(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-06-09
(45)【発行日】2023-06-19
(54)【発明の名称】道路周辺物監視装置、道路周辺物監視プログラム
(51)【国際特許分類】
G08G 1/01 20060101AFI20230612BHJP
【FI】
G08G1/01 A
(21)【出願番号】P 2020150504
(22)【出願日】2020-09-08
【審査請求日】2021-08-06
(73)【特許権者】
【識別番号】391016358
【氏名又は名称】東芝情報システム株式会社
(74)【代理人】
【識別番号】110003708
【氏名又は名称】弁理士法人鈴榮特許綜合事務所
(74)【代理人】
【識別番号】100108855
【氏名又は名称】蔵田 昌俊
(74)【代理人】
【識別番号】100179062
【氏名又は名称】井上 正
(74)【代理人】
【識別番号】100153051
【氏名又は名称】河野 直樹
(74)【代理人】
【識別番号】100199565
【氏名又は名称】飯野 茂
(74)【代理人】
【識別番号】100162570
【氏名又は名称】金子 早苗
(72)【発明者】
【氏名】明井 正治
【審査官】増子 真
(56)【参考文献】
【文献】特開2018-120409(JP,A)
【文献】特開2018-018461(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G08G 1/00 - 99/00
G01C 21/00 - 21/36
G01C 23/00 - 25/00
B60W 10/00 - 10/30
B60W 30/00 - 60/00
G05D 1/00 - 1/12
H04N 7/18
G06T 7/00 - 7/90
G06V 10/00 - 20/90
G06V 30/418
G06T 1/00 - 1/40
G06T 3/00 - 5/50
G06T 9/00 - 9/40
G06N 3/00 - 3/12
G06N 7/08 - 99/00
E01C 21/00 - 23/24
G07C 1/00 - 15/00
(57)【特許請求の範囲】
【請求項1】
複数の車両のそれぞれに搭載された複数のカメラによって、それぞれ異なる位置と時刻で撮影された道路周辺物の
複数の画像を入力する画像入力手段と、
前記画像入力手段によって入力された複数の画像の各々が撮影された位置と時刻とに基づいて該複数の画像を相互に関連付ける関連付け手段と、
前記関連付け手段により関連付けられた複数の画像に基づいて、前記画像に撮影された道路周辺物の異常状態のレベルを示す状況レベルと前記状況レベルの確度を判定する状態判定手段と、
前記関連付け手段により関連付けられた同じ位置で撮影された複数の画像を合成して、画像が撮影された位置における時間経過に伴って変化する動画を生成する動画生成手段と、
前記状態判定手段により判定された前記状況レベルと前記確度に基づいて、前記関連付け手段によって関連づけられた複数の画像を、前記状況レベルが示す異常状態が高いと判定された画像を優先的に表示させ、次に前記
状況レベルの確度の確度が高い画像を重要度が高いとして優先的に表示させ
、また、前記動画生成手段により生成された動画を表示させる出力手段とを有する道路周辺物監視装置。
【請求項2】
前記状態判定手段は、位置に基づいて関連付けられた複数の画像をもとに、道路周辺物の時間経過に伴って変化した状態を判定する請求項1記載の道路周辺物監視装置。
【請求項3】
前記関連付け手段は、画像が撮影された位置に基づいて、道路毎に道路上で撮影された画像を関連付け、
前記状態判定手段は、前記道路毎に関連付けられた複数の画像をもとに、前記道路周辺物の状態を判定する請求項1または請求項2記載の道路周辺物監視装置。
【請求項4】
前記出力手段は、前記状態判定手段により判定された道路周辺物の状態を表示装置において表示させる請求項1~3の何れかに記載の道路周辺物監視装置。
【請求項5】
前記出力手段は、前記関連付け手段によって関連づけられた複数の画像を、撮影された位置と時刻に基づいて配置して表示させる請求項1~4の何れかに記載の道路周辺物監視装置。
【請求項6】
前記状態判定手段は、予め記憶された学習モデルをもとに、道路周辺物の異常状態の前記状況レベルと前記確度を判定し、
前記出力手段によって表示された画像に対する確認結果を入力する確認結果入力手段と、
前記確認結果入力手段により入力された確認結果に対応する画像をもとに前記学習モデルに反映させるための学習用データを生成し、前記学習モデルに反映させる学習手段とをさらに有する請求項1または請求項5記載の道路周辺物監視装置。
【請求項7】
前記動画生成手段は、
前記関連付け手段により関連付けられた複数の画像を合成して、
道路に沿って変化する動画を生成し、
前記出力手段は、前記動画生成手段により生成された道路に沿って変化する動画を表示装置において表示させる請求項1記載の道路周辺物監視装置。
【請求項8】
コンピュータを、
複数の車両のそれぞれに搭載された複数のカメラによってそれぞれ異なる位置と時刻で撮影された道路周辺物の
複数の画像を入力する画像入力手段と、
前記画像入力手段によって入力された複数の画像の各々が撮影された位置と時刻とに基づいて該複数の画像を相互に関連付ける関連付け手段と、
前記関連付け手段により関連付けられた複数の画像に基づいて、前記画像に撮影された道路周辺物の異常状態のレベルを示す状況レベルと前記状況レベルの確度を判定する状態判定手段と、
前記関連付け手段により関連付けられた同じ位置で撮影された複数の画像を合成して、画像が撮影された位置における時間経過に伴って変化する動画を生成する動画生成手段と、
前記状態判定手段により判定された前記状況レベルと前記確度に基づいて、前記関連付け手段によって関連づけられた複数の画像を、前記状況レベルが示す異常状態が高いと判定された画像を優先的に表示させ、次に前記
状況レベルの確度の確度が高い画像を重要度が高いとして優先的に表示させ
、また、前記動画生成手段により生成された動画を表示させる出力手段として機能させるための道路周辺物監視プログラム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、道路周辺物監視装置、道路周辺物監視プログラムに関する。
【背景技術】
【0002】
交通インフラの維持を目的に、インフラの点検を行うシステムとしては、専用車両を用いて、インフラの状況を収集するものがある(特許文献1参照)。例えば、点検対象とする道路を車両により走行しながら、車両の前方と左右の側方をカメラによって動画を撮影すると共に、異常が生じていると判断した点検者による入力操作に応じて、動画情報と位置情報と関連づけられたインデックス情報を記録する。これにより、地図中にインデックス情報に応じた撮影位置を表示し、また異常が疑われた構造部の画像を表示させて確認することができる。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
