伝子毎に変異細胞系が存在するわけではないため、APCの表面から内因性MHC関連ペプチドを取り除き、次に得られた空のMHC分子に目的の免疫原性ペプチドを負荷する技法を用いることが有利である。形質転換されていない(非腫瘍形成性の)非感染細胞、好ましくは患者の自己細胞をAPCとして使用することが、エキソビボCTL療法の開発に向けたCTL誘導プロトコルの設計に望ましい。本願は、APCの表面から内因性MHC関連ペプチドをストリッピングし、続いて所望のペプチドを負荷する方法を開示する。
【0328】
安定したMHCクラスI分子は、以下のエレメントで形成される三量体複合体である:1)通常8~10残基のペプチド、2)そのal及びa2ドメインにペプチド結合部位を有する膜貫通重鎖多型タンパク質鎖、及び3)非共有結合的に会合した非多型軽鎖、p2ミクログロブリン(p2microglobuiin)。複合体から結合したペプチドを取り除き及び/又はp2ミクログロブリンを解離させるとMHCクラスI分子が非機能性になって不安定化し、急速な分解がもたらされる。PBMCから単離される全てのMHCクラスI分子が、それらに結合する内因性ペプチドを有する。従って、第1のステップは、APC上のMHCクラスI分子に結合する全ての内因性ペプチドを、その分解を引き起こすことなく取り除くことであり、その後それらに外来性ペプチドを加えることができる。
【0329】
MHCクラスI分子から結合したペプチドを取り除く2つの可能な方法として、培養温度を37℃から26℃に一晩下げてp2ミクログロブリンを不安定化させること、及び弱酸処理を用いて細胞から内因性ペプチドをストリッピングすることが挙げられる。これらの方法により、それまで結合していたペプチドが細胞外環境に遊離し、新しい外来性ペプチドが空のクラスI分子に結合することが可能になる。低温インキュベーション方法は、外来性ペプチドをMHC複合体に効率的に結合させることが可能であるが、26℃で一晩インキュベートする必要があり、これが細胞の代謝速度を減速させ得る。また、MHC分子を能動的に合成しない細胞(例えば、静止PBMC)は、低温手順によっては多量の空の表面MHC分子を生じない可能性もある。
【0330】
苛酷な酸ストリッピングには、トリフルオロ酢酸、pH2によるペプチドの抽出、又はイムノアフィニティー精製クラスI-ペプチド複合体の酸変性が関わる。APCのバイアビリティー及び抗原提示にとって決定的に重要な最適な代謝状態を維持しながら内因性ペプチドを取り除くことが重要であるため、これらの方法はCTL誘導には実現不可能である。グリシン又はクエン酸リン酸緩衝液などのpH3の弱酸性溶液が、内因性ペプチドの同定及び腫瘍関連T細胞エピトープの同定に用いられている。この処理は、MHCクラスI分子のみが不安定化する(及び関連ペプチドが遊離する)一方、MHCクラスII分子を含め、他の表面抗原はインタクトなままである点で特に有効である。最も重要なことに、弱酸性溶液による細胞の処理は細胞のバイアビリティー又は代謝状態に影響を及ぼさない。内因性ペプチドのストリッピングは4℃、2分間で行われ、且つAPCは適切なペプチドが負荷された後直ちにその機能を果たすことのできる状態にあるため、弱酸処理は迅速である。この技法は、本明細書では、一次抗原特異的CTLを生じさせるペプチド特異的APCの作製に利用される。得られるAPCは、ペプチド特異的CD8+ CTLの誘導において効率が良い。
【0331】
活性化CD8+細胞は、種々の公知の方法の一つを用いて刺激細胞と効果的に分離し得る。例えば、刺激細胞、刺激細胞に負荷されたペプチド、又はCD8+細胞(又はそのセグメント)に特異的なモノクローナル抗体を利用して、その適切な相補リガンドに結合させ得る。次に抗体タグ標識分子を適切な手段、例えば周知されている免疫沈降又はイムノアッセイ方法で刺激エフェクター細胞混合物から抽出し得る。
【0332】
活性化CD8+細胞の細胞傷害性の有効量は、インビトロ使用とインビボ使用との間で、並びにこれらのキラー細胞の最終的な標的である細胞の量及びタイプによって異なり得る。量はまた、患者の状態に応じても異なり、専門家によりあらゆる適切な要因を考慮して決定されなければならない。しかしながら、好ましくは、マウスで使用される約5×10~5×10細胞と比較して、成人ヒトに対して約1×10~約1×1012、より好ましくは約1×10~約1×1011、さらにより好ましくは約1×10~約1×1010の活性化CD8+細胞が利用される。
【0333】
好ましくは、本明細書で考察したとおり、活性化CD8+細胞は、治療しようとする個体にCD8+細胞を投与する前に細胞培養物から回収される。しかしながら、他の現行の提案される治療様式とは異なり、本方法は、非腫瘍形成性の細胞培養系を使用する点に留意することが重要である。従って、刺激細胞及び活性化CD8+細胞の完全な分離が実現される場合、少数の刺激細胞の投与に関連することが知られる固有の危険性はなく、一方、哺乳類腫瘍促進細胞の投与は極めて危険であり得る。
【0334】
細胞成分を再導入する方法は当該技術分野において公知であり、Honsikらに対する米国特許第4,844,893号明細書及びRosenbergに対する米国特許第4,690,915号明細書に例示されるような手順が挙げられる。例えば、静脈内注入による活性化CD8+細胞の投与が適切である。
【0335】
本発明の実施には、特に指示されない限り、分子生物学(組換え技術を含む)、微生物学、細胞生物学、生化学及び免疫学の従来技法を使用し、これらは十分に当業者の範囲内である。かかる技法は、“Molecular Cloning:A Laboratory Manual”,second edition(Sambrook,1989);“Oligonucleotide Synthesis”(Gait,1984);“Animal Cell Culture”(Freshney,1987);“Methods in Enzymology” “Handbook of Experimental Immunology”(Wei,1996);“Gene Transfer Vectors for Mammalian Cells”(Miller and Calos,1987);“Current Protocols in Molecular Biology”(Ausubel,1987);“PCR:The Polymerase Chain Reaction”,(Mullis,1994);“Current Protocols in Immunology”(Coligan,1991)などの文献中に詳しく説明されている。これらの技法は本発明のポリヌクレオチドびポリペプチドの産生に適用可能であり、従って、本発明の作製及び実施において考慮され得る。詳細な実施形態に特に有用な技法を次節で考察する。
【0336】
治療法
本発明は、本発明の新生物ワクチン又はネオ抗原ペプチド若しくは組成物を対象に投与することによって、対象において新生物/腫瘍特異的免疫応答を誘導する方法、新生物/
腫瘍に対するワクチンを接種する方法、対象における癌の症状を治療及び/又は軽減する方法を提供する。
【0337】
本発明によれば、本明細書に記載される新生物ワクチン又は免疫原性組成物は、癌である、又は癌の発症リスクがあると診断された患者に用いられ得る。一実施形態において、患者は、固形腫瘍、例えば、乳房、卵巣、前立腺、肺、腎臓、胃、結腸、精巣、頭頸部、膵臓、脳、メラノーマ、及び他の組織臓器腫瘍、並びに血液腫瘍、例えば急性骨髄性白血病、慢性骨髄性白血病、慢性リンパ性白血病、T細胞リンパ性白血病、及びB細胞リンパ腫を含めたリンパ腫及び白血病を有し得る。
【0338】
本発明のペプチド又は組成物は、CTL応答を誘導するのに十分な量で投与される。
【0339】
本明細書に記載される組成物及び方法は、任意の癌を有するそれを必要としている患者に対し、図2に示す一般的なフロープロセスに従い使用され得る。それを必要としている患者は、個別化された腫瘍特異的ペプチドの混合物による一連のプライミングワクチン接種を受け得る。加えて、4週間の期間にわたるプライミングの後、維持期の間に2回のブーストが続き得る。ワクチン接種は全て皮下送達される。ワクチン又は免疫原性組成物は、患者における安全性、忍容性、免疫応答及び臨床効果に関して、並びにワクチン又は免疫原性組成物の作製及び適切な時間フレーム内におけるワクチン接種開始の成功の実現可能性に関して評価され得る。第1コホートは5人の患者からなってもよく、安全性が十分に実証された後、10人の患者のさらなるコホートが登録され得る。ペプチド特異的T細胞応答に関して末梢血が広範にモニタされ、疾患再発を評価するため患者は最長2年間にわたり追跡される。
【0340】
ワクチン又は免疫原性組成物キット及び共包装
ある態様において、本発明は、免疫原性組成物又はワクチンの投与を可能にするため本明細書で考察される要素の任意の1つ以上を含むキットを提供する。要素は、個々に又は組み合わせで提供されてもよく、及び任意の好適な容器、例えば、バイアル、ボトル、又はチューブに提供されてもよい。一部の実施形態において、キットは、1つ以上の言語、例えば2つ以上の言語による説明書を含む。一部の実施形態において、キットは、本明細書に記載される要素の1つ以上を利用するプロセスで使用される1つ以上の試薬を含む。試薬は任意の好適な容器中に提供されてもよい。例えば、キットは1つ以上の送達又は保存緩衝液を提供し得る。試薬は、特定のプロセスで使用可能な形態で提供されてもよく、又は使用前に1つ以上の他の構成成分の添加が必要な形態(例えば濃縮形態又は凍結乾燥形態)で提供されてもよい。緩衝液は、限定はされないが、炭酸ナトリウム緩衝液、重炭酸ナトリウム緩衝液、ホウ酸塩緩衝液、トリス緩衝液、MOPS緩衝液、HEPES緩衝液、及びそれらの組み合わせを含めた任意の緩衝液であり得る。一部の実施形態において、緩衝液はアルカリ性である。一部の実施形態において、緩衝液は約7~約10のpHを有する。一部の実施形態において、キットは、本明細書に記載されるベクター、タンパク質の1つ以上及び/又はポリヌクレオチドの1つ以上を含む。キットは、有利には、本発明のシステムの全ての要素の提供を可能にし得る。キットは、動物、哺乳動物、霊長類、げっ歯類等に投与される1~50個又はそれ以上のネオ抗原突然変異のRNAを含むか又はそれをコードするベクター及び/又は粒子及び/又はナノ粒子を含むことができ、かかるキットは、かかる真核生物に対する投与についての説明書、並びに本発明の方法のいずれかでの使用に関する説明書を含む。
【0341】
一実施形態において、キットは、免疫原性組成物又はワクチンを有する少なくとも1つのバイアルを含む。一実施形態において、キットは、混合される且つ即時使用可能な即時使用可能成分を含み得る。即時使用可能な免疫原性組成物又はワクチン組成物は、免疫原性組成物の種々のプールが入った別個のバイアルを含み得る。免疫原性組成物は、ウイル
スベクター又はDNAプラスミドが入った一つのバイアルを含むことができ、及びもう一つのバイアルが免疫原性タンパク質を含むことができる。別の実施形態において、キットは、即時再構成可能な形態の免疫原性組成物又はワクチンを含み得る。免疫原性組成物又はワクチン組成物はフリーズドライ又は凍結乾燥されていてもよい。キットは、凍結乾燥組成物を即時投与可能にするためそれに加えることのできる再構成緩衝液を有する別個のバイアルを含み得る。緩衝液は、有利には本発明に係るアジュバント又はエマルションを含み得る。別の実施形態において、キットは、ある用量の免疫原性組成物が入った単一のバイアルを含み得る。別の態様では複数のバイアルが含まれ、一つのバイアルが治療タイムラインに従い投与される。さらなる実施形態において、バイアルには、それを必要としている患者に対するその適切な投与の表示が付される。免疫原は、本明細書に記載されるとおりの凍結乾燥形態、乾燥形態又は水溶液であってもよい。免疫原は、本明細書に記載されるとおりの弱毒生ウイルス、タンパク質、又は核酸であってもよい。
【0342】
別の実施形態において、キットは、免疫応答のプライミングに使用される免疫原性組成物とブーストに使用される別の免疫原性組成物との別個のバイアルを含み得る。一実施形態において、プライミング免疫原性組成物はDNA又はウイルスベクターであってもよく、及びブースト免疫原性組成物はタンパク質であってもよい。いずれの組成物も、凍結乾燥されていてもよく、又は即時投与可能であってもよい。
