(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-06-01
(45)【発行日】2023-06-09
(54)【発明の名称】電力変換装置及び制御装置
(51)【国際特許分類】
H02M 7/48 20070101AFI20230602BHJP
【FI】
H02M7/48 M
(21)【出願番号】P 2022564840
(86)(22)【出願日】2021-03-25
(86)【国際出願番号】 JP2021012723
(87)【国際公開番号】W WO2022201471
(87)【国際公開日】2022-09-29
【審査請求日】2022-10-25
(73)【特許権者】
【識別番号】501137636
【氏名又は名称】東芝三菱電機産業システム株式会社
(74)【代理人】
【識別番号】100108062
【氏名又は名称】日向寺 雅彦
(74)【代理人】
【識別番号】100168332
【氏名又は名称】小崎 純一
(74)【代理人】
【識別番号】100146592
【氏名又は名称】市川 浩
(74)【代理人】
【識別番号】100172188
【氏名又は名称】内田 敬人
(72)【発明者】
【氏名】成田 匠
(72)【発明者】
【氏名】中島 達人
(72)【発明者】
【氏名】三ツ木 康晃
(72)【発明者】
【氏名】勝倉 朋也
【審査官】麻生 哲朗
(56)【参考文献】
【文献】特開平11-11184(JP,A)
【文献】特開2003-9537(JP,A)
【文献】国際公開第2019/130375(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H02M 7/48
(57)【特許請求の範囲】
【請求項1】
入力された電力を交流電力に変換する電力変換部と、前記電力変換部から出力された前記交流電力を正弦波に近付けるフィルタ回路と、を有する主回路部と、
前記電力変換部の動作を制御することにより、前記主回路部による電力の変換を制御する制御装置と、
を備え、
前記制御装置は、
有効電力指令値及び無効電力指令値が入力されるとともに、前記主回路部の出力端の前記有効電力及び前記無効電力の各測定値が入力され、前記有効電力指令値と前記有効電力の測定値とを基に、前記主回路部から出力する前記交流電力の相電圧位相指令値を演算し、前記無効電力指令値と前記無効電力の測定値とを基に、前記主回路部から出力する前記交流電力の相電圧振幅指令値を演算する指令値演算部と、
前記相電圧位相指令値、前記相電圧振幅指令値、前記電力変換部の前記交流電力の相電圧及び線電流の各測定値、及び前記主回路部の前記交流電力の相電圧及び線電流の各測定値の各入力情報のいずれかを用いて、前記主回路部の出力端での過電流を抑制するように、前記電力変換部から出力する前記交流電力の各相の瞬時値電圧出力指令値を演算する過電流抑制制御部と、
を有し、演算した前記瞬時値電圧出力指令値に応じた電圧が前記電力変換部から出力されるように、前記電力変換部の動作を制御する電力変換装置。
【請求項2】
前記過電流抑制制御部は、
前記相電圧位相指令値及び前記相電圧振幅指令値を基に、dq逆変換を行うことにより、前記主回路部から出力する前記交流電力の各相の瞬時値電圧の指令値を演算するdq逆変換部と、
前記電力変換部の前記交流電力の線電流の過電流の大きさを検出する過電流検出器と、
前記過電流検出器から入力された過電流の大きさに対して比例定数を乗算することにより、前記主回路部の前記交流電力の各相の瞬時値電圧の補正値を演算する比例演算器と、
前記比例演算器から入力された前記補正値を前記dq逆変換部から入力された前記主回路部の前記交流電力の各相の瞬時値電圧の指令値から減算することにより、減算結果を前記電力変換部の前記交流電力の前記各相の瞬時値電圧出力指令値として演算する減算器と、
を有する請求項1記載の電力変換装置。
【請求項3】
前記過電流抑制制御部は、
前記相電圧位相指令値及び前記相電圧振幅指令値を基に、dq逆変換を行うことにより、前記主回路部から出力する前記交流電力の各相の瞬時値電圧の指令値を演算するdq逆変換部と、
前記主回路部の前記交流電力の線電流の過電流の大きさを検出する過電流検出器と、
前記過電流検出器から入力された過電流の大きさに対して比例定数を乗算することにより、前記主回路部の前記交流電力の各相の瞬時値電圧の補正値を演算する比例演算器と、
前記比例演算器から入力された前記補正値を前記dq逆変換部から入力された前記主回路部の前記交流電力の各相の瞬時値電圧の指令値から減算することにより、減算結果を前記電力変換部の前記交流電力の前記各相の瞬時値電圧出力指令値として演算する減算器と、
を有する請求項1記載の電力変換装置。
【請求項4】
前記過電流抑制制御部は、
前記相電圧位相指令値及び前記相電圧振幅指令値を基に、dq逆変換を行うことにより、前記主回路部から出力する前記交流電力の各相の瞬時値電圧の指令値を演算するdq逆変換部と、
演算された前記各相の瞬時値電圧の指令値から前記主回路部の交流電力の各相の相電圧の測定値を差し引くことにより、前記各相の瞬時値電圧の指令値と前記各相の相電圧の測定値との差分を演算する第1減算器と、
前記第1減算器によって演算された前記差分に第1比例定数を乗算することにより、前記主回路部の交流電力の前記各相の相電圧を、演算された前記各相の瞬時値電圧の指令値に近付けるための、前記主回路部から出力される前記交流電力の各相の線電流の指令値を演算する第1比例演算器と、
前記各相の線電流の指令値が上限値以上である場合に、前記各相の線電流の指令値を前記上限値に制限するとともに、前記各相の線電流の指令値が下限値以下である場合に、前記各相の線電流の指令値を前記下限値に制限するリミッタと、
前記リミッタから入力された前記各相の線電流の指令値から前記主回路部の前記交流電力の各相の線電流Iaの測定値を差し引くことにより、前記各相の線電流の指令値と前記各相の線電流の測定値との差分を演算する第2減算器と、
前記第2減算器によって演算された前記差分に第2比例定数を乗算することにより、前記各相の線電流Iaの指令値に応じた電流を前記電力変換部から出力するための補正値を演算する第2比例演算器と、
前記主回路部の前記交流電力の前記各相の相電圧の測定値に前記補正値を加算することにより、前記電力変換部から出力する前記交流電力の前記各相の瞬時値電圧出力指令値を演算する加算器と、
を有する請求項1記載の電力変換装置。
【請求項5】
前記過電流抑制制御部は、
前記電力変換部の前記交流電力の各相の線電流の測定値を基に、前記主回路部の前記交流電力の各相の相電圧の推定値を演算する電圧推定部と、
