(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-06-07
(45)【発行日】2023-06-15
(54)【発明の名称】ピペット先端の撮像ベースの位置特定を伴う物体ピッキング装置
(51)【国際特許分類】
G01N 1/10 20060101AFI20230608BHJP
C12M 1/26 20060101ALI20230608BHJP
【FI】
G01N1/10 K
C12M1/26
(21)【出願番号】P 2020502485
(86)(22)【出願日】2018-07-09
(86)【国際出願番号】 US2018041271
(87)【国際公開番号】W WO2019018152
(87)【国際公開日】2019-01-24
【審査請求日】2021-06-25
(32)【優先日】2017-07-18
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】511227336
【氏名又は名称】モレキュラー デバイシーズ, エルエルシー
(74)【代理人】
【識別番号】100078282
【氏名又は名称】山本 秀策
(74)【代理人】
【識別番号】100113413
【氏名又は名称】森下 夏樹
(72)【発明者】
【氏名】ブリッグス, ジェイソン
(72)【発明者】
【氏名】ジェドライティス, ポーラ
(72)【発明者】
【氏名】ミトロ, トリシャ エー.
【審査官】草川 貴史
(56)【参考文献】
【文献】特開2016-112012(JP,A)
【文献】特開2009-002674(JP,A)
【文献】特開2013-169185(JP,A)
【文献】特表2010-504086(JP,A)
【文献】特開2005-118905(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01N 1/00- 1/44
G01N 33/48-33/98
C12M 1/26
(57)【特許請求の範囲】
【請求項1】
複数の物体から物体
をピッキング
するための装置であって、
撮像システムであって、前記撮像システムは、光源と、カメラと、対物鏡とを備え、前記撮像システムは、光を前記光源から前記対物鏡に指向し、かつ、前記対物鏡から前記カメラに指向するように構成される、撮像システムと、
サンプルステージであって、前記サンプルステージは、サンプルプレートを支持するように構成され、前記サンプルプレートは、前記サンプルプレート
内に前記複数の物体を保持するように構成される、サンプルステージと、
ピペッタであって、前記ピペッタは、ピペット先端を保持し、前記ピペット先端を前記サンプルプレートにわたる1つ以上の選択された位置に移動させるように構成される、ピペッタと、
コントローラであって、
励起光ビームを生成するように前記光源を制御することであって、前記励起光ビームは、前記対物鏡を通過し、前記複数の物体を照射し、前記複数の物体は、応答して、第1の放出光ビームを放出し、前記カメラは、前記第1の放出光ビームを受け取り、応答して、第1の出力信号を出力する、ことと、
前記第1の出力信号を受信および処理することによって、前記複数の物体の画像を取得することと、
前記複数の物体の画像を分析し、前記分析に基づいて、前記複数の物体から物体を選択し、前記
サンプルプレートの上面に平行なX-Y平面内の前記選択された物体の座標位置を識別することと、
前記ピペット先端を前記選択された物体にわたる位置に移動させるように前記ピペッタを制御することであって、前記励起光ビームは、前記ピペット先端を照射し、前記ピペット先端は、応答して、第2の放出光ビームを放出し、前記カメラは、前記第2の放出光ビームを受け取り、応答して、第2の出力信号を出力する、ことと、
前記第2の出力信号を受信および処理することによって、前記ピペット先端の画像を取得することと、
前記ピペット先端の画像を分析し、前記分析に基づいて、前記X-Y平面内の前記ピペット先端の座標位置を識別することと、
前記選択された物体の座標位置と前記ピペット先端の座標位置との間の位置誤差を決定することと、
前記位置誤差に基づいて、前記ピペット先端の座標位置を前記選択された物体の座標位置と合致させることによって、前記選択された物体にわたって前記ピペット先端を整合させるように前記ピペッタまたは前記サンプルステージのうちの少なくとも1つを制御することであって、合致させることは、前記ピペット先端または前記サンプルステージのうちの少なくとも1つを相互に対して移動させることを含む、ことと
を行うように構成される、コントローラと
を備え
、
前記複数の物体は、細胞コロニーである、装置。
【請求項2】
前記コントローラは、
前記サンプルプレートを前記対物鏡の視野と整合させるように移動させることと、
サンプル容器を前記対物鏡の視野と整合させるように移動させることであって、前記サンプル容器は、前記サンプルプレートとともに含まれ、前記複数の物体を含有する、ことと、
複数のサンプル容器を前記対物鏡の視野と整合させるように連続的に移動させることであって、前記サンプル容器は、前記サンプルプレートとともに含まれ、個別の複数の物体を含有する、ことと、
前記サンプル容器の一部を前記対物鏡の視野と整合させるように移動させることであって、前記サンプル容器は、前記サンプルプレートとともに含まれ、前記複数の物体を含有する、ことと、
前述のうちの2つ以上のものの組み合わせと
から成る群から選択される前記サンプルステージの動作を制御するように構成される、請求項1に記載
の装置。
【請求項3】
前記コントローラは、
前記複数の物体の画像を取得する前に、前記複数の物体に対する焦点を調節するように前記対物鏡を制御することと、
前記ピペット先端の画像を取得する前に、前記ピペット先端に対する焦点を調節するように前記対物鏡を制御することと
を行うように構成される、請求項1に記載
の装置。
【請求項4】
前記複数の物体を照射する前記励起光ビームは、第1の励起光ビームであり、
前記コントローラはさらに、前記ピペット先端の画像を取得する前に、第2の励起光ビームを生成するために前記光源を制御するように構成され、前記第2の励起光ビームは、前記対物鏡を通過し、前記ピペット先端を照射し、
前記ピペット先端は、前記第2の励起光ビームによる照射に応答して、前記第2の放出光ビームを放出する、
請求項1に記載
の装置。
【請求項5】
前記第1の励起光ビームは、第1の励起波長において前記複数の物体を照射し、コントローラはさらに、前記ピペット先端の画像を取得する前に、前記第2の励起光ビームが前記ピペット先端を照射する第2の励起波長を選択するように構成され、前記第2の励起波長は、前記第1の励起波長と異なる、請求項4に記載
の装置。
【請求項6】
前記光源は、異なる個別の波長において光を生成するように構成される少なくとも第1の光源ユニットおよび第2の光源ユニットを備え、前記コントローラは、前記第1の光源ユニットのアクティブ動作から前記第2の光源ユニットのアクティブ動作に切り替えることによって、前記第2の励起波長を選択するように構成される、請求項5に記載
の装置。
【請求項7】
前記撮像システムは、前記光源と前記対物鏡との間の励起光路の中に移動可能な少なくとも第1の励起フィルタおよび第2の励起フィルタを備え、前記第1の励起フィルタおよび前記第2の励起フィルタは、異なる個別の波長の光を通過させるように構成され、前記コントローラは、前記第1の励起フィルタを前記励起光路から切り替え、前記第2の励起フィルタを前記励起光路の中に切り替えることによって、前記第2の励起波長を選択するように構成される、請求項5に記載
の装置。
【請求項8】
前記撮像システムは、前記光源と前記対物鏡との間の励起光路の中に移動可能な少なくとも第1のダイクロイックミラーおよび第2のダイクロイックミラーを備え、前記第1のダイクロイックミラーおよび前記第2のダイクロイックミラーは、異なる個別の波長の光を反射または通過させるように構成され、前記コントローラは、前記第1のダイクロイックミラーを前記励起光路から切り替え、前記第2のダイクロイックミラーを前記励起光路の中に切り替えることによって、前記第2の励起波長を選択するように構成される、請求項5に記載
の装置。
【請求項9】
前記コントローラは、前記選択された物体にわたって前記ピペット先端を整合させた後、前記選択された物体を前記ピペット先端の中に吸引するように前記ピペッタを制御するように構成される、請求項1に記載
の装置。
【請求項10】
前記コントローラは、前記ピペット先端を移動先プレートに移動させ、前記選択された物体を前記ピペット先端から前記移動先プレートの中に分注するように前記ピペッタを制御するように構成される、請求項9に記載
の装置。
【請求項11】
前記移動先プレートは、マルチウェルプレートであり、
前記コントローラは、前記ピペット先端を前記マルチウェルプレートの選択されたウェルと整合させるように移動させ、前記選択された物体を前記ピペット先端から前記選択されたウェルの中に分注するように前記ピペッタを制御するように構成される、
請求項10に記載
の装置。
【請求項12】
前記コントローラは、
前記ピペット先端の画像を分析し、前記X-Y平面に直交するZ軸に沿った前記サンプルプレートからの前記ピペット先端の実際の距離を識別することと、
前記実際の距離と設定点距離との間の位置誤差を決定することと、
前記実際の距離と前記設定点距離との間の前記位置誤差に基づいて、前記実際の距離が前記設定点距離に等しくなるまで前記Z軸に沿って前記ピペット先端を移動させるように前記ピペッタを制御することと
を行うように構成される、請求項1に記載
の装置。
【請求項13】
複数の物体から物体をピッキングするための方法であって、前記方法は、
サンプル容器
内に含有される前記複数の物体を提供するステップと、
励起光ビームを用いて前記複数の物体を照射するステップであって、前記複数の物体は、応答して、第1の放出光ビームを放出する、ステップと、
カメラにおいて前記第1の放出光ビームを受け取るステップであって、前記カメラは、第1の出力信号を出力する、ステップと、
前記第1の出力信号を処理することによって、前記複数の物体の画像を取得するステップと、
前記複数の物体の画像を分析し、前記分析に基づいて、前記複数の物体から物体を選択し、前記
サンプル容器の上面に平行なX-Y平面内の前記選択された物体の座標位置を識別するステップと、
ピペット先端を前記選択された物体にわたる位置に移動させるステップであって、前記励起光ビームは、前記ピペット先端を照射し、前記ピペット先端は、応答して、第2の放出光ビームを放出する、ステップと、
前記カメラにおいて前記第2の放出光ビームを受け取るステップであって、前記カメラは、第2の出力信号を出力する、ステップと、
前記第2の出力信号を処理することによって、前記ピペット先端の画像を取得するステップと、
前記ピペット先端の画像を分析し、前記分析に基づいて、前記X-Y平面内の前記ピペット先端の座標位置を識別するステップと、
前記選択された物体の座標位置と前記ピペット先端の座標位置との間の位置誤差を決定するステップと、
前記位置誤差に基づいて、前記ピペット先端の座標位置を前記選択された物体の座標位置と合致させることによって、前記ピペット先端を前記選択された物体にわたって整合させるように前記ピペット先端または前記サンプル容器のうちの少なくとも1つを移動させるステップと
を含
み、
前記複数の物体は、細胞コロニーである、方法。
【請求項14】
前記複数の物体を照射する前に、前記サンプル容器または前記サンプル容器の一部を対物鏡の視野と整合させるように移動させるステップを含み、前記対物鏡は、前記カメラと光学連通する、請求項13に記載の方法。
【請求項15】
前記複数の物体の画像を取得する前に、前記複数の物体に対する対物鏡の焦点を調節するステップであって、前記対物鏡は、前記カメラと光学連通する、ステップと、
前記ピペット先端の画像を取得する前に、前記ピペット先端に対する焦点を調節するステップと
を含む、請求項13に記載の方法。
【請求項16】
前記複数の物体を照射する前記励起光ビームは、第1の励起光ビームであり、
前記方法はさらに、前記ピペット先端の画像を取得する前に、第2の励起光ビームを生成するステップであって、前記第2の励起光ビームは、前記ピペット先端を照射する、ステップを含み、
前記ピペット先端は、前記第2の励起光ビームによる照射に応答して、前記第2の放出光ビームを放出する、