このように従来の技術においては、車両のカメラによって動画を撮影して、道路の異常箇所の記録をしている。すなわち、従来のシステムでは、インフラ点検用のカメラと専用の機材が搭載された専用車両を使用し、異常箇所の判定をする専門知識を有する点検者が点検のための巡視(検査対象とする道路の走行)を実行する必要があった。
【0005】
しかしながら、点検対象とする交通インフラ(道路)が多いにも関わらず、専用車両と専門の点検者による巡視では、限られた予算内で専用車両と専門の点検者を多数用意することができないため、頻繁に巡視することが困難となっていた。このため、異常箇所の検出が遅れてしまうおそれがあった。特に、頻度が少ない巡視時に、異常箇所が他の車両によって隠れてしまうなどの道路状況などにより異常箇所の画像を撮影できない場合には、さらに異常箇所の検出が遅れてしまう可能性がある。
【0006】
さらに、インフラとしての道路には、安全な運航を実現するために、路面だけでなく、ガードレール、雑草等の道路の周辺物を含めた監視が必要であり、道路面を含む道路周辺を対象とする広範囲の画像を取得して異常を判定する必要がある。
【0007】
本発明が解決しようとする課題は、道路周辺物について異常箇所を効率的に判定することが可能な道路周辺物監視装置、道路周辺物監視プログラムを提供することである。
【課題を解決するための手段】
【0008】
実施形態によれば、道路周辺物監視システムは、画像入力手段、関連付け手段、状態判定手段、動画生成手段、出力手段を有する。画像入力手段は、複数の車両のそれぞれに搭載された複数のカメラによってそれぞれ異なる位置と時刻で撮影された道路周辺物の複数の画像を入力する。関連付け手段は、前記画像入力手段によって入力された複数の画像の各々が撮影された位置と時刻に基づいて該複数の画像を相互に関連付ける。状態判定手段は、前記関連付け手段により関連付けられた複数の画像に基づいて、前記画像に撮影された道路周辺物の異常状態のレベルを示す状況レベルと前記状況レベルの確度を判定する。動画生成手段は、前記関連付け手段により関連付けられた同じ位置で撮影された複数の画像を合成して、画像が撮影された位置における時間経過に伴って変化する動画を生成する。出力手段は、前記状態判定手段により判定された前記状況レベルと前記確度に基づいて、前記関連付け手段によって関連づけられた複数の画像を、前記状況レベルが示す異常状態が高いと判定された画像を優先的に表示させ、次に前記状況レベルの確度の確度が高い画像を重要度が高いとして優先的に表示させ、また、前記動画生成手段により生成された動画を表示させる。
【図面の簡単な説明】
【0009】
【
図1】本実施形態における道路周辺物監視システムの構成を示すブロック図。
【
図2】本実施形態におけるサーバの構成を示すブロック図。
【
図3】本実施形態におけるサーバにおける機能構成を示すブロック図。
【
図4】本実施形態における車載機器の構成を示すブロック図。
【
図5】本実施形態における道路周辺物監視システムの概要について説明するための図。
【
図6】本実施形態における車載機器の動作を説明するためのフローチャート。
【
図7】本実施形態におけるサーバ(道路周辺物監視装置)の動作を説明するためのフローチャート。
【
図8】本実施形態における画像データの一例を示す図。
【
図9】本実施形態におけるサーバによる画像の蓄積を説明するための図。
【
図10】本実施形態における車両ID/画像IDDBに記憶されるデータの一例を示す図。
【
図11】本実施形態における画像DBに記憶されるデータの一例を示す図。
【
図12】本実施形態における判定結果リストに記憶されるデータの一例を示す図。
【
図13】本実施形態における判定結果出力部により作成される操作画面の一例を示す図。
【
図14】本実施形態における判定結果出力部により作成される一覧操作画面の一例を示す図。
【
図15】本実施形態における判定結果出力部により作成される詳細操作画面の一例を示す図。
【
図16】本実施形態における判定結果出力部27により作成される一覧操作画面の一例を示す図。
【
図17】本実施形態における動画の作成を説明するための図。
【発明を実施するための形態】
【0010】
以下、実施形態について図面を参照して説明する。
【0011】
図1は、本実施形態における道路周辺物監視システムの構成を示すブロック図である。道路周辺物監視システムは、道路(トンネル、橋などを含む)と道路の周辺を含む道路周辺物の道路インフラの点検に用いられるシステムである。本実施形態の道路周辺物監視システムでは、道路監視用の専用の機材が搭載された車両を用いることなく、道路監視を目的としていない一般車両(バス、タクシーなどの業務用の車両を含む)に搭載されたカメラにより撮影された画像を入力して道路周辺物監視をする。すなわち、多数の一般車両のカメラによって撮影された画像を収集することで、道路周辺を撮影した画像の取得頻度を上げ、また道路状況や撮影環境によってある車両では撮影ができなかった箇所があっても他の車両によって撮影された画像によって補完することができる。
【0012】
多数の一般車両のカメラによって撮影された画像は、例えばAI(Artificial Intelligence)技術により学習モデルに基づいて状態(異常状況有り(重要度)、状況指数(確度)、異常種類を示すインフラ状況種別など)を判定し、この判定結果に基づく情報を出力することで、インフラ管理者等(道路管理会社担当者、自治体担当者など)の操作員による異常箇所の判定確認作業を容易にする。インフラ管理者による確認結果は、学習モデルに反映させることで判定精度を向上させる。
【0013】
本実施形態における道路周辺物監視システムは、
図1に示すように、サーバ12と、ネットワーク19を介して、複数の車載機器10(10-1,…,10-m)、複数のカメラ付き電子機器14(14-1,…,14-p)、電子機器16、映像サーバ18が接続されて構成される。本実施形態におけるサーバ12は、道路周辺物監視プログラムにより実現される機能により道路周辺物監視装置として動作する。
【0014】
サーバ12(道路周辺物監視装置)は、車載機器10、カメラ付き電子機器14及び映像サーバ18において収集された画像を入力して、道路周辺物についての状態をAI技術により判定し、判定結果を出力する。サーバ12は、判定結果に対する操作員(インフラ管理者等)による確認結果の入力に応じて、判定対象とされた画像をもとに学習用データを生成して学習モデルに反映させる。
【0015】