前記相電圧位相指令値及び前記相電圧振幅指令値を基に、dq逆変換を行うことにより、前記主回路部から出力する前記交流電力の各相の瞬時値電圧の指令値を演算するdq逆変換部と、
前記各相の瞬時値電圧の指令値から前記各相の相電圧の推定値を差し引くことにより、前記各相の瞬時値電圧の指令値と前記各相の相電圧の推定値との差分を演算する第1減算器と、
前記第1減算器によって演算された前記差分に第1比例定数を乗算することにより、前記主回路部の前記交流電力の各相の相電圧を前記各相の瞬時値電圧の指令値に近付けるための補正値を演算する第1比例演算器と、
前記電力変換部の前記交流電力の各相の線電流の測定値に前記第1比例演算器で演算された前記補正値を加算することにより、前記主回路部から出力される前記交流電力の各相の相電圧を前記各相の瞬時値電圧の指令値に近付けるために必要な前記電力変換部の前記交流電力の各相の線電流の指令値を演算する第1加算器と、
前記各相の線電流の指令値が上限値以上である場合に、前記各相の線電流の指令値を前記上限値に制限するとともに、前記各相の線電流の指令値が下限値以下である場合に、前記各相の線電流の指令値を前記下限値に制限するリミッタと、
前記リミッタから入力された前記各相の線電流の指令値から前記電力変換部の前記交流電力の各相の線電流の測定値を差し引くことにより、前記各相の線電流の指令値と前記各相の線電流の測定値との差分を演算する第2減算器と、
前記第2減算器によって演算された前記差分に第2比例定数を乗算することにより、前記各相の線電流の指令値に応じた電流を前記電力変換部から出力するための補正値を演算する第2比例演算器と、
前記各相の相電圧の推定値に前記第2比例演算器で演算された前記補正値を加算することにより、前記電力変換部から出力する前記交流電力の前記各相の瞬時値電圧出力指令値を演算する第2加算器と、
を有する請求項1記載の電力変換装置。
【請求項6】
前記電圧推定部は、
前記相電圧位相指令値と、前記電力変換部の前記交流電力の各相の線電流の測定値と、に対してdq変換を行うことにより、前記相電圧位相指令値と、前記各相の線電流の測定値と、を基に、前記各相の線電流のd軸成分を表す電流信号と、前記各相の線電流のq軸成分を表す電流信号と、を演算する変換部と、
前記q軸成分を表す電流信号に-1を乗算する演算を行う係数演算器と、
前記相電圧位相指令値、前記d軸成分を表す電流信号、及び前記係数演算器で演算された後の前記q軸成分を表す電流信号に対してdq逆変換を行うことにより、前記d軸成分を表す電流信号及び前記q軸成分を表す電流信号を基に、三相の瞬時値電圧を演算する逆変換部と、
前記三相の瞬時値電圧に対して比例演算を行うことにより、前記三相の瞬時値電圧を基に、前記主回路部の前記交流電力の前記各相の相電圧の推定値を演算する比例制御演算器と、
を有する請求項5記載の電力変換装置。
【請求項7】
入力された電力を交流電力に変換する電力変換部と、前記電力変換部から出力された前記交流電力を正弦波に近付けるフィルタ回路と、を有する主回路部を備えた電力変換装置に用いられ、前記電力変換部の動作を制御することにより、前記主回路部による電力の変換を制御する制御装置であって、
有効電力指令値及び無効電力指令値が入力されるとともに、前記主回路部の出力端の有効電力及び無効電力の各測定値が入力され、前記有効電力指令値と前記有効電力の測定値とを基に、前記主回路部から出力する前記交流電力の相電圧位相指令値を演算し、前記無効電力指令値と前記無効電力の測定値とを基に、前記主回路部から出力する前記交流電力の相電圧振幅指令値を演算する指令値演算部と、
前記相電圧位相指令値、前記相電圧振幅指令値、前記電力変換部の前記交流電力の相電圧及び線電流の各測定値、及び前記主回路部の前記交流電力の相電圧及び線電流の各測定値の各入力情報のいずれかを用いて、前記主回路部の出力端での過電流を抑制するように、前記電力変換部から出力する前記交流電力の各相の瞬時値電圧出力指令値を演算する過電流抑制制御部と、
を備え、
演算した前記瞬時値電圧出力指令値に応じた電圧が前記電力変換部から出力されるように、前記電力変換部の動作を制御する制御装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明の実施形態は、電力変換装置、及びその制御装置に関する。
【背景技術】
【0002】
電圧源電圧制御型の電力変換装置(Grid forming inverter)が知られている。電圧源電圧制御型の電力変換装置は、電圧源電流制御型の電力変換装置(Grid following inverter)と比べて、系統連系運転と自立運転とのシームレスな移行を実現することができる。
【0003】
しかしながら、電力変換装置が電圧制御運転をした場合、系統電圧の急変などで瞬時的に発生する電位差により、電力変換装置に過電流が発生し、スイッチング素子などの電力変換装置の内部の部品が故障してしまう可能性がある。
【0004】
このため、電力変換装置及びその制御装置においては、電圧制御運転をした場合にも、過電流の発生を抑制できるようにすることが望まれる。
【先行技術文献】
【特許文献】
【0005】
【発明の概要】
【発明が解決しようとする課題】
【0006】
本発明の実施形態は、電圧制御運転をした場合にも、過電流の発生を抑制できる電力変換装置及びその制御装置を提供する。
【課題を解決するための手段】
【0007】
本発明の実施形態によれば、入力された電力を交流電力に変換する電力変換部と、前記電力変換部から出力された前記交流電力を正弦波に近付けるフィルタ回路と、を有する主回路部と、前記電力変換部の動作を制御することにより、前記主回路部による電力の変換を制御する制御装置と、を備え、前記制御装置は、有効電力指令値及び無効電力指令値が入力されるとともに、前記主回路部の出力端の前記有効電力及び前記無効電力の各測定値が入力され、前記有効電力指令値と前記有効電力の測定値とを基に、前記主回路部から出力する前記交流電力の相電圧位相指令値を演算し、前記無効電力指令値と前記無効電力の測定値とを基に、前記主回路部から出力する前記交流電力の相電圧振幅指令値を演算する指令値演算部と、前記相電圧位相指令値、前記相電圧振幅指令値、前記電力変換部の前記交流電力の相電圧及び線電流の各測定値、及び前記主回路部の前記交流電力の相電圧及び線電流の各測定値の各入力情報のいずれかを用いて、前記主回路部の出力端での過電流を抑制するように、前記電力変換部から出力する前記交流電力の各相の瞬時値電圧出力指令値を演算する過電流抑制制御部と、を有し、演算した前記瞬時値電圧出力指令値に応じた電圧が前記電力変換部から出力されるように、前記電力変換部の動作を制御する電力変換装置が提供される。
