(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B1)
(11)【特許番号】
(24)【登録日】2023-05-31
(45)【発行日】2023-06-08
(54)【発明の名称】自動採寸システム
(51)【国際特許分類】
G01B 11/245 20060101AFI20230601BHJP
【FI】
G01B11/245 H
(21)【出願番号】P 2023038714
(22)【出願日】2023-03-13
【審査請求日】2023-03-13
【早期審査対象出願】
(73)【特許権者】
【識別番号】523091615
【氏名又は名称】X-PROSPECT株式会社
(74)【代理人】
【識別番号】100180482
【氏名又は名称】田中 将隆
(72)【発明者】
【氏名】迎 純子
(72)【発明者】
【氏名】趙 炎
(72)【発明者】
【氏名】徐 凱
(72)【発明者】
【氏名】孫 奎
(72)【発明者】
【氏名】高 爽
【審査官】續山 浩二
(56)【参考文献】
【文献】米国特許出願公開第2017/0228885(US,A1)
【文献】韓国公開特許第10-2022-0043326(KR,A)
【文献】国際公開第2020/100956(WO,A1)
【文献】中国特許出願公開第111899258(CN,A)
【文献】中国特許出願公開第112767540(CN,A)
【文献】国際公開第2017/098397(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G01B 11/245
(57)【特許請求の範囲】
【請求項1】
搬送車両その他の搬送手段により搬送される荷物のサイズを自動的に採寸できる自動採寸システムであって、
荷物保管場所の矩形状の出入口に設けられたセンサであって、前記搬送手段が出入口を通過することを検知する通過検知センサと、
前記矩形状の出入口の4つのコーナーに各1台ずつ設けられた任意の被写体を撮影するToF(Time of Flight)カメラであって、前記通過検知センサが搬送手段による出入口の通過を検知したときに前記荷物に赤外光を照射するとともに当該荷物から反射された赤外光を受光する4台のToF(Time of Flight)カメラと、
任意の被写体を撮影可能なカメラであって、前記出入口の左右いずれかの側面部に設けられたカメラと、
前記ToFカメラが撮影した画像と前記カメラが撮影した画像を管理する情報管理サーバと、
を具備してなり、
前記4台のToF(Time of Flight)カメラは、各々、
前記通過検知センサが搬送手段の出入口通過を検知したときに、この搬送手段と同搬送手段が搬送中の荷物がともに写り込んだ荷物車両画像を撮影する撮影手段と、
同通過検知センサが搬送手段の出入口通過を検知したときに荷物に対して赤外光を放出してから同荷物により反射された赤外光を受光するまでの受光所要時間に基づき、荷物車両画像の各画素中に写り込んだ被写体部分と同ToFカメラの間の深度距離を求める距離算出手段と、
前記距離算出手段が求めた深度距離に応じて定まる荷物車両画像内の深度座標と、各深度距離に応じた区分を示す所定色とからなる荷物車両画像の各画素のデータ集合を生成し、当該生成したデータ集合に基づいて、各画素における深度距離に応じた所定色を荷物車両画像の画素ごとに着色することで点群データを生成する点群データ生成手段と、
前記点群データを情報管理サーバに送信する点群データ送信手段と、
を有し、
前記カメラは、
前記通過検知センサが搬送手段の出入口通過を検知したときに、この搬送手段と同搬送手段が搬送中の荷物と同荷物に貼付された2次元コードとが写り込んだコード画像を撮影するコード撮影手段と、
前記コード画像を情報管理サーバに送信するコード画像送信手段と、
を有し、
前記情報管理サーバは、
出入口の各コーナーから各ToFカメラが撮影した同じ被写体の4枚の荷物車両画像からそれぞれ生成された4枚の点群データにおいて、当該点群データに写り込んだ荷物の幅と高さと奥行を採寸し、
前記4枚の点群データを合成することで、当該点群データに写り込んでいる荷物の3次元的な立体形状を示す1枚の荷物立体画像を生成し、
前記荷物立体画像が示す荷物に、前記採寸した幅と高さと奥行を対応付けて記憶する採寸処理と、
前記コード画像に写り込んでいる個々の荷物に添付された2次元コードを認識して、当該2次元コードが示す荷物情報を読取り、
前記認識した2次元コードに基づいて、前記コード画像に写り込んでいる個々の荷物を認識し、
前記コード画像のなかに上下に積上げられた複数の荷物が写り込んでいるか否かを、各荷物にそれぞれ貼付されている2次元コードに基づいて判別するコード読取処理と、
前記コード画像のなかに上下に積上げられた複数の荷物が写り込んでいると判別したときに、
当該コード画像に写り込んだ2次元コードの位置に対応する、前記荷物立体画像におけるコード相対位置を特定し、
前記コード相対位置が特定された荷物立体画像に対して、当該コード相対位置に写り込んだ2次元コードと同2次元コードが示す荷物情報を対応付けて記憶する
ように構成されたことを特徴とする、自動採寸システム。
【請求項2】
請求項1に記載の自動採寸システムであって、
前記ToF(Time of Flight)カメラは、
採寸対象となる荷物が赤外光を吸収する低反射物である場合でも、撮影した荷物車両画像から点群データを生成できる
ように構成されたことを特徴とする、自動採寸システム。
【請求項3】
請求項1又は2に記載の自動採寸システムであって、
前記搬送手段がフォークリフトである場合、
情報管理サーバは、
前記点群データにおいて荷物とフォークリフト爪部分が一体化しているデータ部分を、長尺状をなす前記フォークリフト爪部分の軸方向沿いに所定間隔ごとに切断位置において切断面により切断する処理と、
前記切断位置それぞれにおいて切断面により切取られる断面積を算出する処理と、
連続的に前後する2つの切断位置において各切断面により切取られた断面積同士を順次比較して、切断面積比を算出する処理と、
切断面による切断を開始した先頭の切断位置からスタートして、先に求めた切断面積比を所定の荷物検出閾値と比較する処理と、
切断面積比と荷物検出閾値の大小関係に基づきフォークリフト爪部分が荷物と接する接触位置を判定する処理であって、ある切断位置における切断面積比が荷物検出閾値を超過したときに、当該切断位置がフォークリフト爪部分および荷物の接触位置であると判定する処理と、
先頭の切断位置から接触位置までの各切断面によって切取られたフォークリフトの爪部分が写り込んだ爪画像領域を、点群データから除去する処理と、
を実行する
ように構成されたことを特徴とする、自動採寸システム。
【請求項4】
請求項1又は2に記載の自動採寸システムであって、
情報管理サーバは、
前記荷物の高さ方向から見たときの、前記点群データに写り込んだ荷物画像領域の水平面投影図を生成する処理と、
荷物の高さ方向の軸を回転中心として水平面投影図を水平面上で所定単位角度ずつ回転させることで、水平面写像図を生成する処理と、
水平面投影図の各端点の水平面座標の最大値・最小値を基に、当該水平面投影図に外接する外接矩形の面積を求める処理と、
水平面写像図の各端点の水平面座標の最大値・最小値を基に、当該水平面写像図に外接する外接矩形の面積を求める処理と、
前記外接矩形の面積が最小のときの回転角度において、水平面写像図の各辺の向きがToFカメラの水平面座標軸に対して揃った平行状態であると判定する処理と、
を実行する
ように構成されたことを特徴とする、自動採寸システム。
【請求項5】
請求項1又は2に記載の自動採寸システムであって、
情報管理サーバは、
前記点群データに含まれるすべての画素それぞれについて、当該画素を中心とする所定のノイズ判定範囲に存在する点群の個数を算出する処理と、
前記ノイズ判定範囲に存在する点群の個数が所定のノイズ判定基準よりも小さい場合、当該ノイズ判定範囲内にある点群がノイズ成分であると判定する処理と、
前記ノイズ成分として判定された点群を除去する処理と、
を実行する
ように構成されたことを特徴とする、自動採寸システム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、搬送車両その他の搬送手段により搬送されている状態の荷物を自動採寸するとともに当該荷物の立体的形状を示す画像を生成する自動採寸システムに関する。
【背景技術】
【0002】
昨今では、取引のグローバル化やインターネット通信販売の需要増加に伴い、配送される荷物量が増加の一途をたどっている。
このような情勢のもと、自然、保管用倉庫において搬入・搬出される荷物数も非常に多くなっている。
【0003】
荷物を配送する場合、個々の荷物について幅・高さ・奥行といったサイズを知ることが必要となる。
このような保管倉庫における荷物の採寸作業は、一部の企業では自動採寸の仕組が導入され効率化が図られているものの、人手による採寸作業で対応している企業もまだまだ多い。
【0004】
流通量が増えているなか、非常に多数の荷物を1つずつ採寸することは作業負荷が大きく、さらに荷物のなかには相当に重たいものも存在するため、このような荷物を採寸する場合には作業者の疲労も倍増してしまう。
取扱う荷物を自動採寸できるようになれば、採寸作業に携わる人的リソースが解放されるため、その分の人的リソースを他の作業に割当てて活用できることから、自動採寸システムに対する潜在的なニーズがあるものと考えられる。
【0005】
さらに、近年では至る所でQR(Quick Response)コード(登録商標)が利用されている。
物流の分野でも、荷物を梱包する包装にQRコード(登録商標)を貼付し、このQRコード(登録商標)に埋込まれた荷物情報を読取ることで、荷物の保管・配送をおこなうことが主流となっている。
「QRコード(登録商標)による荷物管理」機能は、上述した「自動採寸」機能に比肩して、物流の効率化を支える役割を果たしている。
【0006】
なお、昨今では、カメラ技術の著しい向上を背景に、カメラを荷物処理の現場に応用した種々の「自動採寸技術」が提供されている(例えば、特許文献1・2参照。)。
特許文献1に開示された自動計測装置によれば、計測対象物100の近傍に併置・密着させた携帯式3次元定尺立体定規101・102と当該対象物をCCDカメラ等で撮影し、この定規を基準として対象物の各辺の長さや座標を求める(同文献1・第7段落)。
【0007】