車載機器10は、一般車両に搭載された、カメラによる画像撮影をする機能が設けられた機器である。車載機器10は、サーバ12における道路周辺物監視のために設けられた機器ではなく、他の目的のために実装された機器である。例えば、車載機器10は、車両の自動運転や運転支援のために車両の周辺状況を周辺監視カメラにより撮影する機器、車両走行中の道路を含む周囲の画像を記録するためのドライブレコーダなどがある。車載機器10には、複数のカメラが搭載され、車両が走行する前方/後方の道路の画像だけでなく、車両の側方の画像を撮影するカメラが設けられる。本実施形態におけるサーバ12は、車両に搭載された既存の車載機器10のカメラにより撮影された画像を入力して、道路周辺物監視のための処理に利用する。
【0016】
カメラ付き電子機器14は、例えばスマートフォン、タブレットコンピュータ、デジタルカメラ、カメラ付きドローンなど、画像撮影機能及び通信機能が搭載された一般的な機器である。サーバ12は、車載機器10によって撮影された画像だけでなく、いわゆるモバイル機器と称されるカメラ付き電子機器14によって撮影された道路または道路周辺の画像を入力して、車載機器10のカメラにより撮影された画像と同様にして道路周辺物監視のための処理に利用する。
【0017】
映像サーバ18は、例えば映像データベース(DB)18Aを有し、映像(動画)や画像(静止画)を外部の機器から収集して蓄積し、要求に応じて映像/画像を提供するサービスを実現するための機器である。映像サーバ18は、例えばバスやタクシーなどに搭載されたドライブレコーダによって記録された道路または道路周辺の映像(画像)、その他の各種映像(画像)を収集する。サーバ12は、車載機器10によって撮影された画像だけでなく、他の目的で映像DB18Aに蓄積された道路または道路周辺の画像を入力して、車載機器10のカメラにより撮影された画像と同様にして道路周辺物監視のための処理に利用する。
【0018】
本実施形態における道路周辺物監視システムにおいて使用される車載機器10、カメラ付き電子機器14、映像サーバ18には、サーバ12(道路周辺物監視装置)に画像(あるいは映像)を送信するための処理を実行するための画像送信プログラムがインストールされる。画像送信プログラムは、カメラにより撮影された映像から画像を周期的に切り出し、それぞれの画像に対して撮影に関する各種の撮影情報(少なくとも撮影位置、撮影時刻を含む)を付加して、サーバ12へ送信する送信処理を実行させる。なお、サーバ12に対して画像を送信するのではなく映像を送信して、サーバ12において画像を切り出す処理を実行させても良い。
【0019】
電子機器16は、例えばパーソナルコンピュータ、タブレットコンピュータ、スマートフォンなどの機器であり、サーバ12にアクセスして道路周辺物監視のための処理結果を出力するために使用される。電子機器16は、例えばインフラ管理者(道路管理会社担当者、自治体担当者など)などの操作員により使用される。サーバ12は、道路周辺物監視のための処理結果を、自機に設けられた表示装置において出力する他、ネットワーク19を通じて電子機器16において出力させる。
【0020】
ネットワーク19は、無線通信網、有線通信網、インターネットなどの各種の通信網を含む。
【0021】
なお、サーバ12は、例えばクラウドコンピューティングにより実現されるものとし、ネットワーク19(インターネット)を介して接続された1台のサーバ、あるいは複数のサーバが協働して動作することで実現されても良い。以下の説明では、サーバ12は、1台のサーバにより実現されるものとして説明する。
【0022】
図2は、本実施形態におけるサーバ12(道路周辺物監視装置)の構成を示すブロック図である。サーバ12は、プロセッサ12a、メモリ12b、記憶装置12c、表示装置12e、入力装置12f、通信装置12hを有する。
【0023】
プロセッサ12aは、メモリ12bに記憶された基本プログラム(OS)やアプリケーションプログラムを実行して、各種の機能を実現するための回路である。例えば、プロセッサ12aは、プログラムを実行することで、後述する各機能を実現する(
図3参照)。
【0024】
メモリ12bは、プロセッサ12aにより実行されるプログラムや一時的なデータ等を記憶する。
【0025】
記憶装置12cは、各種のプログラムや各種データが記憶される。記憶装置12cに記憶されるデータには、車載機器10、カメラ付き電子機器14、映像サーバ18から受信される画像(あるいは映像)データと画像に付加された撮影情報を登録するための画像データベース(DB)と車両ID/画像IDデータベース(DB)、地図データベース(DB)、判定結果が記録される判定結果リスト、AIによる判定をするための学習モデル、画像をもとに生成される学習用データなどを含む。
【0026】
表示装置12eは、LCD(Liquid Crystal Display)などであり、プロセッサ12aの処理に応じた画面を表示させる。入力装置12fは、キーボードやポインティングデバイスなどである。
【0027】
通信装置12hは、ネットワーク19を通じた外部装置、例えば車載機器10、カメラ付き電子機器14、映像サーバ18、他の情報処理装置との通信を制御する。
【0028】
図3は、本実施形態におけるサーバ12のプロセッサ12aによりプログラムを実行することにより実現される機能構成20を示すブロック図である。
【0029】
図3に示すように、サーバ12の機能構成20は、画像入力部21、画像データベース(DB)22、車両ID/画像IDデータベース23、地図データベース(DB)24、判定処理部25、学習モデル記憶部26、判定結果出力部27、判定結果リスト28、確認結果入力部31、画像収集部32、学習用データ生成部33、学習処理部34を含む。
【0030】
画像入力部21は、車載機器10(あるいはカメラ付き電子機器14、映像サーバ18)からネットワーク19を通じて道路周辺物を撮影した画像を入力する。画像入力部21は、例えば映像から周期的に切り出された複数枚の画像、あるいは映像と共に、撮影情報を受信する。映像を受信する場合には、映像から例えば周期的に画像を切り出す。画像DB22は、画像入力部21によって受信された画像と撮影情報を記憶装置12cにおいて記憶する。なお、画像入力部21は、ネットワーク19を通じて画像及び撮影情報を受信するだけでなく、各種の記録媒体に記録された画像及び撮影情報を入力することもできる。
【0031】
車両ID/画像IDDB23は、画像DB22に記憶される画像のインデックス情報として、車載カメラによって撮影された画像に付加された撮影情報に含まれる車両に固有の識別子である車両ID、画像に対して付された一意の番号を示す画像ID、インデックス情報の記録日時が記憶される。
【0032】
地
図DB24は、地図データが記憶されたデータベースであり、道路毎の経路を示す位置データを含む。画像に付加された撮影情報の撮影位置と道路の位置データとを照合することで、車載機器10等から受信された画像が何れの道路上の位置で撮影されたかを特定することができる。