【発明の効果】
【0008】
本発明の実施形態によれば、電圧制御運転をした場合にも、過電流の発生を抑制できる電力変換装置及びその制御装置が提供される。
【図面の簡単な説明】
【0009】
【
図1】実施形態に係る電力変換装置を模式的に表すブロック図である。
【
図2】実施形態に係る過電流抑制制御部を模式的に表すブロック図である。
【
図3】実施形態に係る電力変換装置の動作の一例を模式的に表すグラフである。
【
図4】参考の電力変換装置の動作の一例を模式的に表すグラフである。
【
図5】実施形態に係る過電流抑制制御部の変形例を模式的に表すブロック図である。
【
図6】実施形態に係る過電流抑制制御部の変形例を模式的に表すブロック図である。
【
図7】実施形態に係る過電流抑制制御部の変形例を模式的に表すブロック図である。
【発明を実施するための形態】
【0010】
以下に、各実施の形態について図面を参照しつつ説明する。
なお、図面は模式的または概念的なものであり、各部分の厚みと幅との関係、部分間の大きさの比率などは、必ずしも現実のものと同一とは限らない。また、同じ部分を表す場合であっても、図面により互いの寸法や比率が異なって表される場合もある。
なお、本願明細書と各図において、既出の図に関して前述したものと同様の要素には同一の符号を付して詳細な説明は適宜省略する。
【0011】
図1は、実施形態に係る電力変換装置を模式的に表すブロック図である。
図1に表したように、電力変換装置10は、主回路部12と、制御装置14と、第1計測装置16と、第2計測装置18と、を備える。主回路部12は、電力の変換を行う。制御装置14は、主回路部12による電力の変換を制御する。
【0012】
主回路部12は、電力系統2及び電源装置4と接続される。電力系統2は、交流の電力系統である。電力系統2の交流電力は、例えば、三相交流電力である。但し、電力系統2の交流電力は、単相交流電力などでもよい。電源装置4は、例えば、蓄電池などを用いた蓄電装置である。電源装置4は、主回路部12に直流電力を出力する。
【0013】
主回路部12は、例えば、電源装置4から入力された直流電力を電力系統2に対応した交流電力に変換し、変換後の交流電力を電力系統2に出力するとともに、電力系統2から入力された交流電力を直流電力に変換することにより、電源装置4を充電する。これにより、主回路部12は、電源装置4を電力系統2と連系させる。
【0014】
電源装置4は、蓄電装置に限ることなく、例えば、太陽電池パネルなどでもよい。この場合、主回路部12は、電力系統2から入力された交流電力を直流電力に変換する機能を有しなくてもよい。
【0015】
また、電源装置4は、例えば、風力発電機やガスタービン発電機などの他の発電機でもよい。電源装置4から主回路部12に入力される電力は、直流電力に限ることなく、交流電力でもよい。主回路部12は、電源装置4から入力された交流電力を電力系統2に対応した別の交流電力に変換する構成でもよい。電源装置4は、例えば、電力系統2と異なる別の電力系統でもよい。主回路部12は、例えば、周波数の異なる2つの電力系統を連系させる周波数変換装置などでもよい。
【0016】
このように、主回路部12による電力の変換は、直流から交流への変換に限ることなく、電源装置4の電力を電力系統2に対応した交流電力に変換する任意の変換でよい。
【0017】
主回路部12は、電力変換部20と、フィルタ回路22と、を有する。電力変換部20は、電力の変換を行う。電力変換部20は、例えば、複数のスイッチング素子を有し、複数のスイッチング素子のスイッチングにより、電力の変換を行う。電力変換部20は、例えば、三相ブリッジ接続された複数のスイッチング素子を有する。電力変換部20の構成は、複数のスイッチング素子のスイッチングなどにより、入力された電力を電力系統2に対応した交流電力に変換可能な任意の構成でよい。
【0018】
フィルタ回路22は、電力変換部20の交流側に設けられる。換言すれば、フィルタ回路22は、電力変換部20と電力系統2との間に設けられる。フィルタ回路22は、電力変換部20から出力された交流電力を正弦波に近付ける。フィルタ回路22は、例えば、電力変換部20から出力された交流電力に含まれる高周波成分を抑制することにより、電力変換部20から出力された交流電力を正弦波に近付ける。
【0019】
フィルタ回路22は、例えば、電力変換部20の交流出力点に対して直列に接続されるリアクトル24と、電力変換部20の交流出力点に対して並列に接続されるコンデンサ26と、を有する。リアクトル24及びコンデンサ26は、電力変換部20から出力される交流電力の各相毎に設けられる。但し、フィルタ回路22の構成は、これに限ることなく、電力変換部20から出力された交流電力を正弦波に近付けることが可能な任意の構成でよい。
【0020】
第1計測装置16は、電力変換部20から出力される交流電力の各相の相電圧Va(INV)、Vb(INV)、Vc(INV)、及び各相の線電流Ia(INV)、Ib(INV)、Ic(INV)を測定し、測定結果を制御装置14に入力する。
【0021】
第2計測装置18は、主回路部12(フィルタ回路22)から出力される交流電力の各相の相電圧Va(PCS)、Vb(PCS)、Vc(PCS)、各相の線電流Ia(PCS)、Ib(PCS)、Ic(PCS)、主回路部12の出力端における有効電力P(PCS)、及び主回路部12の出力端における無効電力Q(PCS)を測定し、測定結果を制御装置14に入力する。
【0022】
制御装置14は、電力変換部20の動作を制御することにより、主回路部12による電力の変換を制御する。換言すれば、制御装置14は、電力変換部20の複数のスイッチング素子のスイッチングを制御する。
【0023】
制御装置14には、第1計測装置16及び第2計測装置18の測定結果が入力されるとともに、主回路部12から出力する交流電力の有効電力指令値及び無効電力指令値が、上位のコントローラなどから入力される。
【0024】
制御装置14は、第1計測装置16及び第2計測装置18から入力された各測定結果と、上位のコントローラなどから入力された有効電力指令値及び無効電力指令値と、を基に、電力変換部20の動作を制御する。
【0025】
より具体的には、制御装置14は、入力された各測定結果、有効電力指令値、及び無効電力指令値を基に、電力変換部20から出力する交流電力の各相の瞬時値電圧出力指令値Va(ref)、Vb(ref)、Vc(ref)を演算し、演算した瞬時値電圧出力指令値Va(ref)、Vb(ref)、Vc(ref)に応じた電圧が電力変換部20から出力されるように、電力変換部20の動作を制御する。
