(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-06-09
(45)【発行日】2023-06-19
(54)【発明の名称】熱伝導性ライナーを有するアブレーション装置及びアブレーションシステム
(51)【国際特許分類】
A61B 18/02 20060101AFI20230612BHJP
A61B 18/14 20060101ALI20230612BHJP
【FI】
A61B18/02
A61B18/14
(21)【出願番号】P 2020538141
(86)(22)【出願日】2019-01-08
(86)【国際出願番号】 US2019012754
(87)【国際公開番号】W WO2019139917
(87)【国際公開日】2019-07-18
【審査請求日】2021-12-24
(32)【優先日】2018-01-10
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】516086484
【氏名又は名称】アダージョ メディカル インコーポレイテッド
【氏名又は名称原語表記】ADAGIO MEDICAL,INC.
(74)【代理人】
【識別番号】100105957
【氏名又は名称】恩田 誠
(74)【代理人】
【識別番号】100068755
【氏名又は名称】恩田 博宣
(74)【代理人】
【識別番号】100142907
【氏名又は名称】本田 淳
(72)【発明者】
【氏名】バブキン、アレクセイ ブイ.
(72)【発明者】
【氏名】チェン、トーマス
(72)【発明者】
【氏名】ラップ、ケビン ディ.
(72)【発明者】
【氏名】コヴァルチェク、スティーブン ダブリュ.
【審査官】槻木澤 昌司
(56)【参考文献】
【文献】米国特許出願公開第2017/0151008(US,A1)
【文献】特表2016-531620(JP,A)
【文献】特表2003-507110(JP,A)
【文献】国際公開第2017/048965(WO,A1)
【文献】特表2016-508820(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
A61B 18/02
A61B 18/14
(57)【特許請求の範囲】
【請求項1】
標的組織に損傷部を形成するためのアブレーション装置であって、前記アブレーション装置は、
ハンドルと、
前記ハンドルから遠位先端部まで延びる長尺状のシャフトと
を備え、
該シャフトは、
第1の部分と、
第1の部分の遠位側に位置するアブレーション部と、
前記アブレーション部に沿って配置された少なくとも
2つのアブレーションエネルギー要素であって、前
記アブレーションエネルギー要素の各間に空間が形成される、アブレーションエネルギー要素と、
前記少なくとも2つのアブレーションエネルギー要素を支持すべく、前記少なくとも2つのアブレーションエネルギー要素の周囲の少なくとも半分を取り囲むように前記空間内に配置された
固体の熱伝導性ライナーと
を備える、アブレーション装置。
【請求項2】
前記少なくとも
2つのアブレーションエネルギー要素は、少なくとも1つのアブレーション送達ルーメンおよび少なくとも1つのアブレーションエネルギー戻りルーメンを備える、請求項1に記載のアブレーション装置。
【請求項3】
前記少なくとも1つのアブレーションエネルギー送達ルーメンおよび前記少なくとも1つのアブレーションエネルギー戻りルーメンの各々は、内側管を有し、該内側管は、該内側管を取り囲む外側管を有することによって前記内側管と前記外側管との間に隙間を画定する、請求項2に記載のアブレーション装置。
【請求項4】
前記隙間は熱伝導
性の液体で充填
されるように構成されている、請求項3に記載のアブレーション装置。
【請求項5】
複数のアブレーションエネルギー送達ルーメンと、複数のアブレーションエネルギー戻りルーメンとをさらに備える請求項2に記載のアブレーション装置。
【請求項6】
少なくとも1つの電極をさらに備える請求項1に記載のアブレーション装置。
【請求項7】
少なくとも1つのサービスルーメンをさらに備える請求項1に記載のアブレーション装置。
【請求項8】
アブレーションエネルギーは前記アブレーションエネルギー要素を介して流れる冷却剤から提供される、請求項1に記載のアブレーション装置。
【請求項9】
前記冷却剤は近臨界窒素である、請求項8に記載のアブレーション装置。
【請求項10】
前記ハンドルから少なくともアブレーション部まで、実質的に前記シャフトの長さに沿って延びるスタイレットルーメンと、該スタイレットルーメンの中に挿入可能なスタイレットとを更に備える請求項1に記載のアブレーション装置。
【請求項11】
前記スタイレットは形状記憶材料を含み、前記スタイレットは該スタイレットの長さに沿って複数の柔軟性を有する、請求項10に記載のアブレーション装置。
【請求項12】
前記スタイレットの少なくとも遠位部は、形成するべき前記損傷部の所望の形状に対応する形状にプリセットされている、請求項10に記載のアブレーション装置。
【請求項13】
前記アブレーション装置は、心房細動、心房粗動および心室頻拍からなる群から選択される病気を治療するために使用される、請求項1に記載のアブレーション装置。
【請求項14】
前記熱伝導性ライナーは、前記少なくとも
2つのアブレーションエネルギー要素
の外側の周囲を少なくと
も取り囲む、請求項1に記載のアブレーション装置。
【請求項15】
前記熱伝導性ライナーは熱可塑性エラストマーである、請求項1に記載のアブレーション装置。
【請求項16】
前記熱可塑性エラストマーには熱伝導性材料が添加される、請求項15に記載のアブレーション装置。
【請求項17】
前記熱可塑性エラストマーはポリエーテルブロックアミドである、請求項16に記載のアブレーション装置。
【請求項18】
前記熱可塑性エラストマーは、10重量%から70重量%の範囲で酸化アルミニウムが添加されたポリエーテルブロックアミドである、請求項16に記載のアブレーション装置。
【請求項19】
前記熱可塑性エラストマーは、窒化ホウ素が添加されたポリエーテルブロックアミドである、請求項16に記載のアブレーション装置。
【請求項20】
前記熱可塑性エラストマーは、10重量%から70重量%の範囲で窒化ホウ素が添加されたポリエーテルブロックアミドである、請求項16に記載のアブレーション装置。
【請求項21】
前記熱伝導性ライナーは、(i)前記空間を実質的に満たすととともに前記少なくとも
2つのアブレーションエネルギー要素を取り囲むように、又は(ii)外側シースとしても機能するライナーを形成するように、フロー溶融によって前記少なくとも
2つのアブレーションエネルギー要素の周りに配置されている、請求項1に記載のアブレーション装置。
【請求項22】
前記少なくとも
2つのアブレーションエネルギー要素内のアブレーションエネルギーは、アブレーションを引き起こすのに十分に前記標的組織の温度を低下させる、請求項1に記載のアブレーション装置。
【請求項23】
前記少なくとも
2つのアブレーションエネルギー要素内のアブレーションエネルギーは、アブレーションを引き起こすのに十分に前記標的組織の温度を高める、請求項1に記載のアブレーション装置。
【請求項24】
前記アブレーション装置はカテーテルである、請求項1乃至23の何れか一項に記載のアブレーション装置。
【請求項25】
標的組織に損傷部を形成するためのアブレーションシステムであって、前記アブレーションシステムは、
請求項1乃至24の何れか一項に記載のアブレーション装置と、
エネルギー発生器と
を備え、
前記エネルギー発生器は、前記少なくとも
2つのアブレーションエネルギー要素から前記標的組織にアブレーションエネルギーを送達および制御するために、前記アブレーション装置に連結される、アブレーションシステム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明の実施形態は、外科用装置に関し、より詳細には、熱エネルギーを適用して組織を切除するための外科用装置に関する。
【背景技術】
【0002】
心房粗動および心房細動は、心臓の左または右の心房が不適切に脈打つ心臓病である。心房粗動は、心房が、非常に速くではあるがそれでも均一に脈打つときの病状である。心房細動は、心房が、非常に速いが不均一に脈打つときの病状である。
【0003】
これらの病状は、心房壁のある部分の異常な電気的挙動によって生じることが多い。心房の一定の部位、または肺静脈等の付近の構造が、心臓の収縮を制御する電気信号の生成または伝導に失敗することがあり、電気インパルスの正常なカスケードによって生じる正常な収縮間に心房の収縮を誘発する異常な電気信号を生む。これは、例えば、異所性中枢と呼ばれる虚血組織の箇所によって、または肺静脈の電気活性繊維によって生じることがある。
【0004】
心室頻拍(V-tackまたはVT:ventricular tachycardia)は、心臓の心室における不適切な電気活動に起因する、一種の規則的で速い心拍である。心室頻拍では、心室の異常な電気信号が、上部の腔と同調せずに、心臓を正常よりも速く、通常毎分100回以上の心拍を打つ。これが起こると、腔がそのように速く、または互いに同調せずに拍動しているので、腔がきちんと充満する時間をもたないため、心臓は、身体および肺に十分な血液を送出することができない可能性がある。したがって、V-tachは、心停止を引き起こす可能性があり、心室細動になる可能性がある。
【0005】
心房細動は、より罹患率の高いタイプの心臓病の一つである。心房細動を治療しない場合、動悸、息切れ、虚弱および一般的に身体への血流不足を含め、多数の望ましくない結果を招くことがある。
【0006】
心房細動を治療するために、さまざまな手技が行われる。AFを治療するある手技は、肺静脈隔離(PVI:pulmonary vein isolation)である。PVIは、肺静脈を包囲する損傷部を形成することによって行う。PVIは、誤ったまたは異常な電気信号をブロックする働きをする。
【0007】
しかし、PVIを行う際の課題は、肺静脈の持続的または永久的な隔離を得ることである。この欠点は、さまざまな研究で指摘されている。初期隔離後の肺静脈の再結合率を調査したある長期的な追跡調査研究では、161名の患者のうち53%には、AFがなかった。66名の患者には、不整脈再発により再アブレーションが行われた。肺静脈の再結合率は、94%と高かった(66名の患者のうち62名)。(非特許文献1)
いくつかのPVI治療に持続性がない一つの理由は、肺静脈(または電気的な)再結合の現象のためである。(非特許文献2、非特許文献3、非特許文献4)
肺静脈の再結合の原因は、ギャップ、および静脈の不完全なまたは不連続な隔離にある可能性がある(非特許文献5)。不完全な隔離は、全周包囲する損傷部内の残留ギャップまたは貫壁性損傷部の欠落の結果である。(非特許文献6、非特許文献7)
加えて、AFアブレーション後の早期再発は、不完全な肺静脈隔離の早期マーカとなりうる。これは、高周波アブレーションの失敗後にメイズ手術を受けた12名の患者の研究によって裏付けられている。特筆すべきことに、心筋の生検は、再結合された肺静脈において解剖学的ギャップおよび非貫壁性損傷部の両方または一方を示した。(非特許文献8)
このことは、アブレーションのライン内でMRIを使用して、心内膜伝導ブロックが実証され、術後ギャップが特定されたイヌの研究でさらに裏付けられた。長期的な追跡調査のデータから、MRIで特定されたギャップのある肺静脈は、症状の再発を伴って、電気的に再結合されることになる可能性が高いことが実証された。(非特許文献7)
上記参照した問題を解決するさまざまな試みには、全周性肺静脈隔離(CPVI:circumferential pulmonary vein isolation)と組み合わせた線状アブレーションを行うことが含まれる。例えば、ある研究は、CPVIの臨床的な結果を、発作性AFの患者内で前向き無作為化対照研究の追加線状アブレーションおよびCPVIと比較した。その研究には、高周波全周性アブレーション(RFCA:radio frequency circumferential ablation)を受け、CPVIグループ(n=50)またはカテーテルダラス(Dallas)損傷部グループ(CPVI、後ボックス損傷部と前線状アブレーションn=50)とに無作為に割り当てられた100名の発作性AF患者(男性75.0%、56.4±11.6歳)が参加した。カテーテルダラス損傷部グループは、CPVIグループよりも長い処置(190.3±46.3対161.1±30.3分、P<0.001)およびアブレーション時間(5345.4±1676.4対4027.2±878.0秒、P<0.001)を必要とした。完全な双方向性伝導ブロック率は、カテーテルダラス損傷部グループで68.0%、CPVIグループで100%であった。処置関連の合併症発症率は、カテーテルダラス損傷部グループ(0%)とCPVIグループ(4%、P=0.157)とで有意な差はなかった。16.3±4.0ヶ月の追跡調査中、臨床的再発率は、線状アブレーション後の完全な双方向性伝導ブロックの実現に関係なく、2つのグループ間で有意な差はなかった。(非特許文献9)
このように、上記参照した研究に鑑みて、より多くのアブレーションポイントを静脈入口部の周りに追加するとともにポイント毎のアブレーションの使用により線状損傷部の追加を試みること、または、より多くのアブレーションポイントを静脈入口部の周りに追加するかもしくはポイント毎のアブレーションの使用により線状損傷部の追加を試みることは、全周包囲する損傷部に沿ったギャップを防ぐ最適な解決策とは思えない。加えて、複数のポイントおよびラインを不用意に追加することは、処置時間を増やす。
【0008】
上記欠点に鑑みて、損傷部を形成するために、可撓性冷凍プローブまたは冷凍カテーテル、双極RFカテーテル、単極RFカテーテル(患者の皮膚に接地パッチを使用する)、マイクロ波カテーテル、レーザーカテーテル、および超音波カテーテルを含め、さまざまなアブレーションカテーテルが提案されてきた。例えば、オームズビー(Ormsby)の特許文献1およびフェルド(Feld)の特許文献2は、心臓組織を焼灼するためのRFアブレーションカテーテルを記述している。これらのアプローチは、侵襲性が最小限であり、拍動する心臓に行うことができるため魅力的である。しかし、これらのアプローチは、成功率が低い。低成功率は、不完全な損傷部の形成のためであろう。心房細動を生じさせる電気インパルスが心房の残りとは完全に隔離されることを確実にするためには、完全に貫壁性の損傷部が必要であり、これは、拍動する心臓の手術では実現するのが難しい。
【0009】
このように、外科医にとっての課題は、プローブが組織に完全に接触するように、カテーテル/プローブを正確な組織のプロファイルに沿って配置することである。処置の性質、および損傷部を作らなければならない解剖学的な部位のために、カテーテルは、焼灼するべき組織の形状およびプロファイルに合致することができるように、十分な可撓性を有し調整可能でなければならない。
【0010】
展性で可撓性の冷凍プローブが、特許文献3および特許文献4(いずれもコックス(Cox)ら)に記述されている。記述されるプローブは、展性シャフトを有する。実施形態において、展性金属ロッドをポリマーと共押出して、シャフトを形成する。展性ロッドで、ユーザは、シャフトを所望の形状に塑性変形させて、焼灼するべき組織に先端部が届くことができるようにすることが可能である。
【0011】
ポトツキー(Potocky)らに発行された特許文献5は、血管自体を除く外部へのガイドなく、血管を通って心臓まで達することのできる高可撓性の冷凍プローブを開示している。
【0012】
しかし、上記装置のうちのいくつかの課題は、連続損傷部を形成することができるように、解剖学的表面に沿って連続接触させることである。この課題は、身体内の位置に起因する、標的組織の変化するプロファイルおよび形状だけでなく、患者間の人体構造のばらつきにも起因してさらに大きなものとなる。このように、治療法および患者の人体構造が異なれば、異なるカテーテルを設計して使用する必要がある。別の課題は、これら人体構造のばらつき等に対処するために、カテーテルの形状を本来の位置で調整できることである。
【0013】
上記装置のうちのいくつかの追加の課題は、デバイスの内部冷却/加熱素子とデバイスの外部ジャケット/スリーブとの間に、効率的な熱伝導率、すなわち、冷却/熱伝達をもつことである。したがって、凍結および加熱温度を、焼灼するべき組織に効率的に伝達する必要がありうる。
【0014】
したがって、最小限の侵襲性で、調整可能な形状で、安全かつ効率的な組織の極低温冷却を施すための改良された方法およびシステムに対するニーズがある。これら改良されたシステムには、治療される状態および患者の人体構造のばらつきに関係なく標的組織に連続損傷部を形成する、改良された装置および方法が含まれる。
【0015】
AF、心房粗動およびV-tachを治療し、肺静脈隔離を含め、心臓のさまざまな腔内で、より完全で、耐久性があり安全な電気信号の隔離を実現するための改良された装置および方法に対するニーズもある。
【先行技術文献】
【特許文献】
【0016】
【文献】米国特許第6190382号明細書
【文献】米国特許第6941953号明細書