【0033】
判定処理部25は、画像DB22に記憶された、それぞれ異なる位置と時刻で撮影された道路周辺物の画像について、道路周辺物の状態を判定するための学習モデル記憶部26に予め記憶された学習モデルをもとにAI技術により道路周辺物の状態を判定する。判定処理部25は、複数の画像が撮影された位置と時刻に基づいて関連付け、関連付けられた複数の画像に基づいて道路周辺物の状態を判定する。判定処理部25は、地
図DB24の道路の位置データをもとに、同じ道路上の異なる場所において、複数の車両に搭載されたカメラによって撮影された複数の画像を関連づける。また、判定処理部25は、道路上の位置毎に、複数の車両に搭載されたカメラによって異なるタイミングで撮影された複数の画像を関連づける。
【0034】
学習モデル記憶部26は、判定処理部25による道路周辺物の状態を判定するためのもので、道路周辺物に生じる状態の特徴を表す学習モデルを記憶する。学習モデル記憶部26により記憶される学習モデルは、車載機器10が道路周辺物を撮影する撮影環境の変動等により画像が一定でない、あるいは検出対象とする道路周辺物の異常箇所が様々な状態である状況に対応できるように、車載機器10により撮影された画像から学習に適した画像を収集して、この画像をもとに生成された学習用データが反映される。例えば、判定結果に対する操作員(インフラ管理者等)による確認結果の入力に応じて、判定対象とされた画像をもとに生成された学習用データが反映される。
【0035】
判定結果出力部27は、判定結果リスト28に記憶された判定処理部25による判定結果(道路周辺物の状態を通知するための情報)を出力する。判定結果出力部27は、自機の表示装置12e、あるいはネットワーク19を介して接続された電子機器16などに対して判定結果を出力する。判定結果とする表示画面には、例えば異常箇所と判定された道路周辺物の画像が撮影された位置を示す地図、異常箇所と判定された道路周辺物が撮影された画像、画像判定結果とする対象物、状況種別、状況指数(確度)などの情報、撮影情報(撮影位置、撮影日時、カメラに関する情報など)等を表示させる。また、判定結果出力部27は、判定結果に対する操作員(インフラ管理者等)による異常箇所確認の作業を用にするため、判定処理部25による判定処理のために関連づけられた画像の一覧表示、あるいは関連づけられた画像を合成した動画あるいはパノラマ画像の表示画面を出力する。
【0036】
判定結果リスト28は、判定処理部25による判定結果が記憶される。
【0037】
確認結果入力部31は、判定結果出力部27からの判定結果の出力に対して、入力装置12fに対する操作員(インフラ管理者等)の入力操作、あるいは電子機器16における操作員による入力操作に応じて確認結果を入力する。例えば、確認結果入力部31は、異常箇所検出の正誤判定、重要度の指定、異常箇所が撮影された画像の選択などの指定を入力する。
【0038】
画像収集部32は、確認結果入力部31から入力された確認結果に基づいて、画像DB22に記憶された画像から、学習モデルに反映させる学習用データを生成するための画像を収集する。画像収集部32は、確認結果に対応する少なくとも1枚の画像を収集する。例えば、異常箇所が撮影されていると操作員により確認された画像だけでなく、同じ位置で別の車両のカメラで撮影された画像、撮像時刻が異なる画像など複数枚の画像を収集する。学習対象とする画像を複数収集することで、学習モデルへ反映させる学習用データを増加させることができる。
【0039】
学習用データ生成部33は、画像収集部32により収集された画像をもとに、学習モデルに反映されるための学習用データを生成する。
【0040】
学習処理部34は、画像収集部32により収集された画像をもとに、学習用データ生成部33により生成された学習用データを、学習モデル記憶部26に記憶された学習モデルに反映させる。学習処理部34は、判定結果毎に収集された画像をもとに、判定結果毎に道路周辺物の状態を判定するための学習用データを学習モデルに反映させる。
【0041】
図4は、本実施形態における車載機器10の構成を示すブロック図である。車載機器10は、プロセッサ10a、メモリ10b、記憶装置10c、入出力インタフェース(I/F)10d、表示装置10e、入力装置10f、無線通信装置10g、GPSユニット10h、カメラユニット10j(10j1,…,10jn)、センサ群10mを有する。
【0042】
プロセッサ10aは、メモリ10bに記憶された基本プログラム(OS)やアプリケーションプログラムを実行して、各種の機能を実現するための回路である。例えば、プロセッサ10aは、プログラムを実行することで、車載機器10として機能(自動運転、運転支援、ドライブレコーダ等)を実現し、カメラユニット10jにより撮像された画像(静止画、動画)を記憶する。また、プロセッサ10aは、道路周辺物監視システム用のアプリケーションプログラムがインストールされることにより、このプログラムに基づいて、記憶された画像(静止画、動画)に撮影情報(詳細については後述する)を付加してサーバ10に送信する送信処理を実行する。
【0043】
メモリ10bは、プロセッサ10aにより実行されるプログラムや一時的なデータ等を記憶する。
【0044】
記憶装置10cは、各種のプログラムや各種データが記憶される。記憶装置10cに記憶されるデータには、カメラユニット10jにより道路周辺物を撮影することにより得られた画像(静止画、動画)などのデータが記憶される。
【0045】
入出力I/F10dは、外部機器とデータを送受信するためのインタフェースである。入出力I/F10dは、例えば可搬型のメモリ媒体を介してデータを入出力することができる。
【0046】
表示装置10eは、LCD(Liquid Crystal Display)などであり、プロセッサ10aの処理に応じた画面を表示させる。入力装置10fは、キーボードやポインティングデバイスなどであり、操作員等により操作される。
【0047】
無線通信装置10gは、無線通信を制御するもので、他の情報処理装置、無線公衆網に収容された基地局との間の無線通信を制御する。
【0048】
GPSユニット10hは、GPS(Global Positioning System)を利用して、現在位置(緯度経度)を示す位置データ、及び時刻データを取得する。GPSユニット10hにより取得される位置データ及び時刻データは、カメラユニット10jにより撮影される画像に付加される撮影情報として使用される。なお、位置データ及び時刻データは、GPSユニット10hではなく、GPSを利用するユニット以外のユニットを使用しても良い。
【0049】