【0026】
このように、制御装置14は、主回路部12の出力電圧を制御する。制御装置14は、主回路部12の電圧制御運転を行う。なお、各測定結果は、第1計測装置16及び第2計測装置18から直接的に制御装置14に入力することに限ることなく、例えば、上位のコントローラなどを介して制御装置14に入力してもよい。
【0027】
また、主回路部12の出力端における有効電力P(PCS)の測定値、及び主回路部12の出力端における無効電力Q(PCS)の測定値は、第2計測装置18から制御装置14に入力する構成に限ることなく、例えば、各相の相電圧Va(PCS)、Vb(PCS)、Vc(PCS)、及び各相の線電流Ia(PCS)、Ib(PCS)、Ic(PCS)の各測定値を基に、制御装置14内で演算して求めてもよい。第2計測装置18は、必ずしも有効電力P(PCS)及び無効電力Q(PCS)を測定しなくてもよい。
【0028】
制御装置14は、指令値演算部30と、過電流抑制制御部32と、を有する。指令値演算部30には、上位のコントローラなどから入力された有効電力指令値及び無効電力指令値が入力されるとともに、第2計測装置18によって測定された有効電力P(PCS)及び無効電力Q(PCS)の各測定値が入力される。
【0029】
指令値演算部30は、有効電力指令値と有効電力P(PCS)の測定値とを基に、主回路部12から出力する交流電力の相電圧位相指令値θを演算する。そして、指令値演算部30は、無効電力指令値と無効電力Q(PCS)の測定値とを基に、主回路部12から出力する交流電力の相電圧振幅指令値|V|を演算する。指令値演算部30は、演算した相電圧位相指令値θ及び相電圧振幅指令値|V|を過電流抑制制御部32に入力する。なお、相電圧位相指令値θ及び相電圧振幅指令値|V|の演算には、周知の演算方法を用いればよい。
【0030】
過電流抑制制御部32には、指令値演算部30から相電圧位相指令値θ及び相電圧振幅指令値|V|が入力されるとともに、第1計測装置16によって測定された相電圧Va(INV)、Vb(INV)、Vc(INV)、線電流Ia(INV)、Ib(INV)、Ic(INV)、及び第2計測装置18によって測定された相電圧Va(PCS)、Vb(PCS)、Vc(PCS)、線電流Ia(PCS)、Ib(PCS)、Ic(PCS)の各測定値のいずれかが入力される。
【0031】
過電流抑制制御部32は、相電圧位相指令値θ、相電圧振幅指令値|V|、相電圧Va(INV)、Vb(INV)、Vc(INV)、線電流Ia(INV)、Ib(INV)、Ic(INV)、相電圧Va(PCS)、Vb(PCS)、Vc(PCS)、及び線電流Ia(PCS)、Ib(PCS)、Ic(PCS)の各入力情報のいずれかを用いて、主回路部12の出力端での過電流を抑制するように、瞬時値電圧出力指令値Va(ref)、Vb(ref)、Vc(ref)を演算する。
【0032】
図2は、実施形態に係る過電流抑制制御部を模式的に表すブロック図である。
図2に表したように、過電流抑制制御部32は、dq逆変換部40と、過電流検出器42と、比例演算器44と、減算器46と、制御信号生成部48と、を有する。
【0033】
dq逆変換部40には、相電圧位相指令値θと相電圧振幅指令値|V|とが入力される。相電圧振幅指令値|V|は、d軸成分の電圧信号としてdq逆変換部40に入力される。また、dq逆変換部40には、q軸成分の電圧信号として「0」が入力される。dq逆変換部40は、入力された相電圧位相指令値θ、相電圧振幅指令値|V|、及びq軸成分の電圧信号に対してdq逆変換(逆park変換)を行う。これにより、dq逆変換部40は、相電圧位相指令値θ及び相電圧振幅指令値|V|を基に、主回路部12から出力する交流電力の各相の瞬時値電圧の指令値Va、Vb、Vcを演算する。そして、dq逆変換部40は、演算した瞬時値電圧の指令値Va、Vb、Vcを減算器46に入力する。
【0034】
過電流検出器42には、第1計測装置16によって測定された電力変換部20の交流電力の各相の線電流Ia(INV)、Ib(INV)、Ic(INV)の測定値が入力される。
【0035】
過電流検出器42は、電力変換部20の線電流Ia(INV)、Ib(INV)、Ic(INV)の過電流の大きさを検出する。過電流検出器42は、例えば、電力変換部20の線電流Ia(INV)、Ib(INV)、Ic(INV)の測定値に対して不感帯を設定することにより、不感帯を超過した成分を過電流の大きさとして検出する。
【0036】
過電流検出器42は、換言すれば、電力変換部20の線電流Ia(INV)、Ib(INV)、Ic(INV)に対して上限値と下限値とを設定する。上限値は、換言すれば、正側の過電流の閾値である。下限値は、換言すれば、負側の過電流の閾値である。過電流検出器42は、上限値と下限値との間を不感帯として設定する。
【0037】
過電流検出器42は、線電流Ia(INV)、Ib(INV)、Ic(INV)の測定値が上限値以上である場合に、線電流Ia(INV)、Ib(INV)、Ic(INV)の測定値のうちの上限値を超えた分の値を過電流の大きさとして検出する。
【0038】
過電流検出器42は、線電流Ia(INV)、Ib(INV)、Ic(INV)の測定値が下限値以下である場合に、線電流Ia(INV)、Ib(INV)、Ic(INV)の測定値のうちの下限値を超えた分の値を過電流の大きさとして検出する。
【0039】
そして、過電流検出器42は、線電流Ia(INV)、Ib(INV)、Ic(INV)の測定値が上限値と下限値との間の範囲内にある場合には、「0」を過電流の大きさとして検出する。
【0040】
過電流検出器42は、検出した線電流Ia(INV)、Ib(INV)、Ic(INV)の過電流の大きさを比例演算器44に入力する。
【0041】
比例演算器44は、過電流検出器42から入力された過電流の大きさに対して比例定数Kpを乗算することにより、主回路部12の交流電力の各相の瞬時値電圧の補正値を演算する。補正値は、より詳しくは、検出された過電流の大きさに応じた分だけ電力変換部20の線電流Ia(INV)、Ib(INV)、Ic(INV)の大きさを減少させるための主回路部12の交流電力の各相の瞬時値電圧の補正値である。比例演算器44は、演算した補正値を減算器46に入力する。
【0042】
