(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-05-25
(45)【発行日】2023-06-02
(54)【発明の名称】固体酸化物形燃料電池システム
(51)【国際特許分類】
H01M 8/04 20160101AFI20230526BHJP
C01B 3/38 20060101ALI20230526BHJP
H01M 8/04014 20160101ALI20230526BHJP
H01M 8/12 20160101ALI20230526BHJP
H01M 8/2475 20160101ALI20230526BHJP
【FI】
H01M8/04 N
C01B3/38
H01M8/04014
H01M8/12 101
H01M8/12 102A
H01M8/2475
(21)【出願番号】P 2019101438
(22)【出願日】2019-05-30
【審査請求日】2021-12-15
(73)【特許権者】
【識別番号】000000284
【氏名又は名称】大阪瓦斯株式会社
(74)【代理人】
【識別番号】110001818
【氏名又は名称】弁理士法人R&C
(72)【発明者】
【氏名】鈴木 稔
【審査官】藤森 一真
(56)【参考文献】
【文献】国際公開第2015/174386(WO,A1)
【文献】特開2015-149294(JP,A)
【文献】特開平01-197972(JP,A)
【文献】特開2016-207342(JP,A)
【文献】特開2002-134137(JP,A)
【文献】国際公開第2019/003989(WO,A1)
【文献】特開2016-046221(JP,A)
【文献】特開2015-118842(JP,A)
【文献】特開2009-289435(JP,A)
【文献】特開2014-072054(JP,A)
【文献】特開2016-081825(JP,A)
【文献】特開2017-050192(JP,A)
【文献】特開2010-114092(JP,A)
【文献】特開2016-139555(JP,A)
【文献】特開2020-119854(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01M 8/00 - 8/2495
C01B 3/00 - 6/34
(57)【特許請求の範囲】
【請求項1】
収納筐体の内部空間に、原燃料を水蒸気改質して燃料ガスを生成する改質器と、前記燃料ガスと酸化剤ガスとの電気化学反応により発電する平板形状の固体酸化物形燃料電池セルを複数積層したセルスタックと、前記電気化学反応で用いられた後に前記セルスタックの内部から排出された排出燃料ガスを燃焼する燃焼部とを備える固体酸化物形燃料電池システムであって、
発電電流を前記セルスタックから前記収納筐体の外部に取り出すためのブスバーを備え、
前記電気化学反応で用いられた後に前記セルスタックの内部から排出された排出酸化剤ガスが、前記ブスバーと接触するように構成され
、
前記収納筐体の前記内部空間に、前記セルスタックと相対して設けられる断熱材を備え、
前記排出酸化剤ガスは、前記セルスタックと前記断熱材との間の空間を流れる間に前記ブスバーと接触するように構成され、
前記排出酸化剤ガスは、前記断熱材に形成された溝に沿って流れる間に前記ブスバーと接触するように構成されている固体酸化物形燃料電池システム。
【請求項2】
前記ブスバーの少なくとも一部は前記断熱材に形成された前記溝の内部に位置する
請求項1に記載の固体酸化物形燃料電池システム。
【請求項3】
収納筐体の内部空間に、原燃料を水蒸気改質して燃料ガスを生成する改質器と、前記燃料ガスと酸化剤ガスとの電気化学反応により発電する平板形状の固体酸化物形燃料電池セルを複数積層したセルスタックと、前記電気化学反応で用いられた後に前記セルスタックの内部から排出された排出燃料ガスを燃焼する燃焼部とを備える固体酸化物形燃料電池システムであって、
発電電流を前記セルスタックから前記収納筐体の外部に取り出すためのブスバーを備え、
前記電気化学反応で用いられた後に前記セルスタックの内部から排出された排出酸化剤ガスが、前記ブスバーと接触するように構成され
、
前記排出酸化剤ガスは、前記セルスタックの下部側で前記セルスタックの周囲の前記内部空間に流出し、前記ブスバーと接触すると共に、前記セルスタックの周囲を前記セルスタックの下部側から上部側へ向かって流れた後、前記燃焼部において前記排出燃料ガスを燃焼させるために利用されるように構成されている固体酸化物形燃料電池システム。
【請求項4】
前記収納筐体の前記内部空間に設置され、前記酸化剤ガスを前記セルスタックの内部に導く導入酸化剤ガス流通管と、
前記収納筐体の前記内部空間に設置され、前記セルスタックの内部から排出された前記排出酸化剤ガスを前記セルスタックの周囲の下部側へと導く排出酸化剤ガス流通管と、
前記導入酸化剤ガス流通管を流れる前記酸化剤ガスと、前記排出酸化剤ガス流通管を流れる前記排出酸化剤ガスとが熱交換するように構成される熱交換部とを備え、
前記熱交換部で熱交換した後の前記酸化剤ガスは前記セルスタックの内部に供給され、
前記熱交換部で熱交換した後の前記排出酸化剤ガスは、前記セルスタックの下部側で前記セルスタックの周囲の前記内部空間に流出した後、前記ブスバーと接触するように構成されている
請求項3に記載の固体酸化物形燃料電池システム。
【請求項5】
収納筐体の内部空間に、原燃料を水蒸気改質して燃料ガスを生成する改質器と、前記燃料ガスと酸化剤ガスとの電気化学反応により発電する平板形状の固体酸化物形燃料電池セルを複数積層したセルスタックと、前記電気化学反応で用いられた後に前記セルスタックの内部から排出された排出燃料ガスを燃焼する燃焼部とを備える固体酸化物形燃料電池システムであって、
発電電流を前記セルスタックから前記収納筐体の外部に取り出すためのブスバーを備え、
前記電気化学反応で用いられた後に前記セルスタックの内部から排出された排出酸化剤ガスが、前記ブスバーと接触するように構成され