また、特許文献2に開示された容器計測システムによれば、二次元情報取得部42(カメラなど)により容器12を含む二次元の画像情報を取得し(同文献2・第17段落)、さらに三次元情報取得部43(3Dセンサ・距離計測手段)で容器12の三次元の情報を取得する(同文献2・同17段落)。
そして、演算部53が、容器12の距離画像Dに基づいて、容器12を構成する平面部13の三次元位置を算出し、この三次元位置を基に容器12の三次元情報を算出する(同文献2・同19段落)。
なお、容器12の三次元情報は、特徴点F(平面部13の角の部分)の三次元位置の情報と、リンクL(平面部13の辺の部分)の三次元位置の情報を含み、リンクLの寸法の情報を含み、リンクLに囲まれた部分(平面部13の面の部分)の三次元形状の情報を含む(特許文献2・第38段落)。
【0008】
また、カメラを活用した「QRコード(登録商標)による荷物管理技術」も提供されている(例えば、特許文献3参照。)。
特許文献3に開示されたラベル読取システムによれば、通過センサ6が、走行経路F1の延在方向におけるQRコード撮影装置3の配設位置と荷山撮影装置4の配設位置との間に配設されており、走行経路F1でのフォークリフト10の通過を検知する(同文献3・第37段落)。
情報処理端末8は、QRコード撮影装置3の各カメラ35a~35d,36a~36dから受信した画像の情報によりQRコード(登録商標)QRCの情報を取得し、このQRコード(登録商標)QRCの情報から各部品箱2に収容されている部品の種類や個数等の情報を取得する(同文献3・第42段落)。
そして、情報処理端末8は、同文献3・第78段落のごとく荷山撮影ユニット41・42で写した荷山全体の画像において、適正に読取られたQRコードQRCならびに読取りできなかったQRコードQRCを特定できる(同文献3・第80段落)。
【先行技術文献】
【特許文献】
【0009】
【文献】特開2012-137304号公報
【文献】特開2021-056543号公報
【文献】特開2020-064334号公報
【発明の概要】
【発明が解決しようとする課題】
【0010】
特許文献1の技術によれば、定尺立体定規を使用することが前提であり、対象物と同定規を同じ撮影画像に写せない環境では適用できない。
【0011】
特許文献2の技術によれば、二次元情報取得部42で撮影した容器12を含む二次元の画像情報(同文献2・
図2)から、当該容器12の三次元情報を取得しうる。
しかしながら、特許文献2では、カメラ(二次元情報取得部42)が1箇所にしか設けられておらず(同文献2・
図1)、容器12の立体的形状を示す立体画像までは生成できない。
【0012】
また、特許文献3の技術によれば、複数の荷物に各々貼付された複数のQRコード(登録商標)を同一の画像に撮影し、当該画像に写り込んだ個々の荷物に対応する複数のQRコード(登録商標)から情報を読取ることができ、荷物管理業務の効率を非常に高めることができる。
しかしながら、同文献3のQRコード(登録商標)利用は2次元的画像情報と連係させるものに留まっており、QRコード(登録商標)の情報を、荷物を自動採寸した点群データ(撮影画像に対し、カメラから当該画像に写っている被写体までの距離情報を付加したデータ)と関連付けて利用することまでは想定されていない。
【0013】
本発明は、上記の問題に鑑みてなされたものであり、カメラを用いて読取った荷物用の2次元コードを、荷物を自動採寸するための点群データと関連付けて活用することを目的とする。
【課題を解決するための手段】
【0014】
〔第1発明〕
そこで上記の課題を解決するために、本願の第1発明に係る自動採寸システムは、
搬送車両その他の搬送手段により搬送される荷物のサイズを自動的に採寸できる自動採寸システムであって、
荷物保管場所の矩形状の出入口に設けられたセンサであって、前記搬送手段が出入口を通過することを検知する通過検知センサと、
前記矩形状の出入口の4つのコーナーに各1台ずつ設けられた任意の被写体を撮影するToF(Time of Flight)カメラであって、前記通過検知センサが搬送手段による出入口の通過を検知したときに前記荷物に赤外光を照射するとともに当該荷物から反射された赤外光を受光する4台のToF(Time of Flight)カメラと、
任意の被写体を撮影可能なカメラであって、前記出入口の左右いずれかの側面部に設けられたカメラと、
前記ToFカメラが撮影した画像と前記カメラが撮影した画像を管理する情報管理サーバと、
を具備してなり、
前記4台のToF(Time of Flight)カメラは、各々、
前記通過検知センサが搬送手段の出入口通過を検知したときに、この搬送手段と同搬送手段が搬送中の荷物がともに写り込んだ荷物車両画像を撮影する撮影手段と、
同通過検知センサが搬送手段の出入口通過を検知したときに荷物に対して赤外光を放出してから同荷物により反射された赤外光を受光するまでの受光所要時間に基づき、荷物車両画像の各画素中に写り込んだ被写体部分と同ToFカメラの間の深度距離を求める距離算出手段と、
前記距離算出手段が求めた深度距離に応じて定まる荷物車両画像内の深度座標と、各深度距離に応じた区分を示す所定色とからなる荷物車両画像の各画素のデータ集合を生成し、当該生成したデータ集合に基づいて、各画素における深度距離に応じた所定色を荷物車両画像の画素ごとに着色することで点群データを生成する点群データ生成手段と、
前記点群データを情報管理サーバに送信する点群データ送信手段と、
を有し、
前記カメラは、
前記通過検知センサが搬送手段の出入口通過を検知したときに、この搬送手段と同搬送手段が搬送中の荷物と同荷物に貼付された2次元コードとが写り込んだコード画像を撮影するコード撮影手段と、
前記コード画像を情報管理サーバに送信するコード画像送信手段と、
を有し、
前記情報管理サーバは、
出入口の各コーナーから各ToFカメラが撮影した同じ被写体の4枚の荷物車両画像からそれぞれ生成された4枚の点群データにおいて、当該点群データに写り込んだ荷物の幅と高さと奥行を採寸し、
前記4枚の点群データを合成することで、当該点群データに写り込んでいる荷物の3次元的な立体形状を示す1枚の荷物立体画像を生成し、
前記荷物立体画像が示す荷物に、前記採寸した幅と高さと奥行を対応付けて記憶する採寸処理と、
前記コード画像に写り込んでいる個々の荷物に添付された2次元コードを認識して、当該2次元コードが示す荷物情報を読取り、
前記認識した2次元コードに基づいて、前記コード画像に写り込んでいる個々の荷物を認識し、
前記コード画像のなかに上下に積上げられた複数の荷物が写り込んでいるか否かを、各荷物にそれぞれ貼付されている2次元コードに基づいて判別するコード読取処理と、
前記コード画像のなかに上下に積上げられた複数の荷物が写り込んでいると判別したときに、
当該コード画像に写り込んだ2次元コードの位置に対応する、前記荷物立体画像におけるコード相対位置を特定し、
前記コード相対位置が特定された荷物立体画像に対して、当該コード相対位置に写り込んだ2次元コードと同2次元コードが示す荷物情報を対応付けて記憶するような構成とした。
【0015】
本願の第1発明によれば、搬送手段(
図2の搬送車両VH)が出入口GWを通過したことを通過検知センサ3が検知すると、2次元コード撮影用のカメラ2が2次元コードCD(
図4)を撮影すると同時に、4台のToFカメラ1-1~1-4(
図3)が荷物車両画像P
CV(
図8(a)参照)を撮影する。
さらに、上記4台のToFカメラ1-1~1-4は、各々「点群データPD」(
図8(b)参照)を生成する。
情報管理サーバ4は、カメラ2が撮影したコード画像P
CD(
図11)とToFカメラ1が生成した点群データPDを受取り、2次元コード認識(解読)処理ならびに3次元点群データ解析(寸法計測)処理を行う。
【0016】
このようにすることで、第1発明は、荷物保管場所の出入口GWの各コーナーから4台のToFカメラ1-1~1-4で撮影した同じ被写体を示す4枚の荷物車両画像P
CVから生成した点群データPDに基づいて、点群データPDに写り込んだ荷物のサイズ(幅・高さ・奥行)を採寸する。
これにより、人手を介することなく「搬送車両VHによって搬送されている状態のまま、荷物CRのサイズを自動的に採寸」でき、ひいては、採寸作業から解放された人的リソースにより別の業務をこなすことも可能となる。
また、搬送車両VHによる荷物の搬送作業を一切妨げることなしに、同車両VHが搬送中の荷物CR(
図2の例では、荷物CR-1・CR-2)の採寸を進めることができる。
なお、上記「搬送手段」とは、フォークリフトに代表される搬送車両VHや、ベルトコンベアなどでもよい。
【0017】
また、第1発明によれば、情報管理サーバ4は、各ToFカメラ1-1~1-4で撮影した4枚の荷物車両画像P
CV(
図6(a)~
図6(b)・
図7(a)~
図7(b))から各々生成した4枚の点群データPD(
図8(b))を合成することで、当該点群データPDに写り込んだ荷物CRの3次元的な立体形状を示す「1枚の荷物立体画像P
3D」(
図17(a)・
図17(b)参照)を生成する。
【0018】
また、第1発明においては、荷物CR(
図2の荷物CR-1・CR-2)の取扱作業に従事する作業者が目視確認で個々に荷物を判別することなく、カメラで撮影したコード画像P
CDに基づき「搬送車両VHが搬送している状態の個々の荷物CRを自動的に判別」できる。
このように、それぞれの荷物を判別できることにより、荷物CRの個数を自動的にカウントできることにつながり、さらには、これらの荷物を積込むために必要な人員数や配送に必要とされる配送車両の台数などを自動予測することも可能になる。
【0019】
さらに、第1発明によれば、コード画像P
CD(
図11)中に上下に積上げられた複数の荷物が写り込んでいると判別したときに、同コード画像P
CD(
図11)に写り込んだ2次元コードCD(
図11のCD-1・CD-2)の位置に対応する、荷物立体画像P
3D(
図17(a)・
図17(b))におけるコード相対位置を特定する。
また、荷物の3次元的な立体形状を示す荷物立体画像P
3Dに対して、コード画像P
CDに写り込んだ2次元コードCDと同2次元コードCDが示す荷物情報I
CRを対応付けて記憶する。
ここで、「荷物情報I
CR」とは、搬送車両VHにより搬送される荷物CRに関する属性を示す情報である。
上記「荷物情報I
CR」の具体例としては、荷物CRとして扱われる商品の名称・商品の品番・商品の個数・商品の重量といった情報が挙げられる。
【0020】
〔第2発明〕
上記課題を解決するために本願の第2発明に係る自動採寸システムは、第1発明に係る自動採寸システムであって、
前記ToFカメラは、