減算器46は、比例演算器44から入力された補正値をdq逆変換部40から入力された主回路部12の交流電力の各相の瞬時値電圧の指令値Va、Vb、Vcから減算する。すなわち、減算器46は、検出された過電流の成分(電流不感帯を超過した成分)に応じて瞬時値電圧の指令値Va、Vb、Vcを抑制する。これにより、減算器46は、電力系統2の系統電圧の急変などで瞬時的に発生する電位差により、主回路部12に過電流が発生してしまうことを抑制する。
【0043】
減算器46は、減算結果を電力変換部20の交流電力の各相の瞬時値電圧出力指令値Va(ref)、Vb(ref)、Vc(ref)とし、演算した各相の瞬時値電圧出力指令値Va(ref)、Vb(ref)、Vc(ref)を制御信号生成部48に入力する。
【0044】
制御信号生成部48は、減算器46から入力された各相の瞬時値電圧出力指令値Va(ref)、Vb(ref)、Vc(ref)に応じた電圧を電力変換部20から出力するための制御信号を生成し、生成した制御信号を電力変換部20に入力する。これにより、制御信号生成部48は、各相の瞬時値電圧出力指令値Va(ref)、Vb(ref)、Vc(ref)に応じた電圧を電力変換部20に出力させる。
【0045】
制御信号生成部48は、例えば、各相の瞬時値電圧出力指令値Va(ref)、Vb(ref)、Vc(ref)を基に、正弦波パルス幅変調制御を行うことにより、電力変換部20の各スイッチング素子のスイッチングを制御するための制御信号を生成する。但し、制御信号生成部48の構成は、これに限ることなく、各相の瞬時値電圧出力指令値Va(ref)、Vb(ref)、Vc(ref)に応じた電圧を電力変換部20から出力するための制御信号を生成可能な任意の構成でよい。
【0046】
例えば、制御信号生成部48は、主回路部12側に設け、制御装置14(過電流抑制制御部32)から主回路部12に各相の瞬時値電圧出力指令値Va(ref)、Vb(ref)、Vc(ref)を入力し、主回路部12側で制御信号を生成する構成としてもよい。過電流抑制制御部32は、必ずしも制御信号生成部48を有しなくてもよい。
【0047】
このように、この例において、過電流抑制制御部32は、相電圧位相指令値θと、相電圧振幅指令値|V|と、電力変換部20の交流電力の各相の線電流Ia(INV)、Ib(INV)、Ic(INV)の測定値と、を基に、主回路部12の出力端での過電流を抑制するように、瞬時値電圧出力指令値Va(ref)、Vb(ref)、Vc(ref)を演算する。
【0048】
この場合、第1計測装置16は、必ずしも電力変換部20から出力される交流電力の各相の相電圧Va(INV)、Vb(INV)、Vc(INV)を測定しなくてもよい。第1計測装置16は、電力変換部20から出力される交流電力の各相の線電流Ia(INV)、Ib(INV)、Ic(INV)のみを測定する構成でもよい。
【0049】
また、この場合、第2計測装置18は、必ずしも主回路部12から出力される交流電力の各相の相電圧Va(PCS)、Vb(PCS)、Vc(PCS)、及び各相の線電流Ia(PCS)、Ib(PCS)、Ic(PCS)の測定結果を制御装置14に入力しなくてもよい。第2計測装置18は、主回路部12の出力端における有効電力P(PCS)、及び主回路部12の出力端における無効電力Q(PCS)の測定結果のみを制御装置14に入力する構成でもよい。
【0050】
図3は、実施形態に係る電力変換装置の動作の一例を模式的に表すグラフである。
図4は、参考の電力変換装置の動作の一例を模式的に表すグラフである。
図4は、制御装置14が過電流抑制制御部32を有していない参考の電力変換装置の動作の一例を模式的に表す。
図3及び
図4において、横軸は、時間(秒)であり、縦軸は、主回路部12の定格出力を基準とした出力電流(pu:per unit)である。
【0051】
図3は、時刻t1~t2において、事故点残留電圧が約50%の三線地絡事故が発生した場合の電力変換装置10の動作の一例を表す。
図4は、同様の場合の参考の電力変換装置の動作の一例を表す。
【0052】
図4に表したように、過電流抑制制御部32を有していない参考の電力変換装置では、事故の発生の際に、主回路部12の出力電流が、±2(pu)を超えている。
【0053】
これに対し、実施形態に係る電力変換装置10では、過電流抑制制御部32の過電流検出器42において不感帯の上限値を+1.2(pu)、不感帯の下限値を-1.2(pu)に設定している。これにより、実施形態に係る電力変換装置10では、
図3に表したように、事故の発生の際にも、主回路部12の出力電流を±1.2(pu)程度に抑えることができている。電力変換装置10では、過電流抑制制御部32を有しない参考の電力変換装置と比べて、事故の発生の際にも、過電流の発生を抑制することができている。
【0054】
以上、説明したように、本実施形態に係る電力変換装置10では、制御装置14が、過電流抑制制御部32を有する。これにより、電圧制御運転をした場合にも、過電流の発生を抑制することができる。例えば、系統電圧の急変などで瞬時的な電位差が発生した場合などにも、主回路部12に過電流が発生し、電力変換部20のスイッチング素子などの主回路部12の内部の部品が故障してしまうことを抑制することができる。
【0055】
図5は、実施形態に係る過電流抑制制御部の変形例を模式的に表すブロック図である。
なお、上記実施形態と機能・構成上実質的に同じものについては、同符号を付し、詳細な説明は省略する。
図5に表したように、過電流抑制制御部32aでは、過電流検出器42の入力が、第2計測装置18によって測定された主回路部12の交流電力の各相の線電流Ia(PCS)、Ib(PCS)、Ic(PCS)の測定値に置き換えられている。
【0056】
過電流抑制制御部32aは、主回路部12の線電流Ia(PCS)、Ib(PCS)、Ic(PCS)の過電流の大きさを検出し、検出した過電流の成分に応じて瞬時値電圧の指令値Va、Vb、Vcを抑制することにより、主回路部12の出力端での過電流を抑制する。
【0057】
このように、過電流抑制制御部32aは、相電圧位相指令値θと、相電圧振幅指令値|V|と、主回路部12の交流電力の各相の線電流Ia(PCS)、Ib(PCS)、Ic(PCS)の測定値と、を基に、主回路部12の出力端での過電流を抑制するように、瞬時値電圧出力指令値Va(ref)、Vb(ref)、Vc(ref)を演算する構成でもよい。この場合、電力変換装置10は、必ずしも第1計測装置16を備えていなくてもよい。電力変換装置10は、第2計測装置18のみを備える構成でもよい。
【0058】
図6は、実施形態に係る過電流抑制制御部の変形例を模式的に表すブロック図である。