【文献】米国特許第6161543号明細書
【文献】米国特許第8177780号明細書
【文献】米国特許第5108390号明細書
【非特許文献】
【0017】
【文献】オウヤン・エフ(Ouyang F)、ティルツ・アール(Tilz R)、チュン・ジェイ(Chun J)ら、Long-term results of catheter ablation in paroxysmal atrial fibrillation:lessons from a 5-year follow-up、Circulation、第122巻、2368~2377ページ(2010年)
【文献】サハニ・エヌ(Sawhney N)、アニューシャ・アール(Anousheh R)、チェン・ダブリュシー(Chen WC)ら、Five-year outcomes after segmental pulmonary vein isolation for paroxysmal atrial fibrillation、Am J Cardiol、第104巻、366~372ページ(2009年)
【文献】キャランズ・ディージェイ(Callans DJ)、ガーステンフェルド・イーピー(Gerstenfeld EP)、ディクシット・エス(Dixit S)ら、Efficacy of repeat pulmonary vein isolation procedures in patients with recurrent atrial fibrillation、J Cardiovasc Electrophysiol、第15巻、1050~1055ページ(2004年)
【文献】ヴァーマ・エイ(Verma A)、キリカスラン・エフ(Kilicaslan F)、ピサーノ・イー(Pisano E)ら、Response of atrial fibrillation to pulmonary vein antrum isolation is directly related to resumption and delay of pulmonary vein conduction、Circulation、第112巻、627~635ページ(2005年)
【文献】バンチ・ティージェイ(Bunch TJ)、カトラー・エムジェイ(Cutler MJ)、Is pulmonary vein isolation still the cornerstone in atrial fibrillation ablation?、J Thorac Dis.、第7巻、第2号、132~141ページ(2015年2月)
【文献】マギャン・シージェイ(McGann CJ)、コルモヴスキー・イージー(Kholmovski EG)、オークス・アールエス(Oakes RS)ら、New magnetic resonance imaging-based method for defining the extent of left atrial wall injury after the ablation of atrial fibrillation、J Am Coll Cardiol、第52巻、1263~1271ページ(2008年)
【文献】ランジャン・アール(Ranjan R)、カトウ・アール(Kato R)、ツヴィマン・エムエム(Zviman MM)ら、Gaps in the ablation line as a potential cause of recovery from electrical isolation and their visualization using MRI、Circ Arrhythm Electrophysiol、第4巻、279~286ページ(2011年)
【文献】コワルスキー・エム(Kowalski M)、グライムス・エムエム(Grimes MM)、ペレス・エフジェイ(Perez FJ)ら、Histopathologic characterization of chronic radiofrequency ablation lesions for pulmonary vein isolation、J Am Coll Cardiol、第59巻、930~938ページ(2012年)
【文献】キム(Kim)ら、Linear ablation in addition to circumferential pulmonary vein isolation(Dallas lesion set) does not improve clinical outcome in patients with paroxysmal atrial fibrillation:a prospective randomized study、Europace、第17巻、第3号、388~395ページ(2015年3月)
【発明の概要】
【0018】
標的組織に損傷部を形成するアブレーション装置であって、該アブレーション装置は、ハンドルと、該ハンドルから遠位先端部まで延びる長尺状のシャフトとを備える。シャフトは、第1の部分と、該第1の部分の遠位側に位置するアブレーション部と、外側シースとを備える。アブレーション装置は、外側シース内に配置された少なくとも1つのアブレーションエネルギー要素をさらに備え、少なくとも1つのアブレーションエネルギー要素と外側シースとの間に空間が形成され、熱伝導性ライナーが空間内に配置される。
【0019】
実施形態では、熱伝導性ライナーは、熱伝導性材料が添加された熱可塑性エラストマーまたは熱可塑性ウレタンである。
実施形態では、熱伝導性ライナーは、酸化アルミニウムが添加されたポリエーテルブロックアミド(PEBA:polyether block amide)である。実施形態では、PEBAには、約50から70重量%の範囲の酸化アルミニウムが装填される。いくつかの実施形態では、PEBAには、約50から70重量%の範囲の窒化ホウ素が添加される。
【0020】
実施形態では、熱伝導性ライナーは、フロー溶融によって空間に配置されて、空間を実質的に満たし、アブレーションエネルギー要素のそれぞれを取り囲む。
実施形態では、アブレーションエネルギー要素は、直線状または長尺状であり、外側シース内で長手方向に配置される。
【0021】
実施形態において、少なくとも1つのアブレーションエネルギー要素は、少なくとも1つの切除エネルギー送達ルーメンおよび少なくとも1つのアブレーションエネルギー戻りルーメンを備える。少なくとも1つのアブレーションエネルギー送達ルーメンおよび少なくとも1つのアブレーションエネルギー戻りルーメンは、内側管を有し、該内側管は、該内側管を取り囲む外側管を有することによって内側管と外側管との間に隙間を画定する。隙間には熱伝導媒体を充填可能である。
【0022】
実施形態において、アブレーション装置は、複数のアブレーションエネルギー送達ルーメンと、複数のアブレーションエネルギー戻りルーメンとを備える。
実施形態において、アブレーション装置は、外側シースの外面上に設けられた少なくとも1つの電極と、導電体またはアブレーション部に他の機能要素を提供するべく少なくとも一つのサービスルーメンとをさらに備える。
【0023】
実施形態において、アブレーションエネルギーは、アブレーションエネルギー送達ルーメンおよび少なくとも1つのアブレーションエネルギー戻りルーメンを通って輸送される冷却材によって提供される。実施形態では、冷却剤は窒素または臨界に近い状態の窒素である。
【0024】
実施形態では、アブレーション装置は、ハンドルから少なくともアブレーション部まで、実質的にアブレーションシャフトの長さに沿って延びているスタイレットルーメンと、スタイレットルーメンの中に挿入可能なスタイレットとを更に備える。実施形態では、スタイレットは形状記憶材料を含み、スタイレットはその長さに沿って複数の柔軟性を有する。実施形態において、スタイレットの少なくとも遠位部は、形成するべき損傷部の所望の形状に対応する形状にプリセットされている。
【0025】
実施形態において、アブレーション装置は、心房細動、心房粗動および心室頻拍からなる群から選択される病気を治療するために使用される。
実施形態では、熱伝導性ライナーは、各アブレーションエネルギー要素の全体を取り囲む。
【0026】
実施形態では、少なくとも1つのアブレーションエネルギー要素は、標的組織の温度を低下させてアブレーションを引き起こす。いくつかの実施形態では、少なくとも1つのアブレーションエネルギー要素は、標的組織の温度を上昇させる。
【0027】
いくつかの実施形態において、標的組織に損傷部を形成するためのアブレーションシステムが開示される。アブレーションシステムは、ハンドル、遠位先端部、およびハンドルから遠位先端部まで延びる長尺状のシャフトを有するカテーテルを備える。シャフトは、第1の部分、該第1の部分の遠位側に位置して外側シースを含むアブレーション部分と、外側シース内に配置された少なくとも1つのアブレーションエネルギー要素とを備え、少なくとも1つのアブレーションエネルギー要素と外側シースとの間に空間が形成される。シャフトはまた、前記空間内に配置された第1の熱伝導媒体を有する。システムはまた、少なくとも1つのアブレーションエネルギー要素から標的組織にアブレーションエネルギーを送達および制御するために、カテーテルに結合されたエネルギー発生器を備える。
【0028】
実施形態では、外側シースと、該外側シースを通って長手方向に延びる内側アブレーション要素とを備える長尺状のアブレーション部を有するアブレーションカテーテルを製造する方法であって、内側アブレーション要素と外側シースとの間に画定される空間の間に熱伝導性ライナーを流動させることを含む方法。実施形態では、流動させるステップは、熱伝導剤が添加された熱可塑性物質を流すことによって実行される。
【0029】
実施形態では、流動させるステップは、低線膨張係数の熱膨張剤が添加された熱可塑性物質を流動させることによって行われる。
実施形態では、組織をアブレーションするための方法は、そのようなステップが互いに排他的である場合を除いて、本明細書に記載されるステップのいずれか1つまたは組み合わせを含む。
【0030】
実施形態では、組織をアブレーションするための装置は、そのような構造が互いに排他的である場合を除いて、本明細書に記載される構造のいずれか1つまたは組み合わせを含む。
【0031】
実施形態では、組織をアブレーションするためのシステムは、そのような構成要素が互いに排他的である場合を除いて、本明細書に記載される構成要素のいずれか1つまたは組み合わせを含む。
【0032】
別の実施形態では、標的組織に損傷部を形成するためのアブレーションカテーテルが開示される。アブレーションカテーテルは、ハンドルから遠位先端部まで延在する長尺状のシャフトを備え、シャフトは、第1の部分の遠位側にあるアブレーション部を含み、アブレーション部は外側シースも含み、少なくとも1つのアブレーションエネルギー要素が外側シース内に配置され、少なくとも1つのアブレーションエネルギー要素と外側シースとの間に空間が形成され、空間内に熱伝導性ライナーが配置される。
【0033】
いくつかの実施形態は、熱可塑性エラストマー(TPE:thermoplastic elastomers)および熱可塑性ウレタン(TPU:thermoplastic urethanes)を含む群から選択される基材と、アルミニウム、酸化アルミニウム、窒化ホウ素、銅、銀、および金を含む群から選択される熱伝導性フィラーとを含む熱伝導性材料に関する。いくつかの実施形態では、基材は、ポリエーテルブロックアミド(PEBA:polyether block amide)である。いくつかの実施形態では、熱伝導性フィラーは、酸化アルミニウム(Al2O3)または窒化ホウ素(BN)である。いくつかの実施形態では、PEBAには、重量%で約10から70%の酸化アルミニウム(Al2O3)または窒化ホウ素(BN)が添加される。
【0034】
本発明の実施形態の説明、目的および利点は、添付の図面と合わせて、以下の詳細な説明から明らかになるであろう。
上述した態様、ならびに本手技の他の特徴、態様および利点を、ここでさまざまな実施形態に関連して、添付の図面を参照して述べる。しかし、例示する実施形態は単なる例であり、制限することを意図していない。図面を通じて、同様の符号は、文脈から別段の要求がない限り、通例、同様な構成要素を識別する。以下の図の相対的な寸法は縮尺通りに描かれていないことに留意されたい。
【図面の簡単な説明】
【0035】
【
図3】冷却剤がN
2である、
図2に図示するシステムに対応する冷却剤の相図である。
【
図4】
図2の冷却システムの態様をまとめたフロー図を提供する。
【
図5A】本発明の一実施形態による冷凍アブレーションカテーテルの斜視図である。
【
図5B】
図5Aの線5B-5Bに沿って切断した断面図である。
【
図6】本発明の一実施形態による冷凍アブレーションカテーテルを含む冷凍アブレーションシステムの図である。
【
図7】
図6に図示する冷凍アブレーションカテーテルの遠位セクションの拡大斜視図である。
【
図8】可撓性の遠位治療セクションを有する冷凍アブレーションカテーテルの別の実施形態の斜視図である。
【
図9A】
図9の線9A-9Aに沿って切断した、
図8に図示するカテーテルの一実施形態の断面図である。
【
図9B】
図9Aに図示する多層管のうちの1つの拡大図である。
【
図9C】冷凍アブレーションカテーテルの別の実施形態の断面図である。
【
図10A】
図8に図示するカテーテルの一実施形態の部分断面図である。
【
図10B】
図8に図示するカテーテルの一実施形態の管要素の近位端と中間セクションの遠位端の部分拡大図である。
【
図11】可撓性の遠位治療セクションを有する冷凍アブレーションカテーテルの別の実施形態の斜視図である。
【
図12】
図11に図示する遠位セクションの一部の拡大図である。
【
図13】
図12の線
13-
13に沿って切断した、
図12に図示するカテーテルの断面図である。
【
図14】
図11に図示するカテーテルの遠位セクションの、外側シース部材からの連続展開を示す。
【
図15】
図11に図示するカテーテルの遠位セクションの、外側シース部材からの連続展開を示す。
【
図16】可撓性の遠位治療セクションを有する冷凍アブレーションカテーテルの別の実施形態の斜視図である。
【
図17】
図16に図示するカテーテルの遠位セクションの拡大図である。
【
図18】
図17の線17-17に沿って切断した、
図17に図示するカテーテルの断面図である。
【
図19A】本発明の一実施形態によるカテーテルの遠位セクションの展開を示す。
【
図19B】本発明の一実施形態によるカテーテルの遠位セクションの展開を示す。
【
図19C】本発明の一実施形態によるカテーテルの遠位セクションの展開を示す。
【
図19D】本発明の一実施形態によるカテーテルの遠位セクションの展開を示す。
【
図20A】
図19Dに図示するカテーテルのプリセットループ形状の直径の縮小を示す。
【
図20B】
図19Dに図示するカテーテルのプリセットループ形状の直径の縮小を示す。
【
図21A】本発明の一実施形態によるカテーテルシャフトの関節を示す。
【
図21B】本発明の一実施形態によるカテーテルシャフトの関節を示す。
【
図21C】本発明の一実施形態によるカテーテルシャフトの関節を示す。
【
図21D】本発明の一実施形態によるカテーテルシャフトの関節を示す。
【
図22A】カテーテルの中間セクションの構成要素を示す。
【
図22B】カテーテルの中間セクションの構成要素を示す。
【
図23A】本発明の一実施形態によるアブレーションカテーテル用のハンドルの斜視図を示す。
【
図24】内部スタイレットを有する冷凍アブレーションカテーテルの別の実施形態の斜視図である。
【
図25A】
図24の2
5-2
5の線に対応する本発明の異なる実施形態の断面図である。
【
図25B】
図24の2
5-2
5の線に対応する本発明の異なる実施形態の断面図である。
【
図25C】
図24の2
5-2
5の線に対応する本発明の異なる実施形態の断面図である。
【
図27A】内部スタイレットが挿入されている、
図24に図示する冷凍アブレーションカテーテルの斜視図である。
【
図27B】アブレーションシャフト/スリーブの可撓性の遠位アブレーション部をスタイレットの湾曲構成に変形させ、内部スタイレットが挿入されている、
図24に図示する冷凍アブレーションカテーテルの斜視図である。
【
図28A】
図27Aの2
8-2
8の線に対応する本発明の異なる実施形態の断面図である。
【
図28B】
図27Aの2
8-2
8の線に対応する本発明の異なる実施形態の断面図である。
【
図28C】
図27Aの2
8-2
8の線に対応する本発明の異なる実施形態の断面図である。
【
図30】本発明の一実施形態による、マルチプル可撓性長のその長さを有するスタイレットを示す。
【
図31A】本発明の一実施形態による、スタイレットの一部の可撓性を変える方法を示す。
【
図32A】本発明の一実施形態による、スタイレットの一部の可撓性を変える方法を示す。
【
図32B】本発明の一実施形態による、スタイレットの一部の可撓性を変える方法を示す。
【
図32C】本発明の一実施形態による、スタイレットの一部の可撓性を変える方法を示す。
【
図33】心臓と、本発明の一実施形態による、さまざまな損傷部の位置の図である。
【
図34】心臓にアクセスするための血管内カテーテル法の一実施形態の図である。
