(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-05-29
(45)【発行日】2023-06-06
(54)【発明の名称】欠陥部認識装置及び欠陥部認識方法
(51)【国際特許分類】
G01N 21/27 20060101AFI20230530BHJP
G01N 21/88 20060101ALI20230530BHJP
【FI】
G01N21/27 E
G01N21/88 J
(21)【出願番号】P 2019151063
(22)【出願日】2019-08-21
【審査請求日】2022-06-09
(73)【特許権者】
【識別番号】500171707
【氏名又は名称】株式会社ブイ・テクノロジー
(74)【代理人】
【識別番号】110000626
【氏名又は名称】弁理士法人英知国際特許商標事務所
(72)【発明者】
【氏名】水村 通伸
【審査官】井上 徹
(56)【参考文献】
【文献】特開2011-165479(JP,A)
【文献】米国特許第5991699(US,A)
【文献】中国特許出願公開第105699385(CN,A)
【文献】特開2008-188638(JP,A)
【文献】特開2012-63725(JP,A)
【文献】特開2017-156517(JP,A)
【文献】特開2011-101903(JP,A)
【文献】特開2004-77165(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01N 21/00-G01N 21/01
G01N 21/17-G01N 21/61
G01N 21/84-G01N 21/958
G01B 11/00-G01B 11/30
H01L 21/64-H01L 21/66
G06T 7/00-G06T 7/90
G01J 3/00-G01J 4/04
G01J 7/00-G01J 9/04
G06N 10/00-G06N 99/00
B23K 26/00-B23K 26/70
H05K 3/00-H05K 3/46
JSTPlus/JMEDPlus/JST7580(JDreamIII)
(57)【特許請求の範囲】
【請求項1】
多層膜基板の表面に白色落射光を照射して、前記表面において欠陥部を認識する単位領域の拡大像を得る顕微鏡と、
前記拡大像が結像される撮像面を有し、当該撮像面のピクセル毎に前記拡大像の分光スペクトル情報を出力するスペクトル分光カメラと、
前記スペクトル分光カメラから出力された分光スペクトル情報を処理する情報処理部を備え、
前記情報処理部は、前記ピクセル毎の分光スペクトル情報をクラスタリング処理する機械学習部と、該機械学習部の処理結果から欠陥部を認識する欠陥認識部を備え、
該機械学習部は、前記単位領域に存在する層構造に応じてクラスタを設定し、該クラスタにクラスタリングされるピクセル数を度数とするヒストグラムを生成し、
前記欠陥認識部は、生成された前記ヒストグラムの度数分布を欠陥が存在しないヒストグラムの度数分布と比較して、度数に差があるクラスタの存在で、欠陥部を認識することを特徴とする欠陥部認識装置。
【請求項2】
前記欠陥認識部は、前記度数に差があるクラスタにクラスタリングされたピクセルの座標位置と、当該クラスタの層構造における正常なパターンの座標位置との差分から、欠陥部の位置を認識することを特徴とする請求項1記載の欠陥部認識装置。
【請求項3】
前記機械学習部は、前記単位領域に存在する層構造に応じたクラスタに加えて、欠陥部用のクラスタを設定し、
前記欠陥認識部は、前記欠陥部用のクラスタにクラスタリングされたピクセルを基に欠陥部の種別を認識することを特徴とする請求項1又は2記載の欠陥部認識装置。
【請求項4】
多層膜基板の表面に白色落射光を照射して、前記表面において欠陥部を認識する単位領域の拡大像を得る工程と、
前記拡大像が結像される撮像面を有するスペクトル分光カメラを用い、前記撮像面のピクセル毎に前記拡大像の分光スペクトル情報を取得する工程と、
前記スペクトル分光カメラによって取得したピクセル毎の分光スペクトル情報を、前記単位領域に存在する層構造に応じて設定されたクラスタにクラスタリングする工程と、
前記クラスタにクラスタリングされるピクセル数を度数とするヒストグラムを生成する工程と、