【0343】
本発明及びその利点が詳細に記載されているが、添付の特許請求の範囲に定義されるとおりの本発明の趣旨及び範囲から逸脱することなく本明細書において様々な変更、置換及び改変を行い得ることは理解されなければならない。
【0344】
本発明は以下の実施例にさらに例示され、実施例は例示を目的として提供されるに過ぎず、いかなる形であれ本発明を限定することは意図されない。
【実施例
【0345】
実施例1
癌ワクチン試験プロトコル
本明細書に記載される組成物及び方法は、図2に示す一般的なフロープロセスに従い高リスクメラノーマ(完全切除ステージIIIB、IIIC及びIVM1a,b)の15人の患者で試験され得る。患者は、個別化された腫瘍特異的ペプチドとポリICLCとの混合物による一連のプライミングワクチン接種を4週間の期間にわたり受け、続いて維持期の間に2回のブーストを受け得る。ワクチン接種は全て皮下送達される。ワクチン又は免疫原性組成物は、患者における安全性、忍容性、免疫応答及び臨床効果に関して、並びにワクチン又は免疫原性組成物の作製及び適切な時間フレーム内におけるワクチン接種開始の成功の実現可能性に関して評価され得る。第1コホートは5人の患者からなってもよく、安全性が十分に実証された後、10人の患者のさらなるコホートが登録され得る。ペプチド特異的T細胞応答に関して末梢血が広範にモニタされ、疾患再発を評価するため患者は最長2年間にわたり追跡される。
【0346】
本明細書に記載したとおり、動物及びヒトの両方において、免疫応答の誘導において突然変異エピトープが有効であること及び自発的腫瘍退縮又は長期生存の症例が突然変異エピトープに対するCD8T細胞応答と相関することのエビデンスが多数ある(Buckwalter and Srivastava PK.「「それが抗原である、ばかげている」及びヒト癌のワクチン療法の10年にわたる他のレッスン(“It is the
antigen(s),stupid” and other lessons from over a decade of vaccitherapy of human cancer)」.Seminars in immunology 20:296-300(2008);Karanikas et al,「長期生存肺癌患者の血中に
おいてHLA四量体で検出可能な腫瘍特異的突然変異抗原に対する細胞溶解性Tリンパ球の高頻度」.Cancer Res.61:3718-3724(2001);Lennerz et al,「ヒトメラノーマに対する自己T細胞の応答は突然変異ネオ抗原によって支配される(The response of autologous T cells to a human melanoma is dominated by mutated neo-antigens)」.Proc Natl Acad Sci U S A.102:16013(2005))及びマウス及びヒトにおける優勢な突然変異抗原の発現の改変に対して「免疫編集」を追跡し得ること(Matsushita et al,「癌エクソーム解析は癌免疫編集のT細胞依存性機序を明らかにする(Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting)」Nature 482:400(2012);DuPage et al,「腫瘍特異的抗原の発現が癌免疫編集の根底にある(Expression of tumor-specific antigens underlies cancer immunoediting)」Nature 482:405(2012);及びSampson et al,「新しく診断された膠芽腫患者の上皮成長因子受容体変異体IIIペプチドワクチン接種に伴う長期無進行生存後の免疫エスケープ(Immunologic escape after prolonged progression-free survival with epidermal growth factor receptor variant III peptide vaccination in patients with newly diagnosed glioblastoma)」J Clin Oncol.28:4722-4729(2010))。
【0347】
次世代シーケンシングは、現在、個々の腫瘍におけるコード突然変異、最も一般的には単一アミノ酸変化(例えばミスセンス突然変異)及び頻度は低いが、フレームシフト挿入/欠失/遺伝子融合、終止コドンにおけるリードスルー突然変異、及び不適切にスプライスされたイントロンの翻訳(例えば、ネオORF)により生成されるアミノ酸の新規ストレッチなど、個別的な突然変異の存在を迅速に明らかにすることができる。ネオORFは、その配列の全体が免疫系にとって完全に新規であり、従ってウイルス性又は細菌性の外来抗原に類似しているため、免疫原として特に有益である。従って、ネオORFは:(1)腫瘍に対して高度に特異的である(即ちいかなる正常細胞においても発現がない);(2)中枢性トレランスを迂回し、それによりネオ抗原特異的CTLの前駆体頻度を増加させることができる。例えば、最近、ヒトパピローマウイルス(HPV)に由来するペプチドで、治療的抗癌ワクチンにおいて類似の外来配列を利用する力が実証された。ウイルス性癌遺伝子E6及びE7に由来するHPVペプチド混合物のワクチン接種を3~4回受けた新生物発生前のウイルス誘導性疾患を有する19人の患者の約50%が、完全寛解を24ヶ月以上維持した(Kenter et al,「外陰上皮内新生物に関するHPV-16オンコプロテインに対するワクチン接種(Vaccination against
HPV-16 Oncoproteins for Vulvar Intraepithelial Neoplasia)」NEJM 361:1838(2009))。
【0348】
シーケンシング技術により、各腫瘍が、遺伝子のタンパク質コード内容を改変する複数の患者特異的突然変異を含むことが明らかになっている。かかる突然変異は、単一アミノ酸変化(ミスセンス突然変異によって引き起こされる)から、フレームシフト、終止コドンのリードスルー又はイントロン領域の翻訳(新規オープンリーディングフレーム突然変異;ネオORF)に起因する新規アミノ酸配列の長い領域の付加にまで及ぶ改変タンパク質を作り出す。これらの突然変異タンパク質は、天然タンパク質と異なり自己トレランスの免疫抑制効果に供されないため、腫瘍に対する宿主の免疫応答にとって有用な標的である。従って、突然変異タンパク質は免疫原性である可能性が一層高く、また患者の正常細胞と比較して腫瘍細胞に対する特異性もより高い。
【0349】
どのミスセンス突然変異が患者のコグネイトMHC分子との強力な結合ペプチドを生じるかを予測する近年改良されたアルゴリズムを利用して、各患者に最適な突然変異エピトープ(ネオORF及びミスセンスの両方)を代表する一組のペプチドを同定し、優先順位を付け、及び最大20個又はそれ以上のペプチドを免疫化用に調製する(Zhang et al,「免疫学における機械学習競争-HLAクラスI結合ペプチドの予測(Machine learning competition in immunology-Prediction of HLA class I binding peptides)」J Immunol Methods 374:1(2011);Lundegaard et al 「ニューラルネットワークベースの方法を用いたエピトープの予測(Prediction of epitopes using neural network based methods)」J Immunol Methods 374:26(2011))。約20~35アミノ酸長のペプチドが合成され、なぜならこのような「長い」ペプチドは樹状細胞などのプロフェッショナル抗原提示細胞において効率的なインターナリゼーション、プロセシング及び交差提示を受け、且つヒトにおいてCTLを誘導することが示されているためである(Melief and van der Burg,「合成ロングペプチドワクチンによる樹立された(前)悪性疾患の免疫療法(Immunotherapy of established(pre)malignant disease by synthetic long peptide vaccines)」Nature Rev Cancer 8:351(2008))。
【0350】
強力且つ特異的な免疫原に加え、有利には、有効な免疫応答は免疫系を活性化させるために強力なアジュバントを含む(Speiser and Romero,「癌免疫療法のための分子的に定義されたワクチン、及び防御T細胞免疫(Molecularly defined vaccines for cancer immunotherapy,and protective T cell immunity)」Seminars in Immunol 22:144(2010))。例えば、Toll様受容体(TLR)が、自然免疫系、次には適応免疫系を有効に誘導する、微生物性及びウイルス性病原体「危険シグナル」の強力なセンサーとして登場している(Bhardwaj and Gnjatic,「TLRアゴニスト:それは良好なアジュバントか?(TLR AGONISTS:Are They Good Adjuvants?)」Cancer J.16:382-391(2010))。TLRアゴニストの中でも、ポリICLC(合成二本鎖RNA模倣体)は、骨髄由来樹状細胞の最も強力なアクチベータの一つである。ヒトボランティア試験において、ポリICLCは安全で、且つ末梢血細胞において、最も強力な弱毒生ウイルスワクチンの一つである黄熱病ワクチンYF-17Dにより誘導されるものと同等の遺伝子発現プロファイルを誘導することが示されている(Caskey et al,「合成二本鎖RNAはヒトにおいて生菌ウイルスワクチンと同様の自然免疫応答を誘導する(Synthetic double-stranded RNA induces innate immune responses similar to a live viral vaccine in humans)」J Exp Med 208:2357(2011))。Oncovir,Incにより調製されるポリICLCのGMP製剤であるHiltonol(登録商標)をアジュバントとして利用する。
【0351】
実施例2:標的患者集団
ステージIIIB、IIIC及びIVM1a,bのメラノーマを有する患者は、疾患を完全に外科的に切除したとしても、疾患再発及び死亡のリスクが著しく高い((Balch et al,「2009年AJCCメラノーマ病期診断及び分類の最終版(Final Version of 2009 AJCC Melanoma Staging and Classification)」J Clin Oncol 27:6199
-6206(2009))。この患者集団に利用可能な全身アジュバント療法はインターフェロン-α(IFNα)であり、これは測定可能な、しかし最低限度の利益を提供し、顕著な、多くの場合に用量制限となる毒性を伴う(Kirkwood et al,「高リスク切除皮膚メラノーマのインターフェロンα-2bアジュバント療法:米国東海岸癌臨床試験グループ試験EST 1684(Interferon alfa-2b Adjuvant Therapy of High-Risk Resected Cutaneous Melanoma:The Eastern Cooperative Oncology Group Trial EST 1684)」J Clin Oncol 14:7-17(1996);Kirkwood et al,「高リスクメラノーマにおける高用量及び低用量インターフェロンα-2b:群間比較試験E1690/S9111/C9190の初回分析(High- and Low-dose Interferon Alpha-2b in High-Risk Melanoma:First Analysis of Intergroup Trial E1690/S9111/C9190)」J Clin Oncol 18:2444-2458(2000))。これらの患者は、過去の癌を標的化した治療法によるか又は活動中の癌により免疫無防備状態ではなく、従ってワクチンの安全性及び免疫学的影響を評価するための優れた患者集団に相当する。最後に、これらの患者に対する現行の標準治療は、手術後にいかなる治療も指示しないため、ワクチン製剤について8~10週間のウィンドウが可能となる。