、
前記収納筐体の前記内部空間に設置され、前記酸化剤ガスを前記セルスタックの内部に導く導入酸化剤ガス流通管と、
前記収納筐体の前記内部空間に設置され、前記セルスタックの内部から排出された前記排出酸化剤ガスを前記セルスタックの周囲の下部側へと導く排出酸化剤ガス流通管と、
前記導入酸化剤ガス流通管を流れる前記酸化剤ガスと、前記排出酸化剤ガス流通管を流れる前記排出酸化剤ガスとが熱交換するように構成される熱交換部とを備え、
前記熱交換部で熱交換した後の前記酸化剤ガスは前記セルスタックの内部に供給され、
前記熱交換部で熱交換した後の前記排出酸化剤ガスは、前記セルスタックの下部側で前記セルスタックの周囲の前記内部空間に流出した後、前記ブスバーと接触するように構成されている固体酸化物形燃料電池システム。
【請求項6】
収納筐体の内部空間に、原燃料を水蒸気改質して燃料ガスを生成する改質器と、前記燃料ガスと酸化剤ガスとの電気化学反応により発電する平板形状の固体酸化物形燃料電池セルを複数積層したセルスタックと、前記電気化学反応で用いられた後に前記セルスタックの内部から排出された排出燃料ガスを燃焼する燃焼部とを備える固体酸化物形燃料電池システムであって、
前記収納筐体の前記内部空間に設置され、前記燃料ガスを前記セルスタックの内部に導く導入燃料ガス流通管と、
前記収納筐体の前記内部空間に設置され、前記排出燃料ガスを導く排出燃料ガス流通管と、
前記収納筐体の前記内部空間に設置され、前記酸化剤ガスを前記セルスタックの内部に導く導入酸化剤ガス流通管と、
前記収納筐体の前記内部空間に設置され、前記電気化学反応で用いられた後に前記セルスタックの内部から排出された排出酸化剤ガスを導く排出酸化剤ガス流通管と、
発電電流を前記セルスタックから前記収納筐体の外部に取り出すためのブスバー
とを備え、
前記排出酸化剤ガス流通管は前記内部空間の内部で開放され、当該排出酸化剤ガス流通管から前記内部空間の内部に放出された前記排出酸化剤ガスが、前記ブスバーと接触するように構成されている固体酸化物形燃料電池システム。
【請求項7】
前記排出酸化剤ガスは、前記セルスタックの下部側で前記セルスタックの周囲の前記内部空間に流出し、前記ブスバーと接触すると共に、前記セルスタックの周囲を前記セルスタックの下部側から上部側へ向かって流れた後、前記燃焼部において前記排出燃料ガスを燃焼させるために利用されるように構成されている
請求項6に記載の固体酸化物形燃料電池システム。
【請求項8】
前記収納筐体の前記内部空間に設置され、前記酸化剤ガスを前記セルスタックの内部に導く導入酸化剤ガス流通管と、
前記収納筐体の前記内部空間に設置され、前記セルスタックの内部から排出された前記排出酸化剤ガスを前記セルスタックの周囲の下部側へと導く排出酸化剤ガス流通管と、
前記導入酸化剤ガス流通管を流れる前記酸化剤ガスと、前記排出酸化剤ガス流通管を流れる前記排出酸化剤ガスとが熱交換するように構成される熱交換部とを備え、
前記熱交換部で熱交換した後の前記酸化剤ガスは前記セルスタックの内部に供給され、
前記熱交換部で熱交換した後の前記排出酸化剤ガスは、前記セルスタックの下部側で前記セルスタックの周囲の前記内部空間に流出した後、前記ブスバーと接触するように構成されている
請求項6又は7に記載の固体酸化物形燃料電池システム。
【請求項9】
前記収納筐体の前記内部空間に、前記セルスタックと相対して設けられる断熱材を備え、
前記排出酸化剤ガスは、前記セルスタックと前記断熱材との間の空間を流れる間に前記ブスバーと接触するように構成されている
請求項3~8の何れか一項に記載の固体酸化物形燃料電池システム。
【請求項10】
前記排出酸化剤ガスは、前記断熱材に形成された溝に沿って流れる間に前記ブスバーと接触するように構成されている
請求項9に記載の固体酸化物形燃料電池システム。
【請求項11】
前記ブスバーの少なくとも一部は前記断熱材に形成された前記溝の内部に位置する
請求項10に記載の固体酸化物形燃料電池システム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、収納筐体の内部空間に、原燃料を水蒸気改質して燃料ガスを生成する改質器と、燃料ガスと酸化剤ガスとの電気化学反応により発電する平板形状の固体酸化物形燃料電池セルを複数積層したセルスタックと、電気化学反応で用いられた後にセルスタックの内部から排出された排出燃料ガスを燃焼する燃焼部とを備える固体酸化物形燃料電池システムに関する。
【背景技術】
【0002】
家庭用システムとしても適した固体酸化物形燃料電池システムとして、原燃料ガスを水蒸気改質するための改質器と、改質器での原燃料ガスの改質により生成された燃料ガス及び酸化剤ガスの酸化及び還元によって発電を行うセルスタックと、セルスタックの酸素極(空気極)側に酸化剤ガスとしての空気を供給するための空気供給手段と、改質器に原燃料ガスを供給するための燃料ガス供給手段とを備え、セルスタック及び改質器が高温状態に保たれる高温空間に収容されているものが提案されている(例えば、特許文献1参照)。そして、改質器で生成された燃料ガスがセルスタックの燃料極側に送給され、空気供給手段からの空気がセルスタックの空気極側に送給され、このセルスタックにおける電気化学反応により発電が行われる。
【0003】
特許文献1に記載の固体酸化物形燃料電池システムでは、セルスタックの上側の空間に燃焼域が設定され、この燃焼域の上方に改質器が配設されている。セルスタックの上側の燃焼域には、セルスタックの燃料極から排出燃料ガス(即ち、アノードオフガス)が排出され、空気極側から排出酸化剤ガス(即ち、カソードオフガス)が排出され、燃焼域で燃焼される。そして、この燃焼熱を利用して高温空間が高温状態に保たれるとともに、改質器などが加熱される。
【0004】
