IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 大阪瓦斯株式会社の特許一覧

<>
  • 特許-制御システム 図1
  • 特許-制御システム 図2
  • 特許-制御システム 図3
  • 特許-制御システム 図4
  • 特許-制御システム 図5
  • 特許-制御システム 図6
  • 特許-制御システム 図7
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-06-08
(45)【発行日】2023-06-16
(54)【発明の名称】制御システム
(51)【国際特許分類】
   H01M 8/04 20160101AFI20230609BHJP
   H04Q 9/00 20060101ALI20230609BHJP
   F24H 1/00 20220101ALI20230609BHJP
   H01M 8/00 20160101ALI20230609BHJP
   H01M 8/0432 20160101ALI20230609BHJP
   H01M 8/04955 20160101ALI20230609BHJP
   H01M 8/04313 20160101ALI20230609BHJP
   H01M 8/04992 20160101ALI20230609BHJP
   H01M 8/04303 20160101ALI20230609BHJP
【FI】
H01M8/04 Z
H04Q9/00 301D
F24H1/00 631A
H01M8/00 Z
H01M8/0432
H01M8/04955
H01M8/04313
H01M8/04992
H01M8/04303
【請求項の数】 7
(21)【出願番号】P 2019064421
(22)【出願日】2019-03-28
(65)【公開番号】P2020166971
(43)【公開日】2020-10-08
【審査請求日】2021-12-15
(73)【特許権者】
【識別番号】000000284
【氏名又は名称】大阪瓦斯株式会社
(74)【代理人】
【識別番号】110001818
【氏名又は名称】弁理士法人R&C
(72)【発明者】
【氏名】前田 和茂
【審査官】藤森 一真
(56)【参考文献】
【文献】特開2005-287132(JP,A)
【文献】特開2012-225543(JP,A)
【文献】特開2017-044449(JP,A)
【文献】特開2015-185025(JP,A)
【文献】特開2014-102709(JP,A)
【文献】米国特許出願公開第2015/0276268(US,A1)
【文献】特開2015-137770(JP,A)
【文献】特開2004-069085(JP,A)
【文献】特開2006-196264(JP,A)
【文献】特開2004-236422(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
F24D 18/00
F24H 1/00
F24H 1/18 - 1/20
F24H 4/00 - 4/06
H01M 8/04 - 8/0668
(57)【特許請求の範囲】
【請求項1】
家屋内にエネルギー供給を行う燃料電池コージェネレーション装置の制御システムであって、
前記燃料電池コージェネレーション装置の発電を停止させる発電停止指令を出力する手動操作式の発電停止操作具と、
エネルギー供給状態を示す供給時系列データを生成する供給時系列データ生成部と、
家屋環境に関する環境時系列データを生成する環境時系列データ生成部と、
前記発電停止指令の出力時点を基準として前記供給時系列データから学習用供給時系列パターンを生成するとともに、任意の時点を基準として前記供給時系列データから汎用供給時系列パターンを生成する供給パターン生成部と、
前記発電停止指令の前記出力時点を基準として前記環境時系列データから学習用環境時系列パターンを生成するとともに、任意の時点を基準として前記環境時系列データから汎用環境時系列パターンを生成する環境パターン生成部と、
前記汎用供給時系列パターンと前記汎用環境時系列パターンとを入力データとして、前記家屋内での人の不在を示す不在情報を出力するように、前記学習用供給時系列パターンと前記学習用環境時系列パターンとを用いて機械学習された不在推定ユニットと、
前記不在推定ユニットからの前記不在情報の出力に基づいて、前記発電を停止させる発電停止制御部と、
を備える燃料電池コージェネレーション装置の制御システム。
【請求項2】