カメラユニット10j(10j1,…,10jn)は、静止画あるいは動画の撮影モードにより画像撮影を実行して画像を記憶する。カメラユニット10jは、車載機器10が実行する機能(自動運転、運転支援、ドライブレコーダなど)に応じて、例えば車両が走行する前方/後方、車両の側方の画像を撮影する複数のカメラが実装される。車両に実装されるカメラユニット10jのそれぞれについて、例えばカメラ画角情報(カメラ指向角度、カメラ設置高さ)、カメラ属性(カメラ種別、撮影条件(絞り等))の情報が設定されており、撮影情報として使用される。
【0050】
センサ群10mは、例えば磁気センサ、加速度センサ、ジャイロセンサ、環境光センサなどを含む。センサ群10mでは、例えば車載機器10の姿勢、向き、周囲の明るさなどを検出することができる。従って、プロセッサ10aは、カメラユニット10jによる道路周辺物の撮影時において、撮影位置、撮影方向、周囲の明るさなどを示すデータを取得できる。センサ群10mにより検出されるデータは、カメラユニット10jにより撮影される画像に付加される撮影情報として使用される。
【0051】
なお、
図4は、車載機器10として説明しているが、カメラ付き電子機器14も同等の構成を有するものとして説明を省略する。また、映像サーバ18は、カメラユニット10j、GPSユニット10h、センサ群10m等の構成を有していないが、少なくとも撮影位置と撮影時刻を含む、撮影情報としてサーバ12に送信する情報が付加された画像を外部の機器から収集して映像DB18Aに記憶しているものとする。
【0052】
次に、本実施形態における道路周辺物監視システムの動作について説明する。
【0053】
図5は、本実施形態における道路周辺物監視システムの概要について説明するための図である。以下の説明では、サーバ12(道路周辺物監視装置)は、車両に搭載されたカメラによって撮影された画像をもとに道路周辺物監視をするものとする。
【0054】
図5の画像記録状況2に示すように、車両が道路を走行している間、運転支援または自動運転制御を目的とした車載機器10のカメラによって、道路及び道路周辺を撮影した映像(画像)が記録される。
図5の画像記録状況2では、車両の側方に向けたカメラによって撮影された画像の一例を示している。この場合、道路の端部(路側)やガードレールなどの画像が撮影されている。車載機器10(カメラ)によって撮影された画像は、サーバ12において収集される。
【0055】
サーバ12は、多数の車両の車載機器10から画像を収集することで、多くの道路において、高頻度で撮影された画像を収集して、例えば障害物等による非撮影箇所をなくすことができる。サーバ12では、多数の車載機器10から収集された画像をもとに異常箇所を検出することで、多くの道路を多頻度で巡回した場合と同様の道路周辺物監視を実行することができる。
【0056】
図5に示す確認状況4に示すように、インフラ管理者等(道路管理会社担当者、自治体担当者など)の操作員は、電子機器16を通じて、サーバ12による処理結果を確認することができる。電子機器16では、サーバ12において異常箇所として判定された位置が地図上で明示され、異常箇所の画像を選択的に確認できるため、道路周辺物の状況確認を容易にすることができる。
【0057】
図6は、本実施形態における車載機器10の動作を説明するためのフローチャート、
図7は、本実施形態におけるサーバ12(道路周辺物監視装置)の動作を説明するためのフローチャートである。
【0058】
まず、車両側の車載機器10の動作について説明する。
【0059】
車両の車載機器10のプロセッサ10aは、車両の走行に伴って運転支援または自動運転制御を目的として処理を開始すると共に、画像送信プログラムに基づいて道路周辺物監視のための取得制御処理を開始する(
図6、ステップA1)。カメラユニット10jは、車両の走行に伴い、道路及び道路周辺の映像(画像)を撮影する(ステップA2)。プロセッサ10aは、カメラユニット10jにより撮影された画像に対する画像処理を実行し、サーバ12に対して送信する画像データの生成/記録を実行する(ステップA3)。画像データには、例えば、カメラユニット10jにより撮影された映像から周期的に切り出した画像(画像本体)と各画像に対応する撮影情報を含む。
【0060】
図8には、本実施形態における画像データの一例を示している。
【0061】
画像処理では、画像を識別するための画像IDを生成し、GPSユニット10hから得られる位置情報、日時分秒までを含む時刻情報(詳細)を取得する。また、時刻情報(詳細)から時間帯で示す概略の撮影時刻を生成する。概略の撮影時刻は、例えば一日の中の4時間単位の時間帯、月などを含む。また、GPSユニット10hから取得される撮影位置情報(緯度経度、道路及び車線情報)の他、予め設定された車両ID、カメラ画角情報(カメラ指向角度、カメラ設置高)、カメラ設置車種(車種情報、カメラ画角情報を推定可能な情報)、カメラ属性(カメラ種別、撮影条件(絞り等))などのデータを取得する。
【0062】
なお、画像処理は、直前に生成した画像データの撮影位置情報を保持しておき、この保持された撮影位置情報が示す位置から予め設定された距離未満の撮影位置の画像データの生成を行わない。これにより、実質、同一の不要となる情報の取得を防止する。
【0063】
プロセッサ10aは、像処理により生成される画像データを、送信処理によりサーバ12に対して送信する(ステップA4)。送信する最適なタイミングは、必要な周期で監視対象とする領域の情報が網羅的に収集できるように、本システムに対応した車両の台数と、各車両の走行パターン(走行対象とする道路)により決定される。例えば、車両数と走行パターンが十分にあるとして、各車が送信画像のサイズと送信に利用する通信回線容量から決めるものとする。例えば送信画像のサイズが1MB、通信回線容量が1MBsならば、8秒周期で送信する。
【0064】
なお、通信途絶時などは可能な範囲で再送信を試みるが、必ずしも再送信は必須ではない。これは、道路インフラの情報としては、例えば1か月の期間中に情報を取得できればよく、多数の車両の内で、何れかの車両が同じ位置で撮影した画像を送信可能となればよいためである。サーバ12に画像を送信する車両の延べ台数が多ければ、道路各所の画像入手が可能と期待してよい。
【0065】
また、車両の走行中における画像の撮影タイミングによっては、他車両による遮蔽や、天候の影響などの撮影環境により、良質な画像の撮影できない場合があり得るが、複数の車両による一定期間内での撮影を条件とすることで、判定処理に適した画像の入手が可能となる。この複数の車両による画像の撮影は、専用車を使用した撮影に比べて、前述した撮影環境の影響に対して有利となる。
【0066】
なお、画像処理において、ガードレール、路面等の対象物を予め設定し、画像中の当該部位を切り出し、送信する画像データのサイズを削減してもよい。
【0067】
プロセッサ10aは、車両が走行されている間(ステップA5、No)、カメラ制御を実行して、前述した処理を継続して実行する(ステップA2~A4)。プロセッサ10aは、車両の走行が停止されるなどしてカメラ制御が終了されると、画像データをサーバ12に送信する処理を終了する。