家庭用の燃料電池システムとしては、コンパクト化が重要とされている。特に装置の薄型化は軽量化と合わせて実現させれば、住宅の外壁に設置することも可能となり、既存のガス給湯暖房機の設置形態に近づき、普及促進をはかるのに好ましい形態とされる。装置の薄型化を実現するためには、セルスタックも薄型化する必要があるが、その方策としてはセルの積層数を少なく(例えば15~20層など)し、セルの積層方向を水平向き設置にしたスタックが好ましい。また、セル積層数を少なくすることはセルスタックの構成部品点数を少なくすることになるので、コスト削減にも効果があるとされている。
【0005】
家庭用の燃料電池システム(発電出力700W程度)用の基幹部品として、商用化若しくは商用化に近い段階と考えられるSOFC(固体酸化物形燃料電池)セルスタックでは発電電流は例えば10A~60Aである。このような発電電流の違いは1セルの発電面積や電流密度などの違いにより生じる。このうち、セル積層数が少なく薄型に適したセルスタックの場合、発電電流は例えば50A~60A程度になる。家庭用の燃料電池システムとして比較的大電流(30A以上)のセルスタックを用いる構成では、特許文献2に記載のように断面積の大きなブスバー(発電電流をセルスタックから取り出す部品)が使用される。
【先行技術文献】
【特許文献】
【0006】
【文献】特開2005-285340号公報
【文献】特開2016-207342号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
SOFCセルスタックの性能、耐久性に関しては温度の影響が大きいので、できるだけ平均温度が高く且つ最高温度が低いことが性能・耐久性の両立には必要とされる。尚、セルスタック内でセル毎の温度が違うと、ガスのモル密度や粘度が変わるので、セルスタック内でのセル毎のガス分配流量が温度の影響を受けてしまい、その結果、燃料利用率を高く設定することが困難になり、発電効率が低くなってしまう。つまり、セルスタック内での各セルの温度はできるだけ均一に近いことが好ましい。
【0008】
SOFCセルスタックは600℃~800℃の高温で作動するが、高温では金属の電気伝導率は低下する。そのため、例えば50A~60Aの電流をステンレス材のブスバーで抜き出す際のロスを実用上問題のないレベルに抑制するには例えば1.5cm2~2.5cm2の断面積が必要である。尚、ブスバーはセルスタックから出力される電流を、セルスタック等が収容されている高温の収納筐体の内部から外に取り出してパワーコンディショナー等に接続しなければならない。つまり、ブスバーには、セルスタック側(例えば700℃程度)からパワーコンディショナー側(例えば数十℃程度)に至る間に大きな温度差が生じる。ここで、1.5cm2のステンレス製ブスバー(長さ7.5cm)の両側に500℃の温度差をつけるとすると、ブスバーの熱伝導によるセルスタックからの熱移動は2本のブスバーの夫々で約18W(2本合計だと約36W)になる。高発電効率が求められる家庭用SOFCシステム(定格出力700W程度)でこのような大きな熱ロスは技術課題となる。
【0009】
特許文献2(特開2016-207342号公報)では、隙間目止めをした上で、空気流通部位をブスバー(電極バー28a,28b)が貫通することで、ブスバーを冷却しつつ、その熱の相当部分をセルスタックに供給する空気に与えることで熱を有効に利用しようとする構成がみられる。これは一定の効果は期待できると思われるが、セルスタックの温度分布をできるだけ均一に近づけるという観点では効果がない。つまり、ブスバーはセルスタックを構成する複数のセルのうちの両端のセル(以下、「端部セル」と記載する)自体又は端部セルの外側導電部材に取り付けられるため、ブスバーが接続されている端部セルの温度は、ブスバーの温度に影響を受け易い。そのため、上述したようにブスバーを介したセルスタックからの熱移動が起こると、セルスタック内の端部セルの温度が特に下がる。尚、ブスバーの存在を考慮しなくても、セルスタック内の端部セルは、セル同士の間に挟まれておらず、放熱面積がその他のセルよりも大きいので、温度が下がる特徴をもつ。このように、セルスタック内の端部セルは、構造上温度が下がりやすく、且つ、接続される大断面積のブスバーを介した熱逃げによって更なる温度低下の可能性があるため、セルスタックの温度分布を均一にすることが困難である。家庭用燃料電池システムで出力電流の大きなセルスタックを搭載する場合、大きな断面積のブスバーを用いざるをえなくなるが、特許文献2(特開2016-207342号公報)に記載のようなブスバーの構造では、ブスバーのセルスタック接続部を介したセルスタックからの熱逃げが大きくなることは避けられない。
【0010】
本発明は、上記の課題に鑑みてなされたものであり、その目的は、ブスバーの存在に起因するセルスタック内の端部セルの温度低下を抑制可能な固体酸化物形燃料電池システムを提供する点にある。
【課題を解決するための手段】
【0011】
上記目的を達成するための本発明に係る固体酸化物形燃料電池システムの特徴構成は、収納筐体の内部空間に、原燃料を水蒸気改質して燃料ガスを生成する改質器と、前記燃料ガスと酸化剤ガスとの電気化学反応により発電する平板形状の固体酸化物形燃料電池セルを複数積層したセルスタックと、前記電気化学反応で用いられた後に前記セルスタックの内部から排出された排出燃料ガスを燃焼する燃焼部とを備える固体酸化物形燃料電池システムであって、
発電電流を前記セルスタックから前記収納筐体の外部に取り出すためのブスバーを備え、
前記電気化学反応で用いられた後に前記セルスタックの内部から排出された排出酸化剤ガスが、前記ブスバーと接触するように構成され、
前記収納筐体の前記内部空間に、前記セルスタックと相対して設けられる断熱材を備え、
前記排出酸化剤ガスは、前記セルスタックと前記断熱材との間の空間を流れる間に前記ブスバーと接触するように構成され、
前記排出酸化剤ガスは、前記断熱材に形成された溝に沿って流れる間に前記ブスバーと接触するように構成されている点にある。