【0352】
標的集団は、完全に切除されていて発病していない、臨床的に検出可能な組織学的に確認されたリンパ節(局所又は遠隔)又はイントランジット転移を有する皮膚メラノーマ患者である(ステージIIIBの多く(シーケンシング及び細胞系発生に十分な腫瘍組織を有する必要があるため、潰瘍化した原発腫瘍であって但し微小転移リンパ節を有する患者(T1-4b、N1a又はN2a)は除外される)、ステージIIICの全て、及びステージIVM1a、b)。これらは、初期ステージのメラノーマの初回診断患者又は前回の診断後の疾患再発患者であり得る。
【0353】
腫瘍摘出:患者をメラノーマに罹患していない状態にする目的で、患者がその原発性メラノーマ(まだ取り除かれていない場合)及び全ての局所転移性疾患の完全切除を受け得る。病理学的評価に十分な腫瘍が摘出された後、残りの腫瘍組織を滅菌容器内の滅菌媒体中に置き、脱凝集用に調製する。腫瘍組織の一部を使用して全エクソーム及びトランスクリプトームシーケンシング及び細胞株作成を行い、残った腫瘍は凍結する。
【0354】
正常組織摘出:全エクソームシーケンシング用に正常組織試料(血液又は喀痰試料)を採取する。
【0355】
臨床的に明らかな局所領域の転移性疾患又は完全に切除可能な遠隔リンパ節、皮膚又は肺転移性疾患を有する(しかし切除不能な遠隔又は内臓転移性疾患はない)患者を同定し、試験に組み入れる。メラノーマ細胞系樹立用の新鮮な腫瘍組織を得るため(それにより免疫モニタリング計画の一環としてのインビトロ細胞傷害性アッセイ用の標的細胞を作成するため)、手術前の患者の登録が必要である。
【0356】
実施例3:用量及びスケジュール
全ての治療前基準を満たした患者について、試験薬が到着し、受入規格に適合した後、可能な限り速やかにワクチン投与を開始する。各患者につき4つの別個の試験薬があり、各々が20個の患者特異的ペプチドのうちの5個を含有する。免疫化は、概して図3に示すスケジュールに従い進め得る。
【0357】
患者は外来患者診療部で治療される。各治療日の免疫化は4回の1ml皮下注射からな
り、リンパ系の異なる領域を標的化して抗原競合を低減するため、各注射を別々の四肢に行い得る。患者が完全腋窩又は鼠径リンパ節郭清を受けたことがある場合、ワクチンは代替として右又は左横隔膜に投与される。各注射は、当該患者用の4つの試験薬のうちの1つからなり、各サイクルについて同じ試験薬を同じ四肢に注射し得る。各1ml注射の組成は以下である:
5個の患者特異的ペプチドを各300μgずつ含有する0.75ml試験薬
0.25ml(0.5mg)の2mg/mlポリICLC(Hiltonol(登録商標))
【0358】
誘導期/プライミング期の間、患者は1、4、8、15及び22日目に免疫される。維持期には、患者は12及び24週目にブースター用量を受け得る。
【0359】
血液試料を複数の時点で採取し得る:前(ベースライン;異なる日の2つの試料);プライミングワクチン接種の間の15日目;誘導/プライミングワクチン接種後4週間(8週目);初回ブーストの前(12週目)及び後(16週目);2回目のブーストの前(24週目)及び後(28週目)に、各試料につき50~150mlの血液を採取する(16週目を除く)。一次免疫学的エンドポイントは16週目であり、従って患者は(患者及び医師の評価に基づき特に指示されない限り)白血球アフェレーシスを受け得る。
【0360】
実施例4:免疫モニタリング
免疫戦略は、免疫応答を誘導するための初期の一連の密な間隔の免疫化と、続く記憶T細胞を樹立させるための休止期間とを含む「プライム-ブースト」手法である。これにブースター免疫化が続き、このブーストの4週間後のT細胞応答が最も強い応答を生じるものと予想され、一次免疫学的エンドポイントとなる。初めに大域的免疫応答が末梢血単核細胞を使用してこの時点から18時間エキソビボELISPOTアッセイにおいて、全ての免疫エピトープを含むオーバーラップ15merペプチド(11aaオーバーラップ)のプールで刺激してモニタされる。このペプチドプールに対するベースライン応答を確立するため、ワクチン接種前試料を評価する。必要に応じてさらなるPBMC試料を評価し、全ペプチド混合物に対する免疫応答の動態を調べる。ベースラインを有意に上回る応答を示す患者については、全15merのプールをデコンボリューションして、どの特定の免疫ペプチドが免疫原性であったかを決定する。加えて、適切な試料に関して個別の場合に応じていくつかのさらなるアッセイを行う:
・全15merプール又はサブプールを細胞内サイトカイン染色アッセイの刺激ペプチドとして使用して、抗原特異的CD4+、CD8+、中枢記憶及びエフェクター記憶集団を同定及び定量化する
・同様に、これらのプールを使用してこれらの細胞により分泌されるサイトカインのパターンを評価し、T1対T2表現型を決定する
・未刺激細胞の細胞外サイトカイン染色及びフローサイトメトリーを使用してTreg及び骨髄由来サプレッサー細胞(MDSC)を定量化する。
・応答した患者からのメラノーマ細胞系の樹立に成功し、且つ活性化エピトープを同定することができた場合、突然変異ペプチド及び対応する野生型ペプチドを使用してT細胞の細胞傷害性アッセイを行う
・一次免疫学的エンドポイントのPBMCを、図4に示されるとおり、既知のメラノーマ腫瘍関連抗原を刺激剤として使用し、且つ免疫原の中には選択されなかったいくつかのさらなる同定済みの突然変異エピトープを使用することにより、「エピトープの広がり」に関して評価する。
【0361】
腫瘍試料の免疫組織化学を行い、CD4+、CD8+、MDSC、及びTreg浸潤集団を定量化する。
【0362】
実施例5
ネオ抗原調製
腫瘍を外科的に切除した後、腫瘍組織の一部及び血液試料を直ちに施設に移し、そこで以降のトラッキング用に一意の識別コードを割り当てる。腫瘍組織はコラゲナーゼで脱凝集させ、別々の一部を核酸(DNA及びRNA)抽出用に凍結する。血液試料は核酸抽出のため直ちに施設に移す。腫瘍組織から抽出されるDNA及び/又はRNAは全エクソームシーケンシング(例えば、Illumina HiSeqプラットフォームを使用することによる)に使用し、HLAタイピング情報を決定する。本発明の範囲内では、ミスセンス又はneoORFネオ抗原ペプチドはタンパク質ベースの技術(例えば、質量分析法)によって直接同定し得ることが企図される。
【0363】
バイオインフォマティクス解析は以下のとおり行われる。エクソーム及びRNA-SEQ fast Qファイルの配列解析は、多くの患者試料に関するTCGAなどの大規模プロジェクトで広範に使用され及び検証されている既存のバイオインフォマティクスパイプラインを利用する(例えば、Chapman et al,2011,Stransky et al,2011,Berger et al,2012)。2つの連続的な解析カテゴリー:データ処理及び癌ゲノム解析がある。
【0364】
データ処理パイプライン:Picardデータ処理パイプライン(picard.sourceforge.net/)はシーケンシングプラットフォームにより開発された。各腫瘍及び正常試料について(例えば、Illumina)シーケンサーから抽出された生データがPicardパイプラインの様々なモジュールを使用して以下の処理に供される:
(i)データ変換:Illumina生データを標準BAMフォーマットに変換し、種々のクオリティ閾値を超える塩基の分布に関する基本QCメトリックを作成する。
(ii)アラインメント:バローズ・ホイーラーアラインメントツール(BWA)を用いてリードペアをヒトゲノム(hg19)にアラインメントする。
(iii)デュプリケートのマーキング:リードペアマッピング位置に基づきPCR及び光学的デュプリケートを同定し、最終BAMファイルにマーキングする。
(iv)インデルリアラインメント:ゲノムにおける既知の挿入及び欠失多型部位と整列するリードを調べ、リアラインメント時の改善の対数オッズ(LOD)スコアが少なくとも0.4である部位を修正する。
(v)クオリティリキャリブレーション:Illuminaパイプラインによって報告された元の塩基クオリティスコアを、リードサイクル、レーン、フローセルタイル、問題の塩基及び先行する塩基に基づきリキャリブレーションする。リキャリブレーションは、非dbSNP位置にあるミスマッチが全て、総観察数の中のミスマッチの割合としての目的のカテゴリー毎のエラー確率のリキャリブレーションを可能にするエラーに起因すると仮定する。
(vi)クオリティコントロール:最終BAMファイルを処理することにより、サイクル毎のリードクオリティ、クオリティスコアの分布、アラインメントのサマリー及びインサートサイズ分布を含む広範なQCメトリックを作成する。クオリティQCに適合しないデータはブラックリストに載る。
(vii)同一性検証:約100個の既知のSNP位置における直交的に収集した試料遺伝子型データを配列データと照合し、試料の同一性を確認する。同一性確認用の閾値として≧10のLODスコアを使用する。同一性QCに適合しないデータはブラックリストに載る。
(viii)データ集約:同じ試料からの全てのデータをマージし、デュプリケートのマーキングステップを繰り返す。推定上の短い挿入及び欠失領域を含む新規標的領域を特定し、それらの遺伝子座でインデルリアラインメントステップを行う。
(ix)集約データにおける推定インデルの周りの局所的リアラインメント:推定上の
短い挿入及び欠失を含む新規標的領域を特定し、それらの遺伝子座で局所的リアラインメントステップを(例えば、GATK RealignerTargetCreator及びIndelRealignerモジュールを用いて)行い、インデルコールの一貫性及び正しさを確保する。
(x)集約データに対するクオリティコントロール:アラインメントサマリー及びインサートサイズ分布などのQCメトリックを再計算する。加えて、抽出プロセスからの反応性夾雑物の存在下でのDNAの音響せん断によって引き起こされるライブラリ構築プロセスの初期段階における酸化損傷の割合を評価する一組のメトリックを作成する。
【0365】
Picardの出力はbamファイルであり(Li et al,2009)(例えば、http://samtools.sourceforge.net/SAM1.pdfを参照)、これは所与の試料に関する全てのリードの塩基配列、クオリティスコア、及びアラインメントの詳細を保存する。
【0366】
癌突然変異検出パイプライン:Picardパイプラインからの腫瘍bamファイル及び対応する正常bamファイルは本明細書に記載するとおり解析される:
1.クオリティコントロール
(i).Capsegプログラムを腫瘍及び対応する正常エクソーム試料に適用してコピー数プロファイルを得る。次にCopyNumberQCツールを用いて作成されたプロファイルを手動で調べ、腫瘍/正常試料のミックスアップを評価することができる。ノイズのあるプロファイルを有する正常試料並びに腫瘍試料が対応する正常試料よりも低いコピー数変異を有するケースにはフラグを付し、データ生成及び分析パイプライン全体を通じて追跡して、ミックスアップを確認する。
(ii).ABSOLUTEツール15によって、Capsegで生成されたコピー数プロファイルに基づき腫瘍純度及び倍数性を推定する。極めてノイズが多いプロファイルは、高度に劣化した試料のシーケンシングによって生じ得る。そのような場合には、腫瘍純度及び倍数性の推定は不可能であり、対応する試料にフラグを付す。
(iii).ContEst(Cibulskis et al,2011)を使用して試料における交差試料汚染レベルを決定する。汚染が4%を超える試料は破棄する。
2.体細胞性単一ヌクレオチド変異(SSNV)の同定
muTectと称されるベイズ統計のフレームワークを使用して患者の腫瘍及び対応する正常bamを分析することにより、体細胞性塩基対置換を同定する(Cibulskis et al,2013)。前処理ステップにおいて、圧倒的多数の低クオリティ塩基又はゲノムとのミスマッチを有するリードがフィルタリングで除かれる。次にMutectは2つの対数オッズ(LOD)スコアが計算され、これは、それぞれ腫瘍試料及び正常試料中における変異体の存在及び非存在の信頼度を包含(encapsulate)する。処理後段階では、候補突然変異が、キャプチャー、シーケンシング及びアラインメントのアーチファクトを説明するため6つのフィルタによってフィルタリングされる:
(i)近接ギャップ:イベントの近傍におけるミスアラインメントされたインデルの存在に起因して生じる偽陽性を除去する。候補突然変異の周りの11bpウィンドウに≧3の挿入又は欠失リードを有する試料を棄却する。
(ii)マッピング不良:ゲノムにおけるリードの不明瞭な配置のために生じる偽陽性を破棄する。腫瘍及び正常試料の≧50%のリードのマッピングクオリティがゼロである場合又はマッピングクオリティ≧20の突然変異対立遺伝子を有するリードがない場合、その候補は棄却する。
(iii)三対立遺伝子部位:正常におけるヘテロ接合部位は、多くの偽陽性を生じさせる傾向があるため破棄する。
(iv)ストランドバイアス:突然変異を有するリードの大部分が同じ向きを有するコンテクスト特異的シーケンシングエラーによって生じる偽陽性を除去する。ストランド特異的LODが<2である候補は棄却する(当該閾値に適合するための感度は≧90%であ
る)。
(v)クラスター化位置:リードアラインメントの始点又は終点から一定の距離を置いて現れる代替的な対立遺伝子を特徴とするアラインメントエラーに起因する偽陽性を破棄する。リードの始点又は終点からの距離の中央値が≦10である場合(これは突然変異が又はアラインメントの始点又は終点にあることを意味する)、又は距離の絶対偏差中央値が≦3である場合(これは突然変異がクラスター化していることを意味する)、棄却する。
(vi)コントロールで観察される:シーケンシングの偶然誤差によって予想されるものを超えて正常試料中の代替的な対立遺伝子が現れているエビデンスがある腫瘍における偽陽性を破棄する。正常試料中の代替的な対立遺伝子を含む≧2のリードがある場合又はそれらがリードの≧3%である場合、及びそれらのクオリティスコアの合計が>20である場合、棄却する。
これらの6つのフィルタに加え、候補を正常試料のパネルと比較し、2つ以上の正常試料で生殖細胞系列変異体として存在することが見られるものは棄却する。次に最終的な一組の突然変異を、Oncotatorツールを用いて、ゲノム領域、コドン、cDNA及びタンパク質変化を含めた幾つかのフィールドによってアノテートすることができる。
3.体細胞性の小さい挿入及び欠失の同定
本明細書に記載される局所的リアラインメントの出力(「集約データにおける推定インデルの周りの局所的リアラインメント」、上掲を参照)を使用して、それぞれ腫瘍bam単独又は腫瘍及び正常の両方のbamにおいて変異体を裏付けるリードの評価に基づき候補体細胞及び生殖系列インデルを予測し得る。ミスマッチの数及び分布並びに塩基クオリティスコアに基づくさらなるフィルタリングが行われる(McKenna et al,2010,DePristo et al,2011)。全てのインデルを、Integrated Genomics Viewer(Robinson et al,2011)(www.broadinstitute.org/igv)を使用して手動で調べ、高フィデリティのコールを確実にする。
4.遺伝子融合検出
遺伝子融合検出パイプラインの最初のステップは、既知の遺伝子配列のライブラリに対する腫瘍RNA-Seqリードのアラインメントと、続くゲノム座標へのこのアラインメントのマッピングである。ゲノムマッピングは、エクソンを共有する異なる転写変異体にマッピングされる複数のリードペアを共通のゲノム位置に縮める助けとなる。DNAをアラインメントしたbamファイルは、異なる染色体上にあるか、或いは同じ染色体上の場合少なくとも1MB離れている2つの異なるコード領域に2つのメイトがマッピングされるリードペアに関して問い合わせを受ける。また、そのそれぞれ遺伝子においてアラインメントされるペアエンドが(推定)融合mRNA転写物のコーディング-->コーディング5’->3’の向きと一致する向きであることも必要となり得る。少なくとも2つのかかる「キメラ」リードペアがある遺伝子ペアのリストを、さらなる精緻化に供する最初の推定イベントリストとして列挙する。次に、全てのアラインメントされていないリードを、そのメイトが当初アラインメントされたという制約を加えて元のbamファイルから抽出し、本明細書に記載したとおり得られた遺伝子ペアの遺伝子の1つにマッピングする。次に当初アラインメントされなかった全てのかかるリードを、発見された遺伝子ペア間の可能な全てのエクソン-エクソン接合部(完全長、境界から境界まで、コーディング5’->3’向き)で作られるカスタムの「参照」とアラインメントする試みが行われ得る。当初アラインメントされなかったかかるリードの一つが遺伝子Xのエクソンと遺伝子Yのエクソンとの間の接合部に(ユニークに)マッピングされ、且つそのメイトが実際に遺伝子X又はYの一方にマッピングされた場合、かかるリードは「融合」リードとしてマークされる。遺伝子融合イベントは、エクソン:エクソン接合部の周りに過剰な数のミスマッチがなく、及びいずれの遺伝子においても少なくとも10bpのカバレッジで、そのメイトに対して正しい相対的向きの少なくとも1つの融合リードがある場合にコールされる。高度に相同の遺伝子(例えばHLAファミリー)の間の遺伝子融合は誤りである可能性が高く、フィルタリングで除かれる。
5.クロナリティーの推定
バイオインフォマティクス解析を用いて突然変異のクロナリティーを推定し得る。例えば、ABSOLUTEアルゴリズム(Carter et al,2012、Landau et al,2013)を用いて、腫瘍純度、倍数性、絶対コピー数及び突然変異のクロナリティーを推定し得る。各突然変異の対立遺伝子率の確率密度分布を作成し、続いて突然変異の癌細胞率(CCF)に変換する。突然変異は、それらのCCFが0.95を超える事後確率がそれぞれ0.5より大きいか又は小さいかに基づきクローナル又はサブクローナルとして分類される。
6.発現の定量化
TopHatスイート(Langmead et al,2009)を使用して、hg19ゲノムに対して腫瘍bam及び対応する正常bamのRNA-Seqリードをアラインメントする。RNA-SeQC(DeLuca et al,2012)パッケージによりRNA-Seqデータのクオリティを評価し得る。次にRSEMツール(Li et
al,2011)を使用して遺伝子及びアイソフォーム発現レベルを推定する。キロベース当たりの生成されたリードの百万分率及びτ推定値を使用して、他の部分に記載されるとおりの各患者において同定されたネオ抗原に優先順位を付ける。
7.RNA-Seqにおける突然変異の検証
8.本明細書に記載されるとおりの全エクソームデータの解析によって同定される体細胞突然変異(単一ヌクレオチド変異、小さい挿入及び欠失並びに遺伝子融合を含む)の確認を、患者の対応するRNA-Seq腫瘍BAMファイルを調べることによって評価する。各変異遺伝子座について、ベータ二項分布に基づく検出力計算を実施し、それをRNA-Seqデータ中に検出する少なくとも95%の検出力があることを確実にする。キャプチャーにより同定された突然変異は、適切な検出力の部位について突然変異を有するリードが少なくとも2つある場合に検証されたと見なす。
【0367】
腫瘍特異的突然変異含有エピトープの選択:Center for Biological Sequence Analysis、デンマーク工科大学(Technical
University of Denmark)、オランダによって提供及び管理されるニューラルネットワークベースのアルゴリズムnetMHCを使用して、全てのミスセンス突然変異及びネオORFを突然変異含有エピトープの存在に関して解析する。この一群のアルゴリズムは、一連の関連手法の間で最近完了したコンペティションに基づき最高位のエピトープ予測アルゴリズムと評価された(参照)。これらのアルゴリズムを、地域の標的患者集団における主要な民族集団である白人集団に見られるHLA-A対立遺伝子の99%及びHLA-B対立遺伝子の87%を網羅する69個の異なるヒトHLA A及びB対立遺伝子に関して人工ニューラルネットワークベースの手法を用いて訓練した。最新バージョンを利用する(v2.4)。
【0368】
アルゴリズムの正確さは、HLAアロタイプが既知のCLL患者に見出される突然変異から予測を実施することにより評価した。含まれたアロタイプは、A0101、A0201、A0310、A1101、A2402、A6801、B0702、B0801、B1501であった。予測は各突然変異にわたる全ての9mer及び10merペプチドについて、mid-2011でnetMHCpanを使用して、行った。これらの予測に基づき、74個の9merペプチド及び63個の10merペプチド(ほとんどが500nM未満の予測親和性を有した)を合成し、競合的結合アッセイ(Sette)を用いて結合親和性を測定した。
【0369】
これらのペプチドの予測を、2013年3月に最新版のnetMHCサーバの各々(netMHCpan、netMHC及びnetMHCcons)を使用して繰り返した。これらの3つのアルゴリズムは、2012年のコンペティションで使用された20のグルー
プの中で最高位のアルゴリズムであった(Zhang et al)。次に新しい予測の各々に関して、実測結合親和性を評価した。各一組の予測値及び実測値について、範囲毎の正しい予測の%、並びに試料の数が得られる。各範囲の定義は以下のとおりである:
0-150:150nM以下の親和性を有すると予測され、且つ150nM以下の親和性を有することが計測される。
0-150:150nM以下の親和性を有すると予測され、且つ500nM以下の親和性を有することが計測される。
151-500nM:150nMより高いが500nM以下の親和性を有すると予測され、且つ500nM以下の親和性を有することが計測される。
FN(>500nM):偽陰性-500nMより高い親和性を有すると予測されるが、500nM以下の親和性を有することが計測される。
【0370】
9merペプチド(表1)については、アルゴリズム間の差はほとんどなく、netMHC consの151~500nM範囲が僅かに高い値であったが、試料数が少ないため重大ではないと判断された。
【0371】
【表1】
【0372】
10merペプチド(表2)についても同様に、アルゴリズム間の差はほとんどなかったが、但しnetMHCはnetMHCpan又はnetMMHCconsと比べて大幅に多い偽陽性を生じた。しかしながら、9merと比較して10mer予測精度は0~150nM及び0~150nM範囲で僅かに低く、及び151~500nM範囲で大幅に低い。
【0373】
【表2】
【0374】
10merについては、151~500nM範囲では結合体に関して50%未満の精度であるため、0~150nM範囲の予測のみを利用する。
【0375】
任意の個々のHLA対立遺伝子の試料数が、種々の対立遺伝子についての予測アルゴリズムの正確さに関する任意の結論を引き出すには少な過ぎた。利用可能な最大のサブセット(0~150*nM;9mer)のデータを例として表3に示す。
【0376】
【表3】
【0377】
HLA C対立遺伝子に関しては予測の正確さを判断する利用可能なデータがほとんどないため、HLA A及びB対立遺伝子の予測のみを利用する(Zhang et al)。
【0378】
メラノーマ配列情報及びペプチド結合予測の評価は、TCGAデータベースからの情報を用いて実施した。種々の患者の220例のメラノーマからの情報により、平均して患者当たり約450個のミスセンス及び5個のネオORFがあることが明らかになった。20人の患者を無作為に選択し、netMHCを使用して全てのミスセンス及びネオORF突然変異の予測結合親和性を計算した(Lundegaard et al 「ニューラルネットワークベースの方法を用いたエピトープの予測(Prediction of epitopes using neural network based methods)」J Immunol Methods 374:26(2011))。これらの患者はHLAアロタイプが未知であったため、当該のアロタイプの頻度に基づきアロタイプ毎の予測結合ペプチドの数を調整し(地理的範囲における予想される罹患優性集団[メラノーマについて白人]の骨髄登録データセット)、患者当たりの予測される作用可能な突然変異体エピトープ数を求めた。これらの突然変異体エピトープ(MUT)の各々について、対応する天然(NAT)エピトープ結合もまた予測した。Kd≦500nM及び5倍より大きいWT/MUT Kd比を有する予測ミスセンス結合体の単一のペプチド及び各ネオORFの完全長にわたるオーバーラップペプチドを利用して、80%(20人中16人)の患者が、ワクチン接種に適切な少なくとも20個のペプチドを有すると予測された。患者の四分の一は、20個のペプチドの約半分乃至全てをネオORFペプチドが構成し得た。従って、メラノーマには、患者の高い割合が十分な数の免疫原性ペプチドを生じると予想するのに十分な突然変異負荷がある。