【0068】
次に、サーバ12の処理について説明する。
【0069】
サーバ12の画像入力部21は、ネットワーク19を通じて、車載機器10から画像データを受信して蓄積する(
図7、ステップB1)。サーバ12は、複数の車両(車載機器10)から画像データを受信するため、
図9に示すように、1つの車両IDに対して、それぞれ異なる画像IDが対応づけられた複数の画像本体のデータを蓄積することができる。
【0070】
画像受信部21(プロセッサ12a)は、車載機器10から受信された画像データに含まれる画像IDと車両IDを、車両ID/画像IDDB23に記憶させる。また、プロセッサ12aは、画像ID及び車両IDと対応づけて記録日時を記憶させる。
図10は、本実施形態における車両ID/画像IDDB23に記憶されるデータの一例を示している。
【0071】
また、画像受信部21は、画像データの車両IDと撮影時刻(詳細)を除く、その他のデータを画像DB22に記憶させる。
図11は、本実施形態における画像DB22に記憶されるデータの一例を示している。すなわち、画像DB22には、画像ID、撮影時刻(時間帯で示す概略の時刻)、撮影位置情報(緯度経度、道路及び車線情報)、カメラ画角情報(カメラ指向角度、カメラ設置高)、カメラ属性(カメラ種別、撮影条件(絞り等))、画像本体のデータが記憶される。なお、
図11に示す画像判定結果は、後述する判定処理部25の処理結果に応じて記憶され、操作員判定結果は、後述する確認結果入力部31が入力した判定結果に応じて入力される。
【0072】
ここで、車両IDと画像IDの分離、及び撮影時刻(詳細)の除去は、インフラの状況確認に用いるデータと車両保有者又は車両運用者の個人情報を分離し、個人情報保護を行うための処置である。
【0073】
こうして、画像DB22及び車両ID/画像IDDB23には、多数の車両(車載機器10)が様々な道路を走行しながら、それぞれ異なるタイミングで撮影された画像が蓄積される。
【0074】
判定処理部25は、予め設定された条件に応じて、画像DB22に記憶された画像に対する異常箇所検出等に関係する判定処理を実行する。予め設定された条件としては、道路毎に決められた一定期間毎に実行する、操作員の操作に応じて指定された道路を対象として実行するなどがある。その他の条件が設定されていても良い。
【0075】
判定処理部25は、判定処理を実行する場合(ステップB3、Yes)、画像DB22から画像を読み込み、また地
図DB24から地図データを読み込み、画像DB22に記憶された画像に対する処理を実行する(ステップB4)。
【0076】
例えば、判定処理部25は、ある道路についての異常箇所検出のための処理を実行する場合、対象とする道路の位置データに応じて、この位置データに該当する撮影位置が付された画像を画像DB22から読み出して関連付けをする。これにより、道路の経路に沿った、複数の画像の関連付けができる。また、判定処理部25は、道路上の位置毎に、撮影時刻が異なる複数の画像を関連づける。これにより、道路上の位置毎に、撮影タイミングが異なる複数の画像の関連付けができる。
【0077】
この際、関連付けの対象とする画像は、例えば画像品質が良好な画像を選択する、対象物が障害物に遮られることなく撮影されている画像を選択するなど、AIによる判定処理に好適な画像を優先的に使用する。これにより、正確な判定結果が得られやすくできる。
【0078】
また、画像の関連付けでは、カメラ画角情報をもとに、車両の前方を撮影した画像、右あるいは左方向を撮影した画像を分類し、それぞれの分類毎に画像の関連付けをする。
【0079】
さらに、判定処理部25は、操作員の操作により入力された、判定対象とする画像の撮影条件に基づいて、撮影条件に該当する画像に限定した画像の関連付けをしても良い。例えば、天候(雨天時など)、撮影月や季節などを撮影条件とすることができる。天候の指定がある場合には、例えばAI技術により画像について撮影時の天候を推定して制限することができる。また、撮影月や季節の指定がある場合には、画像に対応づけられた撮影時刻のデータをもとに制限することができる。
【0080】
判定処理部25は、関連付けられた複数の画像について、学習モデル記憶部26に記憶された学習モデルをもとにAI技術により道路周辺物の状態を判定するための画像判定を実行する(ステップB5)。すなわち、異常状態にあると判定される対象物(例えば、路面、ガードレール、歩道橋、標識、信号、植生)の検出、対象物の状況(破損、錆び、雑草等の浸食)などを判定する。また、判定処理部25は、検出された対象物と状況についてのAIによる判定の確度(確からしさ)を決定する。
【0081】
判定処理部25は、AIによる画像単位で画像判定をするだけでなく、撮影位置あるいは撮影時刻に基づいて関連づけられた複数の画像をもとに、AIによる画像判定をすることで正確な判定結果を得ることができる。例えば、判定処理部25は、撮影位置に基づいて関連付けられた複数の画像、すなわち同じ位置で異なる日時で撮影された複数の画像をもとに、道路周辺物の時間経過に伴う状態の変化を判定することができる。
【0082】
判定処理部25は、判定結果を、画像DB22の該当する画像の画像判定結果として記憶させると共に、判定結果リスト28に記憶させる。
【0083】
図12は、本実施形態における判定結果リスト28に記憶されるデータの一例を示す図である。
図12に示す判定結果リスト28では、異常箇所と判定された対象物が撮影された画像の画像IDを示す対象ID、該当対象物が撮影された画像の撮影位置を示す位置情報、対象物(路面、ガードレール、歩道橋、標識、信号、植生など)、インフラ状況種別(対象物の状況)、状況指数(判定の確度)などが対応づけて記憶される。対象物には、例えば路面(路側)、壁面、ガードレール、歩道橋、標識、信号、植生などのデータが記憶される。インフラ状況種別(対象物の状況)には、例えば破損、錆び、雑草浸食等と、それぞれの状況レベル(異常状態が高い~低いを示す数値)のデータが記憶される。
【0084】
判定結果出力部27は、例えば電子機器16から判定結果の閲覧要求を受信した場合(ステップB6、Yes)、判定結果リスト28に記憶された判定結果及び地
図DB24の地図データに基づいて操作画面を作成し、ネットワーク19を通じて電子機器16の表示装置において表示させる。
【0085】
図13は、本実施形態における判定結果出力部27により作成される操作画面D1の一例を示す図である。
【0086】