上記目的を達成するための本発明に係る固体酸化物形燃料電池システムの特徴構成は、収納筐体の内部空間に、原燃料を水蒸気改質して燃料ガスを生成する改質器と、前記燃料ガスと酸化剤ガスとの電気化学反応により発電する平板形状の固体酸化物形燃料電池セルを複数積層したセルスタックと、前記電気化学反応で用いられた後に前記セルスタックの内部から排出された排出燃料ガスを燃焼する燃焼部とを備える固体酸化物形燃料電池システムであって、
発電電流を前記セルスタックから前記収納筐体の外部に取り出すためのブスバーを備え、
前記電気化学反応で用いられた後に前記セルスタックの内部から排出された排出酸化剤ガスが、前記ブスバーと接触するように構成され、
前記排出酸化剤ガスは、前記セルスタックの下部側で前記セルスタックの周囲の前記内部空間に流出し、前記ブスバーと接触すると共に、前記セルスタックの周囲を前記セルスタックの下部側から上部側へ向かって流れた後、前記燃焼部において前記排出燃料ガスを燃焼させるために利用されるように構成されている点にある。
上記目的を達成するための本発明に係る固体酸化物形燃料電池システムの特徴構成は、収納筐体の内部空間に、原燃料を水蒸気改質して燃料ガスを生成する改質器と、前記燃料ガスと酸化剤ガスとの電気化学反応により発電する平板形状の固体酸化物形燃料電池セルを複数積層したセルスタックと、前記電気化学反応で用いられた後に前記セルスタックの内部から排出された排出燃料ガスを燃焼する燃焼部とを備える固体酸化物形燃料電池システムであって、
発電電流を前記セルスタックから前記収納筐体の外部に取り出すためのブスバーを備え、
前記電気化学反応で用いられた後に前記セルスタックの内部から排出された排出酸化剤ガスが、前記ブスバーと接触するように構成され、
前記収納筐体の前記内部空間に設置され、前記酸化剤ガスを前記セルスタックの内部に導く導入酸化剤ガス流通管と、
前記収納筐体の前記内部空間に設置され、前記セルスタックの内部から排出された前記排出酸化剤ガスを前記セルスタックの周囲の下部側へと導く排出酸化剤ガス流通管と、
前記導入酸化剤ガス流通管を流れる前記酸化剤ガスと、前記排出酸化剤ガス流通管を流れる前記排出酸化剤ガスとが熱交換するように構成される熱交換部とを備え、
前記熱交換部で熱交換した後の前記酸化剤ガスは前記セルスタックの内部に供給され、
前記熱交換部で熱交換した後の前記排出酸化剤ガスは、前記セルスタックの下部側で前記セルスタックの周囲の前記内部空間に流出した後、前記ブスバーと接触するように構成されている点にある。
上記目的を達成するための本発明に係る固体酸化物形燃料電池システムの特徴構成は、収納筐体の内部空間に、原燃料を水蒸気改質して燃料ガスを生成する改質器と、前記燃料ガスと酸化剤ガスとの電気化学反応により発電する平板形状の固体酸化物形燃料電池セルを複数積層したセルスタックと、前記電気化学反応で用いられた後に前記セルスタックの内部から排出された排出燃料ガスを燃焼する燃焼部とを備える固体酸化物形燃料電池システムであって、
前記収納筐体の前記内部空間に設置され、前記燃料ガスを前記セルスタックの内部に導く導入燃料ガス流通管と、
前記収納筐体の前記内部空間に設置され、前記排出燃料ガスを導く排出燃料ガス流通管と、
前記収納筐体の前記内部空間に設置され、前記酸化剤ガスを前記セルスタックの内部に導く導入酸化剤ガス流通管と、
前記収納筐体の前記内部空間に設置され、前記電気化学反応で用いられた後に前記セルスタックの内部から排出された排出酸化剤ガスを導く排出酸化剤ガス流通管と、
発電電流を前記セルスタックから前記収納筐体の外部に取り出すためのブスバーとを備え、
前記排出酸化剤ガス流通管は前記内部空間の内部で開放され、当該排出酸化剤ガス流通管から前記内部空間の内部に放出された前記排出酸化剤ガスが、前記ブスバーと接触するように構成されている点にある。
【0012】
上記特徴構成によれば、ブスバーには、電気化学反応で用いられた後にセルスタックの内部から排出された排出酸化剤ガスが接触し、その接触した部分の加熱が行われる。つまり、ブスバーの一端が高温のセルスタックに接続され、ブスバーの他端が低温の外部に引き出される構造になっているとしても、ブスバーの温度がセルスタック側から外部側に単調に低下するのではなく、その途中において排出酸化剤ガスにより加熱される部分が存在することで、その部分の温度は排出酸化剤ガスの温度、即ち、セルスタックの温度に近くなる。その結果、ブスバーのうち、排出酸化剤ガスが接触する部分の温度と、セルスタックの温度との間の温度差は小さいため、ブスバーを介したセルスタックからの熱逃げは小さくなる。
従って、ブスバーの存在に起因するセルスタックの温度低下を抑制可能な固体酸化物形燃料電池システムを提供できる。
【0013】
本発明に係る固体酸化物形燃料電池システムの別の特徴構成は、前記収納筐体の前記内部空間に、前記セルスタックと相対して設けられる断熱材を備え、
前記排出酸化剤ガスは、前記セルスタックと前記断熱材との間の空間を流れる間に前記ブスバーと接触するように構成されている点にある。
【0014】
上記特徴構成によれば、セルスタックの内部から排出された排出酸化剤ガスが、セルスタックと断熱材との間の空間を流れる間にブスバーと接触することで、排出酸化剤ガスによりブスバーの温度をセルスタックの温度に近付けつつ、セルスタック及びブスバーからの放熱を抑制できる。
【0015】
本発明に係る固体酸化物形燃料電池システムの更に別の特徴構成は、前記排出酸化剤ガスは、前記断熱材に形成された溝に沿って流れる間に前記ブスバーと接触するように構成されている点にある。
【0016】
上記特徴構成によれば、断熱材に形成された溝により、セルスタックの内部から排出された排出酸化剤ガスが流れる経路を意図したものにしながら、排出酸化剤ガスとブスバーとを接触させることができる。
【0017】