前記不在情報の出力時系列に基づいて、不在継続時間が算出され、出力される請求項1に記載の燃料電池コージェネレーション装置の制御システム。
【請求項3】
前記不在情報には、不在継続時間が含まれている請求項1に記載の燃料電池コージェネレーション装置の制御システム。
【請求項4】
前記燃料電池コージェネレーション装置がデータ通信回線を通じてデータ交換可能に管理コンピュータに接続されており、前記管理コンピュータには、前記不在推定ユニットの学習を実施する機械学習部が構築されており、前記学習用供給時系列パターン及び前記学習用環境時系列パターンが前記燃料電池コージェネレーション装置から前記機械学習部に与えられることによって前記機械学習が実行され、前記機械学習によって生成された機械学習結果データを用いて前記不在推定ユニットが更新される請求項1から3のいずれか一項に記載の燃料電池コージェネレーション装置の制御システム。
【請求項5】
前記燃料電池コージェネレーション装置には、前記発電停止操作具と前記発電停止制御部とが備えられ、
前記燃料電池コージェネレーション装置がデータ通信回線を通じてデータ交換可能に管理コンピュータに接続されており、前記管理コンピュータには、前記供給時系列データ生成部と、前記環境時系列データ生成部と、前記供給パターン生成部と、前記環境パターン生成部と、前記不在推定ユニットとが備えられ、
前記発電停止指令は前記発電停止操作具から前記管理コンピュータに送られ、前記不在情報は前記管理コンピュータから前記発電停止制御部に送られる請求項1から3のいずれか一項に記載の燃料電池コージェネレーション装置の制御システム。
【請求項6】
前記不在情報が前記家屋に設置されている他の家庭用機器に転送される請求項1から5のいずれか一項に記載の燃料電池コージェネレーション装置の制御システム。
【請求項7】
前記供給時系列データには、前記燃料電池コージェネレーション装置による電力の電力使用データ、前記燃料電池コージェネレーション装置による給湯の給湯使用データ、前記燃料電池コージェネレーション装置による暖房の暖房使用データのうちの少なくとも1つが含まれ、
前記環境時系列データには、気温データ、水温データ、室温データ、天候データ、季節データ、日時データのうちの少なくとも1つが含まれている請求項1から6のいずれか一項に記載の燃料電池コージェネレーション装置の制御システム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、家屋内にエネルギー供給を行う燃料電池コージェネレーション装置の制御システムに関する。
【背景技術】
【0002】
特許文献1には、給湯器を遠隔操作するリモコン装置が開示されている。このリモコン装置は、給湯器の作動状態を表示する作動状態表示部と、時刻を表示する時刻表示部と、給湯器の給湯運転が可能な運転状態と給湯運転が不能な待機状態とを切替える運転スイッチ、作動状態表示部の点灯/ 消灯を切替える省電力スイッチを備えている。運転スイッチの操作によって、給湯器の給湯運転が可能な運転状態と、給湯器の給湯運転が不能な待機状態とが切り替えられる。省電力スイッチの操作によって、作動状態表示部を点灯状態にする「通常表示モード」と、運転状態で給湯器の給湯運転が実行されていないときに作動状態表示部を消灯状態にする「省電力表示モード」とが切り替えられる。これにより、表示部における不必要な電力消費が低減される。
【0003】
特許文献2には、給湯器本体と給湯操作装置としての給湯リモコンとを備えた給湯システムが開示されている。給湯リモコンは、操作キーや表示デバイスを備え、給湯運転開始直後などの通常表示モードでは、給湯運転中であることや給湯温度が、表示デバイス画面上に表示される。さらに、給湯運転の開始後であっても開栓操作に伴う出湯や操作キーの操作などが一定時間行われない場合には、表示モードが通常表示モードから省電力表示モードに切り替えられ、ユーザが何らかの操作を行うまで画面は非表示状態となる。これにより、消費電力の低減や表示デバイスの延命が図られている。
【0004】
特許文献3には、住宅内に人が在宅中であるか外出中であるかの判定する在宅判定システムが開示されている。このシステムは、住宅内に人が在宅中であるか外出中であるかを示す状態情報と、玄関に人がいることを検出する人感センサから出力される人検出情報と、玄関の扉が開閉したことを検出する開閉センサから出力される開閉情報とを取得する。次いで、人検出情報と開閉情報とを取得した順番が、当該状態情報に対応した順番であるか否かが判定される。この判定結果は、ネットワークを介して情報端末に出力されるとともに、この判定結果に応じて状態情報が更新される。