図13に示す操作画面D1には、例えば表示対象選択エリアD11、対象位置表示エリアD12が設けられる。表示対象選択エリアD11は、対象位置表示エリアD12において表示の対象とする対象物(路面、ガードレール、歩道橋、標識、信号、植生など)を指定するためのエリアである。対象位置表示エリアD12は、異常箇所として判定された、表示対象選択エリアD11において指定された対象物の位置を地図上において表示するためのエリアである。例えば、表示対象選択エリアD11において「植生」を指定することで、「植生」について異常状態と判定された位置が、対象位置表示エリアD12において表示される。
【0087】
対象位置表示エリアD12において表示対象とする対象物は、例えば、状況レベル(異常状態)あるいは状況指数が、しきい値以上と判定されたものを対象とする。なお、しきい値は、予め固定敵に設定されていても良いし、操作員の指定操作に応じて変更できるようにしても良い。
【0088】
図13では、例えば、状況レベル(異常状態)がしきい値以上と判定された対象物が撮影された場所が、地図上においてマーカD13,D14,D15によって示されている。マーカD13,D14,D15は、それぞれ状況レベル(異常状態)あるいは状況指数に応じて異なる色(例えば、赤黄青)によって色分け表示される。これにより、操作員は、マーカの表示色を参考にして、優先して確認が必要な対象物(例えば、異常レベルが高い赤色表示のマーカD13)を容易に判別することができる。
【0089】
なお、
図13に示す操作画面D1では、地図上にマーカによって異常箇所を明示しているが、テキストによるリスト表示など、別の表示形態を用いることも可能である。
【0090】
判定結果出力部27は、対象位置表示エリアD12において、何れかのマーカ(位置指定)を選択する操作、例えばカーソルによるクリックがされると(ステップB8、Yes)、マーカに対応する画像を含む、マーカ位置の周辺において撮影された複数の画像を一覧表示する一覧操作画面を作成して、電子機器16において表示させる(ステップB9)。
【0091】
図14は、本実施形態における判定結果出力部27により作成される一覧操作画面D2の一例を示す図である。例えば、操作画面D1においてマーカD13が選択された場合、
図13に示すマーカD13に対して設定される円形の破線で囲まれる範囲で撮影された画像を画像DB22から読み出して表示対象とする。なお、円形の破線で囲まれる画像の表示対象とする範囲は、別途、操作画面から設定可能とすることができる。
【0092】
図14に示す一覧操作画面D2は、関連づけられた複数の画像を、撮影された位置と時刻に基づいて二次元配置して表示させた例を示している。すなわち、画像が撮影された時刻(日時)を縦軸(上下)、道路の経路上(進行方向)における位置を横軸(左右)として配置している。
【0093】
図14では、例えば4枚の画像の画像情報D21,D22,D23,D24が配置されている。表示対象とする複数の画像が1画面に表示できない場合には、画面スクロールなどによって全体を確認できるようにする。
【0094】
画像情報D21には、画像D25、撮影日時D26、状況レベル表示D27、選択ボタンD28が含まれる。その他の画像情報D22,D23,D24も同様に表示される。状況レベル表示D27は、例えば画像に対応するインフラ状況種別の状況レベルに応じて、例えば異常状態が高い順に、赤黄青の何れかの色が明示される。
【0095】
図14において、画像情報D22は、操作画面D1において選択されたマーカD13に対応するもので、異常状態として判定された画像を示している。画像情報D22の画像では、路面に植生が成長している状態(雑草浸食)が発生していることが撮影されている。
【0096】
画像情報D23は、画像情報D22と縦方向に配置されており、同じ撮影位置において、画像情報D22の画像より過去に撮影された画像であること示している。これにより、画像情報D22,D23の画像を比較することで、時間経過に伴う異常状態の変化(ここでは植生の成長変化)を容易に確認することができる。
【0097】
また、画像情報D23の画像が撮影された位置の周辺の状態についても、画像情報D21,D24の画像により同時に確認することができる。
【0098】
なお、
図14では、画像に対する判定結果として状況レベル表示D27を表示しているが、その他の情報、例えば異常検出位置の情報(地名、起点からの距離など)、インフラ状況の説明(植生、陥没等)など)を画像に付加するようにしても良い。
【0099】
判定結果出力部27は、一覧操作画面D2において選択ボタンD28に帯する操作によって画像が選択されると(ステップB10、Yes)、選択された画像に対応する詳細操作画面を作成して表示させる。
【0100】
図15は、本実施形態における判定結果出力部27により作成される詳細操作画面D3の一例を示す図である。
【0101】
図15では、判定結果D31、詳細画像D32、確認結果指定アイコンD33が設けられている。判定結果D31では、例えば、判定結果リスト28に記憶された画像に対する対象物(路面)、インフラ状況種別(雑草浸食)、状況レベル(0.7)が表示されている。詳細画像D32では、一覧操作画面D2に表示された画像を拡大表示して、視認性を向上させている。確認結果指定アイコンD33は、操作員による詳細画像D32を確認した結果(確認結果)を入力するためのものであり、例えば赤黄青のアイコンが設けられている。
【0102】
操作員は、詳細操作画面D3に表示された内容から、保守維持作業の観点での重要性を判定し、確認結果指定アイコンD33の何れかのアイコンにカーソルPを移動させてクリックする。確認結果入力部31は、詳細操作画面D3において操作員の操作に応じて確認結果が入力されると(ステップB12、Yes)、画像DB22の該当する画像の操作員判定結果として記憶させると共に、入力された確認結果を判定結果リスト28の詳細画像D32に対応するインフラ状況種別の状況レベル及び状況指数に反映させる(ステップB13)。
【0103】
状況指数については、操作員による確認済みであるので、例えば確度を最上値にする。また、AIにより判定された状況レベルと、操作員による判断が同じであれば、確認結果指定アイコンD33に対する操作をしなくても良い。
【0104】
さらに、詳細操作画面D3では、操作員により状況レベルの確認をするだけでなく、異常状態と判定された対象物及びインフラ状況種別を確認して、AIによる判定結果が誤りであれば操作員が変更するようにしても良い。操作員により入力された確認結果は、判定結果リスト28に反映させる。
【0105】
判定結果リスト28に記憶された結果は、例えば、地図上表示及びリスト表示により出力され、インフラ管理者等(道路管理会社担当者、自治体担当者など)による交通インフラの保守計画策定などに用いて、効率的な作業を実現することができる。
【0106】