【
図35】本発明の一実施形態による、左の上下肺静脈入口部を包囲して、冷凍アブレーションカテーテルの遠位セクションを左心房の心内膜壁に当てて配置するための処置の図である。
【
図36】本発明の一実施形態による、左の上下肺静脈入口部を包囲して、冷凍アブレーションカテーテルの遠位セクションを左心房の心内膜壁に当てて配置するための処置の図である。
【
図37】本発明の一実施形態による、右の上下肺静脈入口部を包囲して、冷凍アブレーションカテーテルの遠位セクションを左心房の心内膜壁に当てて配置するための処置の図である。
【
図38】本発明の一実施形態による、右の上下肺静脈入口部を包囲して、冷凍アブレーションカテーテルの遠位セクションを左心房の心内膜壁に当てて配置するための処置の図である。
【
図39】本発明の一実施形態による、ボックス形損傷部を形成するための方法を示し、図は、患者の背中から見た左心房を描いている。
【
図40】本発明の一実施形態による、ボックス形損傷部を形成するための方法を示し、図は、患者の背中から見た左心房を描いている。
【
図41】本発明の一実施形態による、左心房で複数のPVを囲むためにボックス形損傷部を形成する方法を示すフロー図である。
【
図43A】本発明の一実施形態による、僧帽弁の電気活動を遮断するための損傷部の形成を示す。
【
図43B】本発明の一実施形態による、僧帽弁の電気活動を遮断するための損傷部の形成を示す。
【
図44】本発明の一実施形態による、左心房で複数のPVを囲むためのボックス形損傷部と僧帽弁の電気活動を遮断するための損傷部とを形成する方法を示すフロー図である。
【
図45】本発明の一実施形態による、右心房の電気活動を遮断するための損傷部の形成を示す。
【発明を実施するための形態】
【0036】
本発明の実施形態の精神および範囲から逸脱することなく、説明される本発明の実施形態にさまざまな変更または修正を行ってもよく、また、同等物を代わりに用いてもよいため、本明細書で説明される本発明の実施形態は、本明細書に記載される特定の変型例に制限されるものではないことは理解されるべきである。本開示を読めば当業者には明らかなように、本明細書で説明し図示する個々の実施形態のそれぞれは、本発明の実施形態の範囲または精神から逸脱することなく、他のいくつかの実施形態のいずれかの特徴から容易に分離されるかまたは該特徴と組み合わせてもよい、個別の構成要素および特徴を有する。加えて、本発明の実施形態の目的、精神または範囲に、特定の状況、材料、物体の組成、プロセス、プロセスの動作またはステップを適応させるために、多くの修正を行ってもよい。このような修正はすべて、本明細書でなされる請求の範囲内となることが意図される。
【0037】
さらに、方法は、特定の順序で図面に描かれるかまたは明細書で説明されているかもしれないが、望ましい結果を得るために、そのような方法は、示されるその特定の順序または連続する順序で行う必要はなく、すべての方法を行う必要はない。図示または説明されていない他の方法を、例示的な方法およびプロセスに組み込むことができる。説明される方法のいずれかの前、後、それと同時、またはそれらの間に、1つまたは複数の追加の方法を行うことができる。さらに、他の実施態様では、方法を再配列してもまたは並べ替えてもよい。また、上述した実施態様のさまざまなシステム構成要素の分離は、すべての実施態様でそのような分離が要求されると理解するべきではなく、説明される構成要素およびシステムは、一般的に1つの製品にまとめて統合すること、または複数の製品にパッケージ化することができる。加えて、他の実施態様は、本開示の範囲内である。
【0038】
「できる」、「できるだろう」、「してもよいだろう」または「してもよい」等の条件付きの表現は、特に別の記載がない限り、または使用される文脈内で別の理解がなされない限り、一般的に、一定の実施形態が一定の特徴、要素および/もしくはステップを含むこと、または含まないことを伝えることが意図される。したがって、このような条件付きの言葉は、一般に、その特徴、要素および/またはステップが1つまたは複数の実施形態にとって何らかの形で必要であることを示唆することを意図するわけではない。
【0039】
句「X、YおよびZのうちの少なくとも1つ」のような接続的な表現は、特に別の記載がない限り、項目、用語等がX、YまたはZのいずれであってもよいことを伝えるために一般に使用される文脈で別様に理解される。
【0040】
単数形の項目への言及は、複数の同じ項目が存在する可能性を含む。より具体的には、本明細書および添付の特許請求の範囲で使用される場合、「一」、「一つ」、および「前記」」は、文脈上明らかに別のことを示しているのではない限り、複数の指示対象を含む。特許請求の範囲は、任意の要素を排除するために作成されうることにも留意する。したがって、この文言は、請求項の要素の記載に関連した「単独で」、「のみ」および同様なもののような排他的な用語の使用、または「否定的な」限定の使用の先行詞としての役割を果たすことが意図される。
【0041】
ある要素が別の要素に「接続され」または「連結され」ているというとき、該要素を該別の要素に直接接続もしくは連結できるか、または介在する要素が存在してもよいと理解されるであろう。対して、ある要素が別の要素に「直接接続され」または「直接連結され」ているという場合、介在する要素が存在しない。
【0042】
さまざまな要素を記述するために第1、第2等の用語を本明細書で使用することがあるが、これらの要素は、これらの用語によって制限されるべきではないことも理解されるであろう。これらの用語は、ある要素を別の要素と区別するためにのみ使用される。したがって、本発明の教示から逸脱することなく、第1要素を第2要素と呼ぶこともできるであろう。
【0043】
本明細書で使用される、用語「およそ」、「約」、「概ね」および「実質的に」等、程度の言語は、記載される値、量または特徴に近く、依然として所望の機能を行うかまたは所望の結果を達成する値、量、または特徴を表す。例えば、用語「およそ」、「約」、「概ね」および「実質的に」は、記載される量の10%以下以内、5%以下以内、1%以下以内、0.1%以下以内、および0.01%以下以内である量をいいうる。記載される量が0(例えば、なし、ない)である場合、上述した範囲は、値の特定の%以内ではなく、特定の範囲とすることができる。加えて、数字の範囲は、範囲を画定する数を含み、本明細書で提供される個々の値は、本明細書で提供される他の個々の値を含む範囲の終点としての役割を果たすことができる。例えば、1、2、3、8、9および10等の値の集合も、1~10、1~8、3~9等の数字の範囲の開示である。
【0044】
いくつかの実施形態は、添付の図面に関連して説明されている。図面は、縮尺通りに描かれているのではなく、図示されるもの以外の寸法および割合が企図され、また、開示される発明の範囲内にそうした寸法があるため、このような縮尺は、制限的なものとするべきではない。距離、角度等は、単なる例示的なものであり、図示されるデバイスの実際の寸法およびレイアウトとの正確な関係を必ずしも示しているわけではない。構成要素を追加、削除および/または再配列することができる。さらに、本明細書における、さまざまな実施形態に関連した任意の特定の特徴、態様、方法、特性、特徴、品質、属性、要素または同様なものの開示は、本明細書に記載される他のすべての実施形態で使用することができる。加えて、本明細書で説明されるどの方法も、記載されるステップを行うのに適した任意のデバイスを使用して実施してもよいことは認識されるであろう。
【0045】
多数の実施形態およびその変型を詳細に説明しているが、当業者には、他の修正およびそれを使用する方法が明らかになるであろう。したがって、本明細書に固有のかつ発明性のある開示または特許請求の範囲から逸脱することなく、さまざまな応用、修正、材料および代用を同等物から作ることができることは理解されるべきである。
【0046】
本明細書で言及するすべての既存の主題(例えば、公報、特許、特許出願およびハードウェア)は、その主題が本発明のものと矛盾する場合(その場合、本明細書に存在するものを優先するものとする)を除き、その全体が参照により本明細書に組み込まれる。
【0047】
本発明の実施形態は、ベーパーロックの現象を受けずに冷却を施す冷却剤を使用する熱力学プロセスを利用する。
冷却剤の相図および近臨界点
本出願は、さまざまな熱力学プロセスを示すために相図を用いる。例示的な相図を
図1に示す。相図は、圧力Pおよび温度Tに対応する軸と、液体と気体が共存するすべての(P,T)点の軌跡を描く相線102とを含む。相線102の左の(P,T)値の場合、冷却剤は、一般的により高い圧力およびより低い温度で達成される液体状態であるのに対し、相線102の右の(P,T)値は、冷却剤が、一般的により低い圧力およびより高い温度で達成される気体状態である。相線102は、臨界点104として知られる1つの点で突然終わる。窒素N
2の場合、臨界点は、P
c=3.396MPaでT
c=-147.15℃である。
【0048】
圧力が徐々に上昇している間、流体が液相および気相の両方で存在しているとき、系は、液相-気相線102に沿って上昇する。N2の場合、低圧の液体は、気相の200倍まで密度が高い。圧力の連続上昇により、両者が臨界点104でのみ等しくなるまで、液体の密度が低下し、気相の密度が上昇する。臨界点104で液体と気体の区別はなくなる。したがって、本明細書では「近臨界条件」として定義する臨界点付近の条件で冷却剤が流れるとき、液体冷却剤の前方で膨張する気体によって前方への流れが閉塞されること(「ベーパーロック」)が回避される。機能的な流れを維持しながら臨界点からより大きく逸脱させる要因には、冷却剤の流れの速度上昇、フロールーメンの大径化、および熱交換器または冷凍治療領域に対する熱負荷の低下が含まれる。
【0049】
下から臨界点に近づいてくるとき、ちょうど臨界点になるまで、蒸気相の密度は上昇し、液相の密度は低下し、臨界点ではこれら2つの相の密度が厳密に等しい。臨界点を超えると、液相と蒸気相との区別がなくなって1つの超臨界相のみが残り、そこでは、流体は液体と気体の両方の特性を有する(すなわち、表面張力のない、摩擦なく流れることができる高密度流体)。
【0050】
ファンデルワールスの熱力学的な状態方程式は、気体および液体を記述するための十分に確率されている方程式である。
(p+3/v2)(3v-1)=8t[式1]
上記式において、p=P/Pc、v=V/Vc、t=T/Tcで、Pc、VcおよびTcは、それぞれ臨界圧力、臨界モル体積、臨界温度である。
【0051】
変数v、pおよびtは、それぞれ「換算モル体積」、「換算圧力」および「換算温度」といわれることが多い。そのため、同じ値のp、vおよびtをもつ任意の2つの物質は、その臨界点近傍で同じ熱力学的な流体の状態である。したがって、式1は、「対応状態の原理」を具現化するといわれる。これは、H.E.スタンレー(H.E.Stanley)、Introduction to Phase Transitions and Critical Phenomena、(オックスフォード・サイエンス・パブリケーションズ社(Oxford Science Publications)、1971年)において、より完全に説明されており、その開示全体が、参照により、あらゆる目的において全体として本明細書に組み込まれる。
【0052】
本発明の実施形態において、換算圧力pは、およそ1の定値で固定されており、そのため臨界圧力近傍の固定物理圧力である一方、換算温度tは、デバイスに加えられる熱負荷に応じて変化する。換算圧力pがシステムのエンジニアリングによって設定される定数である場合、換算モル体積vは、換算温度tの完全な関数である。
【0053】
本発明の他の実施形態において、動作圧力pは、デバイスの温度tの変化の過程で、ベーパーロック条件となる何らかの最大値未満にvを維持するように調整してもよい。一般的には、これが当てはまる最低値にpを維持することが望ましい。なぜなら、より高い値のpを得るために圧力を上昇させることは、より複雑でより高価なコンプレッサの使用を伴う可能性があり、装置のサポートシステム全体の調達および維持がより高価になり、全体的な冷却効率が低くなるためである。
【0054】
vの条件は、体積流量dV/dt、液相と気相の熱容量、および液体および蒸気の両方における輸送特性(熱伝導率、粘度等)に複雑に依存する。正確な関係は、ここでは代数的に閉形式で導かないが、冷却デバイス内の質量および熱輸送を記述するモデル式を積分することによって数字的に決定してもよい。概念上、ベーパーロックは、先端部(または冷却剤を輸送して組織を冷却するための他のデバイス構造)の加熱速度が蒸気相を生じさせるときに発生する。蒸気の流量にその熱容量を乗じてそのモル体積で割った値に比例するこの蒸気相の冷却力は、先端部の加熱速度についていくことができない。これが発生すると、冷却剤の流れにおける液相の蒸気への変換による過剰な熱を吸収するために、ますます多くの蒸気相が形成される。これが暴走状態を生みだし、液体が気相に変換して先端部を満たし、先端部への熱流がその温度と圧力を急速に高めるため、この蒸気相を生じる大きな圧力によって冷却剤の流れが事実上すべて停止する。この状態を「ベーパーロック」と呼ぶ。
【0055】
本発明の一実施形態によると、液相および蒸気相は、そのモル体積が実質的に同一である。冷却力は臨界点であり、冷却システムはベーパーロックを回避する。加えて、臨界点をわずかに下回る条件では、装置は同様にベーパーロックを回避しうる。
【0056】
冷凍アブレーションシステム
図2は、一実施形態における極低温システムの構造的配列の模式図を提供し、
図3は、
図2のシステムが作動しているときに冷却剤が辿る熱力学的経路を示す相図を提供する。2つの図における丸付き数字の識別子は、熱力学的経路に沿って識別される動作点に到達する物理的位置が
図2で示されるように対応する。したがって、以下の説明は、冷却流の物理的態様と熱力学的態様とを説明する際、
図2の構造図および
図3の相図の両方を同時に参照する場合がある。
【0057】
図示の目的上、
図2および
図3は、ともに窒素冷却剤に具体的に言及しているが、これは、制限的であることを意図していない。本発明の実施形態は、より一般的に、例えば、アルゴン、ネオン、ヘリウム、水素および酸素等の任意の適切な冷却剤を用いてもよい。
【0058】
図3において、液相-気相線は符号256で識別され、冷却剤が辿る熱力学的経路は符号258で識別される。
冷却剤発生器246を使用して、その出口で冷却剤の臨界圧力P
cを超える圧力で冷却剤を供給する(
図2および
図3で符号丸1で参照される)。冷却サイクルは、圧力が臨界点圧力P
c近傍であると有利ではあるが、一般的に、相図においてP
cを超えるかまたはわずかに下回る圧力を有する任意の点で始めてよい。本明細書で説明されるプロセスの冷却効率は、初期圧力が臨界点圧力P
c近傍であるときに一般的により大きいので、圧力が高くなると、所望の流れを得るためのエネルギー需要が増えうる。したがって、実施形態は、さらに高いさまざまな上限圧力を組み込むことがあってもよいが、一般的には、P
cの0.8倍から1.2倍の間といった臨界点近傍で始まり、一実施形態ではP
cの約0.85倍である。
【0059】
本明細書で使用する場合、「近臨界」という用語は、液体-蒸気臨界点近傍をいうことを意味する。この用語の使用は、「臨界点近傍」と同等であり、これは、流体の力学的粘度が通常の気体のものに近く液体のものよりはるかに小さい、液体-蒸気系が臨界点に十分に近い領域である。しかし、同時に、その密度は、通常の液体状態のものに近い。近臨界流体の熱容量は、その液相のものよりさらに大きい。ガス状粘度、液体状密度および非常に大きな熱容量の組み合わせは、非常に効率的な冷媒となる。近臨界点への言及は、液相および蒸気相の変動が、その背景値に対して熱容量を大きく上昇させるのに十分に大きくなるように、液体-蒸気系が臨界点に十分に近い領域をいう。近臨界温度とは、臨界点温度の±10%以内の温度である。近臨界圧力とは、臨界点圧力の0.8倍から1.2倍の間である。
【0060】
再び
図2を参照すると、冷却剤は管を流れ、その少なくとも一部は、液体状態の冷却剤の貯蔵器240に取り囲まれ、実質的にその圧力を変化させることなくその温度が低下する。
図2では、貯蔵器は、液体N
2として示されており、流動する冷却剤から熱を抽出するための熱交換器242が貯蔵器240の中に設けられている。貯蔵器240の外側は、冷却剤発生器246から流れるときに冷却剤が不必要に暖まるのを防止するために、管の周りに断熱材が施されていてもよい。丸2の箇所で、液体冷却剤に熱接触させることによって冷却した後、冷却剤は、さらに低い温度を有するが、実質的に初期圧力である。場合によっては、圧力が実質的に臨界点圧力P
c未満に低下しなければ、すなわち、所定の最低圧力未満に低下しなければ、
図3に示すように、わずかな圧力低下として圧力変化があるかもしれない。
図3に示す例では、液体冷却剤を通じて流れた結果として、温度が約50℃低下する。
【0061】
次いで、冷却剤は、極低温アプリケーションで使用するためのデバイスに提供される。
図2に示す例示的な実施形態では、冷却剤は、医療用極低温血管内アプリケーションで使用されてもよいようなカテーテル224の入口236に提供されるが、これは、必要条件ではない。