【0005】
特許文献4には、住宅に人物が在宅しているかどうかの情報を提供するシステムが開示されている。このシステムは、住宅に配置された複数の機器に対して所定の操作がなされた操作時刻から、住宅に人物が不在であると推定された不在時刻までの時間差に基づいて、人物の外出する前の相関のある行動パターンを特定する。この特定された行動パターンに基づいて、指定された時刻における住宅に人物が在宅している確率が算出される。
【先行技術文献】
【特許文献】
【0006】
【文献】特開2006-162112号公報
【文献】特開2003-4296号公報
【文献】特開2017-220837号公報
【文献】特開2018-142386号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
特許文献1による給湯器では、省電力スイッチを操作することによって、リモコン装置の表示部が消灯状態となり、省電力が図られる。しかしながら、省電力スイッチの操作が行われないと、人が不在でリモコン表示が不要な時でもリモコン表示が行われ、電力が無駄に消費される。特許文献2による給湯システムでは、給湯リモコンに対する操作が一定時間行われない場合、省電力表示モードに切り替えられ、表示部が消灯状態となり、省電力が図られる。しかしながら、発電状況や電力の使用状況、あるいは時刻やその他の情報を見るために、人が給湯リモコンに近づいても、リモコンの非操作が一定時間継続している場合には、何らかの操作が行われない限り、表示部が消灯状態のため、情報の確認は不可能である。
【0008】
特許文献3による在宅判定システムでは、玄関における人感センサや玄関扉の開閉センサを用いて、家宅での人の存在が判定される。しかしながら、玄関から複数人が出入りする場合や家族以外の人が出入りした場合、正確な在宅判定(不在判定)が困難となる。また、特許文献4では、同じ機器の操作であっても、時間帯や季節、あるいは気象条件など環境条件によって、その操作の趣旨が異なる場合もあるので、機器に対する操作だけから在宅判定は困難である。
【0009】
上述した実情に鑑み、本発明の目的は、家屋内に必要なエネルギーを供給することができる燃料電池コージェネレーション装置を配備した家屋において、確実な不在判定及びこの不在判定に基づく適切な機器制御が可能となる制御システムを提供することである。
【課題を解決するための手段】
【0010】
本発明に係る、家屋内にエネルギー供給を行う燃料電池コージェネレーション装置の制御システムは、前記燃料電池コージェネレーション装置の発電を停止させる発電停止指令を出力する手動操作式の発電停止操作具と、エネルギー供給状態を示す供給時系列データを生成する供給時系列データ生成部と、家屋環境に関する環境時系列データを生成する環境時系列データ生成部と、前記発電停止指令の出力時点を基準として前記供給時系列データから学習用供給時系列パターンを生成するとともに、任意の時点を基準として前記供給時系列データから汎用供給時系列パターンを生成する供給パターン生成部と、前記発電停止指令の前記出力時点を基準として前記環境時系列データから学習用環境時系列パターンを生成するとともに、任意の時点を基準として前記環境時系列データから汎用環境時系列パターンを生成する環境パターン生成部と、前記汎用供給時系列パターンと前記汎用環境時系列パターンとを入力データとして、前記家屋内での人の不在を示す不在情報を出力するように、前記学習用供給時系列パターンと前記学習用環境時系列パターンとを用いて機械学習された不在推定ユニットと、前記不在推定ユニットからの前記不在情報の出力に基づいて、前記発電を停止させる発電停止制御部とを備える。
【0011】
この構成によれば、家人が不在となる際に行う発電停止操作具への操作時点(発電停止指令の出力時点)を基準として生成された特定期間でのエネルギー供給状態を示す学習用供給時系列パターン及び家屋環境を示す学習用環境時系列パターンが、不在推定ユニットの機械学習の学習データとして用いられる。その際、教師データは、家人の不在となる。つまり、この不在推定ユニットでは、家人不在時における家庭生活のための必須となるエネルギーの供給状態変化とこの供給状態に影響を与える家屋環境状態とが、家人不在というラベル付きの学習データとして用いられる。このようにして機械学習された不在推定ユニットは、常時、入力される汎用供給時系列パターンと汎用環境時系列パターンとに基づいて、家人の不在判定を行い、不在情報を出力する。出力された不在情報が家人の不在を示している場合には、この不在情報の出力に基づいて、発電停止制御部が発電を停止させる。この燃料電池コージェネレーション装置の制御システムは、より正確な在宅判定及びこの在宅判定に基づく適切な機器制御を実現する。