採寸対象となる荷物が赤外光を吸収する低反射物である場合でも、撮影した荷物車両画像から点群データを生成できる構成とした。
【0021】
黒色や暗色の物体(低反射物)は、赤外光を吸収してしまう。
そのため、一般的には、ToFカメラを利用して低反射物を撮影しても、撮影画像に写り込んだ低反射物にかかる点群データを取得することは困難である。
本願発明者の試行によれば、荷物保管場所の出入口GW上部のコーナー2箇所にそれぞれToFカメラ1を設置しても、それら2台のToFカメラ1で写した荷物車両画像PCVを基に、低反射物からなる荷物の点群データPDを得ることはできなかった。
【0022】
しかしながら、本願発明者によるその後の創意工夫により、ToFカメラ1の台数を4台に増やし、矩形の出入口GWの「各コーナー4箇所にそれぞれ1台ずつ」合計4台のToFカメラ1を設置することで、黒色や暗色の低反射物からなる荷物CRについても点群データPDを生成可能となり、低反射物にかかる自動採寸も実現できた。
これは、ToFカメラ1の台数を増やしたことに付随して、ToFカメラ1から低反射物に対して照射される赤外光の総光量が増し、ひいては、低反射物により反射された赤外光が受光手段15(
図5)の検出限界を超過したためと考えられる。
【0023】
第2発明に係る自動採寸システムによれば、矩形の出入口GWの各コーナー4箇所にそれぞれ1台ずつ設置された4台のToFカメラ1を備えているため、採寸対象の荷物が低反射物であったとしても、その点群データDPを取得でき、当該データDPを基に同荷物CRの自動採寸を行える。
なお、ToFカメラ1の配置形態は、被写体(荷物CR)を中心(矩形の出入口GWの中心)として当該荷物CRを包囲するように略等間隔での矩形の各コーナーに配置してある。
本説明例では、ToFカメラ1の配置台数は4台であるものの、出入口GWの各コーナーにToFカメラ1が設置してある限り、ToFカメラ1は5台以上に増やしても構わない。
【0024】
なお、ToFカメラ1を採用することの技術的メリットとしては、装置(ToFカメラ1)それ自体に光照射手段14と受光手段15が搭載されているため「装置構成が小型化」でき、また、赤外光を使用するため荷物保管場所が「暗所であっても撮影可能」であることが挙げられる。
【0025】
〔第3発明〕
上記課題を解決するために本願の第3発明に係る自動採寸システムは、第1または第2発明に係る自動採寸システムであって、
前記搬送手段がフォークリフトである場合、
情報管理サーバは、
前記点群データにおいて荷物とフォークリフト爪部分が一体化しているデータ部分を、長尺状をなす前記フォークリフト爪部分の軸方向沿いに所定間隔ごとに切断位置において切断面により切断する処理と、
前記切断位置それぞれにおいて切断面により切取られる断面積を算出する処理と、
連続的に前後する2つの切断位置において各切断面により切取られた断面積同士を順次比較して、切断面積比を算出する処理と、
切断面による切断を開始した先頭の切断位置からスタートして、先に求めた切断面積比を所定の荷物検出閾値と比較する処理と、
切断面積比と荷物検出閾値の大小関係に基づきフォークリフト爪部分が荷物と接する接触位置を判定する処理であって、ある切断位置における切断面積比が荷物検出閾値を超過したときに、当該切断位置がフォークリフト爪部分および荷物の接触位置であると判定する処理と、
先頭の切断位置から接触位置までの各切断面によって切取られたフォークリフトの爪部分が写り込んだ爪画像領域を、点群データから除去する処理と、
を実行する構成とした。
【0026】
第3発明に係る自動採寸システムによれば、情報管理サーバ4は、切断面CS
nにより切断を開始した先頭の切断位置x
0から接触位置x
Tまでの切断面CS
0~CS
Tによって切取られた「フォークリフト爪部分が写り込んだ爪画像領域RG
FK」(
図19(a)参照)を、点群データPDから除去する。
これにより、点群データPDにおいてフォークリフト爪部分が荷物CRと渾然一体に含まれている場合でも、フォークリフト爪部分の点群データを除去することができ、荷物CRの採寸精度をより高めることができる。
【0027】
〔第4発明〕
上記課題を解決するために本願の第4発明に係る自動採寸システムは、第1または第2発明に係る自動採寸システムであって、
情報管理サーバは、
前記荷物の高さ方向から見たときの、前記点群データに写り込んだ荷物画像領域の水平面投影図を生成する処理と、
荷物の高さ方向の軸を回転中心として水平面投影図を水平面上で所定単位角度ずつ回転させることで、水平面写像図を生成する処理と、
水平面投影図の各端点の水平面座標の最大値・最小値を基に、当該水平面投影図に外接する外接矩形の面積を求める処理と、
水平面写像図の各端点の水平面座標の最大値・最小値を基に、当該水平面写像図に外接する外接矩形の面積を求める処理と、
前記外接矩形の面積が最小のときの回転角度において、水平面写像図の各辺の向きがToFカメラの水平面座標軸に対して揃った平行状態であると判定する処理と、
を実行する構成とした。
【0028】
第4発明に係る自動採寸システムによれば、情報管理サーバ4は、
図22(a)の水平面投影図から生成した水平面写像図の「外接矩形の面積」が最も小さくなったときの回転角度において(
図22(d)参照)、荷物画像領域RG
CRを回転させたXY平面写像図の各辺の向きがToFカメラ1の水平面座標軸(X軸・Y軸)に対して揃った平行状態であると判定する。
これにより、ToFカメラ1の座標軸に対する荷物CRの点群データの傾きを修正し平行にすることが可能となり、ひいては荷物CRの採寸精度をより高めることができる。
【0029】
〔第5発明〕
上記課題を解決するために本願の第5発明に係る自動採寸システムは、第1または第2発明に係る自動採寸システムであって、
情報管理サーバは、
前記点群データに含まれるすべての画素それぞれについて、当該画素を中心とする所定のノイズ判定範囲に存在する点群の個数を算出する処理と、
前記ノイズ判定範囲に存在する点群の個数が所定のノイズ判定基準よりも小さい場合、当該ノイズ判定範囲内にある点群がノイズ成分であると判定する処理と、
前記ノイズ成分として判定された点群を除去する処理と、
を実行する構成とした。
【0030】
第5発明に係る自動採寸システムによれば、ノイズ判定範囲RN
NSに含まれる点群の個数に基づいて(
図24(b)参照)、ノイズ成分NS(
図24(a)参照)として判定された点群を除去する。
このようにすることで、点群データPDから生成される荷物立体画像P
3Dの形状を、実際の荷物CRの正確な形状により近づけることができる。
【図面の簡単な説明】
【0031】
【
図1】実施形態に係る自動採寸システムの全体構成を示す模式図である。
【
図2】荷物保管場所の出入口における、ToFカメラの配置構成の一例を示す模式図である。
【
図3】荷物保管場所の出入口における配置されたToFカメラの撮影可能範囲を示す模式図である。
【
図4】荷物保管場所の出入口・右側面から見たときの、ToFカメラ・カメラ・通過検知センサの配置形態の一例を示す模式図である。
【
図5】ToFカメラの電気的構成を示すブロック図である。
【
図6】ToFカメラによって撮影した荷物車両画像を示す模式図であって、(a)は出入口の右上コーナーにあるToFカメラによる荷物車両画像、(b)は出入口の左上コーナーに配置されたToFカメラによる荷物車両画像、である。
【
図7】ToFカメラによって撮影した荷物車両画像を示す模式図であって、(a)は出入口の右下コーナーにあるToFカメラによる荷物車両画像、(b)は出入口の左下コーナーに配置されたToFカメラによる荷物車両画像、である。
【
図8】(a)はToFカメラによって撮影した実際の荷物車両画像の一例であり、(b)この実際の荷物車両画像を基に生成した点群データである。
【
図9】(a)はToFカメラの設置位置と、同ToFカメラによって撮影される荷物車両画像の位置関係を示す模式図であり、(b)ToFカメラの設置位置を深度座標原点としたときの荷物車両画像における深度座標を示す模式図である。
【
図10】カメラの電気的構成を示すブロック図である。
【
図11】カメラによって撮影したコード画像の一例を示す図である。
【
図12】情報管理サーバの電気的構成を示すブロック図である。
【
図13】荷物画像情報のデータ構造の一例を示す図である。
【
図14】コード画像情報のデータ構造の一例を示す図である。
【
図15】(a)はToFカメラで撮影した荷物車両画像から生成した点群データとToFカメラ設置位置の位置関係を示す模式図であり、(b)点群データに写り込んだ荷物を示す荷物画像領域において端点を特定した状態を示す模式図である。
【
図16】点群データを合成して荷物立体画像を生成する過程を示す模式図である。
【
図17】4枚の点群データから合成して得られた1枚の荷物立体画像を示す図であって、(a)は当該荷物立体画像の第1の例、(b)は当該荷物立体画像の第2の例である。
【
図18】荷物の採寸時の、自動採寸システムにおける各構成要素の動作を示すシーケンス図である。
【
図19】(a)は荷物とフォークリフト爪部分が渾然一体に写り込んだ点群データの一例であり、(b)は荷物とフォークリフト爪部分が渾然一体に写り込んだ点群データを所定の切断面で切断しているときの模式図である。
【
図20】(a)は荷物とフォークリフト爪部分が一体的に写り込んだ点群データの断面積を示す模式図であり、(b)はフォークリフト爪部分のみの点群データの断面積を示す模式図である。
【
図21】フォークリフト爪部分の除去処理時における動作シーケンスである。
【
図22】(a)は荷物画像領域(荷物の点群データ)の一例、(b)はZ軸方向から見たときの荷物画像領域のXY平面投影図、(c)はXY平面投影図を所定角度だけ回転させたときのXY平面写像図の第1の例、(d)はXY平面投影図を所定角度だけ回転させたときのXY平面写像図の第2の例、を示す模式図である。
【
図23】ToFカメラの座標軸に対する荷物の点群データの傾きを修正するときの動作シーケンスである。
【
図24】(a)はノイズ成分を除去する前の点群データの一例、(b)はノイズ成分を除去した後の点群データの一例、を示す模式図である。
【
図25】点群データからノイズ成分を除去するときの動作シーケンスである。
【発明を実施するための形態】
【0032】
以下、
図1乃至
図25を参照して、本発明の自動採寸システムについて説明する。