【0062】
実際、医療機器の形態は、幅広くさまざまであってもよく、器具、器械、カテーテル、デバイス、ツール、装置、およびプローブを非限定的に含み、該プローブは、短尺で剛性であるかもしくは長尺で可撓性であるかを問わず、または、それが開胸手術、低侵襲手術、非侵襲性手術、徒手手術もしくはロボット手術のためのものであるかを問わない。
【0063】
実施形態において、冷却剤は、カテーテルの近位部分に導入され、カテーテルの可撓性の中間セクションに沿って、カテーテルの遠位治療セクションまで続いてもよい。冷却剤がカテーテルを通じて
図2および
図3の符号の丸2と丸3との間の冷凍アブレーション治療領域228全体に輸送されると、それがデバイスとの境界面、例えば、
図2の冷凍アブレーション領域228を移動するにつれて、冷却剤の圧力および温度または圧力もしくは温度がわずかに変化しうる。かかる変化は、通例、わずかな温度上昇およびわずかな圧力上昇を示す可能性がある。冷却剤圧力が所定の最低圧力(および関連の条件)を上回った場合、冷却剤が液相-気相線256になることなく臨界点に向かって戻るだけであり、それによりベーパーロックが回避されるため、わずかな温度上昇はパフォーマンスに大きな影響を与えない。
【0064】
冷却剤発生器246からカテーテル224または他のデバイスへの冷却剤の流れは、図示される実施形態では、逆止弁216、フローインピーダンス、および/またはフローコントローラ、を含むアセンブリで制御してもよい。カテーテル224自体は、その長さに沿って真空断熱材232(例えば、カバーまたはジャケット)を備えてもよく、極低温アプリケーションに使用される低温冷凍アブレーション領域228を有してもよい。作動冷却剤の圧力がプローブの先端部で大幅に変化するジュール・トムソンプローブと異なり、本発明のこれらの実施形態では、装置全体を通じた圧力変化が比較的小さくなる。したがって、丸4の箇所では、冷却剤の温度はおよそ周囲温度まで上昇しているが、圧力は高いままである。カテーテルを通じて冷却剤を輸送するときに圧力を臨界点圧力Pcより高くまたはその近傍に維持することにより、ベーパーロックが回避される。
【0065】
冷却剤圧力は、丸5の点で周囲圧力に戻る。次いで、実質的に周囲条件でベント204を通じて冷却剤を放出してもよい。
冷凍アブレーションシステム、その構成要素およびさまざまな配列は、本発明の譲受人に譲渡された以下の米国特許および米国特許出願に説明されている。2004年1月14日にピーター・ジェイ.リトラップ(Peter J.Littrup)らが出願し、2008年8月12日に米国特許第7410484号明細書として発行された、「CRYOTHERAPY PROBE」という発明の名称の米国特許出願第10/757768号明細書、2004年1月14日にピーター・ジェイ.リトラップらが出願し、2006年8月1日に米国特許第7083612号明細書として発行された、「CRYOTHERAPY SYSTEM」と題された米国特許出願第10/757769号明細書、2004年9月27日にピーター・ジェイ.リトラップらが出願し、2007年9月25日に米国特許第7273479号明細書として発行された、「METHODS AND SYSTEMS FOR CRYOGENIC COOLING」と題された米国特許出願第10/952531号明細書、2006年6月6日にピーター・ジェイ.リトラップらが出願し、2009年3月24日に米国特許第7507233号明細書として発行された、「CRYOTHERAPY SYSTEM」と題された米国特許出願第11/447356号明細書、2007年8月28日にピーター・ジェイ.リトラップらが出願し、2011年4月12日に米国特許第7921657号明細書として発行された、「METHODS AND SYSTEMS FOR CRYOGENIC COOLING」と題された米国特許出願第11/846226号明細書、2008年1月23日にピーター・ジェイ.リトラップらが出願し、2013年11月26日に米国特許第8591503号明細書として発行された、「CRYOTHERAPY PROBE」と題された米国特許出願第12/018403号明細書、2011年3月11日にピーター・ジェイ.リトラップらが出願し、2013年3月5日に米国特許第8387402号明細書として発行された、「METHODS AND SYSTEMS FOR CRYOGENIC COOLING」と題された米国特許出願第13/046274号明細書、2013年11月22日にピーター・ジェイ.リトラップらが出願し、係属中の、「CRYOTHERAPY PROBE」と題された米国特許出願第14/087947号明細書、2010年7月29日にアレクセイ・バブキン(Alexei Babkin)らが出願し、2014年6月3日に米国特許第8740891号明細書として発行された、「FLEXIBLE MULTI-TUBULAR CRYOPROBE」と題された米国特許出願第12/744001号明細書、2010年7月29日にアレクセイ・バブキンらが出願し、2014年6月3日に米国特許第8740892号明細書として発行された、「EXPANDABLE MULTI-TUBULAR CRYOPROBE」と題された米国特許出願第12/744033号明細書、および、2014年9月22日にアレクセイ・バブキンらが出願した、「ENDOVASCULAR NEAR CRITICAL FLUID BASED CRYOABLATION CATHETER AND RELATED METHODS」と題された米国特許出願第14/915632号明細書。上記特定した各米国特許/出願の内容は、あらゆる目的において、その全体が参照により本明細書に組み込まれる。
【0066】
冷却剤が
図3に示すものと同様な熱力学的経路を辿る、標的組織を冷却する方法を、
図4のフロー図を用いて示す。ブロック310で、冷却剤は、臨界点圧力を超える圧力で生成され、臨界点温度に近い。ブロック314で、生成された冷却剤の温度を、より低い温度を有する物質を備える熱交換を通じて下げる。場合によっては、これは、冷却剤の周囲圧力の液体状態を備える熱交換を用いて便利に行える可能性があるが、異なる実施形態では、熱交換は、他の条件で行ってもよい。例えば、いくつかの実施形態では、作動流体がアルゴンである場合に熱交換に液体窒素を供給する等して、異なる冷却剤を使用してもよいだろう。また、他の代替実施形態では、熱交換は、より低温の環境を形成するためにより低い圧力で冷却剤を供給する等して、周囲圧力とは異なる圧力の冷却剤を用いて行ってもよい。
【0067】
ブロック318で、さらに冷却した冷却剤を、ブロック322で冷却アプリケーションのために使用してもよい極低温アプリケーションデバイスに提供する。冷却アプリケーションは、対象物が冷却アプリケーションで冷凍されるかどうかに応じて、チリングおよび凍結またはチリングもしくは凍結を含んでもよい。冷却剤アプリケーションの結果として冷却剤の温度が高まり、ブロック326で、加熱された冷却剤が制御コンソールに流れる。ある程度のばらつきがあるかもしれないが、冷却剤の圧力は、ブロック310から326を通じて、一般的に臨界点圧力より高く維持される。これらの段階における冷却剤の熱力学特性の主な変化は、その温度である。そして、ブロック330で、加熱された冷却剤の圧力が周囲圧力まで低下させられるので、ブロック334で、冷却剤を放出してもよく、またはリサイクルしてもよい。他の実施形態では、ブロック326で、残りの加圧冷却剤も、周囲圧力で冷却剤を放出するのではなく、ブロック310への経路に沿って戻ってリサイクルしてもよい。
【0068】
冷凍アブレーションカテーテル
本発明の冷凍アブレーション装置の実施形態は、多様な構成を有してもよい。例えば、本発明の一実施形態は、
図5Aに示す可撓性カテーテル400である。カテーテル400は、流体源(図示せず)に流体接続されるようになされた、近位に配置されたハウジングまたはコネクタ410を含む。
【0069】
コネクタ410から延びている複数の流体移送管420が示されている。これらの管は、コネクタから入口流を受け入れるための1組の入口流体移送管422と、コネクタ410から流れを排出するための1組の出口流体移送管424とを含む。
【0070】
実施形態において、流体移送管のそれぞれは、-200℃から周囲温度までの全温度範囲で可撓性を維持する材料から作られる。実施形態において、流体移送管420は、焼鈍ステンレス鋼、またはポリイミド等のポリマーから作られる。このような構成において、材料は、近臨界温度で可撓性を維持しうる。実施形態において、各流体移送管は、約0.1mmから1mmの間(好ましくは約0.2mmから0.5mmの間)の範囲の内径を有する。各流体移送管は、約0.01mmから0.3mmの間(好ましくは約0.02mmから0.1mmの間)の範囲の壁厚を有してもよい。
【0071】
流体移送管の端部には、入口流体移送管から出口流体移送管までの流体の移送を提供するためのエンドキャップ440が配置されている。エンドキャップ440は、非外傷性の先端部を有して示されている。エンドキャップ440は、入口流体移送管から出口流体移送管までの流体の移送を提供するための任意な適切な要素であってもよい。例えば、エンドキャップ440は、管422、424を流体接続するのに役立つ内部チャンバ、キャビティ、または通路を画定してもよい。
【0072】
図5Bを参照すると、管束420を取り囲む外側シース430が示されている。外側シースは、管を管状配列に保持し、異物および障害物による貫通または破壊から構造物を保護するのに役立つ。
【0073】
遠位セクションの表面に温度センサ432が示されている。温度センサは、隣接する組織に対応する温度を感知する熱電対であってもよく、処理するために、管束のワイヤからコンソールに信号を送り返す。温度センサは、流入と流出との温度差を判定するために、シャフトに沿って、または流体輸送管のうちの1つまたは複数の中の他箇所に配置してもよい。
【0074】
管配列には多くの構成がある。実施形態において、流体移送管は、円形アレイから作られ、1組の入口流体移送管は、円の中心領域を画定する少なくとも1つの入口流体移送管422を備えており、1組の出口流体移送管424は、円形パターンで中心領域の周りに相隔たる複数の出口流体移送管を備える。
図5Bに示す構成では、流体移送管422、424は、この実施形態の部類に入る。
【0075】
動作中、冷却剤/極低温流体は、-200℃に近い温度で、適切な冷却剤源から供給ラインを通ってカテーテルに届く。冷却剤は、露出した流体移送管によって提供される多管凍結ゾーンを循環し、コネクタに戻る。冷却剤は、入口流体移送管422を通って凍結ゾーンに流入し、出口流体移送管424を通って凍結ゾーンから流出する。
【0076】
実施形態において、窒素は、流れおよび冷却力を制限するベーパーロックを生じさせないよう、熱負荷の下では小径管の中で気泡を形成しない。少なくとも初期のエネルギー印加期間中に近臨界条件で動作することによって、液相と気相との区別がなくなるためベーパーロックが排除される。最初に近臨界条件で、例えば窒素の場合、-147.15℃の臨界温度近傍の温度で、3.396Mpaの臨界圧力近傍の圧力で動作した後、動作圧力は、2015年10月21日にアレクセイ・バブキンらが出願し、本発明の譲受人に譲渡された、「PRESSURE MODULATED CRYOABLATION SYSTEM AND RELATED METHODS」と題された米国特許出願第14/919681号明細書に開示され記述されるように低下してもよく、同特許出願の内容は、あらゆる目的において、その全体が参照により本明細書に組み込まれる。
【0077】
追加の管が冷却剤と組織との間の熱交換面積の実質的な増加を提供することができるため、多管設計は、単管設計よりも好ましい可能性がある。使用する管の数に応じて、冷凍器具は、単一のシャフト/管で同様なサイズの直径を有する従来の設計よりも接触面積を数倍増やすことができる。しかし、本発明の実施形態は、添付の特許請求の範囲に明記している場合を除き、単管または多管設計に制限することを意図していない。
【0078】
冷凍アブレーションコンソール
図6は、台車またはコンソール960と、可撓性の細長い管910を介してコンソールに着脱可能に接続されている冷凍アブレーションカテーテル900とを有する冷凍アブレーションシステム950を示す。
図7に関連して以下でより詳細に説明する冷凍アブレーションカテーテル900は、組織から熱を除去するための1つまたは複数の流体輸送管を収容する。
【0079】
コンソール960は、例えば、発生器、コントローラ、タンク、バルブ、ポンプ等の多様な構成要素(図示せず)を含んでもよく、または収容してもよい。
図6には、ユーザが操作しやすいように台車の上に配置されたコンピュータ970およびディスプレイ980が示されている。コンピュータは、コントローラ、タイマを含んでもよく、または外部コントローラと通信して、ポンプ、バルブまたは発生器等の冷凍アブレーションシステムの構成要素を駆動してもよい。ユーザがデータを入力して冷凍アブレーションデバイスを制御できるように、マウス972およびキーボード974等の入力デバイスが設けられていてもよい。
【0080】
実施形態において、コンピュータ970は、本明細書で説明するように、冷却剤の流量、圧力および温度を制御するように構成されているかまたはプログラミングされている。ターゲット値およびリアルタイムの測定値は、ディスプレイ980に送信され、表示されてもよい。
【0081】
図7は、冷凍アブレーション装置900の遠位セクションの拡大図を示す。遠位セクション900は、治療領域914が可撓性の保護カバー924を含むことを除き、上述した設計と同様である。カバーは、流体輸送管のうちの1つが破損した場合、冷却剤の漏れを封じ込めるのに役立つ。流体送達輸送管のいずれにも漏れは予想または予期されていないが、保護カバーは、追加のまたは冗長なバリアを提供し、これを貫通しなければ、冷却剤が処置中にカテーテルから漏れ出ることはない。実施形態において、保護カバーは、金属から形成してもよい。
【0082】
加えて、輸送管とカバーの内面との間の空間または隙間の中に、治療中のデバイスの熱冷却効率を高めるために熱伝導性の液体を配置してもよい。実施形態において、熱伝導性の液体は水である。
【0083】
カバー924は、管状または円筒形状に示されており、遠位先端部912で終端する。本明細書で説明するように、冷却領域914は、複数の流体送達管および流体戻り管を収容し、治療領域914を通じて冷却流体を輸送して、標的組織から熱を伝達/除去させる。実施形態において、冷却剤は、相図の流体の臨界点近傍の物理的条件下で、管束を通じて輸送される。カバーは、特に、冷却流体を封じ込めるとともに、送達管のうちの1つで漏れが生じた場合に、冷却流体がカテーテルから漏れ出るのを防止するのに役立つ。
【0084】
図6から
図7にカバーを示しているが、本発明は、添付の特許請求の範囲に記載される場合を除き、そのように制限されることを意図していない。装置は、保護カバーの有無にかかわらず提供され、標的組織を冷却するために使用されてもよい。
【0085】
管内管(TUBE WITHIN TUBE)
図8は、上述した冷却剤送達管から冷却流体/冷却剤が漏れ出た場合に漏れを軽減するための保護手段を有する、本発明の別の実施形態による冷凍アブレーションカテーテル1010の部分図を示す。具体的に、カテーテル1010は、複数の可撓性多層冷凍エネルギー移送管または可撓性多層冷凍エネルギー移送管の束1012を備え、そのそれぞれが同軸配列で2つの管を備える、すなわち、管内管を備える。
【0086】
図9Aは、
図8の線9A-9Aに沿って切断した断面図を示す。多層管の束1012は、流体送達管1014および流体戻り管1015を並行配列で組み立てた状態で示している。管束1012は、4本の流体戻り管1015a~1015dおよび8本の流体送達管1014aから1014hを含む12本の管/ラインを有して示されている。流体送達管1014a~1014hは、流体戻り管1015a~1015dの周りに外周囲を形成する。この配列は、より冷たい送達流体/冷却剤が焼灼/冷凍するべき組織に隣接し、より暖かい戻り流体/冷却剤が焼灼/冷凍するべき組織から遮蔽されることを確実にする。
【0087】
図9Bは、
図9Aの流体送達管1014dの拡大断面図を示す。第1または内側の管1013は、第2または外側の管1018によって同軸上に取り囲まれて示されている。内側管1013の外面と外側管1018の内面との間の空間または隙間1020には、本明細書で説明するように、熱伝導媒体1021を充填することが可能である。実施形態において、隙間1020は、環状形状を有する。流体送達管1014および流体戻り管1015のすべてが、管内管構造を有することができる。
【0088】