本発明に係る固体酸化物形燃料電池システムの更に別の特徴構成は、前記ブスバーの少なくとも一部は前記断熱材に形成された前記溝の内部に位置する点にある。
【0018】
上記特徴構成によれば、セルスタックの内部から排出された排出酸化剤ガスが溝の内部を流れている間に、排出酸化剤ガスとブスバーとを確実に接触させることができる。
【0019】
本発明に係る固体酸化物形燃料電池システムの更に別の特徴構成は、前記排出酸化剤ガスは、前記セルスタックの下部側で前記セルスタックの周囲の前記内部空間に流出し、前記ブスバーと接触すると共に、前記セルスタックの周囲を前記セルスタックの下部側から上部側へ向かって流れた後、前記燃焼部において前記排出燃料ガスを燃焼させるために利用されるように構成されている点にある。
【0020】
上記特徴構成によれば、セルスタックの内部から排出された排出酸化剤ガスは、セルスタックの下部側でセルスタックの周囲に流出した後、ブスバーと接触すると共に、セルスタックの周囲をセルスタックの下部側から上部側へ向かって流れるように構成されている。つまり、セルスタックの内部から排出される排出酸化剤ガスの単位時間当たりの流量を変化させれば、セルスタックの周囲を流れる排出酸化剤ガスの流量も変化する。その結果、セルスタックからの放熱量を調節する運転が可能になる。
【0021】
本発明に係る固体酸化物形燃料電池システムの更に別の特徴構成は、前記収納筐体の前記内部空間に設置され、前記酸化剤ガスを前記セルスタックの内部に導く導入酸化剤ガス流通管と、
前記収納筐体の前記内部空間に設置され、前記セルスタックの内部から排出された前記排出酸化剤ガスを前記セルスタックの周囲の下部側へと導く排出酸化剤ガス流通管と、
前記導入酸化剤ガス流通管を流れる前記酸化剤ガスと、前記排出酸化剤ガス流通管を流れる前記排出酸化剤ガスとが熱交換するように構成される熱交換部とを備え、
前記熱交換部で熱交換した後の前記酸化剤ガスは前記セルスタックの内部に供給され、
前記熱交換部で熱交換した後の前記排出酸化剤ガスは、前記セルスタックの下部側で前記セルスタックの周囲の前記内部空間に流出した後、前記ブスバーと接触するように構成されている点にある。
【0022】
上記特徴構成によれば、熱交換部では、セルスタックに供給される前の酸化剤ガスと、セルスタックの内部から排出された排出酸化剤ガスとの熱交換が行われる。つまり、熱交換部での熱交換により、セルスタックの内部に供給される酸化剤ガスの温度が、セルスタックの内部の温度(排出酸化剤ガスの温度)に近く、それよりも低い温度になる。その結果、セルスタックの内部に供給する酸化剤ガスにより、セルスタックの内部から熱を持ち出すことができる。
【0023】
また、セルスタックに供給される酸化剤ガスの温度が低過ぎると、セルスタックの酸化剤ガスの入口付近の温度が低下して内部抵抗が高くなる。そして、セルスタックの酸化剤ガスの入口付近では発電が進まないのに対して、内部抵抗の低い部位では発電が活発になる。このように、セルスタックにおいて発電が活発に行われている部位とそうでない部位とが発生することで、セルスタックで有効に発電に使用されている面積が減少し、電流密度に偏りが生じることやセル電圧の低下が生じることにつながる。また、発電反応が行われている部分での燃料電池セルの温度が特に上がるため、耐久性の面でも不利となる。
ところが本特徴構成では、熱交換部での熱交換により、セルスタックの内部に供給される酸化剤ガスの温度が、セルスタックの内部の温度(排出酸化剤ガスの温度)に近くなるため、そのような問題の発生を回避できる。
【図面の簡単な説明】
【0024】
【
図1】固体酸化物形燃料電池システムを斜め上方から見た図である。
【
図2】固体酸化物形燃料電池システムを斜め下方から見た図である。
【
図3】収納筐体の内部空間に設置される複数の機器を示す図である。
【
図4】収納筐体の内部の構造を側方から見た図である。
【
図5】収納筐体の内部の構造を斜め上方から見た図である。
【
図6】底面断熱材とブスバーとの位置関係を示す図である。
【発明を実施するための形態】
【0025】
以下に図面を参照して本発明の実施形態に係る固体酸化物形燃料電池システムについて説明する。
図1及び
図2は固体酸化物形燃料電池システムを斜め上方及び下方から見た図である。
図3は収納筐体Cの内部空間Sに設置される複数の機器を示す図である。
図4は収納筐体Cの内部の構造を側方から見た図である。
図5は収納筐体Cの内部の構造を斜め上方から見た図である。
図6は底面断熱材H9とブスバーBとの位置関係を示す図である。
【0026】
固体酸化物形燃料電池システムは、収納筐体Cの内部空間Sに、原燃料を水蒸気改質して燃料ガスを生成する改質器11と、燃料ガスと酸化剤ガスとの電気化学反応により発電する平板形状の固体酸化物形燃料電池セルを複数積層したセルスタックCSと、電気化学反応で用いられた後にセルスタックCSの内部から排出された排出燃料ガスを燃焼する燃焼部14とを備える。内部空間Sにおいて、セルスタックCSの上方に改質器11と燃焼部14とが設けられる。
【0027】
本実施形態の固体酸化物形燃料電池システムは、直方体形状の収納筐体Cを備える。収納筐体Cは、外部筐体C1と上部筐体C2と下部筐体C3とで構成される。外部筐体C1の底面部材は、外側底面部材C1aと、それよりも内側の内側底面部材C1bとを有する二重構造になっている。
図1に示す例では、外部筐体C1はX軸方向に向かって開口した筒状に形成されている。外部筐体C1の内側、即ち筒状部分の内部には上部筐体C2と下部筐体C3とが設置されている。上部筐体C2と下部筐体C3とは、それらの間に仕切板C4を挟んでY軸方向に沿って上下に並んで設置されている。上部筐体C2の内部の上側内部空間S1には、改質器11と燃焼部14とが設置される。下部筐体C3の内部の下側内部空間S2には、セルスタックCSなどが設置される。仕切板C4は、上側内部空間S1と下側内部空間S2との間で気体の流通を可能にする通気孔18を有する。
【0028】