図6に表したように、過電流抑制制御部32bは、dq逆変換部50と、第1減算器51と、第1比例演算器52と、リミッタ53と、第2減算器54と、第2比例演算器55と、加算器56と、制御信号生成部57と、を有する。
【0059】
dq逆変換部50は、
図2に関して説明したdq逆変換部40と同様であるから、詳細な説明は省略する。dq逆変換部50は、演算した瞬時値電圧の指令値Va、Vb、Vcを第1減算器51に入力する。
【0060】
第1減算器51には、dq逆変換部50から各相の瞬時値電圧の指令値Va、Vb、Vcが入力されるとともに、第2計測装置18によって測定された主回路部12の交流電力の各相の相電圧Va(PCS)、Vb(PCS)、Vc(PCS)の測定値が入力される。
【0061】
第1減算器51は、各相の瞬時値電圧の指令値Va、Vb、Vcから各相の相電圧Va(PCS)、Vb(PCS)、Vc(PCS)の測定値を差し引くことにより、各相の瞬時値電圧の指令値Va、Vb、Vcと各相の相電圧Va(PCS)、Vb(PCS)、Vc(PCS)の測定値との差分を演算する。
【0062】
第1比例演算器52は、第1減算器51によって演算された差分に第1比例定数Kp1を乗算することにより、各相の相電圧Va(PCS)、Vb(PCS)、Vc(PCS)を各相の瞬時値電圧の指令値Va、Vb、Vcに近付けるための、主回路部12から出力される交流電力の各相の線電流Ia(PCS)、Ib(PCS)、Ic(PCS)の指令値を演算する。第1比例演算器52は、演算した指令値をリミッタ53に入力する。
【0063】
リミッタ53は、入力された各相の線電流Ia(PCS)、Ib(PCS)、Ic(PCS)の指令値が上限値以上である場合に、各相の線電流Ia(PCS)、Ib(PCS)、Ic(PCS)の指令値を上限値に制限するとともに、入力された各相の線電流Ia(PCS)、Ib(PCS)、Ic(PCS)の指令値が下限値以下である場合に、各相の線電流Ia(PCS)、Ib(PCS)、Ic(PCS)の指令値を下限値に制限する。
【0064】
リミッタ53は、入力された各指令値が下限値よりも大きくかつ上限値よりも小さい場合には、入力された各指令値をそのまま第2減算器54に入力する。リミッタ53は、入力された各指令値が下限値以下である場合には、各指令値を下限値に制限し、制限後の各指令値を第2減算器54に入力する。そして、リミッタ53は、入力された各指令値が上限値以上である場合には、各指令値を上限値に制限し、制限後の各指令値を第2減算器54に入力する。これにより、リミッタ53は、電力系統2の系統電圧の急変などで瞬時的に発生する電位差により、主回路部12に過電流が発生してしまうことを抑制する。
【0065】
第2減算器54には、リミッタ53から各相の線電流Ia(PCS)、Ib(PCS)、Ic(PCS)の指令値が入力されるとともに、第2計測装置18によって測定された主回路部12の交流電力の各相の線電流Ia(PCS)、Ib(PCS)、Ic(PCS)の測定値が入力される。
【0066】
第2減算器54は、各相の線電流Ia(PCS)、Ib(PCS)、Ic(PCS)の指令値から各相の線電流Ia(PCS)、Ib(PCS)、Ic(PCS)の測定値を差し引くことにより、各相の線電流Ia(PCS)、Ib(PCS)、Ic(PCS)の指令値と各相の線電流Ia(PCS)、Ib(PCS)、Ic(PCS)の測定値との差分を演算する。
【0067】
第2比例演算器55は、第2減算器54によって演算された差分に第2比例定数Kp2を乗算することにより、各相の線電流Ia(PCS)、Ib(PCS)、Ic(PCS)の指令値に応じた電流を電力変換部20から出力するための補正値を演算する。補正値は、より詳しくは、主回路部12から出力される交流電力の各相の相電圧Va(PCS)、Vb(PCS)、Vc(PCS)の補正値である。第2比例演算器55は、演算した補正値を加算器56に入力する。
【0068】
加算器56には、第2比例演算器55から補正値が入力されるとともに、第2計測装置18によって測定された主回路部12の交流電力の各相の相電圧Va(PCS)、Vb(PCS)、Vc(PCS)の測定値が入力される。
【0069】
加算器56は、各相の相電圧Va(PCS)、Vb(PCS)、Vc(PCS)の測定値に補正値を加算する。これにより、加算器56は、電力変換部20から出力する交流電力の各相の瞬時値電圧出力指令値Va(ref)、Vb(ref)、Vc(ref)を演算する。
【0070】
加算器56は、演算した各相の瞬時値電圧出力指令値Va(ref)、Vb(ref)、Vc(ref)を制御信号生成部57に入力する。制御信号生成部57は、
図2に関して説明した制御信号生成部48と同様であるから、詳細な説明は省略する。
【0071】
過電流抑制制御部32bは、相電圧位相指令値θ、相電圧振幅指令値|V|、相電圧Va(PCS)、Vb(PCS)、Vc(PCS)、及び線電流Ia(PCS)、Ib(PCS)、Ic(PCS)の各測定値を用いて、主回路部12の出力端での過電流を抑制するように、瞬時値電圧出力指令値Va(ref)、Vb(ref)、Vc(ref)を演算する。
【0072】
過電流抑制制御部32bでは、リミッタ53が、主回路部12から出力される交流電力の各相の線電流Ia(PCS)、Ib(PCS)、Ic(PCS)の指令値を下限値と上限値との間に制限することにより、主回路部12の出力端での過電流を抑制するように、瞬時値電圧出力指令値Va(ref)、Vb(ref)、Vc(ref)を演算することができる。
【0073】
このように、過電流抑制制御部32bは、相電圧位相指令値θと、相電圧振幅指令値|V|と、主回路部12の交流電力の各相の相電圧Va(PCS)、Vb(PCS)、Vc(PCS)の測定値と、主回路部12の交流電力の各相の線電流Ia(PCS)、Ib(PCS)、Ic(PCS)の測定値と、を基に、主回路部12の出力端での過電流を抑制するように、瞬時値電圧出力指令値Va(ref)、Vb(ref)、Vc(ref)を演算する構成でもよい。この場合も、電力変換装置10は、必ずしも第1計測装置16を備えていなくてもよい。電力変換装置10は、第2計測装置18のみを備える構成でもよい。
【0074】
図7は、実施形態に係る過電流抑制制御部の変形例を模式的に表すブロック図である。
図7に表したように、過電流抑制制御部32cは、電圧推定部60と、dq逆変換部61と、第1減算器62と、第1比例演算器63と、第1加算器64と、リミッタ65と、第2減算器66と、第2比例演算器67と、第2加算器68と、制御信号生成部69と、を有する。