生成された前記ヒストグラムの度数分布を欠陥が存在しないヒストグラムの度数分布と比較して、度数に差があるクラスタの存在で、欠陥部を認識することを特徴とする欠陥部認識方法。
【請求項5】
前記度数に差があるクラスタにクラスタリングされたピクセルの座標位置と、当該クラスタの層構造における正常なパターンの座標位置との差分から、欠陥部の位置を認識することを特徴とする請求項4記載の欠陥部認識方法。
【請求項6】
前記欠陥部として認識されたピクセルを再クラスタリングする工程を有し、該再クラスタリングでは、前記クラスタに加えて、欠陥部用のクラスタを設定し、当該欠陥部用のクラスタにクラスタリングされたピクセルを基に、前記欠陥部の種別を認識することを特徴とする請求項5記載の欠陥部認識方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、多層膜基板の欠陥部認識装置及び方法に関するものである。
【背景技術】
【0002】
FPD(Flat Panel Display)などの製造工程では、検査工程で欠陥画素が検出された場合に、TFT(Thin Film Transistor)などの多層膜基板を対象に、欠陥画素の欠陥部に対してレーザ光を照射する修正加工を行っている。
【0003】
この際の欠陥部の認識は、顕微鏡画像による目視認識か、或いは、画像処理技術を用いて、欠陥部の画像と欠陥部の無い参照画像とを照合し、欠陥部の位置や特徴を把握することなどが行われている(下記特許文献1参照)。
【先行技術文献】
【特許文献】
【0004】
【発明の概要】
【発明が解決しようとする課題】
【0005】
多層膜基板の欠陥部は、欠陥部が多層膜のどの層にあるのか、更には欠陥部の層の下地層がどのような層構造になっているかを認識することが必要になり、この違いに応じて、レーザ修正を行う際の加工レシピが適宜選択されている。従来、顕微鏡画像の目視で欠陥部を認識している場合には、欠陥部の層構造の把握はオペレータの経験や知識に頼らざるを得ず、見立ての違いによって修正レシピが異なるなど、オペレータのスキルが修正品質に影響してしまう問題があった。
【0006】
また、画像処理技術を用いて欠陥部の認識を行う従来技術によると、2次元画像によって欠陥部から得られる情報は、欠陥部の色、大きさ、コントラスト、形状などに限られてしまうため、欠陥の下地層の層構造などを正確に把握することができない。このため、最終的にはオペレータの経験や知識に頼ることになり、この従来技術によっても品質の高い修正加工を行うことができない問題があった。
【0007】
本発明は、このような問題に対処するために提案されたものである。すなわち、多層膜基板における欠陥部の状態を機械的に認識することができ、オペレータのスキルに影響されない修正加工を可能にすること、などが本発明の課題である。
【課題を解決するための手段】
【0008】
このような課題を解決するために、本発明は、以下の構成を具備するものである。
多層膜基板の表面に白色落射光を照射して、前記表面において欠陥部を認識する単位領域の拡大像を得る顕微鏡と、前記拡大像が結像される撮像面を有し、当該撮像面のピクセル毎に前記拡大像の分光スペクトル情報を出力するスペクトル分光カメラと、前記スペクトル分光カメラから出力された分光スペクトル情報を処理する情報処理部を備え、前記情報処理部は、前記ピクセル毎の分光スペクトル情報をクラスタリング処理する機械学習部と、該機械学習部の処理結果から欠陥部を認識する欠陥認識部を備え、該機械学習部は、前記単位領域に存在する層構造に応じてクラスタを設定し、該クラスタにクラスタリングされるピクセル数を度数とするヒストグラムを生成し、前記欠陥認識部は、生成された前記ヒストグラムの度数分布を欠陥が存在しないヒストグラムの度数分布と比較して、度数に差があるクラスタの存在で、欠陥部を認識することを特徴とする欠陥部認識装置。
【図面の簡単な説明】
【0009】
【
図2】欠陥部認識装置の情報処理部を説明する説明図。
【
図3】機械学習部のクラスタリング処理を説明する説明図。
【
図5】欠陥認識部の欠陥位置認識機能を説明する説明図((a)は一つの層構造における正常なパターンの座標位置、(b)は欠陥部が存在する層構造にクラスタリングされたピクセルの座標位置、(c)は欠陥領域のピクセルの座標位置)。
【
図6】欠陥領域内の再クラスタリング処理を説明する説明図。
【