請求項13に記載の方法。
【請求項17】
前記第1の励起光ビームは、第1の励起波長において前記複数の物体を照射し、さらに、前記ピペット先端の画像を取得する前に、前記第2の励起光ビームが前記ピペット先端を照射する第2の励起波長を選択するステップを含み、前記第2の励起波長は、前記第1の励起波長と異なる、請求項16に記載の方法。
【請求項18】
前記第2の励起波長を選択するステップは、
第1の光源ユニットのアクティブ動作から第2の光源ユニットのアクティブ動作に切り替えるステップであって、前記第1の光源ユニットおよび前記第2の光源ユニットは、異なる個別の波長において光を生成する、ステップと、
第1の励起フィルタを励起光路から切り替え、第2の励起フィルタを前記励起光路の中に切り替えるステップであって、前記励起光路は、光源と対物鏡との間にあり、前記第1の励起フィルタおよび前記第2の励起フィルタは、異なる個別の波長の光を通過させるように構成される、ステップと、
第1のダイクロイックミラーを前記励起光路から切り替え、第2のダイクロイックミラーを前記励起光路の中に切り替えるステップであって、前記励起光路は、光源と対物鏡との間にあり、前記第1のダイクロイックミラーおよび前記第2のダイクロイックミラーは、異なる個別の波長の光を反射または通過させるように構成される、ステップと、
前述のうちの2つ以上のものの組み合わせと
から成る群から選択されるステップを含む、請求項17に記載の方法。
【請求項19】
前記選択された物体にわたって前記ピペット先端を整合させた後、前記選択された物体を前記ピペット先端の中に吸引するステップを含む、請求項13に記載の方法。
【請求項20】
吸引した後、前記ピペット先端を移動先プレートに移動させ、前記選択された物体を前記ピペット先端から前記移動先プレートに分注するステップを含む、請求項19に記載の方法。
【請求項21】
前記移動先プレートは、マルチウェルプレートであり、前記ピペット先端を前記移動先プレートに移動させるステップは、前記ピペット先端を前記マルチウェルプレートの選択されたウェルと整合させるように移動させるステップを含み、前記選択された物体を分注するステップは、前記選択された物体を前記選択されたウェルの中に分注するステップを含む、請求項20に記載の方法。
【請求項22】
前記ピペット先端の画像を分析し、前記X-Y平面に直交するZ軸に沿った前記サンプル容器からの前記ピペット先端の実際の距離を識別するステップと、
前記実際の距離と設定点距離との間の位置誤差を決定するステップと、
前記実際の距離と前記設定点距離との間の前記位置誤差に基づいて、前記実際の距離が前記設定点距離に等しくなるように前記ピペット先端を移動させるようにピペッタデバイスを制御するステップと
を含む、請求項13に記載の方法。
【請求項23】
前記物体は、生物学的細胞コロニーである、請求項13に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
(関連出願の相互参照)
本願は、参照することによってその全体として本明細書に組み込まれる、2017年7月18日に出願され、「Object Picking Apparatus with Imaging-Based Locating of Pipette Tip」と題された、米国仮特許出願第62/533,767号の優先権を主張する。
【0002】
本発明は、概して、自動化ピペット先端の使用を伴う細胞コロニーピッキング等の物体ピッキングに関する。特に、本発明は、ピッキングされる物体に対してピペット先端を正確に位置付けるための撮像ベースのアプローチを利用する物体ピッキングに関する。
【背景技術】
【0003】
物体ピッカは、概して、類似する物体の群から単一の物体を分離する(すなわち、選択された物体を「ピッキング」する)ように構成される器具である。生命科学では、物体は、多くの場合、細胞または微生物またはコロニーまたは複数の細胞または微生物等の生物学的物体である。そのような器具は、細胞ピッカまたはコロニーピッカと称され得る。選択された生物学的物体は、例えば、アッセイ、スクリーニング、クローニング、核酸配列決定等のために、これがさらに分析または処理されることを可能にするためにピッキングされる。他の現代の分析および液体処理器具のように、物体ピッキング器具のある機能は、増加された処理能力を提供するために自動化され得る。
【0004】
物体ピッカの1つのクラスでは、ピペット先端が、液体中に浸漬される粘着性細胞コロニー等の物体をピッキングするために利用される。ピペット先端は、典型的には、3つの軸に沿ってピペッタロボットによって移動可能であるピペットヘッドのアダプタに搭載される。具体的には、ピペット先端は、物体に向かって降下され、ピペット先端の管腔と連通するポンプが、吸引力を生成し、物体は、ピペット先端の開放遠位端を通して管腔の中に吸引される。ピッキング動作の成功および正確度を確実にするために、ピペット先端は、選択されていない物体をピッキングすることを回避するために、ピッキングされる物体にわたって明確に中心合わせされる必要がある。これは、特に、物体密度が増加される際、すなわち、群の物体が相互に非常に近接して位置するときに重要である。配置されるピペット先端の正確度は、異なるピペット先端の間の寸法差異、自動化ティッピング動作における再現性不良(例えば、ピペット先端が、毎回同一の深さおよび/または同一の角度でピペットヘッド上に押圧されない)、およびピペッタロボットの位置正確度における限界を含む、いくつかの因子によって限定され得る。公知の解決策が、ロボット工学(例えば、運動制御)の正確度およびピペット先端を搭載するための機構を改良するために試みられているが、上記の限界は、依然として存在している。ロボットアームに対してピペット先端を配置するために光学または容量センサを利用することもまた、可能であり得るが、そのような解決策は、依然として、位置誤差の余地を残す。
【0005】
したがって、ピッキングされる物体にわたるピペット先端の改良された位置付けを提供することが、望ましいであろう。
【発明の概要】
【課題を解決するための手段】
【0006】
全体的または部分的に、前述の問題および/または当業者によって観察されている場合がある他の問題に対処するために、本開示は、下記に記載される実装において実施例として説明されるように、方法、プロセス、システム、装置、器具、および/またはデバイスを提供する。
【0007】
ある実施形態によると、物体ピッキング装置は、光源と、カメラと、対物鏡とを備える、撮像システムであって、光を光源から対物鏡に、および対物鏡からカメラに指向するように構成される、撮像システムと、サンプルプレートを支持するように構成される、サンプルステージであって、サンプルプレートは、複数の物体を保持するように構成される、サンプルステージと、ピペット先端を保持し、ピペット先端をサンプルプレートにわたる1つ以上の選択された位置に移動させるように構成される、ピペッタと、コントローラであって、励起光ビームを生成するように光源を制御することであって、励起光ビームは、対物鏡を通過し、複数の物体を照射し、複数の物体は、応答して、第1の放出光ビームを放出し、カメラは、第1の放出光ビームを受け取り、応答して、第1の出力信号を出力する、ことと、第1の出力信号を受信および処理することによって、複数の物体の画像を取得することと、複数の物体の画像を分析し、分析に基づいて、複数の物体から物体を選択し、X-Y平面内の選択された物体の座標位置を識別することと、ピペット先端を選択された物体にわたる位置に移動させるようにピペッタを制御することであって、励起光ビームは、ピペット先端を照射し、ピペット先端は、応答して、第2の放出光ビームを放出し、カメラは、第2の放出光ビームを受け取り、応答して、第2の出力信号を出力することと、第2の出力信号を受信および処理することによって、ピペット先端の画像を取得することと、ピペット先端の画像を分析し、分析に基づいて、X-Y平面内のピペット先端の座標位置を識別することと、選択された物体の座標位置とピペット先端の座標位置との間の位置誤差を決定することと、位置誤差に基づいて、ピペット先端の座標位置を選択された物体の座標位置と合致させることによって、選択された物体にわたってピペット先端を整合させるようにピペッタまたはサンプルステージのうちの少なくとも1つを制御することであって、合致させることは、ピペット先端またはサンプル容器のうちの少なくとも1つを相互に対して移動させることを含む、こととを行うように構成される、コントローラとを含む。
【0008】
別の実施形態によると、複数の物体から物体をピッキングするための方法は、サンプル容器内に複数の物体を提供するステップと、励起光ビームを用いて複数の物体を照射するステップであって、複数の物体は、応答して、第1の放出光ビームを放出する、ステップと、カメラにおいて第1の放出光ビームを受け取るステップであって、カメラは、第1の出力信号を出力する、ステップと、第1の出力信号を処理することによって、複数の物体の画像を取得するステップと、複数の物体の画像を分析し、分析に基づいて、複数の物体から物体を選択し、上面に平行なX-Y平面内の選択された物体の座標位置を識別するステップと、ピペット先端を選択された物体にわたる位置に移動させるステップであって、励起光ビームは、ピペット先端を照射し、ピペット先端は、応答して、第2の放出光ビームを放出する、ステップと、カメラにおいて第2の放出光ビームを受け取るステップであって、カメラは、第2の出力信号を出力する、ステップと、第2の出力信号を処理することによって、ピペット先端の画像を取得するステップと、ピペット先端の画像を分析し、分析に基づいて、X-Y平面内のピペット先端の座標位置を識別するステップと、選択された物体の座標位置とピペット先端の座標位置との間の位置誤差を決定するステップと、位置誤差に基づいて、ピペット先端の座標位置を選択された物体の座標位置と合致させることによって、ピペット先端を選択された物体にわたって整合させるようにピペット先端またはサンプル容器のうちの少なくとも1つを移動させるステップとを含む。
【0009】
本発明の他のデバイス、装置、システム、方法、特徴、および利点が、以下の図および詳細な説明の考察に応じて、当業者に明白である、または明白となるであろう。全てのそのような付加的システム、方法、特徴、および利点が、本説明内に含まれ、本発明の範囲内であり、付随の請求項によって保護されることを意図している。
本明細書は、例えば、以下の項目も提供する。
(項目1)
物体ピッキング装置であって、
撮像システムであって、前記撮像システムは、光源と、カメラと、対物鏡とを備え、前記撮像システムは、光を前記光源から前記対物鏡に指向し、かつ、前記対物鏡から前記カメラに指向するように構成される、撮像システムと、
サンプルステージであって、前記サンプルステージは、サンプルプレートを支持するように構成され、前記サンプルプレートは、複数の物体を保持するように構成される、サンプルステージと、
ピペッタであって、前記ピペッタは、ピペット先端を保持し、前記ピペット先端を前記サンプルプレートにわたる1つ以上の選択された位置に移動させるように構成される、ピペッタと、
コントローラであって、
励起光ビームを生成するように前記光源を制御することであって、前記励起光ビームは、前記対物鏡を通過し、前記複数の物体を照射し、前記複数の物体は、応答して、第1の放出光ビームを放出し、前記カメラは、前記第1の放出光ビームを受け取り、応答して、第1の出力信号を出力する、ことと、
前記第1の出力信号を受信および処理することによって、前記複数の物体の画像を取得することと、
前記複数の物体の画像を分析し、前記分析に基づいて、前記複数の物体から物体を選択し、X-Y平面内の前記選択された物体の座標位置を識別することと、
前記ピペット先端を前記選択された物体にわたる位置に移動させるように前記ピペッタを制御することであって、前記励起光ビームは、前記ピペット先端を照射し、前記ピペット先端は、応答して、第2の放出光ビームを放出し、前記カメラは、前記第2の放出光ビームを受け取り、応答して、第2の出力信号を出力する、ことと、
前記第2の出力信号を受信および処理することによって、前記ピペット先端の画像を取得することと、
前記ピペット先端の画像を分析し、前記分析に基づいて、前記X-Y平面内の前記ピペット先端の座標位置を識別することと、