【0075】
電圧推定部60は、電力変換部20の交流電力の各相の線電流Ia(INV)、Ib(INV)、Ic(INV)の測定値を基に、主回路部12の交流電力の各相の相電圧Va(PCS)、Vb(PCS)、Vc(PCS)の推定を行う。
【0076】
電圧推定部60には、例えば、指令値演算部30で演算された相電圧位相指令値θと、第1計測装置16によって測定された電力変換部20の交流電力の各相の線電流Ia(INV)、Ib(INV)、Ic(INV)の測定値と、が入力される。
【0077】
電圧推定部60は、例えば、相電圧位相指令値θと、各相の線電流Ia(INV)、Ib(INV)、Ic(INV)の測定値と、を基に、主回路部12の交流電力の各相の相電圧Va(PCS)、Vb(PCS)、Vc(PCS)の推定値Va(virtual)、Vb(virtual)、Vc(virtual)を演算する。
【0078】
電圧推定部60は、例えば、dq変換部80と、係数演算器81と、dq逆変換部82と、比例制御演算器83と、を有する。
【0079】
dq変換部80には、相電圧位相指令値θと、電力変換部20の交流電力の各相の線電流Ia(INV)、Ib(INV)、Ic(INV)の測定値と、が入力される。
【0080】
dq変換部80は、入力された相電圧位相指令値θと、各相の線電流Ia(INV)、Ib(INV)、Ic(INV)の測定値と、に対してdq変換(park変換)を行うことにより、相電圧位相指令値θと、各相の線電流Ia(INV)、Ib(INV)、Ic(INV)の測定値と、を基に、各相の線電流Ia(INV)、Ib(INV)、Ic(INV)のd軸成分を表す電流信号Idと、各相の線電流Ia(INV)、Ib(INV)、Ic(INV)のq軸成分を表す電流信号Iqと、を演算する。dq変換部80は、演算した電流信号Idをdq逆変換部82に入力するとともに、演算した電流信号Iqを係数演算器81に入力する。
【0081】
係数演算器81は、入力された電流信号Iqに係数「-1」を乗算する演算を行い、演算後の電流信号-Iqをdq逆変換部82に入力する。
【0082】
DQ電圧は、DQ電流の位相を90度ずらしたものに比例する。主回路部12の交流電力の各相の相電圧Va(PCS)、Vb(PCS)、Vc(PCS)のq軸成分を表す電圧信号Vqは、電力変換部20の交流電力の各相の線電流Ia(INV)、Ib(INV)、Ic(INV)のd軸成分を表す電流信号Idによって推定することができる。そして、主回路部12の交流電力の各相の相電圧Va(PCS)、Vb(PCS)、Vc(PCS)のd軸成分を表す電圧信号Vdは、電力変換部20の交流電力の各相の線電流Ia(INV)、Ib(INV)、Ic(INV)のq軸成分を表す電流信号Iqに「-1」を乗算した電流信号-Iqによって推定することができる。
【0083】
このため、dq変換部80は、演算した電流信号Idを電圧信号Vqとしてdq逆変換部82に入力する。係数演算器81は、演算した電流信号-Iqを電圧信号Vdとしてdq逆変換部82に入力する。
【0084】
dq逆変換部82には、電圧信号Vq(電流信号Id)及び電圧信号Vd(電流信号-Iq)が入力されるとともに、相電圧位相指令値θが入力される。
【0085】
dq逆変換部82は、入力された相電圧位相指令値θ、電圧信号Vq、Vdに対してdq逆変換(逆park変換)を行うことにより、電圧信号Vq、Vdを基に、三相の瞬時値電圧を演算する。dq逆変換部82は、演算した三相の瞬時値電圧を比例制御演算器83に入力する。
【0086】
比例制御演算器83は、入力された三相の瞬時値電圧に対して比例演算を行うことにより、入力された三相の瞬時値電圧を基に、主回路部12の交流電力の各相の相電圧Va(PCS)、Vb(PCS)、Vc(PCS)の推定値Va(virtual)、Vb(virtual)、Vc(virtual)を演算する。
【0087】
なお、電圧推定部60の構成は、上記に限定されるものではない。電圧推定部60の構成は、各相の線電流Ia(INV)、Ib(INV)、Ic(INV)の測定値を基に、主回路部12の交流電力の各相の相電圧Va(PCS)、Vb(PCS)、Vc(PCS)の推定値Va(virtual)、Vb(virtual)、Vc(virtual)を演算可能な任意の構成でよい。
【0088】
dq逆変換部61は、
図2に関して説明したdq逆変換部40と同様であるから、詳細な説明は省略する。dq逆変換部61は、演算した瞬時値電圧の指令値Va、Vb、Vcを第1減算器62に入力する。
【0089】
第1減算器62には、dq逆変換部61から各相の瞬時値電圧の指令値Va、Vb、Vcが入力されるとともに、電圧推定部60によって演算された主回路部12の交流電力の各相の相電圧Va(PCS)、Vb(PCS)、Vc(PCS)の推定値Va(virtual)、Vb(virtual)、Vc(virtual)が入力される。
【0090】
第1減算器62は、各相の瞬時値電圧の指令値Va、Vb、Vcから各相の相電圧Va(PCS)、Vb(PCS)、Vc(PCS)の推定値Va(virtual)、Vb(virtual)、Vc(virtual)を差し引くことにより、各相の瞬時値電圧の指令値Va、Vb、Vcと各相の相電圧Va(PCS)、Vb(PCS)、Vc(PCS)の推定値Va(virtual)、Vb(virtual)、Vc(virtual)との差分を演算する。
【0091】
第1比例演算器63は、第1減算器62によって演算された差分に第1比例定数Kp1を乗算することにより、各相の相電圧Va(PCS)、Vb(PCS)、Vc(PCS)を各相の瞬時値電圧の指令値Va、Vb、Vcに近付けるための補正値を演算する。補正値は、より詳しくは、電力変換部20の交流電力の各相の線電流Ia(INV)、Ib(INV)、Ic(INV)の補正値である。第1比例演算器63は、演算した補正値を第1加算器64に入力する。
【0092】
第1加算器64には、第1比例演算器63から補正値が入力されるとともに、第1計測装置16によって測定された電力変換部20の交流電力の各相の線電流Ia(INV)、Ib(INV)、Ic(INV)の測定値が入力される。
【0093】
第1加算器64は、各相の線電流Ia(INV)、Ib(INV)、Ic(INV)の測定値に補正値を加算する。これにより、第1加算器64は、主回路部12から出力される交流電力の各相の相電圧Va(PCS)、Vb(PCS)、Vc(PCS)を各相の瞬時値電圧の指令値Va、Vb、Vcに近付けるために必要な電力変換部20の各相の線電流Ia(INV)、Ib(INV)、Ic(INV)の指令値を演算する。第1加算器64は、演算した各相の線電流Ia(INV)、Ib(INV)、Ic(INV)の指令値をリミッタ65に入力する。
