(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-06-02
(45)【発行日】2023-06-12
(54)【発明の名称】全固体電池の筐体構造及びこれを用いたモジュール構造
(51)【国際特許分類】
H01M 50/103 20210101AFI20230605BHJP
H01M 50/121 20210101ALI20230605BHJP
H01M 50/176 20210101ALI20230605BHJP
H01M 50/209 20210101ALI20230605BHJP
H01M 50/258 20210101ALI20230605BHJP
H01M 50/50 20210101ALI20230605BHJP
H01M 50/505 20210101ALI20230605BHJP
H01M 50/548 20210101ALI20230605BHJP
H01M 50/553 20210101ALI20230605BHJP
H01M 10/04 20060101ALI20230605BHJP
H01M 10/0585 20100101ALI20230605BHJP
H01M 10/0562 20100101ALI20230605BHJP
【FI】
H01M50/103
H01M50/121
H01M50/176
H01M50/209
H01M50/258
H01M50/50 201Z
H01M50/505
H01M50/548 101
H01M50/553
H01M10/04 Z
H01M10/0585
H01M10/0562
(21)【出願番号】P 2019013560
(22)【出願日】2019-01-29
【審査請求日】2021-10-26
(73)【特許権者】
【識別番号】591251636
【氏名又は名称】現代自動車株式会社
【氏名又は名称原語表記】HYUNDAI MOTOR COMPANY
【住所又は居所原語表記】12, Heolleung-ro, Seocho-gu, Seoul, Republic of Korea
(73)【特許権者】
【識別番号】500518050
【氏名又は名称】起亞株式会社
【氏名又は名称原語表記】KIA CORPORATION
【住所又は居所原語表記】12, Heolleung-ro, Seocho-gu, Seoul, Republic of Korea
(74)【代理人】
【識別番号】110000051
【氏名又は名称】弁理士法人共生国際特許事務所
(72)【発明者】
【氏名】橋本 武典
【審査官】守安 太郎
(56)【参考文献】
【文献】特開2017-220447(JP,A)
【文献】特開2011-236937(JP,A)
【文献】特開2009-252548(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01M 50/10
H01M 50/50
H01M 50/20
H01M 10/04
H01M 10/05
(57)【特許請求の範囲】
【請求項1】
全固体電池の筐体構造を電気的に複数接続するモジュール構造であって、
前記全固体電池の筐体構造は、
集電体の片面に正極を形成した正極電極と、正極電極と対向し集電体の正極と対向する面に負極を形成した負極電極と、正極電極と負極電極との間に位置する複数の固体電解質と、隣接する複数の固体電解質の間にそれぞれ位置して集電体の片面に正極を形成し正極と反対側の面に負極を形成した複数のバイポーラ電極とを備える固体電池積層体と、
前記正極電極に隣接して配置された正電極プレートと、
前記負極電極に隣接して配置された負電極プレートと、
前記固体電池積層体、前記正電極プレート、及び前記負電極プレートの外周部を覆い、前記正電極プレート、及び前記負電極プレートの電極面が露出するように一体化する樹脂筐体と、を有し、
前記樹脂筐体は樹脂成型金型内で前記正電極プレートと、前記負電極プレートとを前記固体電池積層体に押し付ける加圧状態で注入されて固化されることで加圧状態を保ちつつ前記固体電池積層体を封止し、