上部筐体C2は、外部筐体C1の天面部材に装着される。上部筐体C2及び下部筐体C3と外部筐体C1の側面部材との間の隙間には断熱材H1,H2が設けられている。下部筐体C3と外部筐体C1の内側底面部材C1bとの間の隙間には断熱材H3が設けられている。外部筐体C1の外側底面部材C1aと内側底面部材C1bとの間の隙間には断熱材H4が設けられている。
【0029】
固体酸化物形燃料電池システムは、発電電流をセルスタックCSから収納筐体Cの外部に取り出すためのブスバーB(B1,B2)を備える。本実施形態では、ブスバーBは、下部筐体C3の底面部材から外部に引き出される。ブスバーBは、適切な材料を用いて、適切な形状で形成されている。本実施形態のブスバーBは、例えば断面積が1.5cm2の円柱形状のステンレス材を用いて形成される。
【0030】
収納筐体Cに隣接して脱硫器2が設けられている。脱硫器2には第1原燃料ガス供給管10aが接続され、その第1原燃料ガス供給管10aを通して都市ガス等の炭化水素を含む原燃料ガスが脱硫器2に供給される。脱硫器2での脱硫処理によって原燃料ガスに含まれる硫黄化合物の濃度が低下した原燃料ガスは、脱硫器2から第2原燃料ガス供給管10bを通して上部筐体C2の内部に供給される。また、上部筐体C2には給水管9が接続される。給水管9及び第2原燃料ガス供給管10bは上部筐体C2の内部の上側内部空間S1に設置される改質器11に接続されて、改質器11へ水及び原燃料ガスを供給する。改質器11では、給水管9から供給される水の気化と原燃料ガスの水蒸気改質とが行われ、水素を主成分とする燃料ガスが生成される。後述するように、改質器11には、その下方にある燃焼部14で発生した燃焼熱が伝達される。
【0031】
図4に示すように、外部筐体C1の外側底面部材C1aには給気管3が接続される。外部筐体C1の内側底面部材C1bには排気管4が接続される。給気管3を通して外部筐体C1の外側底面部材C1aの内部の中空部分に導入された酸化剤ガス(空気)は、外部筐体C1の側面部材の内部の中空部分を上方に向かって流れた後、外部筐体C1の天面部材の内部の中空部分に至る。外部筐体C1の天面部材の内部の中空部分には導入酸化剤ガス流通管15が接続され、外部筐体C1の天面部材の内部の中空部分を流れる酸化剤ガスが、導入酸化剤ガス流通管15に流れ込むように構成されている。導入酸化剤ガス流通管15は、収納筐体Cの内部空間Sに設置され、酸化剤ガスをセルスタックCSの内部に導くように機能する。
【0032】
仕切板C4よりも上方の上側内部空間S1には、側面断熱材H5及び側面断熱材H6が設けられる。側面断熱材H5と側面断熱材H6との間の空間に、改質器11と燃焼部14とが設置される。
仕切板C4よりも下方の下側内部空間S2には、側面断熱材H7及び側面断熱材H8及び底面断熱材H9が設けられる。側面断熱材H7と側面断熱材H8と底面断熱材H9とで囲まれた空間に、セルスタックCSなどが設置される。
【0033】
尚、図示は省略するが、
図1及び
図2に示したような脱硫器2及び外部筐体C1を含む固体酸化物形燃料電池システムは、全体が断熱材などで覆われることが好ましい。
【0034】
図3に示すように、導入燃料ガス流通管12は、収納筐体Cの内部空間Sに設置され、改質器11で生成された燃料ガスをセルスタックCSの内部に導く。セルスタックCSが有する複数の固体酸化物形燃料電池セルでは、供給される燃料ガスと酸化剤ガスとの電気化学反応により発電が行われる。その電気化学反応で用いられた後の燃料ガスである排出燃料ガスは、セルスタックCSの内部から排出され、収納筐体Cの内部空間Sに設置される排出燃料ガス流通管13を通って燃焼部14に導かれる。また、その電気化学反応で用いられた後の酸化剤ガスである排出酸化剤ガスは、セルスタックCSの内部から排出された後、収納筐体Cの内部空間Sに設置される排出酸化剤ガス流通管17を流れる。
【0035】
固体酸化物形燃料電池システムは、導入酸化剤ガス流通管15を流れる酸化剤ガスと、排出酸化剤ガス流通管17を流れる排出酸化剤ガスとが熱交換するように構成される熱交換部16とを備える。熱交換部16で熱交換した後の酸化剤ガスはセルスタックCSの内部に供給されて電気化学反応のために用いられる。
【0036】
熱交換部16では、酸化剤ガス及び排出酸化剤ガスは上方から下方に向かって流れ、導入酸化剤ガス流通管15を流れる酸化剤ガスと、排出酸化剤ガス流通管17を流れる排出酸化剤ガスとが熱交換する。このように、熱交換部16での熱交換により、セルスタックCSの内部に供給される酸化剤ガスの温度が、セルスタックCSの内部の温度(排出酸化剤ガスの温度)に近く、それよりも低い温度になる。その結果、セルスタックCSの内部に供給する酸化剤ガスにより、セルスタックCSの内部から熱を持ち出すことができる。
【0037】
セルスタックCSに供給される酸化剤ガスの温度が低過ぎると、セルスタックCSの酸化剤ガスの入口付近の温度が低下して内部抵抗が高くなる。そして、セルスタックCSの酸化剤ガスの入口付近では発電が進まないのに対して、内部抵抗の低い部位では発電が活発になる。このように、セルスタックCSにおいて発電が活発に行われている部位とそうでない部位とが発生することで、セルスタックCSで有効に発電に使用されている面積が減少し、電流密度に偏りが生じることやセル電圧の低下が生じることにつながる。また、発電反応が行われている部分での燃料電池セルの温度が特に上がるため、耐久性の面でも不利となる。
ところが本実施形態の固体酸化物形燃料電池システムでは、熱交換部16での熱交換により、セルスタックCSの内部に供給される酸化剤ガスの温度が、セルスタックCSの内部の温度(排出酸化剤ガスの温度)に近くなるため、そのような問題の発生を回避できる。
【0038】