【0012】
不在推定ユニットから出力される不在情報に、家人の在宅または不在の情報だけでなく、不在継続時間(予測時間)も含まれていると、機器制御にとって好都合である。家人が不在であったとしても不在継続時間がある程度長くないと、発電停止の効果が得られにくいからである。このような不在継続時間の算出は、不在推定ユニットとは別の演算ユニットによって構成してもよいし、不在推定ユニットが不在継続時間も出力するように構成してもよい。このことから、本発明の好適な実施形態の1つでは、前記不在情報の出力時系列に基づいて、不在継続時間が算出され、出力される。この構成では、不在推定ユニットとは別の演算ユニットによって不在継続時間が算出されるので、不在推定ユニットの演算構造の複雑化が避けられる。この演算ユニットは、不在推定ユニットからの経時的な不在情報の出力パターンから不在継続時間を推定する機械学習ユニットとして構成可能である。これとは異なる好適な実施形態の1つでは、不在推定ユニットが、不在継続時間を含む不在情報を出力する。このような不在推定ユニットの機械学習時に用いられる教師データには、家人の在宅または不在の情報だけでなく、不在継続時間情報も含まれる。
【0013】
燃料電池コージェネレーション装置は家庭用エネルギー供給機器として多くの家屋に設置されるので、各家屋から大量の不在ラベル付きの供給時系列データ及び環境時系列データが送られてくれば、これらのデータは教師あり学習情報として利用することができる。機械学習のデータ量が大きいことは、機械学習の精度の向上につながる。このため、本発明の好適な実施形態の1つでは、前記燃料電池コージェネレーション装置がデータ通信回線を通じてデータ交換可能に管理コンピュータに接続されており、前記管理コンピュータには、前記不在推定ユニットの学習を実施する機械学習部が構築されており、前記学習用供給時系列パターン及び前記学習用環境時系列パターンが前記燃料電池コージェネレーション装置から前記機械学習部に与えられることによって前記機械学習が実行され、前記機械学習によって生成された機械学習結果データを用いて前記不在推定ユニットが更新される。
【0014】
燃料電池コージェネレーション装置の制御システムは、家庭とインターネットなどのデータ通信回線を通じて接続可能で、クラウドサービス機能を有する管理コンピュータに組み入れることができる。そのようなシステム構成では、各家屋に配置される燃料電池コージェネレーション装置と管理コンピュータとの間で、上述した制御システムの各機能を振り分けることができ、好都合である。本発明の好適な実施形態の1つでは、前記燃料電池コージェネレーション装置には、前記発電停止操作具と前記発電停止制御部とが備えられ、前記燃料電池コージェネレーション装置がデータ通信回線を通じてデータ交換可能に管理コンピュータに接続されており、前記管理コンピュータには、前記供給時系列データ生成部と、前記環境時系列データ生成部と、前記供給パターン生成部と、前記環境パターン生成部と、前記不在推定ユニットとが備えられ、前記発電停止指令は前記発電停止操作具から前記管理コンピュータに送られ、前記不在情報は前記管理コンピュータから前記発電停止制御部に送られる。これにより、制御システムの演算負荷の高い処理は管理コンピュータで集中的に実行されるので、効率的である。
【0015】
家屋内での人の不在を示す不在情報は、他の家庭用機器にとっても貴重な情報となる。不在情報に基づいて機器制御が行われることで、例えば、テレビ、ラジオ、照明、ガスなどの消し忘れが回避できる。このことから、本発明の好適な実施形態の1つでは、前記不在情報が前記家屋に設置されている他の家庭用機器に転送される。
【0016】
本発明の好適な実施形態の1つでは、前記供給時系列データには、電力の電力使用データ給湯の給湯使用データ、暖房の暖房使用データのうちの少なくとも1つが含まれ、前記環境時系列データには、気温データ、水温データ、室温データ、天候データ、季節データ、日時データのうちの少なくとも1つが含まれている。この構成では、家人の不在時と在宅時とで、その差が大きくなる、電力使用、給湯使用、暖房使用のうちの少なくとも1つと、これらの使用変動に大きな影響を与える、気温、水温、室温、天候データ、季節、日時のうちの少なくとも1つを用いることで、精度の高い家人の不在推定が実現される。