前記複数の全固体電池の筐体構造は露出する正電極プレートが、他の全固体電池の筐体構造の露出する負電極プレートと隣接するように直列に配列さ
れ、
前記対向する正電極プレートと負電極プレートとは導電性材料を挟んで互いに接続され、
前記導電性材料は柔軟性を有する導電性板状部材又は導電性フィルム材、或は導電性のペースト材であることを特徴とするモジュール構造。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、全固体電池の筐体構造及びこれを用いたモジュール構造に関し、特に固体電池素子を複数直列に積層した固体電池積層体とこれを挟み込んで外部端子となる正負の電極プレートとの外周部を樹脂封止して一体化することでスペース効率を高めた全固体電池の筐体構造及びこれを用いたモジュール構造に関する。
【背景技術】
【0002】
様々な場面で充電可能な2次電池が幅広く採用されている。特に高信頼性が求められる自動車分野においてもガソリンエンジンからモータへと駆動系の転換が進んでおり、これに伴い2次電池の搭載車両も増えつつある。こうした2次電池は電気的な性能の他にも移動を伴う用途では小型・軽量化が求められ、現時点ではリチウムイオン電池が多く使われてきている。
【0003】
リチウムイオン電池は性能もよく使い勝手がよい反面、有機溶剤系の電解液を使用するために機械的な衝撃等により短絡が生じると発火事故に至ることから安全性には課題があることが知られている。このため信頼性が求められる用途では様々な安全対策や品質管理に十分配慮しながら使用されている。
このようなリチウムイオン電池の安全性の課題を解決するために電解液の代わりに固体の電解質を使用する全固体電池の開発が進められている。
【0004】
特許文献1には負極集電タブを有する負極集電体層、負極活物質層、固体電解質層、正極活物質層、及び正極集電タブを有する正極集電体層がこの順に積層された全固体電池素子を従来のリチウムイオン電池と同様にラミネートフィルムからなる外装体に収容し、積層方向に加圧しながら充填剤を充填して封入するラミネート全固体電池の製造方法が開示されている。
【0005】
特許文献2には正極層と、固体電解質膜と、負極層とがこの順に積層された発電ユニットがバイポーラ層を挟んで複数積層された発電要素を電池ケースに収納し流動性封止剤で封止した固体型電池が開示されている。
【0006】
特許文献1の全固体電池も特許文献2の固体型電池も、ともに電池の外部端子は集電体から延長されるか又は集電体と平行に引き出されたタブとして形成されており、自動車などのように、高電圧を要するためにこれらの電池を直列接続してモジュールとして使用する場合、タブ同士を接続する接続エリアが必要となり無駄なスペースをとることとなる。
そこで直列接続のための無駄なスペースを取らないでモジュール化が可能な全固体電池の筐体構造が求められる。
【先行技術文献】
【特許文献】
【0007】
【文献】特開2018-133175号公報
【文献】特開2009-252548号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
本発明は、上記従来の全固体電池における問題点に鑑みてなされたものであって、本発明の目的は、固体電池素子を複数直列に積層した固体電池積層体とこれを挟み込んで外部端子となる正負の電極プレートとの外周部を樹脂封止して一体化することでスペース効率を高めた全固体電池の筐体構造及びこれを用いたモジュール構造を提供するところにある。
【課題を解決するための手段】
【0009】
上記目的を達成するためになされた本発明による全固体電池の筐体構造は、集電体の片面に正極を形成した正極電極と、正極電極と対向し集電体の正極と対向する面に負極を形成した負極電極と、正極電極と負極電極との間に位置する複数の固体電解質と、隣接する複数の固体電解質の間にそれぞれ位置して集電体の片面に正極を形成し正極と反対側の面に負極を形成した複数のバイポーラ電極とを備える固体電池積層体と、前記正極電極に隣接して配置された正電極プレートと、前記負極電極に隣接して配置された負電極プレートと、前記固体電池積層体、前記正電極プレート、及び前記負電極プレートの外周部を覆い、前記正電極プレート、及び前記負電極プレートの電極面が露出するように一体化する樹脂筐体とを有し、前記樹脂筐体は樹脂成型金型内で前記正電極プレートと、前記負電極プレートとを前記固体電池積層体に押し付ける加圧状態で注入されて固化されることで加圧状態を保ちつつ前記固体電池積層体を封止することを特徴とする。