図8】欠陥部認識装置を備えたレーザ修正装置を示した説明図。
【発明を実施するための形態】
【0010】
以下、図面を参照して本発明の実施形態を説明する。以下の説明で、異なる図における同一符号は同一機能の部位を示しており、各図における重複説明は適宜省略する。
【0011】
図1に示すように、欠陥部認識装置1は、ステージS上に設置されたワークである多層膜基板Wの欠陥部を認識するものであり、顕微鏡10、スペクトル分光カメラ20、情報処理部30を備えている。
【0012】
顕微鏡10は、多層膜基板Wの表面Waに白色落射光を照射して、表面Waにおいて欠陥部を認識する単位領域(例えば、TFT基板の画素領域)の拡大像を得る光学顕微鏡であり、対物レンズ11やチューブレンズ17などの光学系を備えると共に、白色落射光を表面Waに照射するための白色光源12とその光学系(ミラー13及びハーフミラー14)を備えている。また、顕微鏡10は、必要に応じて、表面Waの拡大像のモニタ画像を得るためのモニタカメラ15とそのための光学系(ハーフミラー16)などを備えている。
【0013】
スペクトル分光カメラ20は、顕微鏡10の光学系の光軸10P上に、スリット23とグレーティング素子(回折格子)21を配置して、表面Waにて反射される光を波長分離し、この分離された光を、リレーレンズ系24を介して2次元カメラ22の撮像面22aに結像し、ライン分光方式によって、表面Waの拡大像の分光スペクトル情報を撮像面22aのピクセル毎に取得するものである。
【0014】
情報処理部30は、スペクトル分光カメラ20から出力された分光スペクトル情報処理するものであり、
図2に示すように、ピクセル毎の分光スペクトル情報をクラスタリング処理する機械学習部31と、機械学習部31の処理結果から欠陥部を認識する欠陥認識部32とを備えている。欠陥認識部32の認識結果は、図示省略しているレーザ修正装置の制御部に出力され、欠陥部をレーザ加工することの要・不要判断や、レーザ加工する場合の加工レシピの選択などに適用される。
【0015】
スペクトル分光カメラ20から出力される分光スペクトルの情報は、
図3に示すように、2次元カメラ22の撮像面22aの一つのピクセルP(Xn,Yn)毎に、一つの分光スペクトル分布を出力する。ここでのピクセルP(Xn,Yn)は、X-Y平面座標の位置情報を有しており、このピクセルP(Xn,Yn)の位置が、レビュー対象となる拡大像内の特定位置に対応している。
【0016】
そして、スペクトル分光カメラ20が出力するピクセル毎の分光スペクトル情報は、表面Waの単なる2次元画像情報とは異なり、撮像面22aのピクセルP(Xn,Yn)に対応する表面Wa上の位置の層構造が予測できる情報を含んでいる。これは、多層膜基板Wの表面Waにて反射する光が、多層膜の表層の違いで様々な分光特性を示すと共に多層膜の各層界面で反射する光と干渉するなどして、層構造特有のスペクトル分布を示すことに起因する。
【0017】
機械学習部31は、スペクトル分光カメラ20が出力するピクセル毎の分光スペクトル情報をクラスタリングするに際して、レビュー対象となる多層膜基板Wの単位領域に存在する層構造の数をクラスタ数としている。ここでの層構造は、多層膜基板Wの設計情報から予め知ることができるものである。
図3に示した例では、多層膜基板Wの単位領域には、11個の層構造が存在しており、それに対応して11個のクラスタNo.1~11が設定されている。
【0018】
機械学習部31は、クラスタに対応する層構造がどのような構造であるかは把握しておらず、類似のスペクトル分布の分光スペクトル情報を有するピクセルを一つのクラスタに集めて、撮像面22a内の各ピクセルを、
図3の例では11個のクラスタに振り分ける処理を行っている。これによって、機械学習部31は、
図3に示すように、各クラスタにクラスタリングされるピクセル数を度数とするヒストグラムを生成する。
【0019】
このヒストグラムは、レビュー対象の単位領域内に欠陥部が存在しない場合には、設計されたとおりのヒストグラムになるが、単位領域内に欠陥部が存在する場合には、ヒストグラムの度数が設計値と異なってくる。欠陥認識部32は、機械学習部31によって生成されたヒストグラムの度数分布を欠陥が存在しない設計値のヒストグラムの度数分布と比較して、度数に差があるクラスタの層構造を、欠陥部が存在する可能性がある層構造として認識する。