本発明の実施形態では、カメラ2を用いて読取った荷物用の2次元コードCDを、荷物CRを自動採寸するための点群データPDと関連付けて活用することを目的として、搬送車両VHその他の搬送手段により「搬送されている状態にある荷物のサイズを自動的に採寸」できる自動採寸システム100を構成した例である。
以下、この内容について詳しく説明する。
【0033】
図1は、本実施形態に係る自動採寸システム100の構成を示すブロック図である。
同
図1に示すように、自動採寸システム100は、ToFカメラ1と、カメラ2と、通過検知センサ3と、情報管理サーバ4と、コントローラ5と、中継サーバ6とを備えている。
【0034】
図1のように、本システム100においては、ToFカメラ1(1-1~1-4)と、カメラ2と、通過検知センサ3と、情報管理サーバ4と、コントローラ5と、中継サーバ6とは、相互に通信可能な状態で接続される。
【0035】
[ネットワーク利用形態]
また、
図1のように本例では、公衆通信可能なインターネット200と、有線LAN(Local Area Network)300と、無線LAN400の3つの通信網を利用する。
本例では、中継サーバ6を介して、インターネット200と、構内通信網(有線LAN300・無線LAN400)とが相互に通信可能に接続される。
さらに、中継サーバ6には、コントローラ5が通信可能に接続される。
インターネット200については、例えば、VPN(Virtual Private Network)技術等を利用すれば、セキュリティレベルを高く確保可能である。
【0036】
[構成要素間の接続形態]
さらに、本例の構成における、構成要素間の接続形態を具体的に説明する。
ToFカメラ1-1~1-4は、有線LAN300を介して、中継サーバ6に通信可能に接続される。
カメラ2と通過検知センサ3は、コントローラ5に通信可能に接続される。
また、カメラ2は、無線LAN400を介して中継サーバ6と通信可能である。
情報管理サーバ4は、構内通信網(有線LAN300・無線LAN400)の外部にあるインターネット200上に接続されている。
【0037】
[各構成要素の役割]
本システム100では、荷物保管場所の出入口GWに、荷物CRを搬送する搬送車両VHが出入口を通過することを検知する「通過検知センサ3」を設置する(
図2・
図3・
図4)。
また、矩形からなる上記出入口GWの4つの各コーナーに「ToFカメラ1-1~1-4を1台ずつ定点設置」する(
図2・
図3・
図4)。
なお、ToFカメラ1-1~1-4は、有線LAN300に接続される。
【0038】
[ToF(Time of Flight)カメラ]
ToFカメラ1-1~1-4は、任意の被写体を撮像可能なカメラである。
本例では、ToFカメラ1-1~1-4は、通過検知センサ3が搬送車両VHによる出入口GWの通過を検知した場合、搬送車両VHならびに同車両VHに搬送される荷物がともに写り込んだ荷物車両画像P
CV(
図8(a)参照)を撮影する。
【0039】
さらに、ToFカメラ1-1~1-4は、上述した荷物車両画像P
CVから、点群データPD(
図8(b)参照)を生成する。
この点群データPDは、情報管理サーバ4において荷物立体画像P
3Dを生成するために用いられる。
【0040】
ToFカメラ1-1~1-4の撮像方向は全て、出入口GWの矩形の中心に向けられている。
そのため、4台のToFカメラ1はいずれも「出入口GWの中心に位置する被写体を、撮影画像の中央付近に捉える」ことが可能である(
図3)。
本例においては、荷物CRの採寸が主目的であるため、ToFカメラ1の撮影画像中央付近に荷物CRが写り込んだ荷物車両画像P
CVが撮影される。
なお、
図3におけるα
1~α
4は、ToFカメラ1-1~1-4による撮影可能範囲(画角)を表している。
さらに、ToFカメラ1-1~1-4は、撮影時の死角が出ないよう(出入口GWにおいて撮影不能な範囲がないよう)に配置される。
【0041】
ToFカメラ1には、上記通過検知センサ3が搬送車両による出入口の通過を検知したときに荷物CRに赤外光を照射する機能と、荷物CRが反射した赤外光を受光する機能が搭載されている。
ToFカメラ1は、赤外光の発射から受光までにかかった「受光所要時間T
FL」を基に「被写体(主に荷物CR)とToFカメラ1の間の深度距離L
D」(
図9(b)参照)を算出する。
【0042】
具体的には、深度距離L
Dは、以下の数式1により算出できる。
なお、数式1においてcは光速である。
【数1】
【0043】
そして、ToFカメラ1は、この深度距離L
Dと荷物車両画像P
CV(
図8(a))を基に「点群データPD」(
図8(b))を生成する。
ここでいう「点群データPD」とは、各画素における深度距離L
Dに応じた所定色を、荷物車両画像P
CVの画素ごとに着色した画像データのことを指す。
【0044】
点群データPDの生成に先立って、ToFカメラ1は、(i)深度距離LDに応じて定まる荷物車両画像PCV内の各画素の深度座標(x,y,z)と、(ii)各深度距離LDに応じた区分を示す各画素に付される所定色と、からなる荷物車両画像PCVの各画素に固有のデータ集合を生成する。
【0045】
上記の「深度座標」とは、ToFカメラ1の位置を
図9(a)の深度座標系における深度座標原点(0,0,0)としたときの、荷物CRなどの被写体が写り込んだ荷物車両画像P
CVの画素位置を示す座標である。
【0046】
ToFカメラ1は、荷物車両画像P
CVの各画素における深度座標(x,y,z)と所定色のデータ集合に基づいて、各画素における深度距離L
Dに応じた所定色を荷物車両画像P
CVの画素ごとに着色することで、
図8(b)のような「点群データPD」を生成する。
より詳細には、「点群データPD」とは、ToFカメラ1から荷物車両画像P
CVに写っている被写体(荷物CR)までの深度距離L
Dの情報を荷物車両画像P
CVに対応付けするとともに、深度距離L
Dに応じた所定色を荷物車両画像P
CVに着色した画像データである。
【0047】
なお、4台のToFカメラ1-1・1-2・1-3・1-4は、それぞれ独立的に点群データPD1・PD2・PD3・PD4を生成する。
また、4台のToFカメラ1-1・1-2・1-3・1-4は、点群データPD1・PD2・PD3・PD4を送信する。
【0048】
ToFカメラ1としては、ToF機能を備える専用の撮影装置はもちろん、ToF機能付のカメラを備えるスマートフォンなどの携帯型の多機能電子装置をも採用可能である。
荷物車両画像PCVの処理時や点群データPD生成時には、CPU(Central Processing Unit)に対しかなりの処理負担がかかるものの、スマートフォンであれば処理性能が日進月歩の勢いで飛躍的に向上しており、荷物車両画像PCVや点群データPDの画像処理を実行する際にも快適な動作速度を担保できる。
【0049】
[カメラ]
カメラ2は、任意の被写体を撮像するカメラであり、本例では、2次元コードCD(
図4)を撮影する役割を果たす。
このカメラ2は、出入口GWに設けられており、その台数は本例においては「1台」である。
【0050】
本例では、カメラ2により撮影される2次元コードCDとして、QR(Quick Response)コード(登録商標)を採用する。
本自動採寸システム100においては、当該2次元コードCDは、個々の荷物CR1つ1つに対して貼付されている。
さらに、本システム100では、荷物CRにおける2次元コードCDの貼付位置があらかじめ所定位置に定められている。
本例では、2次元コードCDは荷物CR側面の左下隅に貼付される(
図4)。
また、2次元コードCDの貼付位置に対応して同コードCDを撮影できるように、本例では、カメラ2は、2次元コードCDを撮影できるよう出入口GWの右側面部に設けられている。
【0051】
カメラ2は、通過検知センサ3が搬送車両VHによる出入口GWの通過を検知したときに、この搬送車両VHと、搬送車両VHが搬送中の荷物CRと、荷物CRに貼られた2次元コードCDが写り込んだコード画像PCDを撮影する。
そして、カメラ2は、コード画像PCDを情報管理サーバ4に送信する。
【0052】
[通過検知センサ]
通過検知センサ3は、搬送車両VHが出入口GWを通過することを検知するセンサである。
本例では、通過検知センサ3は、搬送車両VHによる出入口GWの通過を検知した際、当該検知した旨を示す「通過検出信号」をコントローラ5あてに出力する。
コントローラ5は、通過検知センサ3からの通過検出信号をカメラ2に転送するとともに、同通過検出信号を中継サーバ6・有線LAN300を介してToFカメラ1-1~1-4あてにも転送する。
【0053】
図2のように、通過検知センサ3は、荷物保管場所の出入口GWに設けられる。
本例では、通過検知センサ3として、光電センサ(光を発射する投光ユニットと、この発射光を受ける受光ユニットの組を具備する)を採用する。
また、搬送車両VHには、通過検知センサ3からの発射光に対する反射性を高めるため、「光反射器RF」が設けられている(
図2)。光反射器RFの例としては、反射率の高いミラーが挙げられる。
【0054】
[情報管理サーバ]
情報管理サーバ4は、ToFカメラ1が撮影した画像である「荷物車両画像PCV」と、カメラ2が撮影した画像である「コード画像PCD」を管理する。
情報管理サーバ4は、たとえば、荷物保管場所の管理・運営をおこなう企業が所有してもよい。
【0055】
情報管理サーバ4は、荷物保管場所・出入口GWの各コーナーから各ToFカメラ1で撮影した同じ被写体を示す4枚の荷物車両画像PCVから各々生成した4つの点群データPDにおいて、これらのデータPDに写り込んだ「荷物CRの幅・高さ・奥行」を採寸する。
【0056】
情報管理サーバ4は、4つの点群データPDを合成することで、これらの点群データPDに写り込んだ荷物の3次元的な立体形状を示す「1枚の荷物立体画像P3D」を生成する。
【0057】
また、同サーバ4は、コード画像P
CDに写り込んでいる荷物にそれぞれ貼付された2次元コードCDを認識して、当該2次元コードが示す荷物情報I
CRを読取る。
図2の例では、2次元コードCD-1・CD-2が認識される。
そして、情報管理サーバ4は、認識した2次元コードCDに基づいて、コード画像P
CDに写り込んでいる個々の荷物CR(
図2の例では、CR-1・CR-2)を認識する。
さらに、同サーバ4は、コード画像P
CDのなかに上下に積上げられた複数の荷物が写り込んでいるか否かを、各荷物CRにそれぞれ貼付されている2次元コードCDに基づいて判別する。
【0058】
情報管理サーバ4は、コード画像P
CD(
図11)のなかに上下に積上げられた複数の荷物が写り込んでいると判別すると、この画像P