【0010】
上記目的を達成するためになされた本発明による全固体電池のモジュール構造は、全固体電池の筐体構造を電気的に複数接続するモジュール構造であって、前記全固体電池の筐体構造は、集電体の片面に正極を形成した正極電極と、正極電極と対向し集電体の正極と対向する面に負極を形成した負極電極と、正極電極と負極電極との間に位置する複数の固体電解質と、隣接する複数の固体電解質の間にそれぞれ位置して集電体の片面に正極を形成し正極と反対側の面に負極を形成した複数のバイポーラ電極とを備える固体電池積層体と、前記正極電極に隣接して配置された正電極プレートと、前記負極電極に隣接して配置された負電極プレートと、前記固体電池積層体、前記正電極プレート、及び前記負電極プレートの外周部を覆い、前記正電極プレート、及び前記負電極プレートの電極面が露出するように一体化する樹脂筐体とを有し、前記樹脂筐体は樹脂成型金型内で前記正電極プレートと、前記負電極プレートとを前記固体電池積層体に押し付ける加圧状態で注入されて固化されることで加圧状態を保ちつつ前記固体電池積層体を封止し、前記複数の全固体電池の筐体構造は露出する正電極プレートが、他の全固体電池の筐体構造の露出する負電極プレートと隣接するように直列に配列されることを特徴とする。
【0011】
前記対向する正電極プレートと負電極プレートとは導電性材料を挟んで互いに接続され、前記導電性材料は柔軟性を有する導電性板状部材又は導電性フィルム材、或は導電性のペースト材であることが好ましい。
【発明の効果】
【0012】
本発明に係る全固体電池の筐体構造によれば、固体電池積層体を挟み込んで樹脂筐体により一体化される正負の電極プレートは全固体電池の筐体構造の外部端子として機能するため、全固体電池の筐体構造の正電極プレートを他の全固体電池の筐体構造の負電極プレートと接触させるようにして直列に複数個配置することにより、電気的に直列接続することができ、余分な接続領域を必要としないスペース効率の高いモジュール構造を容易に実現することが可能となる。更に従来方式のタブによる電極構造と異なりタブ同士の結線の必要がないことから結線に係る工数を低減することもできる。
【0013】
また、本発明に係る全固体電池の筐体構造によれば、固体電池積層体は積層方向に加圧された状態で外周部を樹脂筐体で封止されて拘束されるため、固体電池積層体が充放電を行う使用状態で膨張するのを抑制することが可能である。
【0014】
本発明に係る全固体電池の筐体構造を用いたモジュール構造によれば、直列接続する全固体電池の筐体構造の電極プレート間に柔軟性を有する導電性板状部材又は導電性フィルム材、或は導電性のペースト材を挟んで互いに接続されるため隣接する全固体電池の筐体構造の電極プレート同士の密着性が向上し、電気的な接触抵抗を低減するとともに熱抵抗も低減され、電気特性、熱特性の優れたモジュール構造が実現可能である。
【図面の簡単な説明】
【0015】
【
図1】本発明の一実施形態による全固体電池の筐体構造を部分的に切断して内部構造が見えるように示す斜視図である。
【
図2】
図1に示す全固体電池の筐体構造の内部構造を水平断面により概略的に示す図である。
【
図3】本発明の一実施形態によるモジュール構造を概略的に示す図である。
【
図4】
図3に示すモジュール構造の内部構造を水平断面により概略的に示す図である。
【
図5】本発明の一実施形態によるモジュール構造の締結方法を概略的に示す図である。
【
図6】
図5に示すモジュール構造の内部構造を水平断面により概略的に示す図である。
【発明を実施するための形態】
【0016】