前記選択された物体の座標位置と前記ピペット先端の座標位置との間の位置誤差を決定することと、
前記位置誤差に基づいて、前記ピペット先端の座標位置を前記選択された物体の座標位置と合致させることによって、前記選択された物体にわたって前記ピペット先端を整合させるように前記ピペッタまたは前記サンプルステージのうちの少なくとも1つを制御することであって、合致させることは、前記ピペット先端または前記サンプル容器のうちの少なくとも1つを相互に対して移動させることを含む、ことと
を行うように構成される、コントローラと
を備える、物体ピッキング装置。
(項目2)
前記コントローラは、
前記サンプルプレートを前記対物鏡の視野と整合させるように移動させることと、
サンプル容器を前記対物鏡の視野と整合させるように移動させることであって、前記サンプル容器は、前記サンプルプレートとともに含まれ、前記複数の物体を含有する、ことと、
複数のサンプル容器を前記対物鏡の視野と整合させるように連続的に移動させることであって、前記サンプル容器は、前記サンプルプレートとともに含まれ、個別の複数の物体を含有する、ことと、
前記サンプル容器の一部を前記対物鏡の視野と整合させるように移動させることであって、前記サンプル容器は、前記サンプルプレートとともに含まれ、前記複数の物体を含有する、ことと、
前述のうちの2つ以上のものの組み合わせと
から成る群から選択される前記サンプルステージの動作を制御するように構成される、項目1に記載の物体ピッキング装置。
(項目3)
前記コントローラは、
前記複数の物体の画像を取得する前に、前記複数の物体に対する焦点を調節するように前記対物鏡を制御することと、
前記ピペット先端の画像を取得する前に、前記ピペット先端に対する焦点を調節するように前記対物鏡を制御することと
を行うように構成される、項目1に記載の物体ピッキング装置。
(項目4)
前記複数の物体を照射する前記励起光ビームは、第1の励起光ビームであり、
前記コントローラはさらに、前記ピペット先端の画像を取得する前に、第2の励起光ビームを生成するために前記光源を制御するように構成され、前記第2の励起光ビームは、前記対物鏡を通過し、前記ピペット先端を照射し、
前記ピペット先端は、前記第2の励起光ビームによる照射に応答して、前記第2の放出光ビームを放出する、
項目1に記載の物体ピッキング装置。
(項目5)
前記第1の励起光ビームは、第1の励起波長において前記複数の物体を照射し、コントローラはさらに、前記ピペット先端の画像を取得する前に、前記第2の励起光ビームが前記ピペット先端を照射する第2の励起波長を選択するように構成され、前記第2の励起波長は、前記第1の励起波長と異なる、項目4に記載の物体ピッキング装置。
(項目6)
前記光源は、異なる個別の波長において光を生成するように構成される少なくとも第1の光源ユニットおよび第2の光源ユニットを備え、前記コントローラは、前記第1の光源ユニットのアクティブ動作から前記第2の光源ユニットのアクティブ動作に切り替えることによって、前記第2の励起波長を選択するように構成される、項目5に記載の物体ピッキング装置。
(項目7)
前記撮像システムは、前記光源と前記対物鏡との間の励起光路の中に移動可能な少なくとも第1の励起フィルタおよび第2の励起フィルタを備え、前記第1の励起フィルタおよび前記第2の励起フィルタは、異なる個別の波長の光を通過させるように構成され、前記コントローラは、前記第1の励起フィルタを前記励起光路から切り替え、前記第2の励起フィルタを前記励起光路の中に切り替えることによって、前記第2の励起波長を選択するように構成される、項目5に記載の物体ピッキング装置。
(項目8)
前記撮像システムは、前記光源と前記対物鏡との間の励起光路の中に移動可能な少なくとも第1のダイクロイックミラーおよび第2のダイクロイックミラーを備え、前記第1のダイクロイックミラーおよび前記第2のダイクロイックミラーは、異なる個別の波長の光を反射または通過させるように構成され、前記コントローラは、前記第1のダイクロイックミラーを前記励起光路から切り替え、前記第2のダイクロイックミラーを前記励起光路の中に切り替えることによって、前記第2の励起波長を選択するように構成される、項目5に記載の物体ピッキング装置。
(項目9)
前記コントローラは、前記選択された物体にわたって前記ピペット先端を整合させた後、前記選択された物体を前記ピペット先端の中に吸引するように前記ピペッタを制御するように構成される、項目1に記載の物体ピッキング装置。
(項目10)
前記コントローラは、前記ピペッタ先端を移動先プレートに移動させ、前記選択された物体を前記ピペット先端から前記移動先プレートの中に分注するように前記ピペッタを制御するように構成される、項目9に記載の物体ピッキング装置。
(項目11)
前記移動先プレートは、マルチウェルプレートであり、
前記コントローラは、前記ピペット先端を前記マルチウェルプレートの選択されたウェルと整合させるように移動させ、前記選択された物体を前記ピペット先端から前記選択されたウェルの中に分注するように前記ピペッタを制御するように構成される、
項目10に記載の物体ピッキング装置。
(項目12)
前記コントローラは、
前記ピペット先端の画像を分析し、前記X-Y平面に直交するZ軸に沿った前記サンプルプレートからの前記ピペット先端の実際の距離を識別することと、
前記実際の距離と設定点距離との間の位置誤差を決定することと、
前記実際の距離と前記設定点距離との間の前記位置誤差に基づいて、前記実際の距離が前記設定点距離に等しくなるまで前記Z軸に沿って前記ピペット先端を移動させるように前記ピペッタを制御することと
を行うように構成される、項目1に記載の物体ピッキング装置。
(項目13)
複数の物体から物体をピッキングするための方法であって、前記方法は、
サンプル容器内に複数の物体を提供するステップと、
励起光ビームを用いて前記複数の物体を照射するステップであって、前記複数の物体は、応答して、第1の放出光ビームを放出する、ステップと、
カメラにおいて前記第1の放出光ビームを受け取るステップであって、前記カメラは、第1の出力信号を出力する、ステップと、
前記第1の出力信号を処理することによって、前記複数の物体の画像を取得するステップと、
前記複数の物体の画像を分析し、前記分析に基づいて、前記複数の物体から物体を選択し、上面に平行なX-Y平面内の前記選択された物体の座標位置を識別するステップと、
ピペット先端を前記選択された物体にわたる位置に移動させるステップであって、前記励起光ビームは、前記ピペット先端を照射し、前記ピペット先端は、応答して、第2の放出光ビームを放出する、ステップと、
前記カメラにおいて前記第2の放出光ビームを受け取るステップであって、前記カメラは、第2の出力信号を出力する、ステップと、
前記第2の出力信号を処理することによって、前記ピペット先端の画像を取得するステップと、
前記ピペット先端の画像を分析し、前記分析に基づいて、前記X-Y平面内の前記ピペット先端の座標位置を識別するステップと、
前記選択された物体の座標位置と前記ピペット先端の座標位置との間の位置誤差を決定するステップと、
前記位置誤差に基づいて、前記ピペット先端の座標位置を前記選択された物体の座標位置と合致させることによって、前記ピペット先端を前記選択された物体にわたって整合させるように前記ピペット先端または前記サンプル容器のうちの少なくとも1つを移動させるステップと
を含む、方法。
(項目14)
前記複数の物体を照射する前に、前記サンプル容器または前記サンプル容器の一部を対物鏡の視野と整合させるように移動させるステップを含み、前記対物鏡は、前記カメラと光学連通する、項目13に記載の方法。
(項目15)
前記複数の物体の画像を取得する前に、前記複数の物体に対する対物鏡の焦点を調節するステップであって、前記対物鏡は、前記カメラと光学連通する、ステップと、
前記ピペット先端の画像を取得する前に、前記ピペット先端に対する焦点を調節するステップと
を含む、項目13に記載の方法。
(項目16)
前記複数の物体を照射する前記励起光ビームは、第1の励起光ビームであり、
前記方法はさらに、前記ピペット先端の画像を取得する前に、第2の励起光ビームを生成するステップであって、前記第2の励起光ビームは、前記ピペット先端を照射する、ステップを含み、
前記ピペット先端は、前記第2の励起光ビームによる照射に応答して、前記第2の放出光ビームを放出する、
項目13に記載の方法。
(項目17)
前記第1の励起光ビームは、第1の励起波長において前記複数の物体を照射し、さらに、前記ピペット先端の画像を取得する前に、前記第2の励起光ビームが前記ピペット先端を照射する第2の励起波長を選択するステップを含み、前記第2の励起波長は、前記第1の励起波長と異なる、項目16に記載の方法。
(項目18)
前記第2の励起波長を選択するステップは、
第1の光源ユニットのアクティブ動作から第2の光源ユニットのアクティブ動作に切り替えるステップであって、前記第1の光源ユニットおよび前記第2の光源ユニットは、異なる個別の波長において光を生成する、ステップと、
第1の励起フィルタを励起光路から切り替え、第2の励起フィルタを前記励起光路の中に切り替えるステップであって、前記励起光路は、前記光源と対物鏡との間にあり、前記第1の励起フィルタおよび前記第2の励起フィルタは、異なる個別の波長の光を通過させるように構成される、ステップと、
第1のダイクロイックミラーを前記励起光路から切り替え、第2のダイクロイックミラーを前記励起光路の中に切り替えるステップであって、前記励起光路は、前記光源と対物鏡との間にあり、前記第1のダイクロイックミラーおよび前記第2のダイクロイックミラーは、異なる個別の波長の光を反射または通過させるように構成される、ステップと、
前述のうちの2つ以上のものの組み合わせと
から成る群から選択されるステップを含む、項目17に記載の方法。
(項目19)
前記選択された物体にわたって前記ピペット先端を整合させた後、前記選択された物体を前記ピペット先端の中に吸引するステップを含む、項目13に記載の方法。
(項目20)
吸引した後、前記ピペット先端を移動先プレートに移動させ、前記選択された物体を前記ピペット先端から前記移動先プレートに分注するステップを含む、項目19に記載の方法。
(項目21)
前記移動先プレートは、マルチウェルプレートであり、前記ピペット先端を前記移動先プレートに移動させるステップは、前記ピペット先端を前記マルチウェルプレートの選択されたウェルと整合させるように移動させるステップを含み、前記選択された物体を分注するステップは、前記選択された物体を前記選択されたウェルの中に分注するステップを含む、項目20に記載の方法。
(項目22)
前記ピペット先端の画像を分析し、前記X-Y平面に直交するZ軸に沿った前記サンプル容器からの前記ピペット先端の実際の距離を識別するステップと、
前記実際の距離と設定点距離との間の位置誤差を決定するステップと、
前記実際の距離と前記設定点距離との間の前記位置誤差に基づいて、前記実際の距離が前記設定点距離に等しくなるように前記ピペット先端を移動させるように前記ピペッタデバイスを制御するステップと
を含む、項目13に記載の方法。
(項目23)
前記物体は、生物学的細胞コロニーである、項目13に記載の方法。
【図面の簡単な説明】
【0010】
本発明は、以下の図を参照することによってより深く理解されることができる。図のコンポーネントは、必ずしも縮尺通りではなく、代わりに、本発明の原理を図示することに重点が置かれている。図では、同様の参照番号は、異なる図全体を通して対応する部分を指定する。
【0011】
【
図1】
図1は、ある実施形態による、物体ピッキング装置の実施例の概略上面図である。
【0012】
【
図2】
図2は、X-Z平面内の物体ピッキング装置の概略立面図である。
【0013】
【
図3】
図3は、本装置のサンプルプレートおよびサンプルステージングシステムの概略図である。
【0014】
【
図4】
図4は、本装置内に提供され得る撮像システムの概略図である。
【0015】
【
図5】
図5は、対物鏡と光学整合するサンプル容器の概略立面図である。
【0016】
【
図6】
図6は、サンプル容器内の物体のX-Y平面における概略図であり、選択された物体をさらに図示する。
【0017】
【
図7】
図7は、サンプル容器、対物鏡、およびピペット先端の概略立面図である。
【0018】
【
図8】
図8は、それらの間の位置誤差(ΔX、ΔY)を補正する前のピペット先端および選択された物体のX-Y平面における概略図である。