【0020】
図4は、欠陥認識部32の処理を模式的に示している。ここで、欠陥認識部32は、機械学習部31において設定された各クラスタと層構造との関係を認識している。そして、
図4に破線の丸で囲んだように、設計値のヒストグラム度数とクラスタリングされたヒストグラムの度数に大きな差があるクラスタを特定して、そのクラスタに対応する層構造を、欠陥部が存在する可能性がある層構造として認識する。
【0021】
次に、欠陥認識部32は、
図5に示すように、生成されたヒストグラムにおいて、度数に差があるクラスタにクラスタリングされたピクセルの座標位置と、この層構造における正常なパターンの座標位置との差分から、欠陥部の位置を認識する。具体的には、
図4におけるクラスタ7に対応する層構造に欠陥部が存在することを認識した場合に、この層構造の正常なパターンの座標位置が、
図5(a)に示す座標位置分布であるとする。これに対して、実際にクラスタ7にクラスタリングされたピクセルの座標位置分布をX-Y座標上に示してみると、
図5(b)に示すような座標位置分布が得られたとする。このような場合に、欠陥認識部32は、
図5(b)の分布と
図5(a)の分布の差分を取ることで、
図5(c)に示すように、欠陥部の位置(欠陥領域に存在するピクセルの座標位置分布)を認識することができる。
【0022】
これに対して、機械学習部31は、前述した欠陥認識部32の欠陥位置の認識結果を踏まえて、
図6に示すように、欠陥領域に位置するピクセルの分光スペクトル情報を再クラスタリングする。この際、機械学習部31は、既に設定されている層構造に対応するクラスタ(No.1~11)に追加して、欠陥部用のクラスタ(No.12,13)を複数設定する。
【0023】
この再クラスタリングでは、欠陥領域内のピクセル位置の層構造が既知の層構造である場合には、既に設定されているクラスタ(No.1~11)にクラスタリングされるが、それ以外の異物などである場合には、追加した欠陥部用のクラスタ(No.12,13)にクラスタリングされることになる。そして、追加した欠陥部用のクラスタ(No.12,13)にクラスタリングされたピクセルは、設計上の層構造とは異なる構造であると言えるので、例えば、異物の付着によって生じた層構造などであることを予測することができる。欠陥認識部32は、欠陥部用のクラスタ(No.12,13)にピクセルがクラスタリングされた場合には、クラスタリングされたピクセルの分光スペクトル情報を基にし、前述した予測を前提にして、欠陥部の種別を認識する。
【0024】
図7は、前述した欠陥部認識装置1を用いた欠陥部認識方法の工程例を示している。欠陥部認識を開始するには、先ず、ワークである多層膜基板WをステージS上に設置して(ステップS01)、表面Waのレビュー位置を特定し、そこに顕微鏡10の光軸を移動させる(ステップS02)。
【0025】
そして、レビュー位置の表面Wa上に白色落射光を照射し、顕微鏡10によって、レビュー対象となる単位領域の拡大像を得て、その拡大像が結像される撮像面22aを有するスペクトル分光カメラ20を用いて、撮像面22aのピクセル毎の分光スペクトル情報を取得する(ステップS03)。
【0026】
取得したピクセル毎の分光スペクトル情報は、情報処理部30における機械学習部31に入力され、ここで、前述したクラスタリング処理が行われる(ステップS04)。このクラスタリング処理が終了すると、前述したように、レビュー対象となる単位領域に存在する層構造の数をクラスタ数とし、各クラスタにクラスタリングされるピクセル数を度数とするヒストグラムが生成される(ステップ05)。
【0027】
機械学習部31にてヒストグラムが生成されると、欠陥認識部32は、前述したように、クラスタリングによって生成されたヒストグラムの度数分布と設計値のヒストグラムの度数分布とを比較して、度数に差があるクラスタの存在によって欠陥部の有無を確認する(ステップS06)。
【0028】
次に、欠陥認識部32は、
図5に示すように、欠陥部有りのクラスタにクラスタリングされているピクセルの座標位置分布を、当該層構造の正常なパターンの座標位置分布と比較することで、欠陥部の位置(欠陥領域)を特定する(ステップS07)。そして、機械学習部31は、前述したように、欠陥部用のクラスタを追加して、特定された欠陥領域内のピクセルを再クラスタリングする(ステップS08)。