次に、本発明に係る全固体電池の筐体構造及びこれを用いたモジュール構造を実施するための形態の具体例を、図面を参照しながら詳細に説明する。
図1は、本発明の一実施形態による全固体電池の筐体構造を部分的に切断して内部構造が見えるように示す斜視図である。
【0017】
図1を参照すると、本発明の一実施形態による全固体電池の筐体構造1は充放電を行う固体電池積層体20と、固体電池積層体20を挟み込むように位置する正電極プレート30及び負電極プレート40と、固体電池積層体20並びに正電極プレート30及び負電極プレート40の外周部を覆って全体を一体化する樹脂筐体50とを含む。
【0018】
正電極プレート30及び負電極プレート40は片面が樹脂筐体50で覆われる外周部を除いて外部に露出し、この露出した部分が外部への電極面として機能するように構成されている。即ち全固体電池の筐体構造1は全体が略直方体として形成され、全固体電池の筐体構造1の1側面に露出する正電極プレート30の電極面が正電極、正電極と対向する面に露出する負電極プレート40の電極面が負電極となり、この正電極と負電極が全固体電池の筐体構造1の外部端子となる。
【0019】
図2は、
図1に示す全固体電池の筐体構造の内部構造を水平断面により概略的に示す図である。
図2を参照すると、固体電池積層体20は集電体21の片面に正極22を形成した正極電極23、正極電極23の反対側に位置し、集電体21の正極22と対向する面に負極24を形成した負極電極25、正極電極23と負極電極25との間に位置する複数の固体電解質26、及び隣接する複数の固体電解質26の間にそれぞれ位置して集電体21の片面に正極22を形成し正極22と反対側の面に負極24を形成した複数のバイポーラ電極27とを備える。
【0020】
このように固体電池積層体20は複数の層が積層されて構成されるが、部分的にみると正極22、固体電解質26、負極24がこの順に組み合わされた固体電池としての最小単位構造が直列に複数配列された構造となっている。
ここで固体電池積層体20に使用する材料は固体電池として機能する材料であればその種類や組合せに制限はない。固体電池積層体20のそれぞれの層には以下のような公知の材料が使用される。
【0021】
集電体21は、一般には金属箔が使用され、金属箔の材料としてはAl、SUS、Cu、Niなどの材料が使用される。固体電池積層体20には正極電極23、負極電極25、バイポーラ電極27の3種類の電極にそれぞれ集電体21を含むが、3種類の電極の材料は同じでもよいし、異なる材料でもよい。
【0022】
正極22は、正極活性物質を含み、正極活性物質としてはLiCoO2、LiMnO2、LiMn2O4、LiFePO4、LiMnPO4等が挙げられる。正極は正極電極23とバイポーラ電極27とに含まれるが、正極電極23とバイポーラ電極27とで同一の正極活性物質を使用するのが好ましい。
【0023】
負極24は、負極活性物質を含み、負極活性物質としてはグラファイト、ハードカーボン、ソフトカーボンなどの炭素材料や、Li4Ti5O12等の無機酸化物が使用される。負極は負極電極25とバイポーラ電極27とに含まれるが、負極電極25とバイポーラ電極27とで同一の負極活性物質を使用するのが好ましい。
【0024】
固体電解質26の材料としては、酸化物系固体電解質や硫化物系固体電解質が使用され、酸化物系固体電解質としては、Li1.5Al0.5Ti1.5(PO4)3、Li0.5La0.5TiO3等が挙げられ、硫化物系固体電解質としては、Li2S-P2S5、Li2S-SiS2、LiGe0.25P0.75S4等が挙げられる。
【0025】
固体電池積層体20に加え、正極電極23の外側面に隣接して正電極プレート30が配置され、負極電極25の外側面に隣接して負電極プレート40が配置され、固体電池積層体20、正電極プレート30、及び負電極プレート40の外周部が樹脂筐体50によって覆われ一体化される。このとき外周部を覆う樹脂筐体50が正電極プレート30及び負電極プレート40の電極面より高く突出しないように正電極プレート30及び負電極プレート40の樹脂筐体50に覆われる部分は部分的に薄くした段差構造としている。