本明細書に記載される優先順位付けを利用して:
・90%(20人中18人)の患者が、ワクチン接種に適切な少なくとも20個のペプチドを有すると予測された;
・患者の約4分の1は、それらの20個のペプチドの半分乃至全てをneoORFペプチドが占めた;
・半数を少し上回る患者には、カテゴリー1及び2のペプチドのみが用いられ得た;
・80%の患者には、カテゴリー1、2、及び3のペプチドのみが用いられ得た。
【0379】
従って、メラノーマには、患者の高い割合が十分な数の免疫原性ペプチドを生じると予想するのに十分な数の突然変異がある。
【0380】
実施例6
ペプチド作製及び製剤
免疫用のGMPネオ抗原ペプチドを、FDAの規定に従い化学合成、Merrifield RB:「固相ペプチド合成I.テトラペプチドの合成(Solid phase peptide synthesis.I.The synthesis of a tetrapeptide)」.J.Am.Chem.Soc.85:2149-54,1963)によって調製する。20個の各約20~30merペプチドの3つの開発ランを実施している。各ランは同じ施設で実施され、ドラフトGMPバッチ記録を利用して、GMPランに使用されるものと同じ機器が利用された。各ランで>50mgの各ペプチドを作製することに成功し、現在計画されている全ての出荷試験(例えば、外観、MSによるアイデンティティ、RP-HPLCによる純度、窒素元素による含量、及びRP-HPLCによるTFA含量)によってそれらを試験し、適宜目標規格に適合させた。生成物はまた、プロセスのこの部分に見込まれる時間フレーム(約4週間)の範囲内で作製した。凍結乾燥バルクペプチドを長期安定性試験にかけており、これは最長12ヶ月までの種々の時点で評価される。
【0381】
これらのランからの材料を使用して、計画された溶解及び混合手法を試験している。簡潔に言えば、各ペプチドを100%DMSO中に高濃度(50mg/ml)で溶解し、水性溶媒中に2mg/mlに希釈する。当初、希釈剤としてPBSを使用し得ると見込まれ
たが、しかしながら少数のペプチドの塩析によって目に見える混濁が生じた。D5W(5%デキストロース水溶液)は、はるかに有効性が高いことが示された;40個中37個のペプチドで、澄明な溶液に希釈することに成功した。10%スクロース又は10%トレハロース水溶液もまた有効である。5%デキストロースを含有する製剤と異なり、10%スクロース又は10%トレハロースを含有する製剤は凍結乾燥可能である。唯一問題のあるペプチドは、極めて疎水性のペプチドである。
【0382】
表4は、疎水性アミノ酸の割合の計算値に基づきソートした60個の潜在的なネオ抗原ペプチドの溶解度評価の結果を示す。示されるとおり、疎水性割合が0.4より低いほぼ全てのペプチドがDMSO/D5Wに可溶性であり、しかし疎水性割合が0.4以上の複数のペプチドがDMSO/D5Wに不溶性であった(表頭名「DMSO/D5W中溶解度」の列中に赤色のハイライトで示す)。これらのうち複数は、コハク酸塩を加えることによって可溶化し得る(「DMSO/D5W/コハク酸塩中溶解度」の列に緑色のハイライトで示す)。これらのペプチドの4個中3個は、0.4~0.43の疎水性割合を有した。4個のペプチドは、コハク酸塩を加えると可溶性が低下した;これらのペプチドの4個中3個は0.45以上の疎水性割合を有した。
【0383】
【表4】
【0384】
【表5】
【0385】
【表6】
【0386】
【表7】
【0387】
【表8】
【0388】
【表9】
【0389】
【表10】
【0390】
計画された免疫ペプチドの予測される生化学的特性を評価し、それに従い合成計画を変更してもよく(より短いペプチドを使用するか、合成する領域を予測エピトープの周りでN末端又はC末端方向にシフトさせるか、又は潜在的に代替的ペプチドを利用する)、そ
れにより疎水性割合が高いペプチドの数を制限し得る。
【0391】
DMSO/D5W中の10個の別個のペプチドを2回の凍結/融解サイクルに供し、完全な回復が示された。2つの個々のペプチドをDMSO/D5W中に溶解し、2つの温度(-20℃及び-80℃)で安定性を試みた。これらのペプチドは最長24週間にわたり評価した(RP-HPLC及び目視検査)。両方のペプチドとも24週間にわたり安定している;いずれのペプチドについても、RP-HPLCアッセイによって検出されたパーセント不純物は、-20℃又は-80℃のいずれで保存したときにも大幅には変化しなかった。評価するべき傾向は認められなかったため、任意の小さい変化はアッセイのばらつきに起因するものと思われる。
【0392】
図5に示されるとおり、剤形プロセスの設計は、各5個のペプチドからなる患者特異的ペプチドの4つのプールを調製することである。RP-HPLCアッセイが調製されており、これらのペプチド混合物の評価に適格であるとされている。このアッセイは、単一混合物内の複数のペプチドの良好な分解能を達成し、また個々のペプチドの定量にも用いられ得る。
【0393】
膜ろ過(0.2μm細孔径)を使用してバイオバーデンを低下させ、最終ろ過滅菌を行う。初めに4つの異なる適切なサイズのフィルタタイプを評価し、Pall、PESフィルタ(4612番)を選択した。現在までに、5つの異なる各ペプチドの4つの異なる混合物が調製されており、個々に2つのPESフィルタで順次ろ過した。RP-HPLCアッセイを利用して各個々のペプチドの回収率を評価した。20個中18個のペプチドについては、2回のろ過後の回収率は90%超であった。2つの極めて疎水性のペプチドについては、小規模で評価したとき回収率は60%未満であったが、規模を拡大するとほぼ完全に回収された(87及び97%)。本明細書に記載のとおり、選択した配列の疎水性の性質を制限する手法が取られる。
【0394】
DMSO中に溶解し、2mg/mlとなるようにD5W/コハク酸塩(5mM)で希釈し、及び400μg/mlの最終ペプチド濃度及び4%の最終DMSO濃度にプールすることにより、5つのペプチドからなるペプチドプール(プール4)を調製した。調製後、ペプチドを25mm Pall PESフィルタ(カタログ番号4612)でろ過し、1mlアリコートでNuncクライオバイアル(#375418)に分注した。現在までに時点0並びに2週間及び4週間の時点で試料を分析した。さらに試料は、8週間及び24週間の時点で分析する。-80℃では、4週時点でペプチドプール4のHPLCプロファイル又は不純物プロファイルに大きい変化は認められていない。4週時点まで、ペプチドプールの目視観察及びpHは変化しなかった。
【0395】
実施例7
ペプチド合成
GMPペプチドは標準的な固相合成ペプチド化学により(例えば、CS536XTペプチド合成を使用して)合成し、RP-HPLCにより精製する。各個々のペプチドは、種々の適格なアッセイにより分析して外観(目視)、純度(RP-HPLC)、アイデンティティ(質量分析法による)、量(窒素元素)、及びトリフルオロ酢酸対イオン(RP-HPLC)を評価し、リリースする。
【0396】
個別化されたネオ抗原ペプチドは、各患者にユニークな最大20個の別個のペプチドから構成され得る。各ペプチドが、標準的なペプチド結合によりつながった約20~約30個のL-アミノ酸の線状ポリマーであり得る。アミノ末端は第一級アミン(NH2-)であってもよく、カルボキシ末端はカルボニル基(-COOH)である。哺乳類細胞に一般に見出される標準20アミノ酸が利用される(アラニン、アルギニン、アスパラギン、ア
スパラギン酸、システイン、グルタミン、グルタミン酸、グリシン、ヒスチジン、イソロイシン、ロイシン、リジン、メチオニン、フェニルアラニン、プロリン、セリン、スレオニン、トリプトファン、チロシン、バリン)。各ペプチドの分子量はその長さ及び配列に基づき異なり、各ペプチドについて計算される。
【0397】
全ての合成反応に、Fmoc(9-フルオレニルメチルオキシカルボニル(fluorenylmethoyloxycarbnyl))でN末端が保護されたアミノ酸を利用する。アミノ酸の側鎖は、必要に応じて、2,2,4,6,7-ペンタメチル-ジヒドロベンゾフラン-5-スルホニル(Pbf)基、トリフェニルメチル(Trt)基、t-ブチルオキシカルボニル(Boc)基又はt-ブチルエーテル(tBu)基で保護される。全てのバルクアミノ酸をジメチルホルムアミド(DMF)中に溶解する。縮合は、別個の反応に対する以下の2つの触媒の組み合わせを利用する:
ジイソプロピルカルボジイミド(diisopylcarbodiimide)/1-ヒドロキシベンゾトリアゾール(DIC/HOBT)
ジイソプロピルエチルアミン(diisoproplyethylamine)/2-(1H-ベンゾトリアゾール-1-イル)-1,1,3,3-テトラメチルウロニウムヘキサフルオロホスフェート(DIEA/HBTU)
【0398】
高い取込みレベルを確保するため、各アミノ酸は2回カップリングさせる。第1のカップリングではDIC/HOBTを2~6時間利用し、第2のカップリングではDIEA/HBTUを1~2時間利用する。これらの2つのカップリングの各々はUV吸光度によってモニタし、カップリングサイクルの合間に樹脂をDMFで十分に洗浄して効率を向上させる。2サイクルのカップリング後、次のサイクルに進めるには、カップリング効率計算値が少なくとも95%でなければならない。この最低カップリング効率を満たさないペプチドは、さらなる合成を中止する。
【0399】
全てのアミノ酸をカップリングし終えた後、樹脂をDMFで2回洗浄し、続いてメタノールで3回洗浄する。次になおも反応槽中にある間に樹脂を短時間真空乾燥し、次に新しい風袋計量済み容器に移し入れて、それが自由に流動するまで真空乾燥する(12時間超)。乾燥させた樹脂が入った容器を秤量し、風袋計量済み容器の質量を減じ、及び樹脂質量を調整することによって、合成された粗ペプチドの質量を決定する。予想質量収率は60%~90%の範囲である。少なくとも200mgの粗ペプチドを生成しなかった合成は終了させる。乾燥樹脂は切断開始まで4℃で最長28日間保存し得る。
【0400】
切断反応は単一の部屋で行う。一組の患者特異的乾燥樹脂を合成室から切断室に移す前に、切断室をQAによって新規GMP製品の合成に完全に適格と認められたものにする。適格性認定には、ラインクリアランス点検、GMPスイートクリーニングの確認、全ての必要材料及びガラス器具類のステージング、機器の適切さ及び表示の確認、及び全ての必要人員が適切な訓練を受けていて作業を行う適格性を有し、且つ適切に更衣がなされ、明白な疾患を有しないことの確認が含まれる。
【0401】
部屋の準備作業は、使用する機器の確認(ロータリーエバポレータ、真空ポンプ、はかり)及び機器が適切に清掃及び校正されていることを示す文書の点検(適宜)から開始する。全ての必要な原材料(TFA、トリイソプロピルシラン(TIS)及び1,2-エタンジチオール)の完全なリストがQAによって発行され、製造が、利用すべきロット番号、再試験日又は有効期限及びそれぞれの日の反応に使われる材料の分量を特定する。
【0402】
樹脂からのペプチド鎖の切断及び側鎖保護基の切断は、酸によって生成されるフリーラジカルのスカベンジャーとしての2%トリイソプロピルシラン(TIS)及び1%1,2-エタンジチオールの存在下の酸性条件下(95%TFA)において室温で3~4時間で
達成される。
【0403】
遊離粗ペプチドからろ過によって樹脂を分離する。遊離し且つ脱保護されたペプチドの最終的な溶液にエーテルで沈殿を生じさせ、沈殿物を12時間フリーズドライする。フリーズドライ粉末を秤量して遊離粗ペプチド/樹脂結合ペプチドの比を計算することにより、遊離粗ペプチドの収量を決定する。粗ペプチドの予想収量は200mg~1000mgである。少なくとも200mgの粗ペプチドが得られない切断反応は終了とする。次に粗ペプチドを精製スイートに移す。
【0404】