【0019】
【
図9】
図9は、本開示による、それらの間の位置誤差(ΔX、ΔY)を補正した後のピペット先端および選択された物体のX-Y平面における概略図である。
【0020】
【
図10】
図10は、
図5と類似する対物鏡と光学整合するサンプル容器の概略立面図であり、第2の光源をさらに図示する。
【発明を実施するための形態】
【0021】
本明細書で使用されるように、用語「物体」は、概して、物体の群から選択され得る物理的物体を指す。選択された物体は、物体の群から除去または「ピッキング」され、それによって、選択されていない物体から分離されることができる。いくつかの実施形態では、物体は、生物学的細胞である。便宜上、本明細書で使用されるように、用語「生物学的細胞」は、1つ以上の生物学的細胞または微生物(例えば、細胞コロニーまたは微生物コロニー)を指す。
【0022】
本明細書で使用されるように、用語「サンプル」は、概して、単一の個別に識別可能な場所に存在する物体の群を指す。場所は、サンプル容器であってもよい。サンプル容器は、サンプル容器の群のうちの1つであってもよい。実施例として、サンプル容器は、皿、バイアル、またはマルチウェルプレートのウェル(例えば、マイクロタイタプレートまたは「マイクロプレート」)であってもよい。サンプル容器の群が提供されるとき、異なるサンプル容器は、異なるサンプルを含有してもよい。
【0023】
本明細書で使用されるように、用語「光」は、概して、光子として定量化可能な電磁放射を指す。これが本開示に関連する際、光は、紫外線(UV)から赤外線(IR)に及ぶ波長において伝搬し得る。本開示では、用語「光」は、可視範囲内の電磁放射に限定されることを意図していない。本開示では、用語「光」、「光子」、および「放射」は、同義的に使用される。
【0024】
本明細書に開示される種々の実施形態は、物体または他の構造(例えば、ピペット先端)の画像を取得すること(または「撮像」)を伴う。実施形態および/または撮像される構造に応じて、画像取得は、蛍光、反射率(または散乱)、または透過率に基づいてもよい。概して、物体(または他の構造)の撮像は、「励起光」および「放出光」を伴う。物体の撮像は、励起光を用いて物体を照射し、照射に応答して物体から放出される放出光を収集することを伴う。蛍光ベースの撮像では、(例えば、紫外線(UV)範囲内の)励起光の波長は、通常、(例えば、より赤い)放出光の波長よりも短い(例えば、より青い)。蛍光ベースの放出光の源は、物体からの自己蛍光または物体に以前に取り付けられた蛍光体からの蛍光であってもよい。反射率ベースの撮像では、励起光の波長は、放出光の波長とほぼ同一であってもよい。この場合、入射励起光に応答して物体から反射(または散乱)された光は、放出光である。透過率ベースの撮像では、物体に入射する励起光は、物体を通過し、光吸収および/または散乱に起因して減衰される。この場合、物体から発生する減衰光は、放出光である。全てのそのような場合では、便宜上、本開示では、別様に規定されない限り、または文脈が別様に示さない限り、画像を取得する特定の事例が蛍光、反射率、または透過率に基づくかどうかにかかわらず、「励起光」は、物体を照射するために利用される光を指し、「放出光」は、照射に応答してサンプルから収集される光を指す。
【0025】
図1は、ある実施形態による、物体ピッキング装置100の実施例の概略上面図である。物体ピッキング装置100はまた、サンプル分析装置と見なされてもよい。
図1では、物体ピッキング装置100の種々のコンポーネントは、図示および説明を促進するために、一般的または恣意的な様式で図式的に配列される。実践するために実際には縮小される実際の実施形態では、相互に対する種々のコンポーネントの位置は、
図1に図式的に描写または示唆されるものと有意に異なってもよい。また、図示および説明を促進するために、
図1および他の図面の図は、デカルト(X-Y-Z)基準系を提供し、その原点(0、0、0)は、図に恣意的に位置付けられている。
図1の上面図は、X-Y平面内にあるように検討される。用語「X-Y平面」は、別様に規定されない限り、または文脈が別様に示さない限り、Z軸に沿ったX-Y平面の具体的高度位置に関係なく、配向を示すための基準として一般的意味において本明細書で使用される。高さまたは高度等のZ軸に沿った位置および「上方」、「下方」、「わたる」、「下」、および同等物等の用語は、例えば、その上に装置100が配置される表面等のX-Y平面内の平坦な基準面に対して考慮されてもよい。
【0026】
装置100は、概して、それに対して種々のコンポーネントが(例えば、その上に、それにわたって、またはその下に)位置付けられ得るデッキ104(基部またはプラットフォーム)を含んでもよい。本実施形態の文脈では、デッキ104は、X-Y平面において配向される。装置100はまた、デッキ104にわたって位置付けられるピペッタ108を含む。ピペッタ108は、デッキ104上に直接搭載される、またはガントリ(図示せず)等の任意の好適な中間支持構造を通してデッキ104によって支持されてもよい。ピペッタ108は、
図1の矢印によって示されるように、X-Z平面内で水平に(すなわち、XおよびY軸に沿って)移動可能であり、
図2の二方向矢印によって示されるように、垂直に(すなわち、Z軸に沿って)移動可能である。ピペッタ108は、少なくとも1つのピペット先端112を支持するように構成される。当業者によって理解されるように、概して、ピペッタ108は、精密な量の液体をピペット先端112の中に吸引し、精密な量の液体をピペット先端112から分注するように構成され、さらに、ピペット先端112の管腔内に貯蔵される液体(および液体中で搬送される任意の物体)を装置100の種々の場所に輸送するように構成される。本機能性は、下記にさらに説明されるように、ピペッタ108が物体ピッキングを実施することを可能にする。
【0027】
装置100は、下記にさらに説明される、1つ以上のサンプル(または源)プレート116および1つ以上の移動先プレート120を支持してもよい。装置100はさらに、下記にさらに説明される、撮像システム124と、ピペット先端供給ステーション128と、ピペット先端廃棄ステーション132と、ピペット先端除去(ストリッパ)デバイス136と、システムコントローラ140とを含んでもよい。図示される実施形態では、サンプルプレート116、撮像システム124、およびシステムコントローラ140は、デッキ104の下方に位置付けられる一方、他の実施形態では、これらのコンポーネントのうちの1つ以上のものは、デッキ104の上または上方に位置付けられてもよい。サンプルプレート116は、
図1の矢印によって示されるようにX-Z平面内で、または加えて、Z軸に沿って移動可能であってもよい。移動先プレート120もまた、X-Z平面内で、または加えて、Z軸に沿って移動可能であってもよい。
【0028】
装置100は、サンプル調製、サンプル処理、液体処理、サンプル分析、アッセイ等に関連する機能を実行するように構成される、他のデバイス、ステーション、システム、実験器具、および同等物(図示せず)を含んでもよい。例えば、装置100は、試薬、緩衝物、標識、および同等物をサンプルプレート116または移動先プレート120によって支持されるサンプルに添加するように構成されるデバイスを含んでもよい。装置100はまた、サンプルプレート116および/または移動先プレート120をスタックするための支持構造を含んでもよい。装置100はまた、装置100においてコンポーネント(例えば、サンプルプレート116、移動先プレート120、新しいおよび使用済みピペット先端112の容器等)を装填し、装置100からそのようなコンポーネントを除去するための自動化(例えば、ロボット)デバイスを含んでもよい。そのようなロボットデバイスは、把持コンポーネントまたは他のタイプのエンドエフェクタを含んでもよい。装置100はまた、サンプル調製のために利用されるデバイスおよび撮像システム124に加えた分析器具を含む、またはそれと統合される、またはそれに結合されてもよい。概して、物体ピッキングに先立って、およびその後に利用または動作され得る種々のデバイス、ステーション、システム、実験器具、および同等物は、当業者に公知であり、したがって、本明細書に詳細に説明される必要はない。
【0029】
図2は、X-Z平面内の物体ピッキング装置100の概略立面図である。デッキ104は、デッキ104の上方および/または下方に延在する筐体または封入体(図示せず)の一部を形成する、またはそれによって封入されてもよい。そのような筐体は、デッキ104の上方および/または下方に、装置100の内部に位置付けられる種々のコンポーネントへのアクセスを提供する1つ以上の扉を含んでもよい。デッキ104は、概して、上面144と、底面248(
図2)と、上面144と底面248との間のZ方向における厚さとを含む。本実施形態では、デッキ104および1つ以上の壁252は、デッキ104の下方にサンプルチャンバ256を画定する。1つ以上のサンプルプレート116が、サンプルチャンバ256の中への選択的アクセスを提供する扉(図示せず)を介して等、サンプルチャンバ256の中に装填されてもよい。サンプルチャンバ256は、特に、生物学的サンプルのために、周囲から隔離される環境を提供し、それによって、インキュベート、細胞培養、または他のプロセスを促進するように構成されてもよい。例えば、サンプルチャンバ256は、装置100の他のデバイス(例えば、ガス供給源、ヒータ等)と協働し、サンプルチャンバ256の内部に制御された環境(例えば、ガス組成、ガス圧力、温度等)を提供してもよい。
【0030】
サンプルプレート116は、サンプルステージ260上に支持される。サンプルプレート116の少なくとも底部区分(サンプルが支持される場所の下方)は、サンプルプレート116の下方からのサンプルの撮像を可能にするために、光学的に透明であってもよい。サンプルチャンバ256およびサンプルステージ260は、個別の開口部264および268を含み、サンプルプレート116とサンプルチャンバ256の下方に位置する撮像システム124(
図1)の対物鏡272(対物レンズ)との間に光学光路を提供してもよい。
【0031】
図3は、装置100のサンプルプレート116(またはサンプル保持器またはサンプル支持体)およびサンプルステージングシステム300の概略図である。サンプルプレート116は、個別のサンプルを保持するために構成される1つ以上のサンプル容器376を含んでもよい。例えば、サンプルプレート116は、サンプル容器376の1次元(線形)または2次元アレイとして配列される複数のサンプル容器376を含んでもよい。本文脈では、用語「~を含む」は、サンプル容器376がサンプルプレート116上に支持される離散可撤性コンポーネント(ペトリ皿、バイアル等)である実施形態およびサンプル容器376がサンプルプレート116と統合される実施形態を包含する。したがって、後者の実施例では、サンプルプレート116は、サンプル容器376が一体的に形成されるウェルであるマルチウェルプレート(すなわち、マイクロタイタプレートまたは「マイクロプレート」)であってもよい。典型的な実施形態では、ウェルは、2:3の行対列比を有する2次元アレイにおいて配列される。そのようなマルチウェルプレートは、24ウェル、96ウェル、または384ウェル、または1536ウェル形式等の標準形式を有してもよい。サンプル容器376は、円筒形または多角形であってもよい。サンプル容器376の底部は、平坦またはテーパ状(円錐形または湾曲)であってもよい。サンプル容器376または少なくともその底部は、光学的に透明であってもよい。
【0032】
サンプルステージ260の開口部264は、サンプルプレート116がサンプルステージ260上に搭載されるとき、サンプル容器376の全てが対物鏡272(
図2)によってアドレス指定可能であるようにサイズ決めされる。サンプルステージ260は、開口部264にわたってサンプルプレート116を精密に配置するように構成される搭載特徴(図示せず)を含んでもよい。
【0033】