【0026】
正電極プレート30及び負電極プレート40は、金属材料など電気伝導性に加え熱伝導性の良い材料で形成される。露出する電極面には耐食性を向上させたり接触抵抗を低く保たせたりするためのメッキ処理などの表面処理を施してもよい。
樹脂筐体50は以下に示すように金型に注入し硬化させて形成するものであり、熱硬化型の樹脂を使用する。樹脂筐体50は全固体電池の筐体構造1を構造体としてまとめるためのものであり、強度と耐環境性が求められる。そこでエポキシ系の封止材料などの熱硬化型の樹脂を使用する。
【0027】
図1、2に示す全固体電池の筐体構造1を形成する場合、
図2に示すように正電極プレート30、固体電池積層体20、負電極プレート40をこの順に重ね合わせた組み合わせ構造体を、モールド金型に収納し、モールド金型の型締めの際、組み合わせ構造体に積層方向の圧力が加わるようにモールド金型の深さを調整し、型締めによって圧力が加わった状態で熱硬化型の樹脂を外周部に注入して金型内で硬化させる。
【0028】
このように加圧状態で樹脂封止することにより、正電極プレート30、固体電池積層体20、負電極プレート40の間の接触抵抗を下げ、電池としての性能の低下を防ぐことが可能である。また樹脂筐体により加圧状態で保持するように固めることにより、固体電池積層体20が充放電時に膨張するのを抑えることが可能となる。
【0029】
固体電池積層体20は表裏面を正電極プレート30及び負電極プレート40で覆われ、外周を樹脂筐体50で覆われるので、外気から遮断され、使用中の水分や異物による劣化を防ぐことが可能である。また正電極プレート30及び負電極プレート40に厚みを持たせることで、機械的な外力が加わっても固体電池積層体20にダメージが入るのを防ぐことができ、安全性を向上する効果が得られる。
【0030】
モールド金型に樹脂を注入する際、正極22や負極24が固体電解質26より大きく、固体電解質26の外周にはみ出していると、注入された樹脂により変形し正極22と負極24が近接したり接触したりしてショート不良や信頼度低下につながるため、正極22や負極24は固体電解質26より小さく形成する。
【0031】
図3は、本発明の一実施形態によるモジュール構造を概略的に示す図である。
図3を参照すると、本発明の一実施形態によるモジュール構造10は、
図1に示す全固体電池の筐体構造1を複数個直列に接続した形態を有する。全固体電池の筐体構造1は略直方体であるが、隣接する全固体電池の筐体構造1の一方の露出する正電極プレート30が、他方の全固体電池の筐体構造1の露出する負電極プレートと隣接するように直列に配列される。
【0032】
図3では6つの全固体電池の筐体構造1が直列に配列された構造を示すが、上記のように接続することで第1番目の全固体電池の筐体構造1の正電極プレート30がモジュール構造10の正電極となり、第6番目の負電極プレート40がモジュール構造10の負電極となる。尚モジュール構造10が備える全固体電池の筐体構造1の数は6に限ることはなく、6より多くても少なくてもよい。積層する数によらず第1番目の全固体電池の筐体構造1の正電極プレート30がモジュール構造10の正電極となり、最後の全固体電池の筐体構造1の負電極プレート40がモジュール構造10の負電極となる。
【0033】
このように本発明による全固体電池の筐体構造1は、従来の全固体電池のように外部端子としてのタブが固体電池積層体20から突出することがないので、複数の全固体電池の筐体構造1同士を接続するための接続エリアを別に設ける必要がなく、スペース効率の高いモジュール構造を実現することが可能である。
【0034】
図4は
図3に示すモジュール構造の内部構造を水平断面により概略的に示す図である。
前述のように樹脂筐体50は正電極プレート30及び負電極プレート40の電極面より高く突出しないため単純に直列に配列することで電気的に直列接続されたモジュール構造を実現することができるが、正電極プレート30及び負電極プレート40の電極面に微小な凹凸や傾きがあると、正電極プレート30と負電極プレート40との間の接触抵抗が高くなってしまう恐れがある。