精製は単一の部屋で行う。一組の乾燥粗ペプチドを切断室から精製室に移す前に、精製室を品質保証(Quality Assurance)によって新規GMP製品の合成に完全に適格と認められたものにする。適格性認定には、ラインクリアランス点検、GMPスイートクリーニングの確認、全ての必要材料及びガラス器具類のステージング、機器の適切さ及び表示の確認、及び全ての必要人員が適切な訓練を受けていて作業を行う適格性を有し、且つ適切に更衣がなされ、明白な疾患を有しないことの確認が含まれる。
【0405】
部屋の準備作業は、使用する機器の確認(分取逆相高速液体クロマトグラフィー[RP-HPLC]、はかり、分析用液体クロマトグラフィー/質量分析計(LC/MS)、凍結乾燥器、はかり)及び機器が適切に清掃及び校正されていることを示す文書の点検(適宜)から開始する。全ての必要な原材料(トリフルオロ酢酸[TFA]、アセトニトリル[ACN]、水)の完全なリストがQAによって発行され、製造が、利用すべきロット番号、再試験日又は有効期限及びそれぞれの日の反応に使われる材料の分量を特定する。
【0406】
精製は、ACN中に200mg以下のフリーズドライ遊離ペプチドを溶解することによって開始する。次に試料を水で5%~10%ACNにさらに希釈する。TFAを加えて0.1%の終濃度にする。患者特異的ペプチドの各セットの開始前に1つのC-18 RP-HPLCカラム(10cm×250cm)を新鮮に充填する。カラムを0.1%TFA含有5%アセトニトリルで十分に洗浄した後、患者ペプチドをロードする。単一のカラムにロードされるペプチドの最大量は200mgである。カラムは220nmでのUV観測によってモニタする。単一ペプチドをロードした後、試料をカラムに流入させ、5%アセトニトリル/0.1%TFAでカラムを洗浄する。0.1%TFAを含むアセトニトリルの10%~50%勾配を使用してペプチドを溶出させる。UV観測がベースラインを20%上回る時点で始まる画分を収集する(各50ml)。カラムからそれ以上UV吸収材料が溶出しなくなるまで、又は勾配が完了するまで、画分を収集し続ける。典型的には、主溶出ピークは4~8画分に分かれる。
【0407】
個々の画分はそれぞれ、分析用LC/MSによって評価する。選択される分析条件は、ピーク溶出生成物に関連するパーセントアセトニトリルに基づく。予想質量及び95%以上の純度を有する画分を、ペプチド生成物としてプールする。典型的には2~4画分がこのプール要件を満たす。プールされたペプチドはフリーズドライ用の風袋計量済みジャーに入れ、24~72時間フリーズドライする。フリーズドライペプチドが入ったジャーの質量を決定し、風袋計量済みジャーの質量を減じることにより、凍結乾燥ペプチドの質量を決定する。
【0408】
フリーズドライペプチドの一部をクオリティコントロールに移して分析及び処分する。残りはさらなる処理まで-20℃で保存する。
【0409】
いずれの画分も95%純度の要件を満たさないペプチドは破棄する。RP-HPLC画分の再処理は行うことができない。十分な未精製フリーズドライ切断ペプチドが利用可能な場合、第2のペプチド試料を、溶出ペプチドの純度が改善されるように勾配条件を調整
してカラムで精製してもよい。
【0410】
次にカラムは、4カラム容積の100%ACN/0.1%TFAで十分に洗浄し、次に5%ACN/0.1%TFAで再平衡化させることによって残りのペプチドを取り除いた後、次のペプチドをロードすることができる。
【0411】
個々の患者のペプチドが同じカラムで順次処理される。単一のカラムで25以下のペプチドが処理される。
【0412】
従って薬物物質製造の単位作業は以下からなる:
合成:
各アミノ酸の縮合、洗浄及び再縮合
樹脂洗浄及び真空乾燥
切断スイートに移す
切断:
樹脂からの酸切断
樹脂からの遊離ペプチドの分離及びペプチド沈殿
精製スイートに移す
精製:
アセトニトリル中への溶解及びRP-HPLC精製
24~72時間にわたるピーク画分のフリーズドライ
QC試験のためアリコートの取り出し及び残りの凍結乾燥生成物の保存。
【0413】
個別化されたネオ抗原ペプチドは、色分けされたキャップを備える2ml Nunc Cryoバイアルが入った箱として供給されてもよく、各バイアルに約400ug/mlの濃度の最大5個のペプチドを含有する1.5mlの凍結DMSO/D5W溶液が入っている。4つのグループのペプチドの各々につき10~15本のバイアルがあり得る。バイアルは使用時まで-80℃で保存すべきである。進行中の安定性試験は保存温度及び期間を裏付けている。
【0414】
保存及び安定性:個別化されたネオ抗原ペプチドは-80℃で凍結して保存される。個別化されたネオ抗原ペプチド及びポリICLCの解凍して滅菌ろ過したインプロセス中間体及び最終混合物は室温で保つことができるが、4時間以内に使用しなければならない。
【0415】
適合性:個別化されたネオ抗原ペプチドは、3分の1の容積のポリICLCと使用直前に混合する。
【0416】
実施例8
製剤試験
条件によっては、特定のペプチドでペプチドプール溶液に混濁又は沈殿が見られた。従って、弱緩衝液がペプチド溶解度及び安定性に及ぼす効果を評価した。
【0417】
ポリICLCとペプチドプール(DMSO含有D5W中)とを混合すると、特に疎水性(hydrophibic)ペプチドについて、恐らくはポリICLC溶液の低いpHに起因して、時に混濁又は沈殿がもたらされることが分かった。ペプチド溶液のpHを上昇させるため、緩衝液を試験し、ペプチド溶解度に対する効果を評価した。初期試験に基づき、クエン酸塩及びコハク酸塩緩衝液を試験した。
【0418】
D5W単独では溶解度の問題を有した4個中3個のペプチドについて溶解度の改善が見られたことが分かった。この初期観察結果に基づき、19個の追加のペプチドをクエン酸
塩又はコハク酸塩で評価し、及び4個のさらなるペプチドをコハク酸塩単独で評価した。緩衝液としてクエン酸ナトリウム(試験される場合)又はコハク酸ナトリウムのいずれかを使用したとき、19個中18個の供試ペプチドの溶液が澄明であったことが分かった(コハク酸塩単独で評価した4個のペプチドのいずれも混濁を示さなかった)。
【0419】
2mM~5mMコハク酸塩の濃度が有効であることが分かった。コハク酸塩緩衝液中の1つのペプチドについてペプチドの回収率が向上したが、クエン酸塩緩衝液中では向上しなかった。ペプチドプール及び使用するコハク酸塩緩衝液の濃度に応じて、D5W/コハク酸塩中のペプチド溶液のpHは約4.64~約6.96の範囲であった。
【0420】
合計27のペプチド(初期の4つのペプチドの難溶性群を含む)を評価した後、1つのペプチドは全ての条件で混濁を再現性のある形で示し、及びもう1つのペプチドは僅かな混濁を示したが、ろ過すると完全に回復可能であったことが分かった。これらの2つのペプチドは両方ともに高い疎水性を有した。
【0421】
一般に、コハク酸塩緩衝液を含むD5W中に2mg/mlに希釈したときに澄明なペプチドは、他のペプチドとの混合時にも澄明性を維持することが分かった(これは概してD5W単独中のペプチドに当てはまる)。
【0422】
代表的な手順では、ペプチドを秤量し、%ペプチド含量に補正し、次にDMSO中に50mg/mLの濃度に溶解した。次にこのDMSO/ペプチド溶液をD5W中の5mMコハク酸ナトリウムで2mg/mLペプチド濃度に希釈した。
【0423】
さらなるペプチド溶解度条件を試験した。ペプチドCS6709、CS6712、CS6720、CS6726、及びCS6783をそれぞれ約10mgに秤量した。次にこれらのペプチドを約200μL USPグレードDMSO中に、各ペプチドが50mg/mL濃度となるように溶解した。本出願人らは、10.02mgのペプチドCS6709が、50mg/mLを提供すると計算される200μL量のDMSOに完全には溶解しなかったことを観察した。この試料は濁っているように見えた。ペプチドCS6709にDMSOをさらに50μLずつ400μLとなるまで加えた;合計600μLのDMSOとなった。DMSOの量が600μLに達したときCS6709は溶液(澄明)になり、濃度は16.67mg/mLであった。
【0424】
ペプチドを400μgに希釈するため、カリウム不含PBS pH7.4溶液を調製した。5つ全てのDMSOペプチド試料(50mg/mL)を単一のバイアルに入れ、400μg/mLに希釈した。このバイアルに各DMSOペプチドを40μLで加え、但しCS6709は16.67mg/mLの濃度とした。単一バイアルに加えたCS6709の容積は120μLであった。4.72mLのPBS pH7.4を加えることにより試料を400μgに希釈した。PBS pH7.4を加えると、ペプチドの1つ以上が析出したことが観察された。
【0425】
ペプチドのうちどれが沈殿したのかを決定するため、本出願人らは、ごく少量(10~20μL)のDMSOに溶解したペプチドを使用し、且つこれらのペプチドを種々の液体に加えて、以下の表5のマトリックスをフォローした。
【0426】
【表11】
【0427】
CS6783は、ペプチド混合物に希釈剤としてPBS pH7.4を加えると沈殿することが分かった。注射用USPグレードD5Wは、PBS pH7.4の代用希釈剤である。
【0428】
加えて、本出願人らは、5つのペプチドのうちDMSOを使用しなくてもD5Wに溶解し得るものはあるかどうかを確かめるため、少量の各ペプチド(<1mg)を試験した。ペプチドCS6709、CS6712、CS6720、及びCS6726はD5Wに直接溶解させることができた。CS6783は、D5Wを使用して溶解させることはできなかった。
【0429】
実施例9
製剤
各患者の製剤は、免疫原として個別に作製された最大20のペプチドを含む。ワクチン接種のため、4つのプール(それぞれ最大5つのペプチド)を、本明細書で考察するとおりリンパ系の異なる部位を標的とする別々の部位への注射用に調製する。個々のペプチドを秤量し、DMSOに高濃度で溶解し、水(D5W)及びコハク酸ナトリウム(4.8~5mM)中5%デキストロースで希釈し、4つのプールに混合する。0.2μmフィルタで個々のプールをろ過してバイオバーデンを低減し、アリコートに分けてバイアルに入れ、凍結する。これらの凍結バイアルは使用時まで凍結保存する。
【0430】
本明細書に記載されるとおり、薬物物質を構成する一組の患者特異的ペプチドを個々に調製し、凍結乾燥し、試験して出荷し、及び製造後に保存する。これらのペプチドを注射用に調製するため、最大5つの異なるペプチドで構成される4つの群の各々を特定し、プールする。
【0431】
実施例10
ワクチンの調製
秤量及び溶解:総重量及びペプチド含量に基づき、15mg(正味重量)又はそれよりやや多い個別のペプチドの各々を秤量し、50mg/mlの最終ペプチド濃度に達するように100%USPグレードDMSO(2:250μl)を加える。開発試験に基づけば、>95%の溶解ペプチドがこの時点において澄明性を示す。
【0432】
希釈及び混合:希釈剤として使用するため5mMコハク酸ナトリウムを含有するUSPグレードD5W(D5W/Succ)を調製し、ろ過する(0.2J..tm)。各250μlの溶解ペプチドをD5W/Succで希釈してペプチド濃度を2mgペプチド/mlに低下させ、pHを約6.0に調整する。澄明な溶液を示さないペプチドは別のペプチ
ド(又はそれ以上ペプチドが利用可能でない場合、D5W/コハク酸塩溶液のみ)に交換する。次に5.5mlの各希釈ペプチド溶液を、各ペプチドが400μgペプチド/mlの濃度の単一の5ペプチド含有プールに合わせる。次に2回の0.2μm膜ろ過ステップの1回目を行う。各プールを、ルアーロック(leur lock)先端及び18ゲージ鈍針を備える60ml Becton Dickson(又は等価な)シリンジに抜き取る。針を取り外し、25mm PALL PES(ポリエーテルスルホン)0.2μmメンブランフィルタ(PALLカタログHP1002)に交換する。シリンジの内容物をフィルタを介して50ml滅菌ポリプロピレンチューブ(Falcon#352070又は等価物)に移す。試験用に各プールのアリコートを取り出し、残りを-80℃で凍結する。個々の希釈ペプチドそれぞれの残りは、全ての分析が完了するまで-20℃で保存する。
【0433】
出荷:凍結ペプチドプールは、バリデートされた搬送容器を使用して、及び一晩空気中で出荷する。
【0434】