【0017】
本発明のその他の特徴、作用及び効果は、以下の図面を用いた本発明の説明によって明らかにされる。
【図面の簡単な説明】
【0018】
図1】管理コンピュータを取り入れた燃料電池コージェネレーション装置の制御システムの全体構成を示す模式図である。
図2】燃料電池コージェネレーションシステムの全体構成を示す模式図である。
図3】制御システムの機能ブロック図である。
図4】畳み込みニューラルネットワークとして構成された不在推定ユニットにおける機械学習を説明する模式図である。
図5】学習用時系列電力使用パターンの生成を説明する模式図である。
図6】畳み込みニューラルネットワークとして構成された不在推定ユニットにおける不在推定を説明する模式図である。
図7】汎用時系列電力使用パターンの生成を説明する模式図である。
【発明を実施するための形態】
【0019】
本発明に係る制御システムは、図1に概略的に示すように、家屋内にエネルギーを供給するために配備された燃料電池コージェネレーション装置1を制御する。この実施形態では、燃料電池コージェネレーション装置1のための制御システムは、実質的には、ガスサービスセンタに設置されている管理コンピュータCCに構築されている機能部と、燃料電池コージェネレーション装置1の制御ユニット2に構築されている機能部とから構成されている。各家屋に配備された燃料電池コージェネレーション装置1の制御ユニット2と管理コンピュータCCとは、インターネットや公衆回線などからなるデータ通信回線DNを通じて接続されている。これにより、管理コンピュータCCと制御ユニット2との間で種々の情報が送受信される。
【0020】
燃料電池コージェネレーション機器1は、図2に示すように、構成要素として、貯湯タンク11、燃料電池ユニット12、熱源機13を備え、都市ガスから水素を取り出して、空気中の酸素と反応させて発電する。燃料電池ユニット12で発生した熱は湯水の形態で貯湯タンク11に蓄えられる。熱源機13は、燃料を燃焼して得られる燃焼熱により貯湯タンク11からの湯水を加熱することができる。熱源機13は、家屋内の熱負荷部に湯水の供給(給湯用途、温水暖房用途など)を行う。給湯の場合、湯水は対象の熱負荷部において消費され、貯湯タンク11に帰還しない。温水暖房の場合、熱源機13の燃焼熱で加熱された湯水の熱のみが対象の熱負荷部で消費され、貯湯タンク11の湯水は使用されない。この温水暖房には、温水床暖房や浴室暖房乾燥機などが含まれる。さらには、温水暖房に風呂追いだきを含めてもよい。なお、熱源機13は給湯器で置き換えることができる。したがって、この実施形態では、温水暖房が燃料電池コージェネレーション装置1による暖房であり、温水暖房の使用データが暖房使用データである。制御ユニット2は、燃料電池コージェネレーション装置1の制御(発電オンオフ、暖房やお湯の温度などの設定)を行うとともに、燃料電池コージェネレーション装置1の駆動状態や燃料電池コージェネレーション装置1の環境をチェックする機能も有する。
【0021】
制御ユニット2から管理コンピュータCCに送られる情報には、エネルギー供給状態を示す供給時系列データと家屋環境に関する環境時系列データが含まれている。なお、このエネルギー供給状態は、燃料電池コージェネレーション装置1による家屋へのエネルギー供給状態だけを含むのではなく、他の供給源(例えば商用電源網など)からのエネルギー供給を含んでもよい。供給時系列データには、燃料電池コージェネレーション装置1による電力を含む家屋に供給される電力の電力使用データ、燃料電池コージェネレーション装置1による給湯の給湯使用データ、燃料電池コージェネレーション装置1による暖房の暖房使用データなどが含まれている。環境時系列データには、気温データ、水温データ、室温データ、天候データ、季節データ、日時データなどが含まれている。なお、水温の時系列パターンデータには、給水温度または給湯温度あるいはその両方が含まれる。気温の時系列パターンデータには、室外気温または室内温度あるいはその両方が含まれる。季節データと日時データとは、統合可能である。
【0022】
管理コンピュータCCは、各燃料電池コージェネレーション装置1の制御ユニット2から送られてくる供給時系列データ及び環境時系列データに基づいて、各家屋内に人が存在しているか、不在であるかを推定する。推定結果としての不在情報は、対応する燃料電池コージェネレーション装置1の制御ユニット2に送られる。制御ユニット2は、人の不在を示す不在情報を受け取ると、燃料電池コージェネレーション装置1による発電を停止させる。