使用中に冷却流体1016の漏れまたは内側管1013の破損が生じた場合、冷却流体1016は、内側管1013と外側管1018との間の隙間1020の中に封じ込められる。この管内管の特徴は、漏れた流体/冷却剤1016をカテーテル内に封じ込めて患者に入ることを防止するので、追加の安全要素をデバイスに付加する。いくつかの実施形態において、隙間1020内の熱伝導媒体1021の圧力を監視するために、圧力センサ/デバイスまたはゲージを組み込んでもよい。そのため、流体/冷却剤1016が内側管1013を破って隙間1020に漏れた場合、隙間1020の圧力、ひいては熱伝導媒体1021の圧力が上昇する。万が一閾値限界を超える圧力変化が生じた場合、システムは、アブレーションを停止することによって患者への潜在的な被害を防止してこの圧力変化をユーザ/医師に通知するように、または、アブレーションを停止することによって患者への潜在的な被害を防止するかもしくはこの圧力変化をユーザ/医師に通知するようにプログラミングすることができる。
【0089】
内側管1013は、冷却流体を輸送するための他の可撓性管に関連して本明細書で説明するように、製作してもよく、または材料から作ってもよい。
外側管1018の材料も、遠位治療セクションの弾性撓みが可能なように可撓性にして、遠位治療セクションが本明細書で開示するようにその形状を変形させられるようにするべきである。いくつかの実施形態において、外側管は、そのサイズおよび形状が該外側管に封じ込められる熱伝導媒体1021の存在によって実質的に影響を受けないままであるように、膨らませることができるものでもなく、膨張できるものでもなく、拡張できるものでもない。外側管1018の非制限的な例示的な材料には、ポリマーおよび金属または合金が含まれる。外側管1018の材料の例は、ニチノール(Nitinol)またはポリイミドである。
【0090】
管束1012を形成する管の数は、幅広くさまざまであってもよい。いくつかの実施形態において、管束1012は、5~15本の管を含み、より好ましくは、流体送達管1014と流体戻り管1015とを備える8~12本の管を含む。
【0091】
管束1012の断面プロファイルもさまざまであってもよい。
図9Aは、実質的に円形のプロファイルを示しているが、実施形態では、プロファイルは、長方形、正方形、十字もしくはT字形、環状もしくは円周状、または上述した配列のいくつかを含め、別の形状のプロファイルであってもよい。管は、2014年9月22日にアレクセイ・バブキンらが出願し、本発明の譲受人に譲渡された、「ENDOVASCULAR NEAR CRITICAL FLUID BASED CRYOABLATION CATHETER AND RELATED METHODS」と題された米国特許出願第14/915632号明細書の
図9、
図14および
図16に描かれるように、編組み、編み合わせ、より合わせまたはその他絡み合わせてもよく、同出願の内容は、あらゆる目的において、その全体が参照により本明細書に組み込まれる。
【0092】
凍結セクションまたは管状束の直径は、さまざまであってもよい。実施形態において、束の直径は、約1~3mmの範囲であり、好ましくは約2mmである。
図9Cは、別の管状配列1017を有する冷凍アブレーションカテーテルの断面を示す。8本の管状要素(1019a~1019dおよび1023a~1023d)は、コア要素1025を中心に円周上に相隔てられているかまたは分散されている。好ましくは、図示されるように、流体送達要素/管(1019a~1019d)および流体戻り要素/管(1023a~1023d)は、カテーテルの円周に沿って交互に配置される。
【0093】
各内側管要素(例えば、1019a)は、内側管要素を同軸上に取り囲むことによって、
図9Bに関して説明したように熱伝導媒体/流体を充填することのできる空間または隙間を生み出す外側管要素(例えば、1027a)を含む。
【0094】
ステアリング要素、センサおよび他の機能的要素をカテーテルに組み込んでもよい。実施形態において、ステアリング要素は、
図9Cに図示するメカニカルコア1025等のメカニカルコアに組み込まれる。
【0095】
図10Aは、
図8のカテーテルの細部10Aの拡大切断図を示し、カテーテル1010の中間セクションの端部1040に流体接続されている管束1012を示す。
図10Bは、管束1012の近位セクションおよびカテーテル1040の中間セクションの分解図を示す。流体送達ライン1014の外側管状要素/カバー1018a~1018dを超えて延びている内側管状要素1013a~1013dを有する管束1012は、カテーテル1040の中間セクションに挿入することができる。
【0096】
図10A~
図10Bを参照すると、流体送達ライン1014は、束ね合わされて、メインライン1032に挿入/接合されて示されている。管部材間の流体シールを向上させかつ確保するために、接着プラグ1042もしくはシール、ガスケット、またはストッパ等を施してもよい。冷却力流体(CPF:cooling power fluid)は、流体送達メインライン1032から流体送達ライン1014に輸送される。
【0097】
内側管状要素1013a~dの近位端からずれている外側管状要素/カバー1018a~dの近位端は、ルーメン1050内の熱伝導流体(TCF:thermally conductive fluid)が多層冷凍エネルギー管状要素のそれぞれの隙間1020(
図9B)を満たすことができるように、カテーテルの中間セクション1040に挿入されて示されている。液密でロバストな接続を向上させるために、(溶接または接合されている)接着プラグ1044を施してもよい。当業者には公知であるように、構成要素を接合するために圧入、熱および他の製作手法を施すことができる。
【0098】
図11は、遠位治療セクション510、ハンドル520およびアンビリカルコード530を含む別の冷凍アブレーションカテーテル500を示す。アンビリカルコード530の近位端は、コネクタ540で終端しており、これがコンソール550の差込口560に挿入される。
【0099】
1本または複数本の補助コネクタラインが、ハンドル520から近位に延びて示されている。管状ライン570は、限定ではないが、(a)フラッシング、(b)真空、(c)上述した熱伝導流体、および/または(d)温度および圧力センサ導体を含むさまざまな機能を提供する機能を果たす。
【0100】
カテーテル500も、ハンドル520から近位に延びている電気コネクタ580を有して示されている。電気コネクタ580は、遠位治療セクション510で検出される電気情報を解析するためのEP記録システムに連結されてもよい。電気活動を解析するシステムの例は、限定ではないが、米国のGEヘルスケア社(GE Healthcare)が製造するGE Healthcare CardioLab II EP Recording Systemおよびボストン・サイエンティフィック・インコーポレイテッド社(Boston Scientific Inc.)(マサチューセッツ州マールボロ)が製造するLabSystem PRO EP Recording Systemを含む。記録された電気活動は、2016年9月15日にアレクセイ・バブキンらが出願し、本発明の譲受人に譲渡された、「TISSUE CONTACT VERIFICATION SYSTEM」と題された国際出願第PCT/US16/51954号に説明されるように、標的組織との連続接触を評価または検証するためにも使用してもよく、同出願の内容は、あらゆる目的において、その全体が参照により本明細書に組み込まれる。
【0101】
図12は、カテーテル500の遠位セクション510の一部の拡大図を示す。リング形の電極602、604が、シャフト606を中心に円周上に配置されている。2つの電極が示されているが、電気活動を感知するために、より多くのまたはより少ない電極がシャフト上に存在してもよい。実施形態において、最大12個の電極がシャフト上に設けられている。一実施形態において、8個の電極がシャフト606に沿って軸方向に相隔てられている。
【0102】
図13は、線13-13に沿って切断した、
図12に示すカテーテルの断面である。カテーテルシャフトは、中心軸に沿って延びているメカニカルコア620と、平行に延びているとともにメカニカルコアを中心に円周上に配置されている複数のエネルギー送達管構造物630とを有して示されている。
【0103】
各管構造物630は、
図8~
図9に関連して上述した二層と、その間に配置される熱伝導液体層とを有して示されている。
本明細書で説明するさまざまなセンサの導線626を収容するための管状ライン624が示されている。
【0104】
メカニカルコア620は、カテーテル遠位治療セクションに、プリセット形状を与えるように構成されてもよい。
図13を参照すると、メカニカルコアは、プリセット形状を有する金属製管状部材622を含む。プリセット形状は、標的人体構造と連続接触するように、標的人体構造に合致する。プリセット管状要素622の例示的な材料はニチノールである。
図13は、ニチノールを同心状に取り囲む外部層またはカバーも示している。外部カバーは、例えば、PET等の可撓性ポリマーであってもよい。合わせて、内側PET層620および外側シャフト層606は、複数の管状構造物630を収容するために、流体シールされた環状チャンバを形成する。
【0105】
図14~
図15を参照すると、カテーテル608は、外側シース642から展開されて示されている。当初、カテーテル遠位セクション606は、外側シース642のルーメンの中に配置されており、そのプリセット形状を呈することがないようになされている。遠位セクション606および外部シース642は、互いに対して軸方向に移動する。例えば、カテーテルは、シースから排出されてもよい。カテーテルは、拘束から外れると、
図15に示すようなプリセット形状を呈する。
【0106】
メカニカルコアアセンブリは、カテーテル遠位セクション608の形状を偏倚させて、エネルギー送達要素を曲線形状にさせる。実施形態において、カテーテルの形状は、心房粗動を治療するのに便利な右心房に損傷部を形成するようになされている。例えば、
図15に示す形状は、心房粗動を治療するのに便利な右心房の組織の標的ゾーンに合致する湾曲を有する単ループまたは楕円形である。心房粗動を治療するための追加の装置および方法は、2014年4月14日に出願され、本発明の譲受人に譲渡された、「ENDOVASCULAR NEAR CRITICAL FLUID BASED CRYOABLATION CATHETER HAVING PLURALITY OF PREFORMED TREATMENT SHAPES」と題された米国特許出願第61/981110号明細書(現在は国際出願第PCT/US2015/024778号)に記述されており、どちらの出願の内容も、あらゆる目的において、その全体が参照により本明細書に組み込まれる。
【0107】
図16は、遠位治療セクション710ハンドル720、およびコネクタ740で終端するアンビリカルコード730を含む別の冷凍アブレーションカテーテル700を示す。
図11に関連して上述したシステムと同様に、コネクタ740は、コンソールの差込口に挿入してもよい。
【0108】
追加ライン742、744が、ハンドルから近位に延びて示されている。ライン742、744は、処置中に遠位治療セクション710にさまざまな機能性を提供する。例示的な機能性は、限定ではないが、温度、EP記録、圧力、流体フラッシュ、ソース液体等を含む。
【0109】
図17は、展開後のカテーテル遠位セクションの拡大図である。治療セクションは、概ねループ状または楕円形714を有して示されている。中間セクション716は、中心軸718から曲げまたは関節を与えて示されている。このような機能性は、治療セクションを組織に連続して直接接触して位置付けるのに役立つ。実施形態において、形状は、左心房に完全なPVIを形成するように構成されている。
【0110】
図18は、遠位治療セクションの一部の拡大断面図である。カテーテルシャフトは、中心軸に沿って延びているメカニカルコア750と、平行に、かつメカニカルコアを中心に円周上に延びている複数のエネルギー送達管構造物752とを有して示されている。1つまたは複数のスペア管状要素754、758を、エネルギー送達要素と組み合わせて外周空間に組む込むことができる。管状要素754は、遠位治療セクションに存在するセンサまたはリング電極756から電気活動を伝えるために、複数の電気導体を保持する。管状要素758は、本明細書で説明するさまざまな機能のために、カテーテルに真空または液体を提供してもよい。
【0111】
メカニカルコア750は、治療セクションに軸方向に延びているとともに遠位セクションをプリセット形状(
図17に図示するループ形状等)に偏倚させるために遠位治療セクションに延びている複数の部材760、762を備えて示されている。具体的には、実施形態において、メカニカルコアは、ニチノールワイヤ等の形状偏倚要素760と、プリセット形状の湾曲を調整するために治療セクションの遠位先端部に接続されている軸方向に可動な制御部材762とを含むことができる。望まれる場合、コアは、追加のルーメン766、768を含んでもよい。メカニカルコアは、遠位治療セクションを第1のプリセットループ形状に形成するように作用し、制御部材によって標的組織の表面に連続接触させるようにさらに調整することができる。
【0112】
図19A~
図19Dは、わずかな曲げを有する第1弧状形状から完全なリングまたは円形形状820を有する第2構成までの、アブレーションカテーテル810の連続展開を示す。カテーテル治療セクションが外側シース812に拘束されなくなると、この形となる。
【0113】
図20A~
図20Bは、その径Φ
1を縮小してループを調整したことを除き、
図19Dのカテーテル800の拡大図を示す。本明細書で説明するように、遠位治療セクションのシャフトを通って延びている制御部材を引くと、プリセットループΦ
1の径が、
図20Aに示すような径Φ
2に縮小される。
図20Bは、
図20Aに示すものよりもさらに小さい径Φ
3に調整されたループを示す。
【0114】
ループの径Φは、さまざまであってもよい。実施形態において、ループの径は、2cmから5cmまでの範囲に制御され、実施形態において、好ましくは約2~3cmである。
図21A~
図21Cは、カテーテルの中間セクション814の連続的な関節動作を示す。中間セクション814は、外側サポートまたは補強構造816を有して示されている。実施形態において、サポート層816は、ばねまたはコイルである。
【0115】
図21Aは、実質的に直線またはシャフト軸に整列しているカテーテル中間セクション814を示す。
図21Bは、シャフト軸に対して角度θ
1を成すわずかな関節を有するカテーテル中間セクションを示す。
【0116】
図21Cは、シャフト軸に対してさらなる関節θ
2を有するカテーテル中間セクションを示す。関節の程度は、さまざまであってもよく、以下に説明するように医師が調整してもよい。実施形態において、関節の程度は、中心シャフト軸から最大120°であり、より好ましくは最大約90°である。
【0117】
図22A~
図22Bは、中間セクションを関節動作させる構成要素/構造物の例を示す。構成要素は、コイル832、第2プルワイヤ834、および背骨部836を含む。プルワイヤ834は、中間セクションの遠位位置に固定される。プルワイヤを引くと、コイル832を撓ませるまたは関節動作させることになる。背骨部836は、プルワイヤの正反対に示されている。背骨部は、プルワイヤが引っ込められるとカテーテルが曲がる方向を偏倚させる機能を果たすとともに、プルワイヤが放されるとカテーテルを真っ直ぐに伸ばした位置に戻す機能を果たす。具体的には、プルワイヤが引っ込められると、カテーテルは、プルワイヤ、中心コイル軸、および背骨部を含む平面に沿ってプルワイヤの方に曲がる。
【0118】
さまざまな関節動作する構成要素/構造物は、多様な材料から作ってもよい。例示的な材料には、限定ではないが、ニチノール、ステンレス鋼、または本明細書で説明する機能性を有する他の材料を含む。加えて、構成要素は、ワイヤ、管状要素、またはストック材のシートから製作されてもよい。一実施形態において、コイルおよびばねは、金属合金のシートから一体的に形成される。所望の形状は、関節の偏倚が可能な背骨部とリブ要素とを形成するように機械加工またはレーザー切削されてもよい。撓みを制御するためにばね、プルワイヤおよび背骨部を備えるカテーテルを説明するさらなる詳細については、2013年5月30日に出願され、「Cryogenic Catheter with Deflectable Tip」と題された、コヴァルチェク(Kovalcheck)らの米国特許出願公開第2003/0195605号明細書も参照のこと。
【0119】
図23Aは、アブレーションカテーテルのハンドル852の斜視図を示す。可撓性のカテーテルシャフト854は、ハンドルの遠位セクション856から延びている。アンビリカルコード858およびさまざまな他の機能的なラインおよびコネクタ859は、ハンドルの近位セクション860から近位に延びて示されている。
【0120】
ハンドル852は、ユーザがハンドルを掴みやすいように滑らかで緩やかに湾曲した中間セクション862を含む、エルゴノミックな設計を有して示されている。
ハンドルは、上述したように展開されるループの径を制御するために、ハンドル本体に対して回転しうる取っ手864を備えて示されている。軸方向に可動なハブ866が取っ手の近位に示されている。ハブ866が前後に動くことは、上述したように、展開されたシャフトを調整または関節動作する機能を果たす。加えて、ハンドルは、全体的に回転して、カテーテルをあちこちの方向に操縦しうる。合わせて、ハンドルは、展開された構造体を回し、関節動作し、その径またはサイズを制御する、便利で半自動の装置となる。