ろ過及び保存:凍結プールを解凍し、バイオセーフティキャビネットに移す。解凍したプールからの2ml試料を無菌性及びエンドトキシン試験に関して試験する。残りのバルク溶液を、2回の0.2μm膜ろ過ステップの2回目用に処理する。バルクプールペプチドを、ルアーロック先端及び18ゲージ鈍針を備えたBecton Dickinson(又は等価な)60mlシリンジに抜き取る。針を取り外し、25mm PALL PES(ポリエーテルスルホン)0.2μmメンブランフィルタ(PALLカタログHP1002)に交換する。シリンジの内容物をフィルタを介して50ml滅菌ポリプロピレンチューブ(Falcon#352070又は等価物)に移す。次にペプチド溶液の1.5mlアリコートを15個の予め表示を付した滅菌1.8ml Nuncクライオバイアル(カタログ番号375418)に無菌的に移す。バイアルは、4色に色分けされたキャップのうちの1つで蓋をする。単一の患者の4つのペプチドプールの各々に異なる色のキャップを使用して、識別し易くする。バイアルには、患者の氏名、診療記録番号、試験番号、元の製品/試料の英数字識別名及び一意の英数字識別名(A~D)の表示を付す。バイアルは全て-80℃で凍結する。残りの凍結バイアルは、全ての出荷試験が受入れ基準に適合するまで保存する。全ての出荷試験が完了し、製品が薬局に出荷されるまで、患者の免疫化は予定されない。
【0435】
或いは、各免疫日に、まだ本明細書に記載されるとおりのバイオセーフティキャビネット内での滅菌ろ過に供されていない1組(4つ)のバイアルを解凍し、バイオセーフティキャビネットに移す。各バイアルの内容物を別々のシリンジに抜き取る。0.2μmの滅菌フィルタを取り付け、内容物をフィルタを介して滅菌バイアルに移す。フィルタを取り外し、完全性を確かめる。次に滅菌シリンジを使用して0.75mlのペプチド混合物を抜き取り、及びシリンジ間で移し替えることにより0.25mlポリICLC(Hiltonol(登録商標))と混合する。
【0436】
分析:プールペプチドのアリコートに関して、インプロセス試験として3つの試験(外観、アイデンティティ及び残留溶媒)を行う。最終的なろ過の前に、解凍したペプチドプールのアリコートに関してエンドトキシンを試験する。最終製品の2つのバイアルを合わせた試料に関して無菌性を分析する。この手法をとるのは、最終的なろ過を行う前に、重要な生化学的情報(ペプチド溶解度、各プールにおける各ピークのアイデンティティ及び任意の残留溶媒のレベル)が利用可能であることを確実にするためである。プールされ及びろ過されたバルクペプチドプールの受け取り時、エンドトキシン試験及び微生物培養を実施して、微生物学的純度を評価する。製品の使用には、エンドトキシン規格に適合することが要求される。微生物培養試験において陽性結果があれば、製品使用に対するその影響を調べる。患者使用に最も近い試料である最終ろ過及びバイアル詰め後のバイアルに入った試料に関して、重要な安全性試験である無菌性の試験が行われる。
【0437】
実施例11
投与
個別化されたネオ抗原ペプチド/ポリペプチドとの混合後、ワクチン(例えば、ペプチド+ポリICLC)は皮下投与されることになる。
【0438】
個別化されたネオ抗原ペプチド/ポリペプチドプールの調製:ペプチドは、各々最大5個のペプチドの4つのプールに共に混合する。各プールの選択基準は、ペプチドが結合すると予測される詳細なMHC対立遺伝子に基づく。
【0439】
プール組成:プールの組成は、各ペプチドが結合すると予測される詳細なHLA対立遺伝子に基づき選択し得る。4つのプールは、別個のリンパ節流域(lymph node
basin)に流れ出る解剖学的部位に注入される。同じHLA対立遺伝子に結合するペプチド間の抗原競合を可能な限り潜在的に低下させるためにこの手法が選択されたとともに、これには免疫応答の発生における患者の免疫系の幅広いサブセットが関わる。各患者について、最大4つの異なるHLA A及びB対立遺伝子に結合すると予測されるペプチドを同定する。一部のネオORF由来ペプチドはいかなる特定のHLA対立遺伝子とも関連しない。ペプチドを異なるプールに分配する手法は、特定のHLA対立遺伝子に関連する各組のペプチドを4つのプールの可能な限り多くに広げることである。所与の対立遺伝子について4つより多くの予測ペプチドがある状況がある可能性が極めて高く、そのような場合、特定の対立遺伝子に関連する2つ以上のペプチドを同じプールに割り当てることが必要になる。いかなる特定の対立遺伝子にも関連しないネオORFペプチドは、残りのスロットに無作為に割り当てられる。一例を以下に示す。
【0440】
【表12】
【0441】
可能な場合は常に、同じMHC対立遺伝子に結合すると予測されるペプチドを別個のプールに置く。一部のネオORFペプチドは、患者のいかなるMHC対立遺伝子にも結合しないと予測される。しかしながらこれらのペプチドはなおも利用することができ、その主な理由は、それらが完全に新規であり、従って中枢性トレランスの免疫抑制効果に供されず、従って免疫原性である確率が高いことである。ネオORFペプチドはまた、いかなる正常細胞にも等価な分子がないため、それの持つ自己免疫の可能性も劇的に低下している。加えて、予測アルゴリズムから生じる偽陰性があり、このペプチドがHLAクラスIIエピトープを含む可能性がある(HLAクラスIIエピトープは現在のアルゴリズムに基づくと高い信頼性では予測されない)。特定のHLA対立遺伝子で同定されない全てのペプチドは、個々のプールに無作為に割り当てられる。各ペプチドの量は、注入1回当たり300μgの各ペプチドの最終用量に基礎を置いている。
【0442】
各患者について、製造者により各々5つの合成ペプチドの4つの個別的なプール(「A」、「B」、「C」及び「D」の表示を付す)が調製され、これらを-80℃で保存する。免疫当日、1つ又は複数のペプチド成分とポリICLCとからなる完全なワクチンが研究薬局において調製される。各一つのバイアル(A、B、C及びD)を室温で解凍し、残りのステップのためバイオセーフティキャビネット内に移す。0.75mlの各ペプチドプールをバイアルから別々のシリンジに抜き取る。別途、ポリICLCの4つの0.25ml(0.5mg)アリコートを別々のシリンジに抜き取る。次に、各ペプチド-プールが入ったシリンジの内容物を0.25mlアリコートのポリICLCと、シリンジ間で移し替えることにより穏やかに混合する。この1mlの混合物全てを注射に使用する。これらの4つの調製物に「試験薬A」、「試験薬B」、「試験薬C」、及び「試験薬D」の表示を付す。
【0443】
各免疫日に、患者は、ポリICLC(Hiltonol(登録商標))と混合された個別化ネオ抗原ペプチドの最大4つのプールの皮下注射を受ける。
ペプチドとHiltonol(登録商標)との各混合物の注射容積は1mlである。
各ペプチドプールは、各々400μg/mlの濃度の最大5つのペプチドからなる。
ペプチドプールの組成は以下である:
各々400μg/mlの濃度の最大5つのペプチド
4%DMSO
4.8~5%デキストロース水溶液
4.8~5mMコハク酸ナトリウム
Hiltonol(登録商標)は以下からなる:
2mg/mlポリI:ポリC
1.5mg/mlポリ-L-リジン
5mg/mlカルボキシメチルセルロースナトリウム
0.9%塩化ナトリウム
【0444】
各1ml注射容積は、4つのペプチドプールのうちの1つ0.75mlを0.25ml
Hiltonol(登録商標)と混合したものからなる。混合後、この組成は以下となる:
各々300μg/mlの濃度の最大5つのペプチド。
≦3%DMSO
3.6~3.7%デキストロース水溶液
3.6~3.7mMコハク酸ナトリウム
0.5mg/mlポリI:ポリC
0.375mg/mlポリ-L-リジン
1.25mg/mlカルボキシメチルセルロースナトリウム
0.225%塩化ナトリウム
【0445】
注射:免疫化毎に、4つの試験薬の各々を一つの四肢に皮下注射する。個々の試験薬それぞれについて、治療期間全体にわたり免疫化毎に同じ四肢に投与する(即ち試験薬Aを1日目、4日目、8日目等に左腕に注射し、試験薬Bを1日目、4日目、8日目等に右腕に注射し得る)。完全腋窩又は鼠径リンパ節郭清後の状態にある患者の代替的な解剖学的部位は、それぞれ左及び右横隔膜である。
【0446】
ワクチンはプライム/ブーストスケジュールに従い投与する。ワクチンのプライミング用量は、本明細書に示すとおり1、4、8、15、及び22日目に投与する。ブースト期には、ワクチンは85日目(13週目)及び169日目(25週目)に投与する。
【0447】
少なくとも1用量のワクチン投与を受ける患者は全て、毒性に関して評価可能である。患者が誘導期の間に全てのワクチン接種を受け、且つ維持期に初回ワクチン接種(ブースト)を受けた場合、それらの患者は免疫学的活性に関して評価可能である。
【0448】
実施例12
最終剤形の短期室温安定性
ペプチド安定性。DMSO中に溶解し、且つD5W/コハク酸塩(2mM)で2mg/mlに希釈して400μg/mlの最終ペプチド濃度及び4%の最終DMSO濃度にプールすることにより、以下の表6に示す5つのペプチドからなるペプチドプール(プール3)を調製した。調製後、ペプチドは25mm Pall PESフィルタ(カタログ番号4612)でろ過し、Nuncクライオバイアル(#375418)に1mlアリコートで分注した。
【0449】
【表13】
【0450】
剤形調製の計画どおり0.75mlのプール3を0.25ml Hiltonol(登録商標)と混合することにより、3つの試料を調製した。次に試料を室温に0、4及び6時間放置し、RP-HPLCによって分析した(表7)。5個中4個のペプチドについて変化は認められなかった。ペプチドCS6919に関して第2のピークの僅かな増加が認められたとおり、4時間及び6時間で14%からそれぞれ17%及び18%に増加した。-20℃安定性試験で認められたとおり、ペプチドCS6919及びCS6934(両方ともにプール4に存在)は、ヘテロ二量体(質量分析法によって示されるとき)を形成することができ、これはこの不純物の位置で溶出する。全てのペプチドの回収率は90%を上回ったことから、室温で6時間インキュベートした後に最終剤形中のペプチドの分解及び損失がないことが示される。
【0451】
【表14】
【0452】
ポリICLC安定性。第2の試験では、別のペプチドプール(プール4)を使用し、Hiltonol(登録商標)と混合し(0.75mlペプチドプール+0.25ml Hiltonol(登録商標))、室温で6時間保存した。次に室温でインキュベートしたペプチド+Hiltonol(登録商標)混合物及びHiltonol(登録商標)単独(4℃で連続的に保存した)を20ug/mlポリICLCとなるように希釈し、既発表の方法に従いマウス樹状細胞を使用してTLR刺激に関してアッセイした。24時間の刺激後、定量的PCRを使用して、図6に示すとおり複数の重要な免疫マーカーの誘導レベルをアッセイした。最終製剤中のペプチドプールで室温で6時間後のポリICLCの刺激能力に違いはなかったことから、Hiltonol(登録商標)はいかなる製剤成分(DMSO[4%]、D5W、5mMコハク酸塩、ペプチド)によっても影響を受けず、最終剤形中において室温で6時間まで安定していたことが示される。
【0453】
実施例13
最終製剤形態の凍結乾燥
ペプチドの製剤は以下のとおりである:各ペプチドプールは、各々が400μg/mlの濃度の最大5つのペプチドからなる。ペプチドプールの組成は以下である:
各々が400μg/mlの濃度の最大5つのペプチド
4~8%DMSO
4.6~4.8%デキストロース水溶液
5mMコハク酸ナトリウム
【0454】
安定化に使用される増量剤は、デキストロース水溶液(D5W)である。最終製剤は、製剤マトリックスの熱的特性に基づく。変調示差走査熱量測定(MDSC)データから、DMSOの融解に起因するそれぞれ-24℃及び-56℃の2つのガラス転移温度(Tg’)及び-67℃での発熱反応の存在が示唆された。文献に基づけば、D5Wのガラス転移は-43℃である。MDSCデータは、DMSOの存在がガラス転移温度をさらに低下させることを示唆する。この情報に基づき、2つのさらなる増量剤、スクロース及びトレハロースを使用してペプチドの凍結乾燥の実現可能性を確認した。以下の製剤をMDSC分析で評価した(図7図9):
1.5%D5W及び0.8%DMSO
2.10%スクロース及び0.8%DMSO
3.10%トレハロース及び0.8%DMSO
【0455】