【0023】
次に、管理コンピュータCC及び制御ユニット2に備えられている、本発明に特に関係する機能を具体的に説明する。図3には、管理コンピュータCC及び制御ユニット2の機能ブロック図が示されている。
【0024】
この実施形態では、制御ユニット2は、供給時系列データを生成する供給時系列データ生成部21と、環境時系列データを生成する環境時系列データ生成部22と、燃料電池コージェネレーション装置1の発電を停止させる発電停止制御部23とを備える。さらに制御ユニット2には、手動操作式の発電停止操作具24が接続されており、ユーザは、不在が予定される際には発電停止操作具24を操作して、燃料電池コージェネレーション装置1の発電を停止させる発電停止指令を発電停止制御部23に与える。しかしながら、ユーザが不在となる際に発電停止操作具24の操作を忘れ、燃料電池コージェネレーション装置1の運転が続行している場合でも、管理コンピュータCCがユーザの不在を推定することにより、管理コンピュータCCから当該燃料電池コージェネレーション装置1に不在情報が送られ、燃料電池コージェネレーション装置1の運転が自動的に停止(発電停止)される。
【0025】
制御ユニット2で生成された、供給時系列データ、環境時系列データ、発電停止指令(出力時刻を含む)は、管理コンピュータCCにアップロードされる。このアップロードは、リアルタイム処理またはバッジ処理で行われる。
【0026】
管理コンピュータCCには、情報格納部51、データ前処理部52、機械学習部53、不在推定ユニット4が備えられている。情報格納部51は、各家屋の制御ユニット2から送られてくる供給時系列データ、環境時系列データ、発電停止指令を家宅別に格納する。データ前処理部52は、情報格納部51に格納されている情報を読み込んで、必要なデータ処理を行い、そのデータ処理結果を機械学習部53と不在推定ユニット4とに与える。なお、機械学習部53と不在推定ユニット4は一体化可能である。
【0027】
データ前処理部52には、供給パターン生成部521と環境パターン生成部522とが含まれている。供給パターン生成部521は、学習用モードと常用モードとの2つのモードで、情報格納部51から読み出した供給時系列データから所定時間領域での供給時系列パターンを生成する。学習用モードは発電停止指令の受信をトリガーとして設定される。学習用モードでは発電停止指令が解除するまで、発電停止指令の出力時点を基準として供給時系列データから学習用供給時系列パターンが生成される。発電停止指令が出力されていない場合には常用モードが設定され、アップロードされてきた供給時系列データから任意の時点を基準として汎用供給時系列パターンが生成される。
【0028】
同様に、環境パターン生成部522は、学習用モードと常用モードとの2つのモードで、情報格納部51から読み出した環境時系列データから所定時間領域での環境時系列パターンを生成する。学習用モードでは発電停止指令が解除するまで、発電停止指令の出力時点を基準として環境時系列データから学習用環境時系列パターンが生成される。発電停止指令が出力されていない場合には常用モードが設定され、アップロードされてきた環境時系列データから任意の時点を基準として汎用環境時系列パターンが生成される。
【0029】
不在推定ユニット4は、データ前処理部52によって生成された、各家屋の汎用供給時系列パターンと汎用環境時系列パターンとを入力データとして、当該家屋での人の不在を示す不在情報を出力するように、学習用供給時系列パターンと学習用環境時系列パターンとを用いて機械学習される。不在推定ユニット4を構築するための機械学習プロセスは、機械学習部53を用いて行われる。学習用供給時系列パターンと学習用環境時系列パターンとが機械学習部53の学習データとして用いられ、その際の教師データとして発電停止指令が用いられる。ここでは、発電停止指令は、家人が不在となる前提条件として取り扱われる。つまり、機械学習プロセスでは、家人が不在となっている家屋での供給時系列パターンである学習用供給時系列パターンと家人が不在となっている家屋での環境時系列パターンである学習用環境時系列パターンを機械学習させることで、通常時における汎用供給時系列パターンと汎用環境時系列パターンとから家人の不在を推定する推定演算機能が作り出される。
【0030】