【0094】
リミッタ65は、入力された各相の線電流Ia(INV)、Ib(INV)、Ic(INV)の指令値が上限値以上である場合に、各相の線電流Ia(INV)、Ib(INV)、Ic(INV)の指令値を上限値に制限するとともに、入力された各相の線電流Ia(INV)、Ib(INV)、Ic(INV)の指令値が下限値以下である場合に、各相の線電流Ia(INV)、Ib(INV)、Ic(INV)の指令値を下限値に制限する。
【0095】
リミッタ65は、入力された各指令値が下限値よりも大きくかつ上限値よりも小さい場合には、入力された各指令値をそのまま第2減算器66に入力する。リミッタ65は、入力された各指令値が下限値以下である場合には、各指令値を下限値に制限し、制限後の各指令値を第2減算器66に入力する。そして、リミッタ65は、入力された各指令値が上限値以上である場合には、各指令値を上限値に制限し、制限後の各指令値を第2減算器66に入力する。これにより、リミッタ65は、電力系統2の系統電圧の急変などで瞬時的に発生する電位差により、主回路部12に過電流が発生してしまうことを抑制する。
【0096】
第2減算器66には、リミッタ65から各相の線電流Ia(INV)、Ib(INV)、Ic(INV)の指令値が入力されるとともに、第1計測装置16によって測定された電力変換部20の各相の線電流Ia(INV)、Ib(INV)、Ic(INV)の測定値が入力される。
【0097】
第2減算器66は、各相の線電流Ia(INV)、Ib(INV)、Ic(INV)の指令値から各相の線電流Ia(INV)、Ib(INV)、Ic(INV)の測定値を差し引くことにより、各相の線電流Ia(INV)、Ib(INV)、Ic(INV)の指令値と各相の線電流Ia(INV)、Ib(INV)、Ic(INV)の測定値との差分を演算する。
【0098】
第2比例演算器67は、第2減算器66によって演算された差分に第2比例定数Kp2を乗算することにより、各相の線電流Ia(INV)、Ib(INV)、Ic(INV)の指令値に応じた電流を電力変換部20から出力するための補正値を演算する。補正値は、より詳しくは、主回路部12から出力される交流電力の各相の相電圧Va(PCS)、Vb(PCS)、Vc(PCS)の補正値である。第2比例演算器67は、演算した補正値を第2加算器68に入力する。
【0099】
第2加算器68には、第2比例演算器67から補正値が入力されるとともに、電圧推定部60によって演算された主回路部12の交流電力の各相の相電圧Va(PCS)、Vb(PCS)、Vc(PCS)の推定値Va(virtual)、Vb(virtual)、Vc(virtual)が入力される。
【0100】
第2加算器68は、各相の相電圧Va(PCS)、Vb(PCS)、Vc(PCS)の推定値Va(virtual)、Vb(virtual)、Vc(virtual)に補正値を加算する。これにより、第2加算器68は、電力変換部20から出力する交流電力の各相の瞬時値電圧出力指令値Va(ref)、Vb(ref)、Vc(ref)を演算する。
【0101】
第2加算器68は、演算した各相の瞬時値電圧出力指令値Va(ref)、Vb(ref)、Vc(ref)を制御信号生成部69に入力する。制御信号生成部69は、
図2に関して説明した制御信号生成部48と同様であるから、詳細な説明は省略する。
【0102】
過電流抑制制御部32cは、相電圧位相指令値θ、相電圧振幅指令値|V|、線電流Ia(INV)、Ib(INV)、Ic(INV)の測定値、及び各相の相電圧Va(PCS)、Vb(PCS)、Vc(PCS)の推定値Va(virtual)、Vb(virtual)、Vc(virtual)を用いて、主回路部12の出力端での過電流を抑制するように、瞬時値電圧出力指令値Va(ref)、Vb(ref)、Vc(ref)を演算する。
【0103】
過電流抑制制御部32cでは、リミッタ65が、電力変換部20から出力される交流電力の各相の線電流Ia(INV)、Ib(INV)、Ic(INV)の指令値を下限値と上限値との間に制限することにより、主回路部12の出力端での過電流を抑制するように、瞬時値電圧出力指令値Va(ref)、Vb(ref)、Vc(ref)を演算することができる。
【0104】
このように、過電流抑制制御部32cは、相電圧位相指令値θと、相電圧振幅指令値|V|と、線電流Ia(INV)、Ib(INV)、Ic(INV)の測定値と、各相の相電圧Va(PCS)、Vb(PCS)、Vc(PCS)の推定値Va(virtual)、Vb(virtual)、Vc(virtual)と、を基に、主回路部12の出力端での過電流を抑制するように、瞬時値電圧出力指令値Va(ref)、Vb(ref)、Vc(ref)を演算する構成でもよい。
【0105】
この場合、第1計測装置16は、必ずしも電力変換部20から出力される交流電力の各相の相電圧Va(INV)、Vb(INV)、Vc(INV)を測定しなくてもよい。第1計測装置16は、電力変換部20から出力される交流電力の各相の線電流Ia(INV)、Ib(INV)、Ic(INV)のみを測定する構成でもよい。
【0106】
また、この場合、第2計測装置18は、必ずしも主回路部12から出力される交流電力の各相の相電圧Va(PCS)、Vb(PCS)、Vc(PCS)、及び各相の線電流Ia(PCS)、Ib(PCS)、Ic(PCS)の測定結果を制御装置14に入力しなくてもよい。第2計測装置18は、主回路部12の出力端における有効電力P(PCS)、及び主回路部12の出力端における無効電力Q(PCS)の測定結果のみを制御装置14に入力する構成でもよい。
【0107】
なお、過電流抑制制御部の構成は、上記に限ることなく、相電圧位相指令値θ、相電圧振幅指令値|V|、相電圧Va(INV)、Vb(INV)、Vc(INV)、線電流Ia(INV)、Ib(INV)、Ic(INV)、相電圧Va(PCS)、Vb(PCS)、Vc(PCS)、及び線電流Ia(PCS)、Ib(PCS)、Ic(PCS)の各入力情報のいずれかを用いて、主回路部12の出力端での過電流を抑制するように、瞬時値電圧出力指令値Va(ref)、Vb(ref)、Vc(ref)を演算可能な任意の構成でよい。
【0108】
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに請求の範囲に記載された発明とその均等の範囲に含まれる。