【0121】
図23Bは、分かりやすくするために外部を取り外した、
図23Aに示すハンドルの部分斜視図を示す。外側ねじ山または歯872のセグメントが示されている。歯872は、取っ手864の溝またはねじ山と噛み合う。歯は、ループの形状または径を変えるための、上述した第1制御部材にリンクされている。取っ手を回転させると、プルワイヤも同時に動く。
【0122】
スライダ874もハンドル内に示されている。スライダ874は、ハブの動きによりスライダが動くようにハブ866に接合される。スライダは、カテーテルシャフトを関節動作させるための、上述した第2制御部材にもリンクされる。外部ハブが医師によって動かされると、第2制御部材は、シャフトを関節動作させる。
【0123】
ハンドルは、取っ手、ハブおよびスライダを有して示されているが、本発明は、そのように制限されることを意図していない。本発明は、上述した機能性をもたらすための他のレバー、ギア、ボタンおよび手段を含むことができる。
【0124】
図24には、本発明の別の実施形態によるアブレーションカテーテル880が図示される。この実施形態において、アブレーションカテーテル880は、2つの主要構成要素を備える。すなわち、(a)人体の中の対象部位にアブレーションエネルギーを送達するためのアブレーションシャフト/スリーブ881と、(b)アブレーションシャフト/スリーブ881の中の内部中空キャビティに挿入することが可能なスタイレット882。より詳細に以下で述べるように、アブレーションシャフト/スリーブ881の少なくとも一部は、可撓性の材料から作られ、それにより、アブレーションシャフト/スリーブ881の該一部が、アブレーションシャフト/スリーブ881に挿入されるとともに形状記憶合金から構成されるスタイレット882の形状を呈することができるようにする。本明細書では、任意の適切な冷却剤(例えば、窒素、アルゴン、ネオン、ヘリウム、水素および酸素であるが、これに限定されない)を用いて組織を冷凍することによって損傷部を形成する冷凍アブレーションカテーテルとして使用するためのアブレーションカテーテル880を説明するが、他の実施形態では、アブレーションカテーテルは、例えば、高周波、マイクロ波、レーザーおよび高周波超音波(HIFU:high frequency ultrasound)等の他のアブレーションエネルギーを用いて使用することができる。
【0125】
図24に図示するように、アブレーションシャフト/スリーブ881は、ハンドル部(図示していないが、本明細書で開示されるハンドルの実施形態のいずれかに従い構成されてもよい)、第1シャフト部883、可撓性シャフト部884、可撓性遠位アブレーション部885、および遠位アブレーション先端部886を含む。いくつかの実施形態において、アブレーションカテーテル880は、2016年9月15日にアレクセイ・バブキンらが出願し、本発明の譲受人に譲渡された、「TISSUE CONTACT VERIFICATION SYSTEM」と題された国際出願第PCT/US16/51954号に説明されるように、標的組織との可撓性遠位アブレーション部885の連続接触を評価または検証するために、標的組織における電気活動を検出するために使用されうる複数の電極887も可撓性遠位アブレーション部885上に含んでもよく、同出願の内容は、あらゆる目的において、その全体が参照により本明細書に組み込まれる。いくつかの実施形態において、電極887は、遠位アブレーション先端部886上に含まれてもよい。いくつかの実施形態において、第1シャフト部883は、可撓性、半可撓性、半剛性または剛性であってもよい。いくつかの実施形態において、第1シャフト部883は、可撓性シャフト部884よりも可撓性が低いが、第1シャフト部883は、それでもなお、身体の静脈系統を通じて標的組織に送達することができるように可撓性である。
【0126】
いくつかの実施形態において、アブレーションシャフト/スリーブ881は、ハンドル部、可撓性シャフト部884、可撓性遠位アブレーション部885、および遠位アブレーション先端部886を備えてもよい。すなわち、アブレーションシャフト/スリーブ881は、その全長に沿って可撓性であってもよい。
【0127】
図25Aは、
図24の線2
5-2
5に沿って切断したアブレーションカテーテル881の断面図を図示しており、スタイレット882は、アブレーションシャフト/スリーブ881に挿入されていない状態である。断面図から分かるように、アブレーションシャフト/スリーブ881は、冷却剤を可撓性遠位アブレーション部885に輸送するための複数の多層冷却剤送達管/ルーメン888と、冷却剤を可撓性遠位アブレーション部885から送り出すための複数の多層冷却剤戻り管/ルーメン889とを含む。カテーテル制御ワイヤ、電極ワイヤ892、または望まれうる任意の他の要素を含んでもよい複数のサービス管/ルーメン891も示されている。複数の多層冷却剤送達管/ルーメン888、複数の多層冷却剤戻り管/ルーメン889および複数のサービス管/ルーメン891は、その中にスタイレット882を受けるようになされた中空管/ルーメンの周りに円形アレイで配列される。中空管/ルーメン890は、ハンドルから少なくとも可撓性遠位アブレーション部885までアブレーションシャフト/スリーブ881の長さに沿って延びている。
【0128】
図25Aは、4本の多層冷却剤送達管888、4本の多層冷却剤戻り管889、および4本のサービス管/ルーメン891を図示しているが、本発明の実施形態は、そのように制限されることを意図しておらず、カテーテルの所望の焼灼力、またはカテーテルを治療のために使用する条件に応じて、任意の数の多層冷却剤送達管888、多層冷却剤戻り管889およびサービス管/ルーメン891を含んでもよい。加えて、
図25Aは、多層冷却剤送達管888、多層冷却剤戻り管889およびサービス管/ルーメン891の一定の構成、具体的には、多層冷却剤送達管888および多層冷却剤戻り管889のペアが互いに隣接して配置され、サービス管/ルーメン891によって分離されるように図示されているが、本発明の実施形態は、そのように制限されることを意図しておらず、多層冷却剤送達管888、多層冷却剤戻り管889およびサービスチャネル/管891の任意の数の異なる構成を含んでもよい。
【0129】
エアギャップの解消
いくつかの実施形態では、外側シース821の内面823と中空管/ルーメン890の外面822(
図25A参照)との間に画定される環状空間813は、熱伝導性の液体(図示せず)で満たされ、熱要素888、889と外側シース821との間のエアギャップ/気泡を排除する。外側シースと寒剤供給および戻り管/熱要素888、889との間のエアギャップは、そのようなギャップが熱要素から標的組織への熱伝導を減少させるため望ましくない。
【0130】
実施形態において、好適な熱伝導性の液体は水である。熱伝導性の液体は、
図11および
図16を参照してそれぞれ説明されたライン570および742などの作業ラインを介して空間813に送達されてもよい。空間813からすべての空気が除去されるまで、熱伝導性の水で空間を洗い流すことが行われる。
【0131】
さらに、本明細書に記載されるように、水は、空間813を洗い流すために適切な熱伝導性の媒体として説明されるが、本発明の実施形態は、エアギャップをなくし、カテーテルのアブレーション部分内の熱伝導特性を高めるための他の熱伝導性の材料の使用を含む。
【0132】
図25Bを参照すると、カテーテル881の別の実施形態の断面が示されている。特に、
図25Aに示される断面とは異なり。
図25Bでは、空間813が、固体の熱伝導性材料またはベース材料と高い熱伝導率を有するフィラーとを含むライナー833で充填されている。熱伝導性ライナー833の例示的なベース材料は、熱エネルギーを伝導するように適合された熱可塑性エラストマー(TPE)または熱可塑性ウレタン(TPU)を含むが、これらに限定されない。例示的なフィラー材料には、アルミニウム、銅、銀、および金が含まれるが、これらに限定されない。
【0133】
いくつかの実施形態では、フィラーは、本明細書で論じるようにカテーテルアブレーション部分に含まれる電極を絶縁するために、良好な熱伝導率を有し、好ましくは電気絶縁性のセラミック材料であり得る。例示的なセラミックフィラー材料には、限定されないが、BN(窒化ホウ素)、AlN(窒化アルミニウム)、Si3N4(窒化ケイ素)、SiC(炭化ケイ素)、Al2O3(酸化アルミニウム)およびZnO(酸化亜鉛)が含まれる。
【0134】
当業者によって容易に理解されるように、高い熱伝導率を有する任意の材料が、フィラー材料として使用され得る。
TPEまたはTPU(ベース材料)には、ベース材料の熱伝導率を高めるために熱伝導剤またはフィラーが添加される。TPEの一例は、ポリエーテルブロックアミド(PEBA)であり、アルケマ社(フランス)によって製造された商品名PEPAX(登録商標)としても知られている。TPUの一例は、ルーブリゾール社(オハイオ州、ウィックリフ所在)によって製造されているPELLETHANE(登録商標)である。熱伝導剤またはフィラーの一例は、酸化アルミニウムである。好ましくは、熱伝導性フィラーまたは熱伝導剤は、以下でさらに説明されるように、配合された材料の熱伝導率を高めるかまたは実質的に高める。
【0135】
特定の実施形態では、材料は、重量比で約10から70%の酸化アルミニウム(Al2O3)を添加したPEBAであり、特に好ましい実施形態では、材料は、約65から75重量%のAl2O3を添加したPEBAX(登録商標)35Dである。
【0136】
ベース材料(例えば、TPEまたはTPU)には、ベース材料をフィラーと混合してペレット状の材料にしてから、添加した材料を熱要素888、889のライニングに適した望ましいチューブに押し出すことにより、熱伝導性フィラーを添加することができる。
【0137】
実施形態では、ライナー833の熱伝導率(K)が、熱伝導性の添加剤で改変されていないベース材料よりも少なくとも3から5倍、より好ましくは少なくとも5倍大きいように、ベース材料に熱伝導性フィラーが添加される。実施形態では、ライナー833の熱伝導率(K)は、23℃で少なくとも1W/m-Kであり、0.5W/m-Kから3W/m-Kの範囲である。
【0138】
熱伝導性ライナー833は、様々な方法でカテーテルに組み込まれるか、もしくは組み立てられる。いくつかの実施形態では、ライナー833は、熱エネルギー要素888、889およびサービス管891上で熱融着される。熱融着工程中に、ライナーは、熱要素888、889とサービス管891との間のエアギャップが完全に満たされ、排除されるまで、熱要素888、889およびサービス管891の周りを溶けて流れる。いくつかの実施形態では、続いて、外側シースが、熱要素およびライナーの上方で適用されて、隙間が残らない。いくつかの実施形態では、ライナー833が熱エネルギー要素888、889およびサービス管891の上方で熱融着される場合、外側シースは必要ではない。そのような実施形態では、ライナーがシースとして機能する。シースを追加しても、デバイスまたはカテーテルの剛性が上がるのみである。また、シースが熱伝導性材料で作られていない場合、シースは熱バリアとして機能し得る。
【0139】
医師はエアギャップをなくすためにカテーテル空間813に液体を流す必要がないため、熱要素888、889の周囲に熱伝導性ライナー833が存在することによって、医療手順の簡素化および時間の節約など、多くの追加の利点がある。
【0140】
さらに、熱伝導性ライナー833は、カテーテルのアブレーション部分をねじれに強くする。外側シース821と熱要素888、889との間に熱伝導性ライナ833がない場合、熱要素が外側シース821と接触する箇所(一般に熱要素の頂点で生じる)を除いて、熱要素は支持されない。一方、空間813が本明細書に記載される熱伝導性ライナ833で満たされる場合、ライナの存在および特性は、熱要素888、889およびサービス管891を機械的に支持し、より大きな耐よじれ性を提供する。
【0141】
図25Cを参照すると、カテーテル881の別の実施形態の断面が示されている。特に、
図25Bに示される断面とは異なり、
図25Cのカテーテル881は、熱要素888、889およびサービスチューブ892の外側/周囲のみに配置された熱伝導性ライナー843を含む。その結果、空気で満たされた空間853が、作業ルーメン890と内部熱要素888、889およびサービス管892との間に存在する。空気は熱伝導率が低いため、この空間は熱障壁または断熱材として機能する。しかしながら、熱エネルギーを中空管890に伝導することを望まないため、断熱空間853は不利ではない。さらに、空間853を開放したり、
熱伝導性ライナー833が無い状態にしておくことにより、熱要素888、889の動きの自由度が高まる。したがって、熱要素888、889は、中空管/ルーメン890に接合/接続されていない。これにより、アブレーションカテーテルの柔軟性が大幅に向上し、曲げ半径をより小さく、かつ形状をより複雑にすることができる。
【0142】
さらに、本明細書に記載される熱可塑性ライナーは、カテーテルの様々な構成要素を互いに接合し、動作中の温度変動に耐えるように適合させることができる。ライナーは、例えば石英などの特定の低LCTE剤をライナーに添加することにより、比較的低い線熱膨張係数(LCTE:linear coefficient of thermal expansion)を有するように適合させることができる。実施形態では、PEBAX(登録商標)には、約60重量%までの石英が添加される。管の形態であり得る改善されたライナーは、カテーテルの様々な部品を一緒に加熱/接着するために使用され得る。好ましくは、線熱膨張係数は、0.5/K以下に低減される。結合される部品の例には、係合する熱要素、液体メインから液体サブメインまたは分岐までの液体管、および液体を送達するための、温度変化から生じる熱膨張の影響を受けやすい他の管腔が含まれる。
【0143】
ここで説明する低LCTE強化接着剤は、エポキシ接着剤の使用を必要としない。したがって、低LCTE強化接着剤は接着剤の硬化サイクルを必要とせず、低LCTE強化接着剤はエポキシ接着剤よりも速くなる。実際、熱伝導媒体、ライナーまたは筒のタイプおよび構成は、様々な液体から熱伝導性の固体まで大きく異なり得るものであり、かつ空間8313の部分的な充填から空間全体の充填まで大きく異なり得る。
【0144】
図24および
図25に示されるアブレーションカテーテルの実施形態に関して
熱伝導性ライナー833について説明したが、
熱伝導性ライナー833は、本明細書で開示および説明されるアブレーションカテーテルの実施形態のいずれにおいても使用することができる。さらに、本明細書で説明および開示される
熱伝導性ライナー833の実施形態は、アブレーションカテーテルでの使用に限定されず、部品/要素の
熱伝導性を高めるために任意の用途で使用できることは容易に理解されよう。
【0145】
当業者には容易に理解されるように、熱伝導性ライナー833の開示および説明された実施形態は、冷却/凍結または加温/加熱のいずれを向上させるかにかかわらず、熱伝導率を高めるために任意の用途で使用できる。したがって、熱伝導性ライナー833の開示および説明される実施形態は、限定はしないが、冷凍アブレーション、無線周波数、マイクロ波、レーザー、および高周波超音波(HIFU:high frequency ultrasound)を含む多くの異なるアブレーション技術とともに使用できる。
【0146】
図26は、
図25Aの多層冷却剤送達管888および多層冷却剤戻り管889の拡大断面図を示す。第1または内側の管893は、第2または外側の管894によって同軸上に取り囲まれて示されている。内側管893のルーメン895は、冷却剤の流れを受け入れるように設計されている。内側管893および外側管894は、内側管893の外面と外側管894の内面との間に空間または隙間896が作られるように配列される。この隙間896には、本明細書で説明するように、熱伝導媒体897を充填することが可能である。いくつかの実施形態において、隙間896は、環状形状を有する。多層冷却剤送達管888および多層冷却剤戻り管889のすべては、同様な管内管構造を有することができる。
【0147】
使用中にルーメン895を流れる冷却剤の漏れまたは内側管893の破損が生じた場合、漏れた冷却剤は、内側管893と外側管894との間の隙間896の中に封じ込められる。この管内管の特徴は、漏れた流体/冷却剤をカテーテル内に封じ込めて患者に入ることを防止するので、追加の安全要素をデバイスに付加する。いくつかの実施形態において、隙間896内の熱伝導媒体897の圧力を監視するために、圧力センサ/デバイスまたはゲージを組み込んでもよい。そのため、流体/冷却剤が内側管893を破って、隙間896に漏れた場合、隙間896内の圧力、ひいては伝導性媒体897の圧力が上昇する。万が一閾値限度を上回る圧力の変化が生じたら、システムは、(a)アブレーションを停止することによって患者への潜在的な被害を防止すること、および、(b)この圧力変化を外科医に通知すること、の両方または一方を行うようにプログラミングすることができる。
【0148】