CDに写り込んだ2次元コードCDの位置に対応する、荷物立体画像P
3D(
図17(a)・
図17(b))における当該2次元コードCDのコード相対位置を特定する。
また、荷物CRの3次元的な立体形状を示す荷物立体画像P
3Dに対し、コード画像P
CDに写り込んだ2次元コードCDと、その2次元コードCDが示す荷物情報I
CRとを対応付けて荷物画像情報(
図13)に記憶する。
【0059】
つぎに、ToFカメラ1・カメラ2・情報管理サーバ4の各構成について順次説明する。
【0060】
[ToFカメラ]
図5に示すように、ToFカメラ1は、制御部11と、記憶部12と、撮影手段13と、光照射手段14と、受光手段15と、通信部16とを有している。
その他にも、ToFカメラ1は、小型の液晶ディスプレイ(図示略)等の出力部18と、シャッター(図示略)を含む入力部17とを備えている。
また、ToFカメラ1は、任意の演算処理を実行するCPU(中央処理装置)を含む制御部11のほか、ROM・RAM等を含む記憶部12、及び、各種信号あるいは情報の入出力経路をなす通信ポート(図示略)を含む通信部16を備えている。
【0061】
通信部16は、有線LAN300に接続され、中継サーバ6を介して、情報管理サーバ4・コントローラ5との間で各種の通信を行う。
通信部16としては、ネットワークインターフェース・モデム等が使用される。
【0062】
制御部11は、CPU(Central Processing Unit:中央処理装置)・ROM(Read Only Memory)・RAM(Random Access Memory)等を有し、ROM・記憶部12に記憶されているアプリケーションプログラムをRAMにロードして実行し、それにより各種の論理的手段を実現する。
【0063】
ToFカメラ1では、通過判定手段111、撮影指示手段112、距離算出手段113と、点群データ生成手段114および点群データ送信手段115が実現される。
【0064】
通過判定手段111は、通過検知センサ3から搬送車両VHによる出入口GWの通過を検知した旨の「通過検出信号」を受信すると、搬送車両VHが出入口GWを通過したと判定する。
【0065】
撮影指示手段112は、通過判定手段111が「搬送車両VHが出入口GWを通過した」と判定したときに、撮影動作の実行を指示する「荷物車両撮影指示」を撮影手段13に対して送る。
【0066】
[荷物車両画像における深度座標の算出]
距離算出手段113は、光照射手段14が赤外光を照射してから被写体(荷物CRなど)による反射光を受光手段15が受光するまでの受光所要時間T
FLを求め、受光所要時間T
FLに光速を乗算した往復距離(深度距離L
Dの2倍)を基に「ToFカメラ1から被写体までの深度距離L
D」を求める。
続いて、距離算出手段113は、求めた深度距離L
Dから、
図9(b)のようなToFカメラ1の位置を深度座標原点(0,0,0)とした3次元空間(X軸・Y軸・Z軸からなる直交座標)における「深度座標」(x,y,z)を導出する。
【0067】
距離算出手段113は、
図9(b)のように、荷物車両画像P
CVの画素のうちToFカメラ1の光軸上にある画素の深度座標(以下、「基準深度座標」)(x
0,y
0,z
0)を算出する。
基準深度座標(x
0,y
0,z
0)は、ToFカメラ1から同カメラ1光軸と交わる画素までの深度距離L
Dと深度座標原点(0,0,0)から求める。
さらに、同手段113は、同
図9(b)の位置関係に基づき、荷物車両画像P
CV上にある各画素の深度座標(x,y,z)を、当該画素の深度距離L
Dと深度座標原点(0,0,0)から求める。
【0068】
[点群データの生成]
点群データ生成手段114は、深度距離LDに応じた区分を示す所定色により荷物車両画像PCV中の各画素を塗り分けた画像(点群データPD)を生成する。
本例において「点群データPD」は、(i)荷物車両画像PCV中の各画素に写り込んだ被写体(荷物CR・搬送車両VHなど)とToFカメラ1の間の深度距離LDにより定まる深度座標と(ii)各深度距離LDに応じた区分を示す所定色のデータを含んでいる。
なお、同手段114は、荷物車両画像PCV上の各画素に対して、距離算出手段113が求めたそれぞれの深度距離LDに応じた区分を示す所定色を決定する。
【0069】
そして、点群データ生成手段114は、各画素における深度座標(x,y,z)と所定色のデータ集合から、点群データPDを生成する。
本例では、荷物車両画像P
CV中の各画素の深度距離L
Dに応じた区分を示す所定色を、荷物車両画像P
CVの画素ごとに着色することで、
図8(b)のような「点群データPD」が生成される。
なお、ToFカメラ1-1・1-2・1-3・1-4が備える点群データ生成手段114は、個々に撮影した荷物車両画像P
CVから各点群データPD
1・PD
2・PD
3・PD
4を生成する。
【0070】
点群データ送信手段115は、通信部16を用いて、点群データPDを情報管理サーバ4あてに送信する。
本例では、点群データPDは、いったん中継サーバ6に送られ、同サーバ6によりインターネット200経由で情報管理サーバ4あてに転送される。
【0071】
記憶部12は、撮影手段13が撮影した荷物車両画像PCVと、点群データ生成手段114が生成した点群データPDとを記憶する。
【0072】
撮影手段13は、撮影指示手段112から荷物車両撮影指示が送られた場合、搬送車両VHならびに同車両VHが搬送中の荷物CRがともに写り込んだ「荷物車両画像P
CV」(
図6(a)・
図6(b)・
図7(a)・
図7(b)・
図8(a)参照)を撮影する。
【0073】
光照射手段14は、赤外光を荷物CRにむけて照射する光源である。
本例において、光照射手段14は、通過判定手段111が「搬送車両VHが出入口GWを通過した」と判定した場合、赤外光を荷物CRにむけて照射する。
【0074】
受光手段15は、光照射手段14が照射して荷物CRが反射した赤外光を受光する。
【0075】
[カメラ]
つぎに、カメラ2について説明する。
図10は、本実施形態に係るカメラ2の電気的構成を示すブロック図である。
同
図10に示すように、カメラ2の装置本体は、演算処理を実行するCPUを含む制御部21のほか、ROM・RAM等を含む記憶部22、各種信号あるいは情報の入出力経路をなす通信ポート(図示略)を含む通信部24を備えている。
また、同カメラ2は、小型の液晶ディスプレイ(図示略)等の出力部26と、シャッター(図示略)を含む入力部25とを備えている。
【0076】
通信部24は、無線LAN400やコントローラ5に接続され、情報管理サーバ4や通過検知センサ3との間で各種の通信を行う。通信部24としては、ネットワークインターフェース・モデム等が使用される。
本カメラ2を、USB(Universal Serial Bus)接続端子など所定のインターフェースまたは通信部24を介してプリンタ(図示略)に接続し、撮影したコード画像PCDを紙媒体に印刷出力してもよい。
【0077】
図10の制御部21は、CPU・ROM・RAM等を有し、ROM・記憶部22に記憶されているアプリケーションプログラムをRAMにロードして実行し、それにより各種の論理的手段を実現する。
本例のカメラ2では、複数の2次元コードを撮影するために機能別に細分化された、コード撮影指示手段211およびコード画像送信手段212が実現される。
【0078】
コード撮影指示手段211は、通過検知センサ3から出力された「通過検出信号」(搬送車両VHによる出入口GWの通過を検知した旨の信号)を受信したときに、撮影動作の実行を指示する「コード撮影指示」をコード撮影手段23に送る。
【0079】
コード画像送信手段212は、コード撮影手段23が撮影したコード画像PCDを情報管理サーバ4に送信する。
【0080】
コード撮影手段23は、コード撮影指示手段211からコード撮影指示を受信したときに、搬送車両VHと、同車両VHが搬送中の荷物CRと、同荷物CRの所定位置に貼付された2次元コードCDとが写り込んだ「コード画像P
CD」を撮影する。
図11の例では、上下に積み重ねられた搬送中の2つの荷物CR-1・CR-2が撮影される。なお、それぞれの荷物の所定位置CR-1・CR-2には、2次元コードCD-1・CD-2が貼付されている。
【0081】
[情報管理サーバ]
図12は、本実施形態に係る情報管理サーバ4の電気的構成を示すブロック図である。
情報管理サーバ4は、
図12に示すように、液晶ディスプレイやプリンタ(図示略)等の出力部44と、キーボードやマウス(図示略)・タッチパネル(図示略)等を含む入力部43とを備えている。
また、情報管理サーバ4の装置本体は、任意の演算処理を実行するCPU(Central Processing Unit:中央処理装置)を含む制御部41のほか、ハードディスクドライブ(HDD)・ROM(Read Only Memory)・RAM(Random Access Memory)等を含む記憶部42、及び、各種信号あるいは情報の入出力経路をなす通信ポート(図示略)を含む通信部45を備えている。
【0082】
通信部45は、公衆通信網であるインターネット200に接続され、中継サーバ6を介して、ToFカメラ1-1~1-4やカメラ2との間で各種の通信を行う。
通信部45としては、ネットワークインターフェース・モデム等が使用される。
【0083】
制御部41は、CPU(Central Processing Unit:中央処理装置)・ROM(Read Only Memory)・RAM(Random Access Memory)等を有し、ROM・記憶部42に記憶されているアプリケーションプログラム(画像管理プログラム423)をRAMにロードして実行し、それにより各種の論理的手段を実現する。
【0084】
情報管理サーバ4では、画像情報管理手段411、荷物採寸手段412、立体画像生成手段413、コード読取手段414、荷物認識手段415、積重判別手段416およびコード位置特定手段417が実現される。
【0085】
画像情報管理手段411は、荷物画像情報421(
図13)・コード画像情報422(
図14)を管理する手段である。
同管理手段411は、荷物画像情報421・コード画像情報422に対する情報登録や登録内容の削除を行う。
【0086】
図13のように、荷物画像情報421は、搬送車両VHによって搬送される荷物CRと、その荷物CRに関する属性の対応関係を指定する情報である。
同
図13の例では、荷物画像情報421において、画像データ(点群データPD
1~PD