また、操作員により入力された確認結果は、学習モデルに反映させることができる。すなわち、画像収集部32は、確定結果入力部31により入力された確認結果の対象とされた画像を画像DB22から取得して学習用データ生成部33に提供する。ここでは、詳細操作画面D3に表示された1枚の詳細画像D32だけでなく、関連づけられた複数枚の画像を反映の対象として取得しても良い。学習用データ生成部33は、画像収集部32により取得された画像をもとに学習用データを生成する(ステップB14)。学習処理部34は、学習用データ生成部33により生成された学習用データを学習モデル記憶部26に記憶された学習モデルに反映(学習)させる。これにより、学習モデルをもとにしたAIによる画像判定の精度の向上を図ることができる。
【0107】
なお、前述した説明では、詳細操作画面D3として、関連づけられた複数の画像を、撮影された位置と時刻に基づいて二次元配置して表示させた例を示しているが別の表示形態を用いることができる。
【0108】
図16は、本実施形態における判定結果出力部27により作成される一覧操作画面D4の一例を示す図である。
図16に示す一覧操作画面D4では、関連づけられた複数の画像を、予め設定された判定結果に対する条件に基づいて1列に配置して表示させる。
図16では、例えば4枚の画像の画像情報D41,D42,D43,D44が1列に配置されている。また、表示対象とする画像情報の範囲を変更するためのスライダD45が設けられている。
【0109】
例えば、判定結果出力部27は、予め設定された判定結果に対する条件として、例えばインフラ状況種別の状況レベルを第1の条件、状況指数の確度を第2の条件、画像の作成日時を第3の条件を用いる。
【0110】
この場合、判定結果出力部27は、第1の条件に従って、状況レベルが高い画像を重要度が高いとして優先的に表示し、次に、第2の条件に従って、状況指数の確度が高い画像を重要度が高いとして優先的に表示する。第1及び第2の条件によって重要度が付けられない画像については、撮影日時が新しい画像を優先して表示させる。
【0111】
図16に示す一覧操作画面D4では、重要度が高い、操作員が優先して確認すべき画像から順に表示されるので、操作員による確認作業を容易にすることができる。
【0112】
また、前述した説明では、判定結果に対する条件として、インフラ状況種別の状況レベルと状況指数の確度を使用しているが、その他の条件(例えば、対象物に付けた優先度)を用いることも可能である。
【0113】
なお、一覧操作画面D2,D4、詳細操作画面D3において、画像内に人物が映り込んでいる場合に、人物の顔をぼかす等の個人情報保護の処理を行ってもよい。
【0114】
また、前述した説明では、一覧操作画面D2,D4、詳細操作画面D3において、車載機器10等から受信した画像を表示させるとしているが、判定処理部25において、関連づけられた複数の画像を合成して、保守員によって確認できるようにしても良い。
【0115】
例えば、判定結果出力部27は、判定処理部25によって関連づけられた複数の画像を使用して、例えば道路のある位置における時間経過に伴って変化する動画、あるいは道路上の位置の変更に沿って変化する動画(パノラマ化)を生成する。
【0116】
道路のある位置における時間経過に伴って変化する動画は、例えば
図17に示すように作成される。
【0117】
例えば、画像DB22には、複数の車両1~Xが、それぞれ異なる日時において、ある道路の走行中に撮影された画像P1~PXが記憶されている。判定処理部25は、道路上のある撮影位置において撮影された複数の画像Tを関連づけている。
【0118】
判定結果出力部27は、複数の画像Tを時間経過(日時)に沿って連続させることで動画を作成する。これにより、道路上のある撮影位置における、時間経過に伴って変化する動画を生成することができる。
【0119】
判定結果出力部27は、例えば、電子機器16からの要求に応じて、作成した動画を電子機器16の表示装置において表示させる。これにより、操作員は、動画によって道路周辺物の状況を容易に確認することができる。
【0120】
このようにして、本実施形態におけるサーバ12(道路周辺物監視装置)では、専用車両を用いるのではなく、一般車両に搭載されたカメラにより撮影された画像を収集し、撮影された画像についてAI技術を利用して異常箇所を判定させて、判定結果を出力させることができる。従って、道路周辺物について異常箇所を効率的に判定することが可能となる。本システムでは、例えば道路上のある地点に注目した場合、交通量に比例して収集される画像が増加し、多量の情報として蓄積される。全ての画像を操作員が確認することは、コスト的にも運用的にも現実的ではないが、判定処理における状況判定により操作員が確認すべき画像を自動的に整理して出力することで、操作員の付加を軽減させることができる。
【0121】
なお、上記の各実施形態に記載した手法は、コンピュータに実行させることのできるプログラムとして、磁気ディスク(ハードディスクなど)、光ディスク(CD-ROM、DVDなど)、光磁気ディスク(MO)、半導体メモリなどの記憶媒体に格納して頒布することもできる。また、記憶媒体としては、プログラムを記憶でき、かつコンピュータが読み取り可能な記憶媒体であれば、その記憶形式は何れの形態であっても良い。
【0122】
また、記憶媒体からコンピュータにインストールされたプログラムの指示に基づきコンピュータ上で稼働しているOS(オペレーティングシステム)や、ネットワークソフト等のMW(ミドルウェア)等が上記実施形態を実現するための各処理の一部を実行しても良い。
【0123】
さらに、各実施形態における記憶媒体は、コンピュータと独立した媒体に限らず、LANやインターネット等により伝送されたプログラムをダウンロードして記憶または一時記憶した記憶媒体も含まれる。
【0124】
また、記憶媒体は1つに限らず、複数の媒体から上記の各実施形態における処理が実行される場合も本発明における記憶媒体に含まれ、媒体構成は何れの構成であっても良い。
【0125】
なお、各実施形態におけるコンピュータは、記憶媒体に記憶されたプログラムに基づき、上記の各実施形態における各処理を実行するものであって、パーソナルコンピュータ等の1つからなる装置、複数の装置がネットワーク接続されたシステム等の何れの構成であっても良い。
【0126】
また、各実施形態におけるコンピュータとは、情報処理機器に含まれる演算処理装置、マイコン等も含み、プログラムによって本発明の機能を実現することが可能な機器、装置を総称している。
【0127】
なお、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
【符号の説明】
【0128】
10(10-1,…,10-m)…車載機器、10a,12a…プロセッサ、10b,12b…メモリ、10c,12c…記憶装置、10d…入出力I/F、10e…表示装置、10f…入力装置、10g…無線通信装置、10h…GPSユニット、1oj1,…,1ojn…カメラユニット、10m…センサ群、12…サーバ、14(14-1,…,14-p)…カメラ付き電子機器。