機械学習部53によって学習される推定演算モデルは、実質的な構成は不在推定ユニット(機械学習ユニット)4と同じであり、ここでは、ニューラルネットワークモデル、例えば、再帰型ニューラルネットワークモデル、リカレントニューラルネットワーク、畳み込みニューラルネットワークモデルなどから選択された最適なモデルによって構成可能であるが、時系列データを取り扱う場合にはリカレントニューラルネットワークが有利である。
【0031】
図4は、ニューラルネットワークモデルの構成を示しており、7個のニューロンw1、w2、w3、・・・、w7を含む入力層と、3個のニューロンx1、x2、x3を含む第1中間層(第1隠れ層)及び3個のニューロンy1、y2、y3を含む第2中間層(第2隠れ層)と、1個のニューロンz1を含む出力層とから構成されている。なお、図4において、中間層は、第1と第2の2層のみ示されているが、実際は入力されるデータ量に対応する入力層が必要であり、隠れ層も多層であることが好適である。
【0032】
このニューラルネットワークは、学習用供給時系列パターン及び学習用環境時系列パターンを入力とするとともに、家人不在の発生とみなされる発電停止指令の経時的データを教師データとして、機械学習される。この実施形態では、学習用供給時系列パターンとして、学習用給湯使用パターンがニューロンw1に、学習用暖房使用パターンがニューロンw2に、学習用電力使用パターンがニューロンw3に入力される。学習用環境時系列パターンとして、学習用年月日パターンがニューロンw4に、学習用時刻パターンがニューロンw5に、学習用水温時系列パターンがニューロンw6に、学習用気温パターンがニューロンw7に、入力される。
【0033】
中間層は、1つ以上の畳み込み層とプーリング層とからなる第1中間層(隠れ層)と、全結合層からなる第2中間層とを有する。第1中間層により、特徴マップを獲得し、パターンの抽象化を行うことで入力された時系列パターンを認識し分類する。
【0034】
学習用供給時系列パターンの一例としての学習用電力使用パターンが、図5に示されている。学習用電力使用パターンは、情報格納部51に格納されている電力使用時系列データから、発電停止指令の出力タイミング(図5ではt1で示されている)に基づいて、切り出されたデータである。図5では、4つの学習用電力使用パターンが例示されている。第1の学習用電力使用パターン(図5ではs1で示されている)は、発電停止指令の出力タイミング:t1よりΔtだけ遡った時点から、所定の時間区画を有する。第2の学習用電力使用パターン(図5ではs2で示されている)は、第1の学習用電力使用パターンより所定の遅れ時間で切り出されたパターンである。第3と第4の学習用電力使用パターン(図5ではs3とs4で示されている)は、それぞれ、第2と第4の学習用電力使用パターンより所定の遅れ時間で切り出されたパターンである。これらの、4つの学習用電力使用パターンを入力層に入力してもよいし、これらを統計的演算等によって統合化した1つの学習用電力使用パターンを入力層に入力してもよい。図5の例では、発電停止指令の出力タイミング:t1よりΔtだけ遡った時点が学習用電力使用パターンの切り出し点であったが、発電停止指令の出力タイミング:t1が学習用電力使用パターンの切り出し点であってもよいし、発電停止指令の出力タイミング:t1より遅れた時点が学習用電力使用パターンの切り出し点であってもよい。学習用給湯使用パターン及び学習用暖房使用パターンも同様に生成して、入力層に入力される。
【0035】
学習用環境時系列パターンである、学習用水温時系列パターンや学習用気温パターンは学習用供給時系列パターンと同様に抽出(切り出し)することができる。学習用年月日パターンや学習用時刻パターンは、一定値として入力することができる。
【0036】
学習プロセスが完了すれば、推定ユニットモデルにおける最終的な学習係数(重み係数)を含む機械学習結果データが生成されるので、この機械学習結果データを用いて、図6で示されるようなニューラルネットワーク構造を有する不在推定ユニット4が構築される。
【0037】
不在推定ユニット4が構築されると、燃料電池コージェネレーション装置1の制御ユニット2から送られてくる供給時系列データ及び環境時系列データがデータ前処理部52で処理され、現時点の汎用供給時系列パターン及び汎用環境時系列パターンとして、汎用給湯使用パターン、汎用暖房使用パターンに、汎用電力使用パターン、汎用年月日パターン、汎用時刻パターン、汎用水温時系列パターン、汎用気温パターンが生成される。
【0038】