4・荷物立体画像P
3D・コード画像P
CD)と、荷物情報I
CRとが対応付けされている。
【0087】
また、
図14のように、コード画像情報422は、搬送車両VHによって搬送される荷物CRに貼付された二次元コードCDと、そのコードCDに関する属性の対応関係を指定する情報である。
同
図14の例では、コード画像情報422において、コード画像P
CDと、コード画像P
CDに写り込んだ荷物CRに貼付されている二次元コードCDと、その二次元コードCDから読取った荷物情報I
CRとが対応付けされている。
【0088】
[荷物の採寸]
荷物採寸手段412は、各ToFカメラ1-1~1-4で撮影した同じ被写体を示す4枚の荷物車両画像P
CVから各々生成した4つの点群データPDにおいて、これらのデータPDに写り込んだ荷物CRのサイズ(幅・高さ・奥行)を採寸する。
本例では、同手段412は、
図15(a)のような点群データPDにおいて「荷物CRが写り込んだ領域」(以下、「荷物画像領域RG
CR」という。)を特定し、この荷物画像領域RG
CRの周縁部分について各画素間の距離を求めることで(
図15(b)参照)、当該荷物CRの実際のサイズ(高さ・幅・奥行)を採寸する。
【0089】
荷物採寸手段412は、まず、
図15(a)の点群データPDにおいて、荷物画像領域RG
CRの端点(たとえば、立方体の各頂点)を特定する。
同
図15(b)の例では、荷物画像領域RG
CRの端点として、頂点A・B・C・D・E・Hが特定される。
【0090】
荷物採寸手段412は、点群データPDにおける荷物CR(荷物画像領域RGCR)の各端点が特定できたら、それぞれの端点が写っている各画素の深度座標(x,y,z)を取得する。
なお、点群データPDにおける深度座標は、参照可能な状態で点群データPD自体に対応付けされている。
【0091】
図15(b)の例では、頂点A・B・C・D・E・Hの6つの端点における深度座標が取得される。
これにより、荷物CRの幅に該当する辺AE・辺DHと、荷物CRの高さに該当する辺AD・辺BCと、荷物CRの奥行に該当する辺AB・辺CDとについて、それぞれの深度座標を基に各距離(辺AE・辺DH・辺AD・辺BC・辺AB・辺CDそれぞれの長さ)が算出できる。
【0092】
同
図15(b)においては、頂点Cの深度座標として(x
C,y
C,z
C)が、頂点Dの深度座標として(x
D,y
D,z
D)が取得される。
この場合、荷物の奥行をなす辺CD(頂点Cと頂点D間の辺)の距離は、以下の数式2により算出できる。
すなわち、辺CDの距離は、両端点C・Dの深度座標について、X座標成分同士の差「x
C-x
D」とY座標成分同士の差「y
C-y
D」とZ座標成分同士の差「z
C-z
D」の2乗和の平方根により定まる。
なお、荷物画像領域RG
CRにおける他の端点間距離についても、数式2同様の計算により算出される。
【0093】
【0094】
このようにして、荷物採寸手段412は、各頂点A・B・C・D・E・Hに写り込んだ被写体とToFカメラ1の間の深度距離LDを用い、実際の荷物CRの幅・高さ・奥行(たとえば、メートル単位の長さ)を算出する。
これにより、荷物CRの実際のサイズ(幅・高さ・奥行)が採寸できる。
【0095】
[荷物立体画像の生成]
立体画像生成手段413は、各ToFカメラ1-1~1-4が撮影した4枚の荷物車両画像PCVから作られた4つの点群データPDを合成する。
この合成処理により、荷物立体画像生成手段413は、各点群データPDに写り込んだ荷物CRの3次元的な立体形状を示す「1枚の荷物立体画像P3D」を生成する。
「荷物立体画像P3D」とは、全方位において任意方向から見たときの視差画像をもつ荷物CRの画像である。
【0096】
本例では、多視点(離間配置されたToFカメラ1-1~1-4)による4枚の荷物車両画像PCVから得た点群データPDから1枚の「荷物立体画像P3D」を生成する手法として、複数の点群データPDを基に、荷物CRの3次元ボクセルデータ(荷物CRを小立方体の集合で表したデータ)を求める視体積交差法を利用する。
なお、荷物立体画像P3Dの生成手法については、視体積交差法に限らず、ステレオマッチング法をはじめとする任意の手法を採用できる。
【0097】
既知の視体積交差法を用いて4枚の点群データPDから1枚の荷物立体画像P3Dを生成する場合、まず、立体画像生成手段413は、4枚の各点群データPDから荷物CRのシルエット画像(荷物CRが写り込んでいる荷物画像領域RGCRを白黒で表した2値画像)を抽出する。
つぎに、同手段413は、ToFカメラ1-1~1-4を中心として上記シルエット画像を立体的に逆投影し、視体積の重複部分から荷物CRのボクセルデータ(小立方体の集合データ)を生成する。
そして、荷物CRの個々のボクセルデータ表面に小さな三角形の面を張ることで、荷物CRの表面形状(立体的形状)を示す荷物立体画像P3Dを生成できる。
【0098】
[2次元コードの読取]
コード読取手段414は、コード画像PCDに写り込んでいる個々の荷物CRに添付された2次元コードCDを認識して、同コードCDが示す荷物情報ICRを読取る。
本例では、2次元コードCDはQRコード(登録商標)であるため、位置検出するためのファインダパターン(いわゆる切出シンボル)に基づき2次元コードCDを認識する。
【0099】
荷物認識手段415は、コード画像P
CDに「写り込んでいる個々の荷物CRを認識」する。
さらに、荷物認識手段415は、コード画像P
CDに写っている各荷物に対し、コード読取手段414が認識した各荷物CRごとの2次元コードCDと、同手段414が各2次元コードCDごとに読取った荷物情報I
CRとを対応付けてコード画像情報422(
図14)に記憶する。
【0100】
ここで、本自動採寸システム100では、荷物CRのあらかじめ定められた所定位置(
図11の例では、荷物CR側面の下方左側)に、2次元コードCDを貼付するよう運用されている。
そのため、荷物認識手段415は、コード画像P
CDに写り込んでいる2次元コードCDに着目することで、荷物CRが搬送されている状態でも、それぞれの2次元コードCDが貼られた各荷物CRを区別して認識できる。
【0101】
また、コード読取手段414に読取られる荷物情報ICRには、たとえば、荷物CRとして扱われる商品の名称・商品の品番・商品の個数・商品の重量などの情報が含まれている。
【0102】
図12の積重判別手段416は、コード画像P
CDのなかに上下に積上げられた複数の荷物CRが写り込んでいるか否かを、各荷物CRにそれぞれ貼付されている2次元コードCDに基づいて判別する。
上述したように、本例の各荷物CRにはそれぞれ所定位置(側面の下方左側)に2次元コードCDを貼ってあるため、コード画像P
CD内の垂直方向における2次元コードCDの位置を参照することで、上下に積上げられた状態で搬送される荷物CRの有無を判定できる。
また、2次元コードCD位置の参照により、相互に積上げられている荷物CRの位置関係(上下関係)も判定可能である。
【0103】
[荷物立体画像における2次元コード位置の特定]
さらに本例では、コード画像PCDのなかに上下に積上げられた複数の荷物CRが写り込んでいると判別された場合、コード位置特定手段417が、荷物立体画像P3D中における「コード画像PCDに写り込んだ2次元コードCDの位置」を特定する。
【0104】
同手段417は、荷物立体画像P
3Dに写り込んでいる2次元コードCD(コード画像P
CDに写り込んだ2次元コードCDと同一のコード)の位置を特定する。
そして、同手段417は、この「コード画像P
CDに写り込んだ2次元コードCDの画像位置の座標」を、立体画像生成手段413が生成した「荷物立体画像P
3Dに写り込んだ2次元コードCDの画像位置の座標」に変換する。
また、コード位置特定手段417は、荷物立体画像P
3Dに写り込んだ2次元コードCDに対し、コード読取手段414が認識した2次元コードCDと、同2次元コードCDが示す荷物情報I
CR(同コード読取手段414が読取ったもの)とを対応付けて荷物画像情報421(
図13)に記憶させる。
【0105】
なお、本実施形態に係るアプリケーション(画像管理プログラム423)を任意の多機能電子装置に導入することにより、本発明の特徴的な各種機能を付加することができ、情報管理サーバ4を構成可能である。
また本実施形態によれば、多機能電子装置に専用アプリケーションをインストールするだけで、簡易かつ短時間で情報管理サーバ4を構成できる。
【0106】
[実施形態1:動作シーケンス]
つぎに、本実施形態に係る自動採寸システム100の動作について説明する。
[荷物の採寸処理時]
以下では、本システム100において、搬送車両VHが荷物CRを搬送している状態のままで、当該荷物のサイズを自動採寸するときの各構成要素の動作について説明する。
【0107】
搬送車両VHが所定位置(荷物保管場所の出入口GW)を通過すると、通過検知センサ3が動作する。
通過検知センサ3は、搬送車両VHによる出入口GWを通過することを検知した際、同車両VHが出入口GWを通過した旨を示す「通過検出信号」をコントローラ5あてに出力する。
【0108】
本例では、この通過検出信号は、コントローラ5から中継サーバ6にいったん送信されたあと、有線LAN300(
図1)経由で中継サーバ6から同サーバ6と接続されている4台のToFカメラ1-1~1-4に転送される。
また、コントローラ5は、この通過検出信号を、2次元コード撮影用のカメラ2に対しても送信する。
【0109】
[ToFカメラの動作]
ToFカメラ1は、通過検知センサ3から通過検出信号を受信すると、搬送車両VHが出入口GWを通過したと判定する。
このように搬送車両VHが出入口GWを通過したと判定した場合、ToFカメラ1は、搬送車両VHと荷物CRがともに写り込んだ荷物車両画像P
CV(
図8(a))を撮影する(
図18・ステップS101)。
なお、ステップS101の撮影動作は、ToFカメラ1内部において、制御部11から撮影手段13に荷物車両撮影指示を送ることで行われる。
【0110】
また、本例では、ToFカメラ1は、通過検出信号の受信により搬送車両VHが出入口GWを通過したと判定した場合、赤外光を荷物CRにむけて照射する(ステップS102)。
その後、ToFカメラ1は、荷物CRによって反射された赤外光を受光する(ステップS103)。
【0111】
続いて、ToFカメラ1は、放出した赤外光を受光するまでの受光所要時間T
FLを算出し、この受光所要時間T
FLを基に、荷物車両画像P