サンプルステージングシステム300は、サンプルステージ260と、破線によって図式的に描写されるように、サンプルステージ260と機械連通するサンプルステージロボット380とを含む。サンプルステージ260は、概して、X軸およびY軸に沿って、または加えて、Z軸に沿ってサンプルステージ260を移動させるように構成される1つ以上の搬器(例えば、ステージ)を含んでもよい。サンプルステージロボット380は、概して、破線によって描写される好適な伝送リンク(例えば、ねじ、ベルト等)を介して搬器を駆動するように構成されるモータ(例えば、可逆ステッパモータ)を含んでもよい。自動化X-YおよびX-Y-Zステージングデバイスの構成および動作は、概して、当業者に公知であり、したがって、本開示にさらに詳細に説明される必要はない。サンプルステージングシステム300は、光学的に、選択されたサンプル容器376を対物鏡272と整合させる、すなわち、選択されたサンプル容器376を対物鏡272の視野と整合させるために利用されてもよい。サンプルステージングシステム300は、サンプルプレート116とともに含まれる他のサンプル容器376を対物鏡272と連続的に整合させてもよい。サンプル容器376のサイズおよび対物鏡272の倍率等の因子に応じて、対物鏡272の視野は、サンプル容器376の全体(X-Y断面積)またはサンプル容器376の全体(X-Y断面積)の一部のみに及び得る。サンプルステージングシステム300は、サンプル容器376の異なる部分(例えば、象限)を対物鏡272と連続的に整合させてもよい。したがって、サンプルステージングシステム300は、撮像のために異なるサンプル容器376または選択されたサンプル容器376の異なる部分を選択するために利用されてもよい。サンプルステージングシステム300はまた、下記にさらに説明されるように、選択されたサンプル容器376内に存在する選択された物体に対してピペット先端112を配置するために利用されてもよい。
【0034】
再び
図2を参照すると、デッキ104は、Z軸に沿ってデッキ104の厚さを通して延在する開口188を交互に開放および閉鎖するように構成されるシャッタ284を含む。シャッタ284の開放は、ピペット先端112が、サンプルチャンバ256の中に、およびピペット先端112と整合されるサンプル容器376と近接するように移動することを可能にする。シャッタ284の開放はまた、下記にさらに説明されるように、光学経路がピペット先端112と対物鏡272との間に確立されることを可能にし、それによって、ピペット先端112が撮像されることを可能にする。
【0035】
また、
図2に図示されるように、ピペッタ108は、ピペッタロボット288と、破線によって描写される好適な伝送リンク(例えば、ねじ、ベルト等)を介して、典型的には、X、Y、およびZ軸に沿ってピペッタロボット288によって駆動されるピペットヘッド292とを含む。ピペット先端112は、遠位端214と、軸方向に対向する近位端218と、遠位端214および近位端218の個別の開口部からピペット先端112の長さに沿って延在する管腔とを含む。近位端218は、ピペットヘッド292のアダプタ296に搭載されてもよい。アダプタ296は、異なるサイズおよびモデルのピペット先端がそれに搭載されることを可能にしてもよい。ピペッタ108はまた、ピペット先端112と流体連通するポンプを含む。ポンプは、ピペット先端112の管腔を横断して正および負の圧力差を交互に生成し、それによって、液体がピペット先端112の中に吸引され、ピペット先端112から分注されることを可能にするように構成される。ポンプは、ピペットヘッド292の一部である、またはピペットヘッド292とは別個に位置付けられてもよい。ピペット先端112の管腔は、ピペット先端112の中に吸引された液体(少なくとも本開示の典型的な実施形態によって考慮される量の液体)がピペット先端112内に貯蔵されることを可能にするように、すなわち、ピペット先端112とは別個のリザーバの中に流動されることを必要とすることなくサイズ決めされてもよい。
【0036】
図1に示されるように、いくつかの実施形態では、ピペット先端供給ステーション128およびピペット先端廃棄ステーション132が、提供される。ピペット先端供給ステーション128は、未使用のピペット先端112を提供するように構成されるラック、ボックス、または他の構造を含んでもよい。ピペット先端廃棄ステーション132は、使用済みピペット先端112を受容するように構成されるラック、ボックス、または他の構造を含んでもよい。ピペットヘッド292は、ピペット先端供給ステーション128に移動可能であり、未使用のピペット先端112がピペットヘッド292に結合されることを可能にするためにさらに移動可能である。ピペットヘッド292はまた、ピペット先端廃棄ステーション132に移動可能であり、使用済みピペット先端112がピペットヘッド292から結合解除(剥離)されることを可能にするためにさらに移動可能である。ピペット先端除去(ストリッパ)デバイス136は、当業者によって理解されるように、使用済みピペット先端112と係合するように移動可能であり、ピペットヘッド292から使用済みピペット先端112を結合解除することを補助するように構成される。他の実施形態では、装置100は、使用済みピペット先端112が再使用のために濯がれ得る濯ぎステーション(図示せず)を含んでもよい。
【0037】
図4は、装置100内に提供され得る、すなわち、
図1に示される撮像システム124に対応し得る撮像システム400の概略図である。概して、顕微鏡ベースの撮像システムを含む、種々のタイプの撮像システムの構造および動作が、当業者によって理解され、したがって、撮像システム400のあるコンポーネントおよび特徴は、本明細書に教示される主題の理解を促進するために、簡潔にのみ説明される。撮像システム400は、概して、光源406と、カメラ(または画像センサ)414と、光学系(すなわち、光学コンポーネントのセット)とを含んでもよい。光学系は、励起光410を光源406から対物鏡272を介してサンプルに指向するように構成される励起光学系と、放出光418をサンプルから対物鏡272を介してカメラ414に指向するように構成される放出光学系とを含んでもよい。
【0038】
光源406は、発光ダイオード(LED)、レーザダイオード(LD)、レーザ等であってもよい。他の実施形態では、広帯域光源等の他の光源が、提供されてもよい。光源406は、カメラ414が反射率(または散乱)、透過、または蛍光に基づいて物体を撮像するかどうかに応じて、異なる選択可能波長において励起光410を生成するように構成されてもよい。本目的のために、光源406は、異なる選択可能波長において励起光410を生成するように構成される複数の光源(または光源ユニット)を含んでもよい、および/または励起光学系は、異なる選択可能波長において励起光410をフィルタリングするように構成されてもよい。光源406は、当業者によって理解されるように、異なる光源の間の切替を可能にする電動波長セレクタとして構成される光源保持器を含んでもよい。例えば、光源保持器は、それに複数のLED(または他の光源ユニット)が搭載される回転可能ホイールまたは線形平行移動可能スライダである、またはそれを含んでもよい。
【0039】
概して、励起光学系は、励起光410が光源406から対物鏡272に(および対物鏡272を通してサンプルに)伝搬するための光学経路を画定するために必要に応じて、例えば、1つ以上のレンズ、絞り、開口、フィルタ、光ガイド(例えば、光ファイバ)、ミラー、ビームスプリッタ等を含んでもよい。本実施形態では、励起光学系は、励起フィルタ422と、ダイクロイックミラー426と、対物鏡272とを含む。励起フィルタ422は、迷光等の他の光を遮断しながら、光学システムをさらに通して励起光410のみ(すなわち、励起光410と関連付けられる具体的波長または狭帯域の波長)を通過させるように構成される。励起フィルタ422は、当業者によって理解されるように、異なる励起フィルタ(または励起フィルタユニット)の間の切替を可能にする電動波長セレクタとして機能するように構成され、それによって、励起光410が異なる波長において選択的にフィルタリングされることを可能にしてもよい。例えば、励起フィルタ422は、それに複数の励起フィルタが搭載される回転可能ホイールまたは線形平行移動可能スライダを含んでもよい。複数の励起フィルタは、異なる光学透過特性を有する材料から成る。したがって、励起フィルタ422の異なる励起フィルタは、他の波長を遮断しながら異なる個別の波長における光を透過し得る。
【0040】
ダイクロイックミラー426は、当業者によって理解されるように、励起光410を反射し、放出光418を通過させるように構成され、逆もまた同様である。異なる選択された波長の放出光418(または励起光410)の反射または通過を可能にするために、ダイクロイックミラー426は、励起フィルタ422の場合と同様に、回転可能または平行移動可能波長セレクタに搭載される複数のダイクロイックミラー(またはダイクロイックミラーユニット)を含んでもよい。
【0041】
概して、放出光学系は、対物鏡272から(対物鏡272を通してサンプルから)カメラ414への放出光418のための光学経路を画定するために必要に応じて、例えば、1つ以上のレンズ、絞り、開口、フィルタ、光ガイド(例えば、光ファイバ)、ミラー、ビームスプリッタ等を含んでもよい。本実施形態では、放出光学系は、放出フィルタ430と、1つ以上のミラー434と、ダイクロイックミラー426と、対物鏡272とを含む。本実施形態の構成に起因して、ダイクロイックミラー426および対物鏡272は、励起光学系および放出光学系の両方の一部であると見なされてもよい。放出フィルタ430は、励起光410および迷光等の他の光を遮断しながら、光学システムをさらに通して放出光418のみ(すなわち、放出光418と関連付けられる具体的波長または狭帯域の波長)を通過させるように構成される。放出フィルタ430は、当業者によって理解されるように、異なる放出フィルタ(または放出フィルタユニット)の間の切替を可能にする電動波長セレクタとして機能するように構成され、それによって、放出光418が異なる波長において選択的にフィルタリングされることを可能にしてもよい。例えば、放出フィルタ430は、それに複数の励起フィルタが搭載される回転可能ホイールまたは線形平行移動可能スライダを含んでもよい。複数の放出フィルタは、異なる光学透過特性を有する材料から成る。したがって、放出フィルタ430の異なる放出フィルタは、他の波長を遮断しながら異なる個別の波長における光を透過し得る。
【0042】
いくつかの実施形態では、当業者によって理解されるように、励起フィルタ422、ダイクロイックミラー426、および放出フィルタ430は、フィルタキューブ438内に統合されてもよい。異なる個別の波長における励起光410および放出光418の選択的フィルタリングを可能にするために、フィルタキューブ438は、当業者によって理解されるように、回転可能または平行移動可能波長セレクタに搭載される複数のフィルタキューブ(またはフィルタキューブユニット)を含んでもよい。フィルタキューブ438は、したがって、励起フィルタ、ダイクロイックミラー、および放出フィルタの異なるセットが所与の用途のために選択されることを可能にする。他の実施形態では、各フィルタキューブユニットは、励起フィルタユニットおよびダイクロイックミラーのみ、またはダイクロイックミラーおよび放出フィルタのみを含んでもよい。
【0043】
撮像システム400は、広視野および/または共焦点撮像のために構成されてもよい。共焦点撮像の場合では、撮像システム400は、励起光410および放出光418の経路内に位置付けられる、走査ディスクまたはニポウディスクとしても公知の共焦点スピニングディスク442を含んでもよい。典型的なスピニングディスクは、当業者によって理解されるように、1つ以上の螺旋経路に沿って配列される複数の開口を含む。走査が、ディスクを高い角速度で、例えば、1分あたり数千の回転数(RPM)で急回転させることによって実装される。スピニングディスク442は、スピニングディスク442の中心軸と同軸のシャフトまたはスピンドル446に搭載される。シャフト446の回転は、好適なモータ(図示せず)によって給電される。いくつかの実施形態では、スピニングディスク442は、共焦点および広視野動作の間の選択を可能にするために、励起および放出光路の内外に選択的に移動可能である。
【0044】
カメラ414は、広視野および/または共焦点顕微鏡法のために好適な任意の撮像デバイスであってもよい。典型的な実施形態では、カメラ414は、例えば、電荷結合素子(CCD)、または相補型金属酸化物半導体(CMOS)技術に基づくアクティブピクセルセンサ(APS)等のマルチピクセル(またはピクセル化)撮像デバイスである。