内側管893は、冷却剤/冷却流体を輸送するための他の可撓性管に関連して説明するように、製作してもよく、または材料から作ってもよい。外側管895も、アブレーションシャフト/スリーブ881の可撓性シャフト部884および可撓性遠位アブレーション部885の弾性撓みを可能にする可撓性材料から製造して、これらの部分が本明細書で開示するようにスタイレット882の形状を呈するようにその形状を変形させられるようにする。いくつかの実施形態において、外側管895は、そのサイズおよび形状が該外側管895に封じ込められる熱伝導媒体897の存在によって実質的に影響を受けないままであるように、膨らませることができるものでもなく、膨張できるものでもなく、拡張できるものでもない。外側管895の非制限的な例示的材料には、ポリマーおよび金属または合金が含まれる。外側管894の材料の例は、ポリイミドである。
【0149】
可撓性遠位アブレーション部885の径は、さまざまであってもよい。いくつかの実施形態において、可撓性遠位アブレーション部885の径は、約1~3mmの範囲であり、好ましくは約2mmである。
【0150】
図27Aおよび
図27Bは、スタイレット882をアブレーションシャフト/スリーブ881に完全に挿入したアブレーションカテーテル880の一実施形態を図示する。
図28Aは、
図27Aの線2
8-2
8に沿って切断した、
図27のアブレーションカテーテル880の断面図を示す。
図28Aから分かるように、スタイレット882は、アブレーションシャフト/スリーブ881の中空管/ルーメン890に挿入される。先に開示したように、いくつかの実施形態において、スタイレット882は、例えば、ニチノール等の形状記憶合金から形成される。
【0151】
図25Bから25Cはスタイレット882がアブレーションシャフト881の中空管/ルーメン890に挿入された状態であることを示す点を除いて、
図28Bから28Cは、それぞれ
図25Bから25Cに示される断面図と同一の断面図である。
【0152】
図29に図示するのは、スタイレット882の遠位部898にプリセットすることのできるサンプル形状である。いくつかの実施形態において、遠位部898の長さは、アブレーションシャフト/スリーブ881の可撓性遠位アブレーション部885の長さの少なくとも一部に対応する。したがって、スタイレット882がアブレーションシャフト/スリーブ881の中空管/ルーメン890内の適所に収まっており、かつ可撓性遠位アブレーション部885が患者内のアブレーション部位に位置付けられている場合、スタイレット882の遠位部898はそのプリセット形状に変形して、可撓性遠位アブレーション部885を、
図27Bに図示する対応する形状に変形させる。
【0153】
スタイレット882の遠位部898の形状は、アブレーションカテーテル880を使用して行う処置/治療の種類、および治療を行うことになる患者の人体構造に基づくことができる。したがって、特定の形状/配向を有するあるスタイレット882を用いて処置を行い、不完全な損傷部形成が原因でアブレーションが成功しなかった場合、例えば、外科医は、アブレーションシャフト/スリーブ881を患者の体内のその場に残したまま、アブレーションシャフト/スリーブ881からスタイレット882を取り出すだけで済む。外科医は、次いで、(a)前に使用したスタイレット898のものとは異なるサイズおよび形状またはサイズもしくは形状の遠位部898を有する別のスタイレット882を選び、(b)この新たなスタイレット882をアブレーションシャフト/スリーブ881の中空管/ルーメン890に挿入し、(c)アブレーション処置を続けることができる。外科医は、うまくアブレーションを達成する(例えば、損傷部形成を完了する)ために必要な回数だけこれを行うことができる。
【0154】
いくつかの実施形態において、スタイレット882の一部分899は、所定の関節角度に設定することができ、これは、アブレーションの標的組織に接触するまで可撓性遠位アブレーション部885を方向付けるのに役立つであろう。いくつかの実施形態において、スタイレット882の関節部899は、アブレーションシャフト/スリーブ881の可撓性シャフト部884に対応する。
【0155】
いくつかの実施形態において、スタイレット882は、その長さに沿って異なる可撓性を有するように設計することができる。
図30に図示するように、一実施形態において、スタイレット882は、異なる可撓性をもつ部分「A」、「B」、および「C」として特定される3つの部分を有するように設計することができる。スタイレット部分「A」は第1の可撓性を有することができ、部分「B」は第2の可撓性を有することができ、部分「C」は第3の可撓性を有することができる。いくつかの実施形態において、アブレーションシャフト/スリーブ881の部分「B」およびその関連部分は、アブレーションシャフト/スリーブ881の部分「A」およびその関連部分を、心臓内の焼灼するべき標的組織と接触するまで操作できるように関節動作する必要がありうるため、部分「B」は、部分「A」および「C」よりも可撓性が大きい。アブレーションシャフト/スリーブ881の送達中に圧力/力を加えて、アブレーションシャフト/スリーブ881の可撓性遠位アブレーション部885に伝達できるようにして、可撓性遠位アブレーション部885を標的組織に対して適切な位置まで操作して適所に保持することができるように、アブレーションシャフト/スリーブ881の部分「A」および「C」ならびにその関連部分は、部分「B」よりも可撓性が少ない/より剛性または堅さがある必要があるかもしれない。
【0156】
いくつかの実施形態において、スタイレット882の部分は、アブレーションシャフト/スリーブ881の対応する部分の可撓性と同様な可撓性を有するように設計することができる。いくつかの実施形態において、アブレーションシャフト/スリーブ881は、均一な可撓性を有するように設計することができるが、アブレーションシャフト/スリーブ881の特定の部分の可撓性は、スタイレット882の対応する部分の可撓性に基づいて調整または制御することができる。したがって、スタイレット882は、カテーテル880の可撓性の制御を担いうる。
【0157】
スタイレット882の長さに沿った可撓性は、さまざまな方法で変更するかまたは変えることができる。例えば、いくつかの実施形態において、スタイレット882を構成する形状記憶材料の特性を変えることができる。変えることのできる1つの特性は、形状記憶合金の遷移温度である。したがって、ある温度で一定の可撓性を有しうる形状記憶合金は、遷移温度を変えたために、同じ温度で異なる可撓性を有することができる。
【0158】
図31Aおよび
図31Bに図示するように、一実施形態において、スタイレット882の長さに沿った可撓性は、スタイレット882の径を変更することによって変えることができる。
図31AのビューAの詳細図である
図31Bは、スタイレット882の部分が径「d1」を有するのに対し、スタイレット882の他の部分が、径「d1」よりも小さい径「d2」を有するように、スタイレット882から材料を取り除くことができることを示している。このように、「d1」と「d2」とが交互に配置されるいずれかの径を有するスタイレット882の部分、または径「d2」で延長長さ「L2」を有するスタイレット882の部分は、一貫した径「d1」を有するスタイレット882の部分よりも可撓性が大きい。いくつかの実施形態において、可撓性は、大径部分「d1」および小径部分「d2」のそれぞれの長さ「L1」および「L2」に基づいて変えることができる。したがって、大径部分「d1」の長さ「L1」よりも長さが長い小径部分「d2」の長さ「L2」を有するスタイレット882の部分は、大径部分「d1」の長さ「L1」よりも長さが短い小径部分「d2」の長さ「L2」を有するスタイレット882の部分よりも可撓性が大きくなる。他の実施形態では、径の異なる任意の数のスタイレット部分、すなわち、任意の長さの「d1」、「d2」、「d3」、「d4」等をスタイレット882に所望の可撓性を与えるように設計してもよく、これら径の異なるスタイレット部分は、スタイレット882に所望の可撓性を与えるために、任意の順番および構成または任意の順番もしくは構成で配列してもよい。
【0159】
いくつかの実施形態において、
図32A~
図32Cに図示するように、スタイレット882の部分の可撓性は、複数の円周溝5000、複数の長手溝5010、または複数の穴5020を含めて変えることができる。
図32Aに図示する実施形態において、スタイレット882の可撓性は、円周溝5000の幅「W1」、隣接する溝5000間の間隔「S1」、および円周溝5000の隣接するセット5030間の間隔「L2」に基づいて変えることができる。このように、(a)他の実施形態の円周溝5000の幅「W1」よりも大きい幅「W1」を有する円周溝5000を有する実施形態、(b)他の実施形態の円周溝5000間の間隔「S1」よりも隣接する溝5000間の間隔「S1」が近い円周溝5000を有する実施形態、および(c)他の実施形態よりも円周溝5000の隣接するセット5030間の距離「L2」が短い円周溝5000のセット5030を有する実施形態は、他の実施形態よりも可撓性が大きくなるであろう。幅「W1」、間隔「S1」および距離「L2」のさまざまな組み合わせは、スタイレット882の異なる部分の所望の可撓性を得るように設計することができる。
【0160】
図32Bに図示する実施形態では、スタイレット882の可撓性は、長手溝5010の幅「W2」、隣接する溝5010間の間隔「S1」、長手溝5010の隣接するセット5040間の間隔「L2」、および長手溝5010の長さ「L3」に基づいて変えることができる。したがって、(a)他の実施形態の長手溝5010の幅「W2」よりも大きい幅「W2」を有する長手溝5010を有する実施形態、(b)他の実施形態の長手溝5010の長さ「L3」よりも長い長さ「L3」を有する長手溝5010を有する実施形態、(c)他の実施形態の隣接する長手溝5010間の間隔「S1」よりも隣接する長手溝5010間の間隔「S1」が近い長手溝5010を有する実施形態、および(d)他の実施形態よりも長手溝5010の隣接するセット5040間の距離「L2」が短い長手溝5010のセット5040を有する実施形態は、他の実施形態よりも可撓性が大きくなるであろう。幅「W2」、長さ「L3」、間隔「S1」および距離「L2」のさまざまな組み合わせは、スタイレット882の異なる部分の所望の可撓性を得るように設計することができる。
【0161】
図32Cに図示する実施形態において、スタイレット882の可撓性は、穴5020の径「D3」、X方向に隣接する穴5020間の間隔「S1」、Y方向に隣接する穴5020間の間隔「S2」、および穴5020の隣接するセット5050間の間隔「L2」に基づいて変えることができる。したがって、(a)他の実施形態の穴5020の径「D3」よりも大きい径「D3」を有する穴5020を有する実施形態、(b)他の実施形態のX方向に隣接する穴5020間の間隔「S1」よりも、X方向に隣接する穴5020間の間隔「S1」が近い穴5020を有する実施形態、(c)他の実施形態のY方向に隣接する穴5020間の間隔「S2」よりも、Y方向に隣接する穴5020間の間隔「S2」が近い穴5020を有する実施形態、および(d)他の実施形態よりも穴5020の隣接するセット5050間の距離「L2」が短い穴5020のセット5050を有する実施形態は、他の実施形態よりも可撓性が大きくなるであろう。径「D3」、間隔「S1」、間隔「S2」および距離「L2」のさまざまな組み合わせは、スタイレット882の異なる部分の所望の可撓性を得るように設計することができる。
【0162】
ほとんどの実施形態において、可撓性の程度は、可撓性を変えることが望まれるスタイレット882の部分で取り除かれるかまたは残される、スタイレットの材料の量に相関する。より多くの材料が取り除かれたスタイレット882の部分は、より少ない材料が取り除かれたスタイレット882の部分よりも可撓性が大きくなるであろう。
【0163】
本明細書で開示されるスタイレットの実施形態において、変える部分の組み合わせを使用してもよい。例えば、所望の可撓性は、小径部分を円周溝5000および/または長手溝5010および/または穴5020と組み合わせて得ることができる。
【0164】
本明細書で開示する実施形態のマルチプル可撓性は、その長さに沿ってスタイレットの部分の材料を取り除くことによる。取り除かれる材料は、小径部分、円周溝、長手溝、および/または穴、ならびに当業者に容易に明らかになるような任意の他の形状の形態とすることができる。
【0165】
いくつかの実施形態において、アブレーションカテーテル880は、さまざまな形状およびサイズを有する複数のスタイレット882を備えるキットとしてパッケージ化してもよく、それにより、アブレーション処置中に形成される損傷部のサイズおよび形状に関して医師にさまざまな選択肢を与える。これらのキットは、治療特有のものにすることができる。そのため、特定の処置のための形状およびサイズを有するスタイレットのみをキットに入れることができる。したがって、この実施形態のアブレーションカテーテル880は、行う処置に特有のスタイレット882を提供することのみに基づいて、多くのさまざまなアブレーション処置に使用することができる、1つのユニバーサルなアブレーションシャフト/スリーブ881を設計して構成することを可能にする。1つのユニバーサルなアブレーションシャフト/スリーブ881を構成することは、異なる形状と異なるハンドルの機能性とを有するように設計される複数のアブレーションカテーテルを構成しなければならないことよりもコスト効率がよく、高い生産率をもたらす。
【0166】
いくつかの実施形態において、アブレーションシャフト/スリーブ881は、スタイレット882をそれに挿入しなくても、アブレーションを行うために使用することができる。
【0167】
より詳細に以下で述べるように、使用時、アブレーションシャフト/スリーブ881は、身体の対象エリアに、いくつかの実施形態においては、例えば、心房細動を治療するために心臓の左心房に、または心房粗動を治療するために右心房に、または心室頻拍を治療するために左右の心室に、送達カテーテルを通じて送達される。アブレーションシャフト/スリーブ881が適所になった後、行うアブレーション治療および患者の人体構造に応じて、外科医は、使用するスタイレット881を選ぶ。次いで、スタイレット882の遠位部898が可撓性遠位アブレーション部885内の適所に収まるまで、外科医は、このスタイレット881を、カテーテルハンドルを通じて、アブレーションシャフト/スリーブ881の中空管/ルーメン890に挿入する。一旦適所に収まると、スタイレット882の遠位部898の形状記憶特徴が、遠位部898をそのプリセット形状に変形させ、それによって、可撓性遠位アブレーション部885を対応する形状に変形する。こうして、外科医は、アブレーション治療に移ることができる。
【0168】
用途
本明細書で説明する冷凍アブレーション装置の実施形態(カテーテル、プローブ等)は、例えば、血管内ベースの心臓アブレーション、より具体的には、心房細動の血管内ベースの心臓アブレーション治療を含め、幅広い範囲の診断および治療用途を有する。
【0169】
図33は、心房細動の治療のための肺静脈隔離(PVI:pulmonary vein isolation)術における標的アブレーション損傷部の例を示す。
右心房2、左心房3、右心室4および左心室5を含む心臓1の基本構造を
図33に示す。血管は、大動脈6(大腿動脈を通してアクセスされる)、上大静脈6a(鎖骨下静脈を通してアクセスされる)、および下大静脈6b(大腿静脈を通してアクセスされる)を含む。
【0170】
PVI術の例示的な標的損傷部は、すべての左肺静脈(PV:pulmonary vein)を取り囲んで隔離する損傷部8、およびすべての右肺静脈(PV)を取り囲んで隔離する損傷部9を含む。本明細書でさらに詳しく述べるように、本発明は、治療の効果を高めるために、追加損傷部の施術または作成を含んでもよい。また、以下の考察は主にPVIを行う実施形態に焦点を当てているが、これらの損傷部を生じさせるための、本明細書で説明する技術および処置は、心臓の中および周囲ならびに他の器官に他の損傷部を形成するために使用することができることは理解されるべきである。例えば、国際公開第2013/013098号および国際公開第2013/013099号にそれぞれ対応する、コックスらの国際出願第PCT/US2012/047484号およびコックスらの国際出願第PCT/US2012/047487号であり、これら各文献の内容は、あらゆる目的において、その全体が参照により本明細書に組み込まれる。
【0171】
図34は、カテーテルの遠位治療セクションを用いて左心房に到達する一手法を示す。この処置は、意識下鎮静法、または望まれる場合には全身麻酔で行われてもよい。
末梢静脈(大腿静脈FV:femoral vein等)に針を刺す。穿刺した創傷は、イントロデューサシースを収容するのに十分なサイズまで拡張器で拡張し、少なくとも1つの止血弁付きイントロデューサシースを、適切な止血を保ちながら、拡張した穿刺創傷内に着座させる。
【0172】
イントロデューサシースをその場に据えたまま、ガイディングカテーテル10またはシースをイントロデューサシースの止血弁を通して導入し、末梢静脈に沿って、標的心臓領域(例えば、大静脈、右心房2内)まで進める。透視撮影法を使用して、選択した部位にカテーテルを案内することができる。