CVの各画素中に写り込んだ被写体部分とToFカメラ1の間の「深度距離L
D」を求める。
さらに、ToFカメラ1は、求めた深度距離L
Dに基づき、
図9(b)のような同ToFカメラ1の位置を深度座標原点(0,0,0)とした3次元空間における「深度座標」(x,y,z)を導出する。
加えて、ToFカメラ1は、荷物車両画像P
CV上の全画素について、それぞれの深度距離L
Dに応じた区分を示す所定色を決定する。
【0112】
そして、ToFカメラ1は、各画素における深度座標(x,y,z)と深度距離L
Dに応じた所定色のデータ集合を基に、点群データPDを生成する(
図18・ステップS104)。
本例では、ToFカメラ1は、深度距離L
Dに応じた所定色を、荷物車両画像P
CVの画素ごとに着色することで、
図8(b)のような「点群データPD」を生成する。
【0113】
さらに、ToFカメラ1は、生成した点群データPDを情報管理サーバ4あてに送信する(
図18・ステップS105)。
本例では、点群データPDは、有線LAN300経由でToFカメラ1から中継サーバ6にいったん送信され、その後、インターネット200経由で中継サーバ6から情報管理サーバ4に転送される。
なお、ToFカメラ1によるステップS101~S105の処理は、搬送車両VHによる出入口GWの通過を通過検知センサ3が検出するごとに繰返し実行される。
【0114】
[2次元コード撮影用のカメラの動作]
一方、カメラ2についても、通過検知センサ3からの通過検出信号を受信すると、コード撮影手段23に対し「コード撮影指示」を送ることで、搬送車両VHと荷物CRと2次元コードCDが写り込んだ「コード画像PCD」を撮影する(ステップS106)。
【0115】
続いて、カメラ2は、撮影したコード画像PCDを情報管理サーバ4あてに送信する(ステップS107)。
本例では、カメラ2は、コード画像PCDを無線LAN経由400で中継サーバ6にいったん送信し、その後、中継サーバ6がインターネット200経由で当該コード画像PCDを情報管理サーバ4に転送する。
なお、カメラ2によるステップS106~S107の処理についても、搬送車両VHによる出入口GWの通過を通過検知センサ3が検出するごとに繰返し行われる。
【0116】
[情報管理サーバの動作]
点群データPDとコード画像PCDを受信した場合、情報管理サーバ4において、2次元コード認識(解読)処理と3次元点群データの解析(寸法計測)処理が開始される。
【0117】
[荷物の採寸]
情報管理サーバ4は、点群データPDにおいて荷物CRが写り込んだ「荷物画像領域RGCR」を特定し、この荷物画像領域RGCRについて端点間の距離を求めることで荷物CRの実際のサイズ(高さ・幅・奥行)を採寸する。
【0118】
情報管理サーバ4は、まず、
図15(a)の点群データPDにおいて、荷物画像領域RG
CRの端点(たとえば、立方体の各頂点)を特定する(
図15(b))。
続いて、同サーバ4は、上記特定した各端点(画素)における深度座標(x,y,z)を取得し、この深度座標を基に、数式2を用いて各端点間の距離(辺の長さ)を算出する。
そして、情報管理サーバ4は、荷物画像領域RG
CRの各端点の画素に写っている被写体とToFカメラ1の間の深度距離L
Dを用い、実際の荷物CRの幅・高さ・奥行(たとえば、メートル単位の長さ)を算出する。
これにより、荷物CRの実際のサイズ(幅・高さ・奥行)を採寸する(
図18・ステップS108)。
【0119】
[荷物立体画像の生成]
つぎに、情報管理サーバ4は、各点群データPDに写り込んだ荷物CRの3次元的な立体形状を示す「1枚の荷物立体画像P3D」を生成する(ステップS109)。
【0120】
この荷物立体画像P3Dは、4枚の荷物車両画像PCVから各々生成した4つの点群データPDを合成することで生成される。
本例では、多視点(離間配置されたToFカメラ1-1~1-4)から得た4つの点群データPDから1枚の荷物立体画像P3Dを生成する手法として、複数の荷物車両画像PCVを基に荷物CRのボクセルデータを求める視体積交差法を用いる。
【0121】
[2次元コードの読取]
情報管理サーバ4は、コード画像PCDに写り込んだ個々の荷物CRに付された2次元コードCDを認識し(ステップS110)、当該コードCDが示す荷物情報ICRを読取る。
2次元コードCDとしてQRコード(登録商標)を使用する場合、同コードCDの認識にはファインダパターンを用いる。
【0122】
さらに、情報管理サーバ4は、コード画像PCDに写り込んだ個々の荷物CRを認識する(ステップS111)。
なお、情報管理サーバ4は、自ら認識したコード画像PCD中の各荷物に対し、各荷物に付された2次元コードCDと、各2次元コードCDから読取った荷物情報ICRを対応付けてコード画像情報422に記憶する。
【0123】
情報管理サーバ4は、コード画像PCDのなかに上下に積上げられた複数の荷物CDが写り込んでいるか否かを、各荷物にそれぞれ貼付されている2次元コードCDの位置関係に基づいて判別する(ステップS112)。
【0124】
なお、情報管理サーバ4は、コード画像PCDのなかに上下に積上げられた複数の荷物が写り込んでいると判別した場合、荷物立体画像P3Dにおける「コード画像PCD内に写った2次元コードCDの位置」を特定する(ステップS113)。
そして、同サーバ4は、コード画像PCDに写った2次元コードの画像位置の座標を、荷物立体画像P3Dに写り込んでいる2次元コードの画像位置の座標に変換する。
なお、情報管理サーバ4におけるステップS108~S113の処理は、通過検知センサ3が搬送車両VHによる出入口GWの通過を検知するごとに繰返し実行される。
以上で、自動採寸システム100において、荷物CRが搬送車両VHによって運搬されている状態のもとに「荷物CRの自動採寸」と「2次元コードCDの読取」をおこなうときの一連の動作が終了する。
【0125】
以上説明したように、本実施形態に係る自動採寸システム100によれば、人手を介することなく、搬送車両VHにより搬送された状態のまま(しかも、荷物の搬送作業を一切妨げることなく)荷物CRのサイズを自動的に採寸でき、採寸作業からの人的リソース解放を可能にする。
【0126】
また、本発明によれば、情報管理サーバ4は、4台のToFカメラ1-1~1-4が各々生成した4枚の点群データPDを合成することで、これらの点群データPDに写り込んだ荷物CRの3次元的な立体形状を示す1枚の荷物立体画像P3Dを生成できる。
【0127】
さらに、本発明によれば、荷物CRの取扱作業に従事する作業者が目視確認で個々に荷物を判別することなく、カメラで撮影したコード画像PCDを基に、搬送車両VHが搬送中の個々の荷物CRを自動的に判別できる。
そのため、荷物CRの個数の自動計数も可能となり、ひいては、荷物の積込作業に必要な人員数や配送に必要な配送車両台数などを自動予測にも寄与しうる。
【0128】
また、本発明によれば、コード画像PCDを基に、上下に積上げられた荷物CRの有無も自動判別し、積上げられた荷物CRがある場合には、これらの荷物CRにかかる荷物立体画像P3Dにおいて当該荷物CRに貼付された二次元コードCDの位置を特定することができる。
【0129】
さらに、本願発明では、本願発明者による試行の繰返しにより、矩形の出入口GWの各コーナー4箇所にそれぞれ1台ずつ(合計4台)のToFカメラ1-1~1-4を設置することで、黒色や暗色の低反射物からなる荷物CRについても点群データPDの生成と自動採寸が実現された。
【0130】
[変形例:荷物とフォークリフト爪部分の一体化部分からの当該爪部分の除去]
工場や倉庫などに代表される荷物保管場所においては、荷物CRの搬送車両としてフォークリフトが多用されている。
一般に、フォークリフトには荷物CRを支持載積するための長尺状の爪部分が設けられている。
本願システムにおいて、点群データPDを生成した場合、フォークリフトの爪部分が荷物CRと渾然一体に含まれてしまい、採寸した荷物CRのサイズが実際の荷物CRのサイズと異なってしまう場合がある。
このような事態を回避するためには、本願発明では、フォークリフトの爪部分と荷物CRを判別し、点群データPDから当該データPDに写り込んだ爪部分の点群データを除去すればよい。
【0131】
本願では、下記手法により、情報管理サーバ4が、点群データPDに写り込んだフォークリフト爪部分の点群データの除去処理を実現する。
以下では、
図19(a)に示す点群データPDから「フォークリフトの爪部分が写り込んだ爪画像領域RG
FK」を除去する場合を例に挙げて説明する。
【0132】
情報管理サーバ4は、まず、
図19(b)のように、点群データPDにおける処理対象(荷物CRとフォークリフト爪部分が一体化しているデータ部分)を、X軸沿いに所定間隔(たとえば、1mm)ごとに切断位置x
nにおける切断面CS
n(n:整数)により切断する(
図21のステップS21)。
同
図19(b)の例では、切断面CS
2において、荷物CRならびにフォークリフト爪部分が写り込んだ断面画像(
図20(a)参照)が取得できる。
また、同
図19(b)中の切断面CS
1においては、荷物CRは写り込んでいないため、フォークリフト爪部分のみが写り込んだ断面画像(
図20(b)参照)が取得できる。
なお、X軸の向きは、長尺状をなす「フォークリフト爪部分の軸方向(延伸方向)と同じ向き」である。
【0133】
つぎに、情報管理サーバ4は、各切断位置x
nにおいて切断面CS
nにより切取られる断面積Ax
nを順次算出する(
図21のステップS22)。
本例において、
図19(b)中の切断面CS
2により切取られた荷物CRならびにフォークリフト爪部分が写り込んだ断面画像(
図20(a)参照)の断面積Ax
2は「200000」である。
また、
図19(b)中の切断面CS
1により切取られたフォークリフト爪部分が写り込んだ断面画像(
図20(b)参照)の断面積Ax
1は「2000」である。
【0134】
そして、情報管理サーバ4は、連続的に前後する2つの切断位置x
nおよび切断位置x
n+1において各切断面CS
n・CS
n+1により切取られた断面積Ax
nならびにAx
n+1を順次比較していく。
すなわち、切断面積比「Ax
n+1/Ax
n」の値を、X軸沿いの各切断位置x
nについて逐次算出する(
図21のステップS23)。
図19(b)における切断面CS
1と切断面CS
2が連続する前後関係にある場合には、切断面積比「Ax
2/Ax
1」の値は「100」となる。
【0135】
さらに、情報管理サーバ4は、切断面CS
nにより切断を開始した先頭の切断位置x