【0045】
概して、対物鏡272は、サンプルの厚さにおける焦点面上に励起光410を透過および集束させ、サンプルから放出される放出光418を収集し、カメラ414の感知面上に放出光を集束させるために構成される任意のレンズまたはレンズのシステムであってもよい。対物鏡272は、サンプルステージ260に向かって、およびそれから離れるようにZ軸(垂直方向)に沿って対物鏡272を移動させるように構成される対物鏡ステージ450に搭載されてもよい。Z軸に沿った対物鏡272の移動または調節は、サンプルの画像の合焦およびZ軸に沿ったその厚さを通したサンプルの走査を可能にする。Z軸調節はまた、下記にさらに説明されるように、ピペット先端112の下方から遠位端214を撮像するために、対物鏡272の焦点面がピペット先端112の遠位端214に移動されることを可能にする。対物鏡ステージ450はまた、異なる対物鏡272(例えば、異なる倍率を有する対物鏡)が選択され、励起および放出光路の中に切り替えられることを可能にするために移動可能(例えば、回転可能または摺動可能)であってもよい。撮像システム400は、当業者によって理解されるように、特定の実施形態のために必要に応じて、他のタイプのレンズ(例えば、リレーレンズ、フィールドレンズ、管レンズ、円筒形レンズ、ビームエキスパンダ等)を含んでもよい。
【0046】
落射蛍光構成と類似する
図4に図示される撮像システム400の構成は、一実施例にすぎないことを理解されたい。種々の光学コンポーネントが、
図4に具体的に示されるものと異なる様式で相互に対して配列される、または位置付けられ得る他の構成も、本明細書に開示される主題を実装するために好適であり得る。
【0047】
再び
図2を参照すると、サンプルチャンバ256の下方に位置付けられる(第1の)光源406(
図4)に加えて、いくつかの実施形態では、第2の光源254が、サンプルチャンバ256内に提供されてもよい。第2の光源254は、サンプルの上方からサンプルプレート116上に含有されるサンプルを照射するために利用されてもよい。第2の光源254は、サンプルプレート116の下方に位置付けられる対物鏡272と対向して、サンプルプレート116の上方に位置付けられてもよい。この場合、励起光ビームは、初期強度において第2の光源254によって生成される光ビームであり、これは、サンプルを通して透過される。サンプルによる光吸収および/またはそれにおける散乱に起因して、サンプルに入射する光ビームは、減衰した状態になり、すなわち、入射光ビームの強度は、低減される。結果として生じる減衰光ビームは、サンプルから、対物鏡272を通して、カメラ414(
図4)に伝搬する放出光ビームである。上記のように、シャッタ284は、ピペット先端112が選択されたサンプル容器376にアクセスすることを可能にし、また、ピペット先端112がピペット先端112と対物鏡272との間に視通線を提供することによって撮像されることを可能にするために開放されることができる。先端アクセスおよび撮像動作を適応させるために、第2の光源254は、本視通線の進路を外れて、したがって、対物鏡272の視野から外れてX-Y平面内で移動するように構成されてもよい。一実施形態では、第2の光源254は、シャッタ284の下側に搭載されてもよい。本構成によって、第2の光源254は、シャッタ284が開放すると、進路を外れて移動される。
【0048】
複数の物体から物体をピッキングするための方法を含む、装置100の動作は、ここで、
図5-10を付加的に参照して説明されるであろう。
【0049】
図5は、対物鏡272と光学整合する(その視野内の)サンプル容器376(ウェル、皿等)の概略立面図である。複数の物体556が、サンプル容器376内に含有される。本実施例は、物体556が、サンプル容器376の底面上に支持される(例えば、それに接着する)細胞コロニー等の生物学的物体であると仮定するであろう。そのような物体556は、当業者によって理解されるように、適切な溶液中に浸漬されてもよい。さらに、そのような物体556は、公知の方法に従って、ピッキングおよび分析に備えて以前に調製および処理されている場合がある。一実施形態では、蛍光ベースの撮像が、実装される。蛍光ベースの信号の源は、物体556からの自己蛍光または物体556に以前に取り付けられた蛍光体からの蛍光であってもよい。
【0050】
物体556を撮像することに先立って、サンプル容器376(またはサンプル容器376を含むサンプルプレート116)は、サンプルチャンバ256(
図2)の中に装填される。サンプルプレート116が複数のサンプル容器376を含む場合、サンプル容器376が、選択され、サンプルステージ260(
図2および3)は、対物鏡272と光学整合するように選択されたサンプル容器376を移動させるように動作される。また、物体556を撮像することに先立って、励起光のための波長および/または放出光のための波長が、選択されてもよい。波長選択は、光源406(
図4)の光源ユニット、および/または励起フィルタ422の励起フィルタユニット、および/またはダイクロイックミラー426のダイクロイックミラーユニット、および/または放出フィルタ430の放出フィルタユニットの適切な組み合わせを選択することによって行われてもよい。これは、例えば、上記に説明されるような1つ以上の波長セレクタを動作させることによって行われてもよい。加えて、画像の倍率は、対物鏡ステージ450上に提供される複数の対物鏡から対物鏡272を選択することによって選択されてもよい。対物鏡ステージ450はまた、物体556に対して対物鏡272を合焦させるためにZ軸に沿って対物鏡272を移動させるように動作されてもよい。
【0051】
物体556は、次いで、撮像システム400(
図4)によって撮像される。これは、(第1の)励起光ビーム510を生成するように光源406を動作させることによって行われる。撮像システム400の光学系は、励起光ビーム510を対物鏡272およびサンプル容器376の透明底部を通して指向し、それによって、物体556を照射する。照射に応答して、物体556は、対物鏡272が(第1の)放出光ビーム518として集束させる放出光を放出する。撮像システム400の光学系は、放出光ビーム518をカメラ414に指向する。
【0052】
カメラ414は、放出光ビーム518を受け取り、応答して、第1の(電気)出力信号をコントローラ140(
図1)に出力する。コントローラ140は、ユーザによってディスプレイ画面上で閲覧可能であり得る物体556の画像を取得するために必要に応じて、第1の出力信号を処理する。コントローラ140は、次いで、画像を分析し、複数の物体556からのどの物体がさらなる分析のために選択されるべきであるか、したがって、どの物体がピペッタ108によってピッキングされるべきかを決定する。本分析は、いくつかの因子、すなわち、例えば、物体から放出される放出光の特定の波長における最小閾値強度、形態学または形態計測パラメータ(例えば、物体のサイズ、形状、および形状係数)等の分析(または細胞ピッキング)パラメータに基づいてもよい。分析パラメータは、例えば、コントローラ140によって提供されるグラフィカルユーザインターフェース(GUI)を介してユーザによって入力される、またはコントローラ140のメモリから、またはコントローラ140によってアクセス可能な非一過性コンピュータ可読媒体等から読み出されてもよい。
【0053】
図6は、サンプル容器376内の物体556のX-Y平面における概略図であり、選択された物体560をさらに図示する。いったん物体560が選択されると、コントローラ140は、画像データに基づいて、選択された物体560の場所を決定し、X-Y平面内の選択された物体560の場所に対応する選択された物体560の座標位置(またはアドレス)(例えば、X1、Y1)を識別する(または割り当てる)。
【0054】
図7は、サンプル容器376、対物鏡272、およびピペット先端112の概略立面図である。サンプル容器376は、選択された物体560を含む物体556を含有する、
図5に示されるものと同一のサンプル容器376である。サンプル容器376は、選択された物体560の座標位置が決定されて以降移動されておらず、したがって、選択された物体560は、同一の座標位置(X1、Y1)に留まる。選択された物体560の座標位置が決定された後、ピペットヘッド292(
図2)は、サンプル容器376に、具体的には、ピペット先端112が選択された物体560の直上にある位置に移動するように動作される。例えば、選択された物体560の既知の座標位置(X1、Y1)に基づいて、コントローラ140(
図1)は、ピペットヘッド292が本経路の終わりに到達すると、ピペット先端112が選択された物体560にわたる公称(推定)物体ピッキング位置(例えば、X2、Y2)に位置するように、X-Y平面内の経路に沿ってピペットヘッド292を駆動するために適切な制御信号をピペッタロボット288に送信してもよい。
【0055】
ピペット先端112が公称位置(X2、Y2)に到達した後、ピペット先端112は、次いで、ピペット先端112の遠位端214が所定の(設定点)先端高さに来るまでZ軸に沿って移動(降下)される。先端高さは、ピペット先端112が選択された物体560をピペット先端112の管腔の中に吸引することを可能にするために選択された物体560に十分に近接するZ軸に沿った遠位端214の位置である。先端高さは、任意の好適な基準X-Y平面に対して定義されてもよい。例えば、先端高さは、ピペット先端112の遠位端214とサンプルプレート116の上面(
図2および3)との間のZ軸に沿った距離とされてもよい。ある実施形態では、先端高さは、約数マイクロメートル(μm)である。例えば、先端高さは、10μm~100μmの範囲内であり得る。設定点先端高さは、装置100による物体ピッキングのために最適であると事前決定された先端高さであってもよく、これは、少なくとも部分的に、ピペット先端112のサイズおよびモデルに依存してもよい。
【0056】
理想的には、X-Y平面内のピペット先端112の公称座標位置(X2、Y2)は、選択された物体560の座標位置(X1、Y1)と厳密に合致するべきである。すなわち、ピペット先端112の遠位端214の中心(ピペット先端112の中心軸)は、選択された物体560の中心と厳密に整合するべきである。しかしながら、実践では、ピペット先端112および選択された物体560の個別の座標位置のある程度の不整合が、存在するであろう。
図7は、誇張したスケールにおけるそのような不整合を図示する。本開示によると、装置100は、部分的に、ピペット先端112(の遠位端214)を撮像することによって、そのような不整合をチェックし、補正するように構成される。典型的な実施形態では、ピペット先端112の撮像は、ピペット先端112から反射される光を捕捉することに基づくが、他の実施形態では、自己蛍光の結果としてピペット先端112によって放出される光を捕捉することに基づいてもよい。
【0057】
ピペット先端112を撮像することに先立って、励起光のための波長および/または放出光のための波長が、選択されてもよい。波長選択は、光源406(
図4)の光源ユニット、および/または励起フィルタ422の励起フィルタユニット、および/またはダイクロイックミラー426のダイクロイックミラーユニット、および/または放出フィルタ430の放出フィルタユニットの適切な組み合わせを選択することによって行われてもよい。これは、例えば、上記に説明されるような1つ以上の波長セレクタを動作させることによって行われてもよい。典型的には、物体556を照射するために利用される第1の励起光510(
図5)の波長は、ピペット先端112を照射するために利用される第2の励起光710の波長と異なる。しかしながら、物体556およびピペット先端112を撮像するために利用される個別のモダリティ(蛍光、反射率、透過率)に応じて、いくつかの実施形態では、第1の励起光510の波長は、第2の励起光710の波長と同一であってもよい。
【0058】
ピペット先端112を撮像するために、光源406(