熱交換部16で熱交換した後の排出酸化剤ガスは、セルスタックCSの下部側でセルスタックCSの周囲の内部空間Sに流出する。例えば、熱交換部16の下端部に設けられた排気口16aから排出酸化剤ガス流通管17が下側内部空間S2に開放され、そこから下側内部空間S2へ向かって排出酸化剤ガスが放出される。つまり、排出酸化剤ガス流通管17は、セルスタックCSの内部から排出された排出酸化剤ガスをセルスタックCSの周囲の下部側へと導くように構成されている。その結果、電気化学反応で用いられた後にセルスタックCSの内部から排出された排出酸化剤ガスは、
図3にガスの流れを矢印で例示したように、セルスタックCSの下部側でセルスタックCSの周囲の下側内部空間S2に放出され、ブスバーBと接触すると共に、セルスタックCSの周囲をセルスタックCSの下部側から上部側へ向かって流れた後、燃焼部14において排出燃料ガスを燃焼させるために利用されるようになる。
【0039】
上述のように、燃焼部14には、セルスタックCSでの電気化学反応で用いられた後の燃料ガスである排出燃料ガスが排出燃料ガス流通管13を通って供給される。
図4に示すように、燃焼部14の上面に形成された吹出口14bから、排出燃料ガスが燃焼部14の上方に向かって吹き出し、燃焼部14に形成される通気部14aからは、仕切板C4に形成される通気孔18を介して上側内部空間S1に流入した排出酸化剤ガスが吹き出す。そして、燃焼部14の上方において、排出燃料ガスに含まれる燃料成分が排出酸化剤ガスに含まれる酸素を用いて燃焼される。
【0040】
セルスタックCSは、直方体形状になっており、複数の固体酸化物形燃料電池セルの積層方向が水平方向に沿う状態で下部筐体C3の下側内部空間S2に設置される。具体的に説明すると、セルスタックCSは、複数の固体酸化物形燃料電池システムがZ軸方向に積層されて構成される。そして、セルスタックCSは、Z軸方向の長さが、X軸方向の長さ及びY軸方向の長さよりも短い直方体形状になっている。また、下部筐体C3も、Z軸方向の長さが、X軸方向の長さ及びY軸方向の長さよりも短い直方体形状になっている。このような構成を採用することで、固体酸化物形燃料電池セルの積層数に応じて、水平方向でのセルスタックCSの長さ(厚さ)が決まる。つまり、セルスタックCSを薄型化して、それを収納する収納筐体Cも薄型化することが可能になる。
【0041】
熱交換部16は、収納筐体Cの内部空間Sに設置されたセルスタックCSの4つの側方のうち、水平方向の長さが短い一つの側面に相対して設けられる。収納筐体Cの内部空間SでセルスタックCSと熱交換部16とが組み合わされて設置された構造を考えると、熱交換部16は、セルスタックCSの4つの側方のうち、水平方向の長さが短い一つの側面に相対して、即ち、水平方向の長さが長い方向に沿ってセルスタックCSと隣接して設けられる。図示する例では、熱交換部16は、X軸方向に沿ってセルスタックCSと並ぶ状態で設置される。つまり、収納筐体Cの内部空間SでセルスタックCSと熱交換部16とが組み合わされて設置された構造の最も薄い部分はセルスタックCSの最も薄い部分と同等になる。その結果、セルスタックCS及び熱交換部16を収納する収納筐体Cを薄型化することが可能になる。
【0042】
熱交換部16とセルスタックCSとは間隔を空けて配置されている。そして、熱交換部16とセルスタックCSとの間の空間には、放出された排出酸化剤ガスが流れることができる。
【0043】
導入酸化剤ガス流通管15は、外部筐体C1の天面部材に固定されて鉛直下方に延びる。そして、導入酸化剤ガス流通管15は、途中に熱交換部16を介してセルスタックCSに接続される。つまり、セルスタックCSは、外部筐体C1の天面部材に固定される導入酸化剤ガス流通管15及び熱交換部16を介して、外部筐体C1の天面部材から吊り下げられた形態で設置される。つまり、収納筐体Cの内部でセルスタックCSを支えるための支柱などの構造体を特別に設ける必要性が低くなる点で好ましい。
【0044】
下部筐体C3の下側内部空間S2では、側面断熱材H7と側面断熱材H8と底面断熱材H9とで囲まれた空間に、セルスタックCSと導入燃料ガス流通管12と排出燃料ガス流通管13と導入酸化剤ガス流通管15と熱交換部16と排出酸化剤ガス流通管17とが配置される。このような構成を採用することで、セルスタックCSの温度を所望の温度に維持し易くなる。
【0045】
具体的には、
図3及び
図4に示すように、導入酸化剤ガス流通管15及び排出酸化剤ガス流通管17及び導入燃料ガス流通管12及び排出燃料ガス流通管13はセルスタックCSの同一側面側で接続されている。また、側面断熱材H7には第1凹部H7aと第2凹部H7bとが形成されている。そして、第1凹部H7aの部分で、排出燃料ガス流通管13はセルスタックCSの側面に接続され、排出酸化剤ガス流通管17はセルスタックCSの側面に接続される。また、第2凹部H7bの部分で、導入燃料ガス流通管12はセルスタックCSの側面に接続され、導入酸化剤ガス流通管15はセルスタックCSの側面に接続される。
【0046】
図3、
図5、
図6に示すように、本実施形態の固体酸化物形燃料電池システムでは、電気化学反応で用いられた後にセルスタックCSの内部から排出された排出酸化剤ガスが、ブスバーBと接触するように構成されている。具体的には、収納筐体Cの内部空間Sに、セルスタックCSと相対して設けられる断熱材(底面断熱材H9)を備え、排出酸化剤ガスは、セルスタックCSと底面断熱材H9との間の空間を流れる間にブスバーBと接触するように構成されている。
【0047】
このように、ブスバーBには、電気化学反応で用いられた後にセルスタックCSの内部から排出された排出酸化剤ガスが接触し、その接触した部分の加熱が行われる。つまり、ブスバーBの一端が高温のセルスタックCSに接続され、ブスバーBの他端が低温の外部に引き出される構造になっているとしても、ブスバーBの温度がセルスタックCS側から外部側に単調に低下するのではなく、その途中において排出酸化剤ガスにより加熱される部分が存在することで、その部分の温度は排出酸化剤ガスの温度、即ち、セルスタックCSの温度に近くなる。その結果、ブスバーBのうち、排出酸化剤ガスが接触する部分の温度と、セルスタックCSの温度との間の温度差は小さいため、ブスバーBを介したセルスタックCSからの熱逃げは小さくなる。特に、セルスタックCSの内部から排出された排出酸化剤ガスが、セルスタックCSと底面断熱材H9との間の空間を流れる間にブスバーBと接触することで、排出酸化剤ガスによりブスバーBの温度をセルスタックCSの温度に近付けつつ、セルスタックCS及びブスバーBからの放熱を抑制できる。