現時点の汎用供給時系列パターンの一例としての汎用電力使用パターンが、図7に示されている。汎用電力使用パターンは、情報格納部51に格納されている電力使用時系列データから、データ前処理部52の供給パターン生成部521によって読み出される。読み出された汎用電力使用パターンは不在推定ユニット4の入力層に入力される。例示されている汎用電力使用パターンは、電力使用時系列データから所定の時間領域で切り出されたデータである。図7では、互いにオーバーラップをもって切り出された4つの学習用電力使用パターンがr1、r2、r3、r4で示されている。これらの4つの学習用電力使用パターンは、別々のニューロンに入力されてもよいし、それらを統計的演算して得られた特徴データをニューロンに入力してもよい。このような入力方法は、学習時の不在推定ユニット4への入力及び学習済の不在推定ユニット4への入力に適用される。
【0039】
図6に示すように、現状の全ての汎用供給時系列パターン及び汎用環境時系列パターンが学習済の不在推定ユニット4の入力層に入力されると、不在推定ユニット4での推定演算が実行される。家屋に人が存在しないと推定されると、不在推定ユニット4は不在情報を出力する。
【0040】
不在推定ユニット4から出力された不在情報は、該当する燃料電池コージェネレーション装置1の制御ユニット2に送られる。制御ユニット2が不在情報を受け取ると、発電停止制御部23は、燃料電池コージェネレーション装置1の発電を停止させる。さらに、制御ユニット2が防犯装置などの家庭用機器とネットワーク接続されている場合、不在情報と家庭用機器が持つ情報とが組み合わせられて家屋監視情報が作成され、警備会社や前もって設定されている連絡先に通知される。
【0041】
〔別実施の形態〕
(1)上述した実施形態では、学習済みの機械学習ユニットである不在推定ユニット4は、管理コンピュータCCに備えられていた。これに代えて、不在推定ユニット4を燃料電池コージェネレーション装置1の制御ユニット2に備えることができる。この場合には、汎用供給時系列パターン及び汎用環境時系列パターンは、制御ユニット2で生成され、不在推定ユニット4に入力される。なお、不在推定ユニット4を制御ユニット2に構築する際に必要な機械学習結果データは、管理コンピュータCCから制御ユニット2へ、データ通信回線DNを用いて転送されると好都合であるが、スマートフォンやポータブルメモリなどを仲介させるデータ転送方法を採用してもよい。また、機械学習結果データを用いて構築された不在推定ユニット4を予め組み込んだ制御ユニット2が各家庭に設置されるようにしてもよい。データ通信回線DNを介して機械学習結果データを転送する方法では、定期的に機械学習結果データを生成し、制御ユニット2の不在推定ユニット4を常に最新版に更新することができる。
【0042】
(2)不在情報に、家人の在宅または不在の情報だけでなく、不在継続時間(予測時間)も含まれるように、不在推定ユニット4を構築することも可能である。このためには、教師データとして不在継続時間情報、例えば、不在の開始時点(発電停止指令の出力時)と不在の終了時点(発電停止指令の解除時)とを加えるとよい。
【0043】
(3)家人の在宅または不在の推定と、不在継続時間の推定とが、別個の演算ユニットによって行われてもよい。そのような演算ユニットは、不在推定ユニット4からの経時的な不在情報の出力パターン(不在情報の出力時系列)から不在継続時間を推定する機械学習ユニットとして構成可能である。
【0044】
なお、上記実施形態(別実施形態を含む、以下同じ)で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することが可能であり、また、本明細書において開示された実施形態は例示であって、本発明の実施形態はこれに限定されず、本発明の目的を逸脱しない範囲内で適宜改変することが可能である。
【産業上の利用可能性】
【0045】
本発明は、家屋内にエネルギー供給を行う燃料電池コージェネレーション装置に適用可能である。
【符号の説明】
【0046】
1 :燃料電池コージェネレーション装置
2 :制御ユニット
4 :不在推定ユニット
11 :貯湯タンク
12 :燃料電池ユニット
13 :熱源機
21 :供給時系列データ生成部
22 :環境時系列データ生成部
23 :発電停止制御部
24 :発電停止操作具
51 :情報格納部
52 :データ前処理部
53 :機械学習部
521 :供給パターン生成部
522 :環境パターン生成部
CC :管理コンピュータ
DN :データ通信回線
図1
図2
図3
図4
図5
図6
図7