0からスタートして、先に求めた切断面積比「Ax
n+1/Ax
n」を所定の荷物検出閾値TH
CRと比較していく(
図21のステップS24)。
なお、この荷物検出閾値TH
CRには、実際の荷物保管場所において現場テストを実施することにより、荷物CRとフォークリフト爪部分の判別に好適な数値を設定する。
【0136】
続いて、情報管理サーバ4は、切断面積比「Ax
n+1/Ax
n」と荷物検出閾値TH
CRの大小関係に基づき、フォークリフト爪部分が荷物CRと接する接触位置x
Tを判定する(
図21のステップS25)。
本例では、切断面積比「Ax
n+1/Ax
n」の値が、荷物検出閾値TH
CR(たとえば、60)を超過した場合、当該切断位置x
nがフォークリフト爪部分および荷物CRの接触位置x
Tであると判定する。
【0137】
そして、情報管理サーバ4は、切断面CS
nによる切断を開始した先頭の切断位置x
0から接触位置x
Tまでの切断面CS
0~CS
Tによって切取られた「フォークリフト爪部分が写り込んだ爪画像領域RG
FK」を、点群データPDから除去する(
図21のステップS26)。
以上で、点群データPDに写り込んだフォークリフト爪部分の除去をおこなうときの一連の動作が終了する。
【0138】
これにより、点群データPDにおいてフォークリフト爪部分が荷物CRと渾然一体に含まれている場合でも、フォークリフト爪部分の点群データを除去することができ、荷物CRの採寸精度をより高めることができる。
【0139】
[変形例:ToFカメラの座標軸に対し荷物の点群データを平行にする傾き修正機能]
上述したように、荷物保管場所では、荷物CRの搬送にフォークリフトを用いることが多い。
一般的なフォークリフトでは、荷物CRが当該爪部分から滑落することを防止するため、荷物CRと当接する爪部分の上面に緩やかな傾斜が設けられている。
そのため、ToFカメラ1-1~1-4が撮影した荷物車両画像PCVに写り込んだ荷物CRは、ToFカメラ1-1~1-4の座標軸に対して水平でなく傾いた姿勢であることが多い。
また、繁忙な搬送作業の際には、荷物CRがToFカメラ座標軸からずれた状態でフォークリフト爪部分に載積されることも往々にして起こりうる。
【0140】
「点群データPD」は荷物車両画像PCVに基づいて生成されるものである以上、荷物車両画像PCVに写り込んだ荷物CRの姿勢が元々傾いているのであれば、この荷物CRの姿勢の傾きが点群データPDにもそのまま引継がれてしまう。
そこで、本システム100では、ToFカメラ1の座標軸に対して荷物の点群データを平行にさせる「傾き修正機能」を設けている。
【0141】
上述したような傾き修正機能は、本願の情報管理サーバ4において、以下のような手法により実現される。
以下では、
図22(a)に示す荷物画像領域RG
CR(荷物CRの点群データ)の姿勢を、ToFカメラ1の座標軸(同
図22(a)中のXY座標水平面)に対して平行にする場合を例に挙げて説明する。
【0142】
図22(a)の荷物画像領域RG
CRの端点(立方体の各頂点にあたる画素)はそれぞれ深度座標(x,y,z)を有している。
そこで、まず、情報管理サーバ4は、
図22(a)のZ軸方向から傾き修正処理対象(荷物画像領域RG
CR)を見たときの、XY平面(水平面)上における「荷物画像領域RG
CRのXY平面投影図」を生成する(
図23のステップS31)。
図22(a)の荷物画像領域RG
CRからは、
図22(b)に示す「XY平面投影図(水平面投影図)」が得られる。
なお、Z軸の向きは「荷物CRの高さ方向」(垂直方向)と同じ向きである。
【0143】
つぎに、情報管理サーバ4は、荷物画像領域RG
CRから得られた
図22(b)のXY平面投影図を、Z軸(荷物CRの高さ方向の軸)を回転中心軸として、XY平面(水平面)上で所定単位角度ずつ回転させる(
図23のステップS32)。
これにより、情報管理サーバ4は「XY平面写像図」(水平面写像図)を生成する(同ステップS32)。
なお、本例における情報管理サーバ4は、Z軸を中心として、所定単位角度(たとえば、1°)ずつ
図22(b)のXY平面投影図をXY平面上で回転させていく。
【0144】
なお、同サーバ4は、
図23・ステップS32のXY平面投影図(水平面投影図)の回転処理を、所定回転範囲(たとえば、-45°~+45°)で実行する。
本例では、
図22(b)のXY平面投影図を回転角度(+2°)だけ回転させたときに、
図22(c)の「XY平面写像図(水平面写像図)」が得られたものとする。
また、本例では、
図22(b)のXY平面投影図を回転角度(+5°)だけ回転させたときに、
図22(d)のXY平面写像図(水平面写像図)が得られたものとする。
【0145】
情報管理サーバ4は、
図22(b)のXY平面投影図について、当該投影図の各端点(深度座標)のうちの水平面座標の最大値・最小値(X軸最大値・X軸最小値・Y軸最大値・Y軸最小値)を特定する(
図23のステップS33)。
【0146】
続いて、同サーバ4は、XY平面投影図に外接する外接矩形(
図22(b)において破線で囲まれた四角形)の面積を求める(同ステップS33)。
なお、外接矩形の面積は、(X軸最大値-X軸最小値)×(Y軸最大値-Y軸最小値)なる式より算出可能である。
【0147】
さらに、同サーバ4は、上述した所定回転範囲内で所定単位角度だけ回転させるごとに、XY平面投影図を回転させて得られた各XY平面写像図(
図22(c)・
図22(d))についても、当該写像図の水平面座標の最大値・最小値(X軸最大値・X軸最小値・Y軸最大値・Y軸最小値)を特定する(
図23のステップS34)。
そして、XY平面写像図それぞれの「外接矩形の面積」を算出する(同ステップS34)。
【0148】
そして、情報管理サーバ4は、「外接矩形の面積」が最も小さくなったときの回転角度において、荷物画像領域RG
CRを回転させたXY平面写像図の各辺の向きがToFカメラ1の水平面座標軸(X軸・Y軸)に対して揃った平行状態であると判定する(
図23のステップS35)。
これにより、ToFカメラ1の座標軸に対する荷物CRの点群データの傾きを修正し平行にすることが可能となり、ひいては荷物CRの採寸精度をより高めることができる。
【0149】
[変形例:点群データからノイズ成分を除去する機能]
ToFカメラ1が撮影した荷物車両画像PCVから生成される「点群データPD」には、荷物保管場所の場内にある荷物CRとは無関係の物体が写り込んでしまうおそれがある。
このような荷物CRに無関係の物体は、点群データPDにおけるノイズ成分NSになりうるため、当該点群データPDから生成される「荷物立体画像P3D」の形状の正確性に悪影響(たとえば、歪み)を及ぼしうる。
このような事態を事前回避するために、本システム100では、点群データPDからノイズ成分NSを除去する機能を設けている。
【0150】
上述したようなノイズ除去機能は、本願では、情報管理サーバ4において以下のような手法により実現される。
以下では、
図24(a)に示す点群データPDから、当該データPDに含まれるノイズ成分NSを除去する場合を例に挙げて説明する。
【0151】
この手法においては、情報管理サーバ4は、あらかじめ定められた所定のノイズ判定基準TH
NSを利用して、点群データPDからノイズ成分NSを除去する。
本例では、「点群密度」(
図24(a)中に破線で示すノイズ判定範囲RN
NSに含まれる点群の個数)をノイズ判定基準TH
NSと照合することで、ノイズ成分NSか否かを判定する。
ノイズ判定基準TH
NSは、実際の荷物保管場所で現場テストをおこなうことで、ノイズ成分NSの判別に好適な数値を設定する。
本例では、ノイズ判定基準TH
NSの値は「5」である。
【0152】
情報管理サーバ4は、点群データPDに含まれる全画素について、それぞれの画素(深度座標(x,y,z))を中心とする「ノイズ判定範囲RN
NSに存在する点群の個数」を算出する(
図25のステップS41)。
【0153】
本例では、上記のノイズ判定範囲RNNSとして、点群データPD内の各画素を円心とする「半径rの円」内部を採用する。
この半径rは、荷物保管場所に依存するパラメータであるため、荷物保管場所の現場に応じて好適に設定する。
なお、ノイズ判定範囲RNNSの形状は、任意でよく、楕円形状や多角形状でもよい。
【0154】
つぎに、情報管理サーバ4は、「ノイズ判定範囲RN
NSに存在する点群の個数」がノイズ判定基準TH
NSよりも小さい場合、そのノイズ判定範囲RN
NS内にある点群がノイズ成分NSであると判定する(
図25のステップS42)。
そして、同サーバ4は、ノイズ判定範囲RN
NSに含まれるこれらの画素における点群(ノイズ成分NSとして判定された点群)を除去する(
図25のステップS43)。
このようにすることで、ノイズ成分NSが除去されたよりクリアな点群データPD(
図24(b)参照)を得ることができるため、点群データPDから生成される荷物立体画像P
3Dの形状を、実際の荷物CRの正確な形状により近づけることができる。
【0155】
以上、実施形態を参照して本発明を説明したが、本発明は上記実施形態に限定されるものではない。本発明の構成や詳細には、本発明の要旨を逸脱しない範囲で当業者が理解し得る各種の変形が可能である。
【符号の説明】
【0156】
1 ToF(Time of Flight)カメラ
2 カメラ
3 通過検知センサ
4 情報管理サーバ
5 コントローラ
6 中継サーバ
100 自動採寸システム
200 インターネット
300 有線LAN
400 無線LAN
CR 荷物
VH 搬送車両
PCV 荷物車両画像
PD 点群データ
P3D 荷物立体画像
CD 2次元コード
PCD コード画像
【要約】
【課題】カメラを用いて読取った荷物用の2次元コードを、荷物を自動採寸するための点群データと関連付けて活用する。
【解決手段】自動採寸システム100は、荷物保管場所の矩形状の出入口に設けられたセンサであって搬送手段が出入口を通過することを検知する通過検知センサ3と、矩形状の出入口の4つのコーナーに各1台ずつ設けられた任意の被写体を撮影するToFカメラ1であって通過検知センサが搬送手段による出入口の通過を検知したときに荷物に赤外光を照射するとともに当該荷物から反射された赤外光を受光する4台のToF(Time of Flight)カメラ1と、任意の被写体を撮影可能なカメラ2であって出入口の左右いずれかの側面部に設けられたカメラ2と、ToFカメラ1が撮影した画像とカメラ2が撮影した画像を管理する情報管理サーバ4と、を具備してなる。
【選択図】
図1