【0048】
また、底面断熱材H9には、セルスタックCSに面して開放されている溝H9aが形成されている。そして、排出酸化剤ガスは、底面断熱材H9に形成された溝H9aに沿って流れる間にブスバーBと接触する。加えて、ブスバーBの少なくとも一部は底面断熱材H9に形成された溝H9aの内部に位置している。
このような構成を採用することで、底面断熱材H9に形成された溝H9aにより、セルスタックCSの内部から排出された排出酸化剤ガスが流れる経路を意図したものにしながら、排出酸化剤ガスとブスバーBとを接触させることができる。加えて、セルスタックCSの内部から排出された排出酸化剤ガスが溝H9aの内部を流れている間に、排出酸化剤ガスとブスバーBとを確実に接触させることができる。
【0049】
図4に示すように、燃焼部14で発生した燃焼排ガスは、側面断熱材H5の上部に形成された溝H5aと、上部筐体C2の側面に形成された排気孔7と、排ガス路5とを順に通って、外部筐体C1の側面部材の内部の中空部分に至り、側面断熱材H6の上部に形成された溝H6aと、上部筐体C2の側面に形成された排気孔8と、排ガス路6とを順に通って、外部筐体C1の側面部材の内部の中空部分に至る。そして、燃焼部14で発生した燃焼排ガスは、外部筐体C1の側面部材の内部の中空部分を下方に向かって流れた後、外部筐体C1の内側底面部材C1bの内部の中空部分に至る。その後、燃焼部14で発生した燃焼排ガスは、外部筐体C1の内側底面部材C1bの内部の中空部分から排気管4に至り、収納筐体Cから排出される。
【0050】
このように、外部筐体C1の側面部材の内部では、内部空間Sへと導入される酸化剤ガスと内部空間Sから排出される燃焼排ガスとが隣接して流れ、互いに熱交換する、即ち、内部空間Sへと導入される酸化剤ガスの予熱が行われるように構成されている。
また、ブスバーBは、外部筐体C1の外側底面部材C1aの内部の中空部分を貫通するように構成されているため、給気管3を通して外部筐体C1の外側底面部材C1aの内部の中空部分に導入された酸化剤ガス(空気)はブスバーBと接触して熱交換する。つまり、ブスバーBが持っていた熱が、内部空間Sへと導入される酸化剤ガスの予熱に利用される。
【0051】
以上のように、本実施形態の固体酸化物形燃料電池システムでは、セルスタックCSの内部から排出された排出酸化剤ガスは、セルスタックCSの下部側でセルスタックCSの周囲に流出した後、セルスタックCSの周囲をセルスタックCSの下部側から上部側へ向かって流れるように構成されている。つまり、セルスタックCSでの空気利用率を変化させるなどしてセルスタックCSの内部から排出される排出酸化剤ガスの単位時間当たりの流量を変化させれば、セルスタックCSの周囲を流れる排出酸化剤ガスの流量も変化する。その結果、セルスタックCSからの放熱量を調節する運転が可能になる。従って、セルスタックCSの周囲を断熱しつつ、必要に応じて外部からセルスタックCSの温度調節を行うことができる固体酸化物形燃料電池システムを提供できる。
【0052】
<別実施形態>
<1>
上記実施形態では、固体酸化物形燃料電池システムの構成について具体例を挙げて説明したが、その構成については適宜変更可能である。
例えば、上記実施形態では、改質器11で水の気化と原燃料ガスの水蒸気改質とが行われる例を説明したが、専用の気化器を改質器11とは別に設けてもよい。
また、収納筐体Cの形状や各断熱材H1~H9の形状なども適宜変更可能である。
【0053】
<2>
上記実施形態では、セルスタックCSの内部から排出された排出燃料ガスを排出燃料ガス流通管13によって燃焼部14に供給する例を説明したが、セルスタックCSから燃焼部14への排出燃料ガスの経路は適宜変更可能である。例えば、セルスタックCSの内部から排出された排出燃料ガスを収納筐体Cの外部に取り出し、冷却して水分を除去した後で燃焼部14に供給するといった構成を採用してもよい。
【0054】
<3>
上記実施形態では、ブスバーBがセルスタックCSから下方に向けて引き出される例を説明したが、ブスバーBの設置位置は適宜変更可能である。例えばセルスタックCSの側部からブスバーBを引き出してもよい。その場合であっても、熱交換部16で熱交換した後の排出酸化剤ガスが、セルスタックCSの下部側でセルスタックCSの周囲の内部空間Sに流出し、セルスタックCSの周囲をセルスタックCSの下部側から上部側へ向かって流れる間にブスバーBと接触するように構成されることに変りはない。
また、上記実施形態では、ブスバーBが円柱形状である場合を例示したが、ブスバーBの形状は適宜変更可能である。
【0055】
<4>
上記実施形態(別実施形態を含む、以下同じ)で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用でき、また、本明細書において開示された実施形態は例示であって、本発明の実施形態はこれに限定されず、本発明の目的を逸脱しない範囲内で適宜改変できる。
【産業上の利用可能性】
【0056】
本発明は、ブスバーの存在に起因するセルスタック内の端部セルの温度低下を抑制可能な固体酸化物形燃料電池システムに利用できる。
【符号の説明】
【0057】
11 改質器
14 燃焼部
15 導入酸化剤ガス流通管
16 熱交換部
17 排出酸化剤ガス流通管
B ブスバー
C 収納筐体
CS セルスタック
H9 底面断熱材(断熱材)
H9a 溝
S 内部空間