図4)は、(第2の)励起光ビーム710を生成するように動作され、撮像システム400の光学系は、励起光ビーム710を対物鏡272およびサンプル容器376の透明底部を通して指向し、それによって、ピペット先端112(特に、その遠位端214)を照射する。照射に応答して、ピペット先端112は、対物鏡272が(第2の)放出光ビーム718として集束させる放出光を放出する。撮像システム400の光学系は、放出光ビーム718をカメラ414に指向する。カメラ414は、放出光ビーム718を受け取り、応答して、第2の(電気)出力信号をコントローラ140(
図1)に出力する。コントローラ140は、ユーザによってディスプレイ画面上で閲覧可能であり得るピペット先端112の画像を取得するために必要に応じて、第2の出力信号を処理する。コントローラ140は、次いで、画像を分析し、画像データに基づいて、ピペット先端112の場所を決定し、X-Y平面内のピペット先端112の場所に対応するピペット先端112の座標位置(またはアドレス)(例えば、X2、Y2)を識別する(または割り当てる)。
【0059】
コントローラ140は、次いで、ピペット先端112の座標位置(X2、Y2)を選択された物体560の座標位置(X1、Y1)と比較し、2つの座標位置の間に位置誤差(例えば、ΔX、ΔY)またはオフセットが存在するかどうかを決定する。位置誤差(誤差が見出されたと仮定する)に基づいて、ピペットヘッド292(
図2)またはサンプル容器376を支持するサンプルステージ260は、ピペット先端112の座標位置(X2、Y2)が選択された物体560の座標位置(X1、Y1)と合致される、例えば、X1=X2かつY1=Y2になるまで移動するように動作され、それによって、ピペット先端112を選択された物体560と正確に空間的に並置する。例えば、計算された位置誤差(ΔX、ΔY)に基づいて、コントローラ140は、X-Y平面内の誤差経路を計算し、ピペットヘッド292が本誤差経路の終わりに到達すると、ピペット先端112の座標位置が選択された物体560の座標位置(X1、Y1)と合致し、すなわち、ピペット先端112が選択された物体560と正しく並置されるように、誤差経路に沿ってピペットヘッド292を駆動するために適切な制御信号をピペッタロボット288に送信してもよい。代替として、コントローラ140は、サンプルステージ260に関する誤差経路を計算してもよい。この場合、コントローラ140は、サンプルステージ260が本誤差経路の終わりに到達すると、ピペット先端112が選択された物体560と正しく並置されるように、誤差経路に沿ってサンプルステージ260を駆動するために適切な制御信号をサンプルステージロボット380(
図3)に送信してもよい。いずれの場合も、ピペット先端112の誤差補正座標位置(例えば、X2+ΔX、Y2+ΔY)が、ピペット先端112の最終物体ピッキング位置になる。最終物体ピッキング位置において、ピペット先端112は、したがって、選択された物体560を吸引するために最適に位置付けられる。
【0060】
図8は、それらの間の位置誤差(ΔX、ΔY)を補正する前のピペット先端112および選択された物体560のX-Y平面における概略図である。比較すると、
図9は、本開示による、それらの間の位置誤差(ΔX、ΔY)を補正した後のピペット先端112および選択された物体560のX-Y平面における概略図である。
【0061】
上記に説明されるように、ピペット先端112は、ピッキングされる物体560の上方の所定の設定点先端高さにZ軸に沿って移動(降下)される。ピペット先端112のX-Y位置付けの場合のように、ピペット先端112のZ軸位置付けは、誤差が起こりやすい、すなわち、1つの物体ピッキング動作から次の物体ピッキング動作への精密な再現性の欠如が起こりやすい場合がある。いくつかの実施形態では、装置100は、ピペット先端112のZ軸位置付けにおける位置不一致、すなわち、規定された設定点先端高さからの逸脱をチェックし、補正するように構成される。したがって、ピペット先端112の画像を取得した後、コントローラ140は、ピペット先端112の画像を分析し、実際の先端高さ、例えば、Z軸に沿ったサンプルプレート116(
図2および3)からのピペット先端112の遠位端214の実際の距離を測定してもよい。先端高さの測定は、例えば、画像コントラスト(例えば、画像ベースの自動焦点、可視化された先端端部の強度およびサイズ(面積または直径)の組み合わせ等)に基づいてもよい。コントローラ140は、次いで、実際の先端高さ(例えば、Z2)と設定点先端高さ(例えば、Z1)との間、すなわち、サンプルプレート116からの遠位端214の距離とサンプルプレート116からの遠位端214の設定点距離との間の垂直位置誤差(例えば、ΔZ)が存在するかどうかを決定してもよい。位置誤差ΔZ(誤差が見出されたと仮定する)に基づいて、ピペットヘッド292(
図2)は、Z軸に沿ったピペット先端112の座標位置が設定点先端高さZ1、例えば、Z2+ΔZ=Z1である場所と合致するまで移動するように動作されてもよい。例えば、計算された位置誤差ΔZに基づいて、コントローラ140は、実際の先端高さが設定点先端高さに等しくなるまでZ軸に沿ってピペットヘッド292を駆動するために適切な制御信号をピペッタロボット288に送信してもよい。
【0062】
X-Y平面内の選択された物体560にわたってピペット先端112を適切に整合させ、随意に、また、所望の先端高さにピペット先端112を適切に配置した後、ピペッタ108(
図2)は、次いで、選択された物体560をピペット先端112の中に吸引するように動作されてもよい。ピペットヘッド292は、次いで、デッキ104上に提供される移動先プレート120(
図1)等の任意の所望の場所にピペット先端112を移動させるように駆動されてもよい。移動先プレート120が複数の容器(例えば、マルチウェルプレートのウェル)を提供する場合では、ピペットヘッド292は、移動先プレート120の選択された容器と整合するようにピペット先端112を移動させ、選択された物体560をピペット先端112から選択された容器の中に分注してもよい。サンプルプレート116の場合のように、移動先プレート120とともに含まれる各容器は、ピッキングされた具体的な選択された物体560が、サンプルプレート116から捕捉された画像と移動先プレート120内の選択された物体560の最終場所との間で合致され得るように、独立して識別可能またはアドレス指定可能であってもよい。
【0063】
選択された物体560は、次いで、当業者によって理解されるように、用途に応じてさらなる分析または処理を受けてもよい。本目的のために、実施形態に応じて、移動先プレート120は、任意の好適な手段によってデッキ104から別の場所(分析器具、反応チャンバ等)に輸送されてもよい。
【0064】
別の実施形態では、サンプルプレート116はまた、移動先プレートとして利用されてもよく、その場合、別個の移動先プレート120は、利用されない。例えば、サンプルプレート116の容器のうちの一方の半分は、サンプルのアレイを提供するために利用されてもよく、同一のサンプルプレート116の容器のうちの他方の半分は、ピッキングされた物体560のための移動先部位として利用されてもよい。そのような実施形態では、ピペット先端112は、ピッキングされた物体560をサンプルプレート116のサンプル側から移動先側に輸送し、ピッキングされた物体560を移動先側上の選択された容器の中に分注してもよい。
【0065】
上記に説明される方法および動作は、同一のサンプル容器376および/またはサンプルプレート116とともに含まれる他のサンプル容器376内に含有される他の物体のために繰り返されてもよい。
【0066】
図10は、
図5と同様に対物鏡272と光学整合するサンプル容器376の概略立面図であり、第2の光源254をさらに図示する。
図10は、物体556が上から、すなわち、物体556の上方に位置付けられる第2の光源254によって照射される代替実施形態を図示する。この場合、物体556の撮像は、透過率に基づく。第2の光源254は、物体556に向かって指向される励起光ビーム1010を生成するように動作される。励起光ビーム1010は、物体556を通して透過され、光の強度は、物体556内の光吸収および/または散乱に起因して減衰される。減衰光は、放出光ビーム1018として対物鏡272によって収集され、集束される。撮像システム400の光学系は、放出光ビーム1018をカメラ414に指向し、物体の画像が上記に説明されるように捕捉されることを可能にする。
図7に示されるようにピペット先端112を続けて撮像するとき、第2の光源254は、進路から外れるように移動され、光源406(
図4)は、上記に説明されるように(第2の)励起光ビーム710を生成するように動作される。
【0067】
前述の説明から明白なように、ピペット先端場所正確度は、ピッキング毎に選択された物体560およびピペット先端112自体の両方を撮像し、それによって、ピペット先端112が選択された物体560と正確に空間的に並置されることを可能にすることによって改良される。存在し得る任意の先端間の変動にかかわらず、結果として生じる位置誤差は、補正されることができる。補正は、運動においてより高い正確度および精度を有する、ピペットヘッド292(
図2)またはサンプルステージ260のいずれかを移動させるように動作させることによって行われることができる。加えて、自動焦点ルーチンが、Z方向においてピペット先端112を配置し、それによって、Z方向における任意の先端間の変動を補正するために利用されてもよい。ロボットアームに対するピペット先端112の場所を見出すことに依拠する代わりに、本明細書に開示される実施形態は、ピッキングされる選択された物体560に対してピペット先端112を配置し、これは、ピペット先端配置動作の正確度を改良し得る。さらに、選択された物体560およびピペット先端112の両方が同一の視野内に位置するため、先端検出と補正された場所との間の「移動」の大きさは、非常に小さく、それによって、そうでなければ遠隔感知場所からの移動の間に起こり得る任意の位置誤差を最小限にする。本開示に従ってピペット先端場所正確度を改良することは、より一貫した物体ピッキングを可能にし、ピッキング成功率を増加させ、増加された物体密度におけるピッキングを可能にし得る。そのような利点は、サンプルプレート116あたりのより多い物体556、より少ない実験器具、より小さい培養器、およびより高い処理能力を提供する能力をもたらし得る。
【0068】
図11は、撮像システムの一部として本明細書に開示される実施形態のうちのいずれかにおいて利用され得る波長セレクタ1100の実施例の概略図である。波長セレクタ1100は、支持構造1104と、支持構造1104に搭載される複数の光学要素1108とを含む。支持構造1104は、当業者によって理解されるように、支持構造1104を選択された位置に移動させる(指示する)ように構成される好適なモータ(図示せず)を機械的に基準にしてもよい。本実施形態では、選択された位置は、
図11の矢印によって示されるように、波長セレクタ1100を回転させることによって取得可能な角度位置である(すなわち、波長セレクタ1100は、ホイールまたはカルーセルとして構成される)。任意の所与の角度位置において、光学要素1108のうちの1つが、励起光路および/または放出光路内にある。上記に説明されるように、光学要素1108は、光源(例えば、LED)、励起フィルタ、放出フィルタ、ダイクロイックミラー、またはフィルタキューブであってもよい。
【0069】
図12は、撮像システムの一部として本明細書に開示される実施形態のうちのいずれかにおいて利用され得る波長セレクタ1200の別の実施例の概略図である。波長セレクタ1200は、支持構造1204と、支持構造1204に搭載される複数の光学要素1208とを含む。本実施形態では、波長セレクタ1200は、励起光路および/または放出光路内での選択された光学要素1108の位置付けを可能にするために、線形に平行移動可能である。本目的のために、支持構造1204は、当業者によって理解されるように、支持構造1204を移動させるように構成される好適なモータ(図示せず)を機械的に基準にしてもよい。上記に説明されるように、光学要素1208は、光源(例えば、LED)、励起フィルタ、放出フィルタ、ダイクロイックミラー、またはフィルタキューブであってもよい。
【0070】
図13は、上記に説明され、