【0035】
そこで
図4に示すモジュール構造では、隣接する全固体電池の筐体構造1の対向する正電極プレート30と負電極プレート40とは導電性材料60を挟んで互いに接続される。ここで導電性材料60は柔軟性を有する導電性板状部材又は導電性フィルム材、或は導電性のペースト材である。こうした柔軟性を有する導電性材料は一般に導電性の微小粒子が高密度に分散されており、圧力が加わって導電性材料が変形すると、中の微小粒子同士が接触し電気や熱を伝えるように構成されている。導電性材料60はこうした導電性の微小粒子応用したものでもよいし、材料自体が導電性と変形性を有するものでもよい。
【0036】
このように柔軟性を有する導電性板状部材又は導電性フィルム材、或は導電性のペースト材を挟んで対向する正電極プレート30と負電極プレート40を互いに近接する方向に押し付けると、電極面に微小な凹凸や傾きがあっても柔軟性を有する導電性板状部材又は導電性フィルム材、或は導電性のペースト材が変形してこれを吸収するため、正電極プレート30と負電極プレート40との間の接触抵抗が高くなるのを防止することができる。
【0037】
図5は、本発明の一実施形態によるモジュール構造の締結方法を概略的に示す図であり、
図6は
図5に示すモジュール構造の内部構造を水平断面により概略的に示す図である。
複数の全固体電池の筐体構造1を直列に接続してモジュール構造10を形成するためには、接触抵抗の観点から隣接する全固体電池の筐体構造1を互いに押し付けるようにして固定することが望ましい。
図5、6はこのための締結方法の一実施形態を示す。
【0038】
図5、6を参照すると、複数の全固体電池の筐体構造1を直列に配列した配列方向に沿って側方に一対の締結体70が設けられ、複数の全固体電池の筐体構造1のそれぞれは締結ボルト71によって締結体70に固定されている。締結体70は下方にL字状に折れ曲がり、取付け用のボルト穴を有する脚部を備えており、モジュール構造10を使用する装置や車両の筐体に取り付けられるようになっている。
【0039】
図5、6に示すモジュール構造10は、始めに第1番目の全固体電池の筐体構造1と一対の締結体70とを締結ボルト71によって固定した後、第2番目の全固体電池の筐体構造1を第1番目の全固体電池の筐体構造1に押し付けながら締結ボルト71によって固定するというように順次全固体電池の筐体構造1を押し付けながら固定していくことで、全体として接触抵抗の上昇を防止したモジュール構造10を形成することができる。このとき
図4で示したような導電性材料60を挟みこんで接続するようにしてもよい。また締結体70の締結ボルト71を貫通させるボルト穴は長穴として全固体電池の筐体構造1の取り付け位置を調整可能とするように構成してもよい。
【0040】
尚、
図6に示すモジュール構造10に使用する全固体電池の筐体構造1は、
図1に示すような略直方体形状のものとは少し形状が異なり、締結ボルト71を締結するための突起状のねじ取付け部を有する。
他の実施形態では、締結ボルト71の締結される部分の固体電池積層体20に切り欠き部を設け、切り欠き部の中に納まるようにねじ取付け部を設けることで側面に突起が生じないような形状としてもよい。
図5、6に示す締結体70の形状やこれを用いた締結方法は一つの実施形態であって、複数の全固体電池の筐体構造1が直列に密接された状態で保持できればこの締結方法には限らない。
【0041】
以上、本発明の実施形態について図面を参照しながら詳細に説明したが、本発明は、上述の実施形態に限定されるものではなく、本発明の技術的範囲から逸脱しない範囲内で多様に変更することが可能である。
【符号の説明】
【0042】
1 全固体電池の筐体構造
10 モジュール構造
20 固体電池積層体
21 集電体
22 正極
23 正極電極
24 負極
25 負極電極
26 固体電解質
27 バイポーラ電極
30 正電極プレート
40 負電極プレート
50 樹脂筐体
60 導電性材料
70 締結体
71 締結ボルト