保存的凍結乾燥サイクルを使用して-50℃で3時間凍結し、-35℃、75ミリトルで30時間及び-30℃で30時間一次乾燥することによって上記の製剤を凍結乾燥した(図10及び図11)。D5W-DMSOを含有する製剤は完全に崩壊したが、しかしD5W単独を含有する製剤については部分的なケーキが見られる。この凍結乾燥結果から、0.8%DMSOの存在下では、トレハロース又はスクロースを含有する製剤は、デキストロースを含有する製剤と比べて凍結乾燥に適合性がより高いことが示唆される(図12)。
【0456】
試料(25μL)を、以下のプログラムを使用したMDSCによって分析した。以下のパラメータを使用して熱イベントをモニタした:
1.20.00℃に平衡化させる
2.等温5.00分間
3.60秒毎に±1.00℃調節する
4.データ保存:オン
5.-70℃までランプ1.00℃/分
6.-70℃に平衡化させる
7.等温5.00分間
8.20.00℃までランプ1.00℃/分
9.20.00℃に平衡化させる
10.データ保存:オフ
11.等温5分間
12.方法終了
【0457】
凍結乾燥。MDSCを用いて、製品の一次乾燥及び凍結温度を選択するために使用するガラス転移温度(T)を決定した(表8及び図7図9)。データは、全ての製剤においてDMSOの融解が約-68℃で起こることを示している。3つ全ての製剤について、2つのガラス転移がある。デキストロース、トレハロース又はスクロースを含有する製剤は、それぞれ-59℃、-42℃及び-50℃の最低ヒートフローガラス転移を有することから、崩壊/融解なしにD5W-DMSOを含有する製剤を凍結乾燥することは困難であると示唆される。
【0458】
【表15】
【0459】
凍結乾燥は、最初にNuncバイアルで試し、nuncバイアルの構成は製剤マトリックスの凍結乾燥に適切でないことが分かった。4つの1.8mL滅菌Nuncバイアル(Thermo Scientific)中の1mlの5%D5W及び0.8%DMSO製剤を、凍結乾燥サイクル(-50℃に凍結して2時間保持し、-15℃で20時間、75ミリトルでの一次乾燥、及び8時間の20℃、75ミリトル圧力での二次乾燥)を使用して凍結乾燥した。バイアル中にケーキはないことが観察され、Nuncバイアルの底に小さい液滴の形態の液状残留DMSO及びD5Wが認められた。
【0460】
凍結乾燥に好適なフリントバイアルを選択し、リード製剤の凍結乾燥の実現可能性を決定した。1.5mlの各製剤が入った5つのバイアルを3mL 13mmフリントバイアルに充填し、13mm凍結乾燥用栓で部分的に閉鎖し、凍結乾燥のためLyostar IIの中段の棚に保管した。
【0461】
-50℃未満のガラス転移を有する製剤を凍結乾燥することは困難である。ガラス転移温度に基づき、凍結乾燥について以下の保存的凍結乾燥パラメータを設定した(表9)。圧力プロファイル及び温度プロファイルに関して得られた結果をそれぞれ図10及び図11に提供する。一次及び二次乾燥の間にピラニ圧力は棚の設定圧力未満に達したことから、チャンバ内に水分がなく(図10)、凍結乾燥サイクルが完了していることが示唆される。
【0462】
【表16】
【0463】
ケーキの外観。D5W及びDMSOを含有する製剤は完全に崩壊して融解し、一方、トレハロース-DMSO又はスクロース-DMSOを含有する製剤は、やや崩壊した白色の非晶質ケーキを有する(図12)。
【0464】
このように本発明の好ましい実施形態が詳細に記載されているが、上記の段落によって定義される本発明は、本発明の趣旨又は範囲から逸脱することなくその多くの明らかな変形例が可能であるため、上記の記載に示される特定の詳細に限定されるものではないことが理解されるべきである。
出願時の特許請求の範囲
〔項1〕 (a)少なくとも1つのネオ抗原ペプチド又はその薬学的に許容可能な塩と;(b)pH調整剤と;(c)薬学的に許容可能な担体とを含む医薬組成物。
〔項2〕 ワクチン組成物である、項1に記載の医薬組成物。
〔項3〕 少なくとも2つのネオ抗原ペプチドを含む、項1又は2に記載の医薬組成物。
〔項4〕 少なくとも3つのネオ抗原ペプチドを含む、項1~3のいずれか一項に記載の医薬組成物。
〔項5〕 少なくとも4つのネオ抗原ペプチドを含む、項1~4のいずれか一項に記載の医薬組成物。
〔項6〕 少なくとも5つのネオ抗原ペプチドを含む、項1~5のいずれか一項に記載の医薬組成物。
〔項7〕 前記少なくとも1つのネオ抗原ペプチドが約5~約50アミノ酸長の範囲である、項1~6のいずれか一項に記載の医薬組成物。
〔項8〕 前記少なくとも1つのネオ抗原ペプチドが約15~約35アミノ酸長の範囲である、項1~7のいずれか一項に記載の医薬組成物。
〔項9〕 前記pH調整剤が塩基である、項1~8のいずれか一項に記載の医薬組成物。
〔項10〕 前記pH調整剤がジカルボン酸塩又はトリカルボン酸塩である、項1~9のいずれか一項に記載の医薬組成物。
〔項11〕 前記pH調整剤がコハク酸塩である、項1~10のいずれか一項に記載の医薬組成物。
〔項12〕 前記pH調整剤がクエン酸塩である、項1~10のいずれか一項に記載の医薬組成物。
〔項13〕 前記コハク酸又はその薬学的に許容可能な塩がコハク酸ナトリウムを含む、項1~11のいずれか一項に記載の医薬組成物。
〔項14〕 コハク酸塩が製剤中に約1mM~約10mMの濃度で存在する、項1~11又は13のいずれか一項に記載の医薬組成物。
〔項15〕 コハク酸塩が製剤中に約2mM~約5mMの濃度で存在する、項1~11、13、又は14のいずれか一項に記載の医薬組成物。
〔項16〕 前記薬学的に許容可能な担体が水を含む、項1~15のいずれか一項に記載の医薬組成物。
〔項17〕 前記薬学的に許容可能な担体がデキストロースをさらに含む、項1~16のいずれか一項に記載の医薬組成物。
〔項18〕 前記薬学的に許容可能な担体がトレハロースをさらに含む、項1~16のいずれか一項に記載の医薬組成物。
〔項19〕 前記薬学的に許容可能な担体がスクロースをさらに含む、項1~16のいずれか一項に記載の医薬組成物。
〔項20〕 前記薬学的に許容可能な担体がジメチルスルホキシドをさらに含む、項1~19のいずれか一項に記載の医薬組成物。
〔項21〕 前記医薬組成物が凍結乾燥可能である、項15~19のいずれか一項に記載の医薬組成物。
〔項22〕 前記医薬組成物が免疫調節薬又はアジュバントをさらに含む、項1~21のいずれか一項に記載の医薬組成物。
〔項23〕 前記免疫調節薬(immunodulator)又はアジュバントが、ポリICLC、1018 ISS、アルミニウム塩、Amplivax、AS15、BCG、CP-870,893、CpG7909、CyaA、dSLIM、GM-CSF、IC30、IC31、イミキモド、ImuFact IMP321、IS Patch、ISS、ISCOMATRIX、Juvlmmune、LipoVac、MF59、モノホスホリルリピドA、Montanide IMS 1312、Montanide ISA 206、Montanide ISA 50V、Montanide ISA-51、OK-432、OM-174、OM-197-MP-EC、ONTAK、PepTel(登録商標)、ベクター系、PLGAマイクロパーティクル、レシキモド、SRL172、ビロソーム及び他のウイルス様粒子、YF-17D、VEGFトラップ、R848、βグルカン、Pam3Cys、及びAquila社のQS21 stimulonからなる群から選択される、項22に記載の医薬組成物。
〔項24〕 前記免疫調節薬又はアジュバントがポリICLCを含む、項23に記載の医薬組成物。
〔項25〕 1つ~5つのネオ抗原ペプチド又はその薬学的に許容可能な塩と;1~3%ジメチルスルホキシドと;3.6~3.7%デキストロース水溶液と;3.6~3.7mMコハク酸又はその塩と;0.5mg/mlポリI:ポリCと;0.375mg/mlポリ-L-リジンと;1.25mg/mlカルボキシメチルセルロースナトリウムと;0.225%塩化ナトリウムとを含む、新生物ワクチンである医薬組成物。
〔項26〕 前記1つ~5つのネオ抗原ペプチド又はその薬学的に許容可能な塩の各々が、各々約300μg/mlの濃度で存在する、項25に記載の医薬組成物。
〔項27〕 新生物ワクチン用ネオ抗原ペプチド溶液の調製方法であって、
(a)少なくとも1つのネオ抗原ペプチド又はその薬学的に許容可能な塩を含む溶液を調製するステップと;
(b)少なくとも1つのネオ抗原ペプチド又はその薬学的に許容可能な塩を含む前記溶液をコハク酸又はその薬学的に許容可能な塩を含む溶液と組み合わせるステップであって、それにより新生物ワクチン用ペプチド溶液を調製するステップと
を含む方法。
〔項28〕 少なくとも1つのネオ抗原ペプチド又はその薬学的に許容可能な塩を含む前記溶液が、少なくとも2つ(又は少なくとも3つ、又は4つ、又は5つ)のネオ抗原ペプチドを含む、項27に記載の方法。
〔項29〕 前記新生物ワクチン用ペプチド溶液が、水、デキストロース、コハク酸塩、及びジメチルスルホキシドを含む、項27に記載の方法。
〔項30〕 前記組み合わせるステップの後に、前記新生物ワクチン用ペプチド溶液をろ過するステップをさらに含む、項27に記載の方法。
〔項31〕 前記新生物ワクチン用ペプチド溶液が凍結乾燥可能である、項30に記載の方法。
〔項32〕 新生物ワクチンの調製方法であって、
(a)ペプチド溶液を調製するステップと;
(b)前記ペプチド溶液を免疫調節薬(immunodulator)又はアジュバントの溶液と組み合わせるステップであって、それにより新生物ワクチンを調製するステップと
を含む方法。
〔項33〕 前記免疫調節薬(immunodulator)又はアジュバントが、ポリICLC、1018 ISS、アルミニウム塩、Amplivax、AS15、BCG、CP-870,893、CpG7909、CyaA、dSLIM、GM-CSF、IC30、IC31、イミキモド、ImuFact IMP321、IS Patch、ISS、ISCOMATRIX、Juvlmmune、LipoVac、MF59、モノホスホリルリピドA、Montanide IMS 1312、Montanide ISA 206、Montanide ISA 50V、Montanide ISA-51、OK-432、OM-174、OM-197-MPEC、ONTAK、PepTel(登録商標)、ベクター系、PLGAマイクロパーティクル、レシキモド、SRL172、ビロソーム及び他のウイルス様粒子、YF-17D、VEGFトラップ、R848、βグルカン、Pam3Cys、及びAquila社のQS21 stimulonからなる群から選択される、項32に記載の方法。
〔項34〕 前記免疫調節薬又はアジュバントがポリICLCである、項33に記載の方法。
〔項35〕 新生物を有すると診断された対象の治療方法であって、項1~26のいずれか一項に記載の医薬組成物を前記対象に投与するステップであって、それにより前記新生物を治療するステップを含む方法。
〔項36〕 項1~26のいずれか一項に記載の第2の医薬組成物を前記対象に投与するステップをさらに含む、項35に記載の方法。
〔項37〕 項1~26のいずれか一項に記載の第3の医薬組成物を前記対象に投与するステップをさらに含む、項36に記載の方法。
〔項38〕 項1~26のいずれか一項に記載の第4の医薬組成物を前記対象に投与するステップをさらに含む、項33に記載の方法。
〔項39〕 項27~34のいずれか一項に記載の方法によって作製される新生物ワクチン。
〔項40〕 新生物ワクチン用ネオ抗原ペプチド溶液であって、(a)少なくとも1つのネオ抗原ペプチド又はその薬学的に許容可能な塩と;(b)コハク酸又はその薬学的に許容可能な塩とを含む溶液。
〔項41〕 (a)少なくとも1つのネオ抗原に対して免疫応答を生じさせるように構成された、個別に包装されたフリーズドライ免疫原性組成物と;(b)前記フリーズドライワクチンの再構成用溶液とを含むワクチン接種又は免疫化キット。
〔項42〕前記溶液がアジュバントを含有する、項41に記載のワクチン接種又は免疫化キット。
〔項43〕 前記免疫原性組成物が抗原である、項41に記載のワクチン接種又は免疫化キット。
〔項44〕 前記免疫原性組成物がウイルスベクターである、項41に記載のワクチン接種又は免疫化キット。

図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
【配列表】
0007285279000001.app