【0029】
再クラスタリングの後、欠陥認識部32は、欠陥用クラスタにクラスタリングされたピクセルの分布状況や、そこにクラスタリングされたピクセルの分光スペクトル情報を基にして、欠陥部の種別を認識する(ステップS09)。
【0030】
その後は、レビュー位置の移動を行うか否かの判断を行い(ステップS10)、レビュー位置を移動する場合には(ステップS10:YES)、移動したレビュー位置に対して、ステップS02以降の処理を行い、レビュー位置を移動しない場合には(ステップS10:NO)、処理を終了する。
【0031】
図8は、前述した欠陥部認識装置1を備えたレーザ修正装置2の構成例を示している。レーザ修正装置2は、前述した情報処理部30における欠陥認識部32が認識した欠陥部に対して、レーザ光を照射して修正加工を行うものであり、顕微鏡10の光軸と同軸上にレーザ光Lを照射するレーザ照射部3を備えている。
【0032】
レーザ照射部3は、例えば、レーザ光源40、レーザスキャナ42などを備えており、レーザ光源40から出射されたレーザ光Lは、ミラー41とレーザスキャナ42のガルバノミラー42A,42Bを経由して、顕微鏡10の光学系内に入射され、顕微鏡10による拡大像が得られている単位領域の表面Wa上に照射される。
【0033】
図示の例では、顕微鏡10の光軸に進入・退避する切り替えミラー18が設けられており、切り替えミラー18を顕微鏡10の光軸上に進入させることで、スペクトル分光カメラ20に表面Waからの反射光を入射させて、欠陥部認識装置1を動作させ、切り替えミラー18を顕微鏡10の光軸から退避させることで、レーザ光Lを表面Waに照射するレーザ修正装置2を動作可能にしている。
【0034】
このような欠陥部認識装置1を備えたレーザ修正装置2は、先ず、欠陥部認識装置1を動作させることで、欠陥認識部32が、欠陥部の有無、欠陥部が有る場合の欠陥部の位置、欠陥部の層構造、欠陥部の種別などの情報をレーザ制御部50に送信する。レーザ制御部50は、欠陥認識部32から送信された前述の情報を基にして、レーザ修正を行うか否かの判断を行い、レーザ修正を行う場合には、欠陥部の位置情報に基づいてレーザ照射範囲の設定を行い、欠陥部の層構造や種別情報に基づいて加工レシピの設定を行う。
【0035】
また、図示の例では、顕微鏡10の拡大像は、モニタカメラ15にも結像されており、モニタカメラ15が撮像した画像を表示装置52で観察しながら、レーザ修正を行うことできるようになっている。この際、モニタカメラ15が取得した2次元画像は、画像処理部51で画像処理されてレーザ制御部50や情報処理部30に送信されており、この2次元画像によっても、レーザ照射部3の制御を行うことができるようになっている。
【0036】
以上説明した本発明の実施形態によると、多層膜基板Wの欠陥部を、機械的により詳細に認識することができ、この認識した情報を基にして、レーザ修正加工の設定を行うことができる。これにより、オペレータのスキルに影響されない高品質の修正加工が可能になり、また、欠陥部の認識から加工までを自動化して、高能率且つ高品質な修正加工を行うことができる。
【0037】
以上、本発明の実施の形態について図面を参照して詳述してきたが、具体的な構成はこれらの実施の形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計の変更等があっても本発明に含まれる。また、上述の各実施の形態は、その目的及び構成等に特に矛盾や問題がない限り、互いの技術を流用して組み合わせることが可能である。
【符号の説明】
【0038】
1:欠陥部認識装置,2:レーザ修正装置,3:レーザ照射部,
10:顕微鏡,10P:光軸,11:対物レンズ,12:白色光源,
13:ミラー,14,16:ハーフミラー,15:モニタカメラ,
17:チューブレンズ,18:切り替えミラー,
20:スペクトル分光カメラ,21:グレーティング素子,
22:2次元カメラ,22a:撮像面,23:スリット
30:情報処理部,31:機械学習部,32:欠陥認識部,
40:レーザ光源,41:ミラー,42:レーザスキャナ,
42A,42B:ガルバノミラー,
50:レーザ制御部,51:画像処理部,52:表示装置,
S:ステージ,W:多層膜基板,Wa:表面,L:レーザ光