図1に図示されるコントローラ140に対応し得る、システムコントローラ1300の非限定的実施例の概略図である。システムコントローラ1300は、典型的には、全体的制御を提供する主要電子プロセッサ(例えば、中央処理ユニットまたはCPU)および専用制御動作または具体的信号処理タスクのために構成される1つ以上の電子プロセッサ(例えば、デジタル信号プロセッサまたはDSP、特定用途向け集積回路またはASIC、フィールドプログラマブルゲートアレイ(FPGA)、グラフィックス処理ユニットまたはGPU等)を表し得る電子ベースのプロセッサ1302を含む。システムコントローラ1300はまた、典型的には、データおよび/またはソフトウェアを記憶するための1つ以上のメモリ1304(揮発性および/または不揮発性タイプ)を含む。システムコントローラ1300はまた、1つ以上のタイプのユーザインターフェースデバイス(ユーザ入力デバイス1308およびユーザ出力デバイス1310)を制御し、ユーザインターフェースデバイスとユーザインターフェースデバイスと通信するシステムコントローラ1300のコンポーネントとの間のインターフェースを提供するための1つ以上のデバイスドライバ1306を含んでもよい。システムコントローラ1300はまた、メモリ内、および/または1つ以上のタイプのコンピュータ可読媒体1312上に含有される1つ以上のタイプのコンピュータプログラムまたはソフトウェアを含んでもよい。コンピュータプログラムまたはソフトウェアは、本明細書に開示される方法および動作のうちのいずれかの全てまたは一部を制御または実施するための命令(例えば、論理命令)を含有してもよい。コンピュータプログラムまたはソフトウェアは、システムソフトウェアおよびアプリケーションソフトウェアを含んでもよい。システムソフトウェアは、ハードウェアとアプリケーションソフトウェアとの間の相互作用を含む、システムコントローラ1300の種々の機能を制御および管理するためのオペレーティングシステム(例えば、Microsoft Windows(登録商標)オペレーティングシステム)を含んでもよい。特に、オペレーティングシステムは、ディスプレイ画面等のユーザ出力デバイス1310を介して表示可能なグラフィカルユーザインターフェース(GUI)を提供してもよく、それを用いて、ユーザは、キーボードまたはポインティングデバイス等のユーザ入力デバイス1308の使用と相互作用してもよい。
【0071】
システムコントローラ1300はまた、GUIによるグラフィカル形態における提示のためにデータをフォーマットすることを含む、本明細書に開示される方法および動作のうちのいずれかの全てまたは一部を制御または実施するための1つ以上のコンポーネントまたはモジュール(ハードウェア、ファームウェア、および/またはソフトウェアにおいて具現化され得るような)を含んでもよい。これらのモジュールは、材料(サンプル/物体)トラッカ1314と、ピペッタコントローラ1316と、サンプルステージコントローラ1318と、光学システムコントローラ1320と、画像プロセッサ1322と、物体分析装置1324と、位置補正ユニット1326とを含んでもよい。システムコントローラ1300は、本明細書に開示される方法を実行するために必要に応じて、種々のモジュールの動作または機能を協調させてもよい。システムコントローラ1300はまた、コンピュータ可読媒体1312を受信し、読み取る(および随意に、それに書き込む)ためのデバイスを含んでもよい。材料トラッカ1314は、サンプルプレート116の具体的容器内に提供される具体的サンプルの場所(アドレスまたは座標位置)およびサンプルプレート116または移動先プレート120の具体的容器に輸送された選択された物体560の場所を追跡するように構成されてもよい。ピペッタコントローラ1316は、ピペッタ108の移動および物体ピッキングおよび分注動作を制御するように構成されてもよい。随意に、ピペッタコントローラ1316はまた、提供される場合、ピペット先端除去デバイス136を制御するためのコントローラを表してもよい。サンプルステージコントローラ1318は、サンプルステージ260の移動を制御するように構成されてもよい。光学システムコントローラ1320は、光源406のアクティブ化および光源406の光源ユニットの選択/移動、カメラ414のアクティブ化、対物鏡272のz軸合焦および選択/移動、提供され得るような励起フィルタ422、ダイクロイックミラー426、および放出フィルタ430、またはフィルタキューブ438のユニットの選択/移動、および提供される場合、スピニングディスク442のアクティブ化および移動等の光学システム400の種々のコンポーネントおよび動作を制御するように構成されてもよい。
【0072】
画像プロセッサ1322は、カメラ414から受信された信号に基づいて、物体およびピペット先端112の画像を取得し、ユーザが、ディスプレイ画面上で画像を閲覧することを可能にし、システムコントローラ1300による画像の分析を可能にするように構成されてもよい。物体分析装置1324は、サンプルからピッキングされる物体を選択する、または選択する際にユーザを補助するように構成されてもよい。本目的のために、物体分析装置1324は、上記に説明されるような物体ピッキングパラメータ等の入力に基づいて、1つ以上のアルゴリズムを実行してもよい。位置補正ユニット1326は、ピペット先端112と選択された物体との間にX-Y平面における位置誤差(不整合)が存在するかどうかを(例えば、画像プロセッサ1322によって提供されるデータに基づいて)決定し、システムコントローラ1300がピペット先端112の移動の制御を通してX-Y位置誤差を補正することを可能にする出力を提供するように構成されてもよい。位置補正ユニット1326はまた、選択された物体を含有するサンプルプレートに対するピペット先端112の高さにおける(Z軸)位置誤差が存在するどうかを(例えば、画像プロセッサ1322によって提供されるデータに基づいて)決定し、システムコントローラ1300がピペット先端112の移動の制御を通してZ軸位置誤差を補正することを可能にする出力を提供するように構成される、先端高さ分析装置を含んでもよい。
【0073】
図1および13は、本開示と一貫するシステムコントローラ140および1300および関連付けられるコンポーネントの実施例の高レベル概略描写を提供することを理解されたい。他のコンポーネントも、示されないが、当業者によって理解される実践的実装のために必要に応じて含まれてもよい。また、システムコントローラ140および1300は、提供され得る構造(例えば、ハードウェア、回路、ファームウェア、ソフトウェア、機構等)を表すことが意図される機能的ブロックとして
図1および13に図式的に表されることを理解されたい。種々の機能的ブロックおよび信号リンクは、例証の目的のためだけに恣意的に配置されており、いかなる様式でも限定ではない。当業者は、実践では、システムコントローラ140および1300の機能が、種々の方法で実装され得、必ずしも、
図1および13に図示され、本明細書に説明される厳密な様式で実装されないことを理解するであろう。
【0074】
本明細書に説明されるプロセス、サブプロセス、およびプロセスステップのうちの1つ以上のものは、1つ以上の電子またはデジタル制御デバイス上で、ハードウェア、ファームウェア、ソフトウェア、または前述のうちの2つ以上のものの組み合わせによって実施され得ることを理解されたい。ソフトウェアは、例えば、
図1および13に図式的に描写されるシステムコントローラ140および1300等の好適な電子処理コンポーネントまたはシステム内のソフトウェアメモリ(図示せず)内に常駐してもよい。ソフトウェアメモリは、論理機能(すなわち、デジタル回路またはソースコード等のデジタル形態において、またはアナログ電気、音声、またはビデオ信号等のアナログソース等のアナログ形態において実装され得る「論理」)を実装するための実行可能命令の順序付けられた一覧を含んでもよい。命令は、例えば、1つ以上のマイクロプロセッサ、汎用プロセッサ、プロセッサの組み合わせ、デジタル信号プロセッサ(DSP)、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)等を含む、処理モジュール内で実行されてもよい。さらに、概略図は、機能のアーキテクチャまたは物理的レイアウトによって限定されない物理的(ハードウェアおよび/またはソフトウェア)実装を有する機能の論理分割を説明する。本明細書に説明されるシステムの実施例は、種々の構成において実装され、単一のハードウェア/ソフトウェアユニット内、または別個のハードウェア/ソフトウェアユニット内のハードウェア/ソフトウェアコンポーネントとして動作してもよい。
【0075】
実行可能命令は、電子システム(例えば、
図1および13のシステムコントローラ140および1300)の処理モジュールによって実行されると、電子システムに、命令を実行するように指図する、その中に記憶される命令を有するコンピュータプログラム製品として実装されてもよい。コンピュータプログラム製品は、電子コンピュータベースのシステム、プロセッサ含有システム、または命令実行システム、装置、またはデバイスからの命令を選択的にフェッチし、命令を実行し得る他のシステム等、命令実行システム、装置、またはデバイスによる使用のための、またはそれと関連する任意の非一過性コンピュータ可読記憶媒体において選択的に具現化されてもよい。本開示の文脈では、コンピュータ可読記憶媒体は、命令実行システム、装置、またはデバイスによる使用のための、またはそれと関連するプログラムを記憶し得る任意の非一過性手段である。非一過性コンピュータ可読記憶媒体は、選択的に、例えば、電子、磁気、光学、電磁、赤外線、または半導体システム、装置、またはデバイスであってもよい。非一過性コンピュータ可読媒体のより具体的な実施例の非包括的リストは、1つ以上のワイヤを有する電気接続(電子)、ポータブルコンピュータディスケット(磁気)、ランダムアクセスメモリ(電子)、読取専用メモリ(電子)、例えば、フラッシュメモリ等の消去可能プログラマブル読取専用メモリ(電子)、例えば、CD-ROM、CD-R、CD-RW等のコンパクトディスクメモリ(光学)、およびデジタル多用途ディスクメモリ、すなわち、DVD(光学)を含む。非一過性コンピュータ可読記憶媒体は、さらには、その上にプログラムが印刷される紙または別の好適な媒体であってもよく、プログラムは、例えば、紙または他の媒体の光学走査を介して電子的に捕捉され、次いで、コンパイルされる、解釈される、または別様に必要に応じて好適な様式で処理され、次いで、コンピュータメモリまたは機械メモリ内に記憶されてもよいことに留意されたい。
【0076】
また、本明細書に使用されるような用語「信号通信する」または「電気通信する」は、2つ以上のシステム、デバイス、コンポーネント、モジュール、またはサブモジュールが、あるタイプの信号経路を経由して進行する信号を介して相互に通信することが可能であることを意味することを理解されたい。信号は、第1のシステム、デバイス、コンポーネント、モジュール、またはサブモジュールから、第2のシステム、デバイス、コンポーネント、モジュール、またはサブモジュールに、第1および第2のシステム、デバイス、コンポーネント、モジュール、またはサブモジュールの間の信号経路に沿って情報、電力、またはエネルギーを通信し得る通信、電力、データ、またはエネルギー信号であってもよい。信号経路は、物理、電気、磁気、電磁、電気化学、光学、有線、または無線接続を含んでもよい。信号経路はまた、第1および第2のシステム、デバイス、コンポーネント、モジュール、またはサブモジュールの間に付加的システム、デバイス、コンポーネント、モジュール、またはサブモジュールを含んでもよい。
【0077】
より一般的に、「連通する」および「~と...連通している」等の用語(例えば、第1のコンポーネントが第2のコンポーネント「と連通する」または「と連通している」)は、2つ以上のコンポーネントまたは要素の間の構造的、機能的、機械的、電気的、信号、光学、磁気、電磁、イオン性、または流体関係を示すために本明細書で使用される。したがって、1つのコンポーネントが第2のコンポーネントと連通すると言われる事実は、付加的コンポーネントが第1および第2のコンポーネントの間に存在する、および/またはそれらと動作可能に関連付けられる、またはそれらと係合され得る可能性を除外することを意図していない。本発明の種々の側面または詳細が、本発明の範囲から逸脱することなく変更され得ることを理解されたい。さらに、前述の説明は、例証のみを目的とし、限定を目的としておらず、本発明は、請求項によって定義される。