【0173】
右心房2に入ると、ガイディングカテーテルの遠位先端部が、心房内隔壁の卵円窩に当てて位置付けられる。それから、針またはトロカールを、卵円窩を穿刺するまでガイドカテーテルを通じて遠位に進める。針と一緒に個別の拡張器も卵円窩を通して進めてもよく、ガイディングカテーテルを着座させるために、中隔を通るアクセスポートを準備する。その後、中隔を貫通した針がガイディングカテーテルに置き換えられ、卵円窩を通してガイディングカテーテルを左心房内に着座させることによって、ガイディングカテーテル自体の内側ルーメンを通して左心房に入る、デバイス用のアクセスを提供する。
【0174】
上記ツールの配置は、以下のうちの1つまたは複数からの支援を用いて行ってもよい。すなわち、透視法、心内圧、経食道心エコー法(TEE:transesophageal echocardiography)、および心腔内心エコー法(ICE:intracardiac echocardiography)。
【0175】
図35~
図38は、心房細動等のさまざまな心疾患を治療するために、左心房内および肺静脈入口部の周りにリング形のカテーテルを展開する方法を示す。
まず
図35を参照すると、心臓の断面図は、右心房RA 2、左心房LA 3、左上肺静脈LSPV入口部、および左下肺静脈LIPV入口部を含む。ガイドカテーテル2100が、中隔を通して左心房内まで延びているところを示している。
【0176】
図示していないが、心臓の電気信号を監視するために、左心房のLSPVの入口部にマッピングカテーテルを位置付けてもよい。マッピングカテーテルは、例えば、冠状静脈洞(CS:coronary sinus)等の他の位置に配置してもよい。マッピングカテーテルの例は、WEBSTER(登録商標)CS双方向カテーテルおよびLASSO(登録商標)カテーテルを含み、そのいずれもバイオセンス・ウェブスター・インコーポレイテッド社(Biosense Webster Inc.)(米国カリフォルニア州ダイヤモンドバー、91765)が製造する。マッピングおよび冷凍治療システムの別の例は、ミハリク(Mihalik)の米国特許出願公開第2015/0018809号明細書に開示される。
【0177】
任意で、損傷部を形成することから生じる二次的な損傷を軽減するために、食道に食道加温バルーンを配置してもよい。食道加温バルーンは、低温が食道の細胞の内側層に達するのを防ぎ、例えば、左房-食道瘻の形成を防止することができる。使用してもよい適切な食道加温バルーン装置の例は、2014年10月12日にアレクセイ・バブキンらが出願し、本発明の譲受人に譲渡された、「ENDOESOPHAGEAL BALLOON CATHETER,SYSTEM,AND RELATED METHOD」と題された米国特許出願第15/028927号明細書に説明されており、その内容は、あらゆる目的において、その全体が参照により本明細書に組み込まれる。
【0178】
図36は、ガイドシース2100を通じて進めた冷凍アブレーションカテーテル2116の遠位セクションを示す。エネルギー要素2118は、本明細書で開示および説明されるように形成される円形形状を有し、心内膜に当てて圧迫されて示されている。本明細書で説明されるように、形状は、組織と連続接触させ、すべての左PV入口部を囲む楕円形または円形形状の連続損傷部(
図33に図示する損傷部8等)を形成するように調整してもよい。
【0179】
実施形態において、ループの径を縮小し、シャフトの中間セクションを関節動作させ、カテーテル遠位セクションを回転または操縦することによって、形状が修正される。展開、径制御、操縦および関節動作のステップは、合わせて、ループの全周を、心内膜組織と連続接触させて配置することができる。例えば、遠位治療セクションに冷却剤を流す等して遠位治療セクションにエネルギーを印加すると、
図33に図示する損傷部8等、左肺静脈入口部すべてを囲む連続した細長いリング形の損傷部(凍結組織)が形成される。
【0180】
図37は、例えば
図33に図示する損傷部9等、右上肺静脈(RSPV:right superior pulmonary vein)入口部および右下肺静脈(RIPV:right inferior pulmonary vein)入口部の周りのリング形の損傷部の形成を示す。
図35~
図36に図示するやや線状(ストレートショット(straight shot))の位置付けに対し、
図37に図示するカテーテルの首領域2116は、ほぼ180°撓んで右肺静脈に向けられている。エネルギー要素部2118は、RSPVおよびRIPV入口部の周りに位置付けられる。
【0181】
図37は、円形形状に展開されて心内膜を収縮させる、エネルギー要素2118を示す。本明細書で説明するように、RSPVおよびRIPVの入口部を包み込むまたは取り囲む細長いリング形の連続損傷部を形成するために、組織によりよく接触するように形状を調整してもよい。
【0182】
左上肺静脈(LSPV:left superior pulmonary vein)入口部および左下肺静脈(LIPV:left inferior pulmonary vein)入口部を取り囲むために、同様な細長いリング形の連続損傷部を形成することができる。
【0183】
図38は、左心房の後壁に向かうように撓むカテーテル2116を示す。エネルギー要素部2118は、先に形成された左右の損傷部と重ねて、ループを形成するように操作され、後壁に当てて圧迫される。
【0184】
任意で、図示していないが、ガイドワイヤをガイドシースから進めて、カテーテル治療セクションを適所に誘導するために使用することができる。
損傷部およびパターンの形状は、さまざまであってもよい。実施形態において、かつ
図39を参照すると、PVI術で複数の肺静脈入口部を取り囲む「ボックス形」損傷部900が示されている。ボックス形損傷部は、左心房の左右両側の肺静脈入口部を取り囲む。
【0185】
ボックス形損傷部900は、さまざまな方法で形成されてもよい。いくつかの実施形態において、ボックス形損傷部は、同様なまたは異なる形状(例えば、卵形、楕円形、リング等)を有することのできる損傷部の組み合わせに重ねて、全体としてより大きな連続損傷部を形成することによって形成され、これは、
図39に図示するボックス状形状900を有してもよい。
【0186】
図40に図示する図および
図41に示す対応するフロー図を参照して、すべての肺静脈(RSPV、RIPV、LSPVおよびLIPV)入口部を取り巻く/囲むボックス形損傷部を左心房に形成する方法1000を説明する。
【0187】
ステップ1010は、例えば、ガイドシースを使用して行うことができる、冷凍アブレーションカテーテルを左心房に進めることを示す。
ステップ1020は、カテーテルの治療セクション(エネルギー要素部2118)を左心房の片側に誘導して、心房のその側の上下肺静脈の前庭部に入れることを示す。
【0188】
ステップ1030は、カテーテルの治療セクション(エネルギー要素部2118)を操作して、ループ状形状を形成し、心房のその側の上下静脈入口部を囲むように組織と全周組織接触させるようにループのサイズを調整することを示す。
【0189】
ステップ1040は、組織の接触を検証することを示す。このステップは、例えば、2016年9月15日にアレクセイ・バブキンらが出願し、本発明の譲受人に譲渡された、「TISSUE CONTACT VERIFICATION SYSTEM」と題された国際出願第PCT/US16/51954号に開示および傍接されるように、遠位治療セクションに取り付けられている電極を使用して行ってもよく、同出願の内容は、あらゆる目的において、その全体が参照により本明細書に組み込まれる。組織の心電図(ECG:electrocardiogram)は、EP記録システムを利用して表示してもよい。
【0190】
任意で、食道バルーン(EBB:esophageal baloon)(上述したとおり)が心臓付近の食道内を進む。EBBは、膨らませられて、アブレーション治療の期間中、熱伝導液体がバルーンを循環する。本明細書で説明するように、EEBは、アブレーションサイクル中に組織を温めることによって、アブレーションゾーンに隣接する組織への二次的な損傷を最小限にする。
【0191】
ステップ1050は、組織を凍結して、左心房の第1の側で肺静脈入口部を囲む/取り囲む第1連続損傷部(例えば、
図40の左側損傷部901)を形成することによってアブレーションを行うことを示す。組織凍結の継続時間は、最大3分以上、一般的には、約1分から3分までの範囲であり、好ましくは約2分でありうる。実施形態において、凍結ステップは、途切れのないアブレーションエネルギーの単回印加を含む。
【0192】
いくつかの実施形態において、エネルギー印加の持続時間は、およそ10から60秒までの範囲であり、およそ30秒以下のこともある。
凍結サイクルの持続時間は、さまざまであってもよい。医師または電気生理学専門医は、所望のように凍結サイクルを終えることを選択することができる(例えば、予定期間が経過した後または前)。早期終了の理由の例には、カテーテルを再配置したいという希望、カテーテルと組織の接触を改善したいという希望、または安全上の問題が含まれる。
【0193】
ステップ1060は、アブレーションが完了したことを確認することを示す。遠位治療セクション上の電極からの電気活性を監視してもよい。凍結中、心電図(ECG)は、凍結用先端部に接触している組織および血液の凍結に起因して、異常な信号を示すだろう。しかし、凍結の完了後は、組織の壊死に起因して、ECGは、組織内の電圧電位の信号または証拠を示すはずがない。
【0194】
しかし、凍結ステップ後に、組織にまだ電気活動があることを示すECG信号/特徴が再び現れる場合、これは、アブレーションが完了しておらず、PVIが達成されなかった可能性があることの証拠である。PVIが達成されなかった場合、上述した適用可能なステップを繰り返すことができる。
【0195】
いくつかの実施形態において、同じ位置で再度凍結を開始することができる。または、カテーテルの位置を変えるか、または別様に調整して、標的組織とよりよく接触させるようにしてもよい。それから、追加の凍結を行ってもよい。
【0196】
追加凍結を行うことは、肺静脈間の距離が異常に大きい場合に特に有益であることがある。肺静脈間の距離が異常に大きい場合、1つだけの連続損傷部での肺静脈入口部の隔離は難題である。異常に拡大した心臓をもつ患者の部分母集団においては、肺静脈入口部の周りに追加の損傷部を形成することは、完全で耐久性のあるPVIの確率を高める。
【0197】
加えて、いくつかの状況においては、1本の静脈に適応させるためにアブレーションループを狭めることが望ましい可能性がある。実施形態において、方法は、1本の静脈口の周りで1本の静脈の隔離を行うことを含む。カテーテルループの径は、複数の静脈を隔離するための比較的大きなサイズから、1本の静脈の適用可能なサイズに縮小する。実施形態において、1本の静脈の隔離は、より大きな、複数の静脈の隔離の後に行う。
【0198】
ステップ1070は、適用可能なステップを左心房の他方側の肺静脈に繰り返すことを示す。すなわち、例えば、左静脈前庭部を隔離した後、カテーテルループを左静脈前庭部に誘導して、第2の右側損傷部(例えば、
図40の損傷部902)を形成するためにすべての関連ステップを繰り返すべきである。
【0199】
ステップ1080は、適用可能な前述のステップを後壁損傷部(
図40の損傷部903)に繰り返すことを示す。LSPVおよびLIPV前庭部ならびにRSPVおよびRIPV静脈前庭部をどちらも隔離したら、カテーテルのループ状の治療セクションを左心房の後壁に誘導する。
【0200】
任意で、EBBを食道で膨張させて、後壁のアブレーションに先立って作動させる。後損傷部について、左右の損傷部を形成するための他の適用可能なステップを繰り返す。後損傷部903は、より中央に位置付けられ、
図40では左右の前庭部損傷部(それぞれ901および902)に重ねて示されている。損傷部903も、左心房の底から天井まで延びて示されている。
【0201】
方法は、左肺静脈、右肺静脈および後壁損傷部を形成するための特定の順序を説明しているが、本発明の実施形態は、添付の特許請求の範囲に明記される場合を除き、そのように制限されることを意図していない。損傷部を形成する順序は異なっていてもよい。例えば、実施形態において、右側または後損傷部を左側損傷部よりも先に行ってもよい。
【0202】
合わせて
図39および
図40から分かるように、複数の独立した損傷部(901、902、903)は、左心房のすべての側(左、右、上および下)のすべての肺静脈入口部を囲む複合的なボックス状形状の連続損傷部900(
図39)を形成する。実施形態において、小損傷部の総体は、ボックス、四角形または長方形の形状の囲いを形成する。実施形態において、小損傷部の総体は、ボックス、四角形または長方形の形状の囲いを形成する。この複合的な連続損傷部900を形成するためのアブレーションを行うことで、左心房のすべての肺静脈入口部が効果的に電気的に隔離される。
【0203】
発作性心房細動に加えて心房粗動のある患者および非発作性心房細動のある患者においては、
図39~
図41を参照して上述した損傷部(901、902、903)の形成に加えて、僧帽弁を隔離する追加の損傷部を形成する必要があるだろう。発作性心房細動に加えて心房粗動のある患者および非発作性心房細動のある患者においては、
図39~
図41を参照して上述した損傷部(901、902、903)の形成に加えて、僧帽弁を隔離する追加の損傷部を形成する必要があるだろう。
図42に図示するように、これらの患者には、僧帽弁960の周りに流れる電気活動/電流950がある。そのため、これらの患者を治療するには、この電気活動/電流950の流れを遮断して停止/防止しなければならない。
図43Aおよび
図43Bに図示するのは、電流950の流れを遮断するために形成することのできる損傷部の実施形態である。図面から分かるように、この僧帽弁損傷部975は、左肺静脈損傷部901、右肺静脈損傷部902および後壁損傷部903によって形成されるボックス状損傷部900とつながる。
【0204】
図43Aに図示するように、一実施形態において、僧帽弁損傷部975は、僧帽弁960(僧帽弁輪)付近から延びて、電流950の流路および損傷部900と交差する。この実施形態および他の実施形態において、僧帽弁損傷部975は、少なくとも電流950の流路および損傷部900と交差することが重要である。そのため、僧帽弁損傷部975は、それが電流950の流路と交差し、損傷部900とつながる限り、左心房内のさまざまな位置に形成することができる。この種の損傷部は、カテーテルの治療セクションの形状を修正することによって形成することができる。
【0205】
図43Bに図示する実施形態において、左肺静脈損傷部901、右肺静脈損傷部902および後壁損傷部903を形成するために使用されるカテーテルの同じループ状治療セクションを使用して、僧帽弁損傷部975を形成することができる。
図43Bから分かるように、ループ状または円形の僧帽弁損傷部975を形成することは、損傷部975を複数の点(A、B、C、D)で電流950の流路および損傷部900と交差させることになり、それによって処置の成功率が高まる。
【0206】
必要であれば、僧帽弁損傷部975は、
図41に関して上述したボックス状損傷部900を形成した後に形成することができる。ボックス状損傷部900を形成した後のステップ1090として僧帽弁損傷部975を形成することを含む処置を行うための方法1100を、
図44に示すフロー図に記載する。左肺静脈損傷部901、右肺静脈損傷部902、後壁損傷部903および僧帽弁損傷部975を形成するための処置で使用されるステップは、処置の後ですべての肺静脈入口部が隔離されて電流950の流路が遮断される限り任意の順序で行うことができることは、当業者には容易に明らかであろう。
【0207】
別の実施形態において、持続性心房細動に罹患している一部の患者においては、右心房2に線状の損傷部が必要である可能性がある。
図45に図示するように、この線状損傷部2500は、下大静脈(IVC:Inferior Vena Cava)6bの入口と三尖弁(TV:Tricuspid Valve)2510の弁輪とをつなぐために作られ、大静脈三尖弁輪間峡部(CTI:Cava Tricuspid Isthmus)2520を貫通する。このCTI損傷部は、例えば、右心房粗動と右心房で生じる他の不整脈との両方または一方等、右心房での潜在的なリエントリー回路の大半を防止/遮断するために使用される。この種の損傷部は、2016年10月15日にアレクセイ・バブキンらが出願し、本発明の譲受人に譲渡された、「ENDOVASCULAR NEAR CRITICAL FLUID BASED CRYOABLATION CATHETER HAVING PLURALITY OF PREFORMED TREATMENT SHAPES」と題された米国特許出願第15/304524号明細書に説明されており、同出願の内容は、あらゆる目的において、その全体が参照により本明細書に組み込まれる。
【0208】
いくつかの実施形態において、一定の患者については、
図39~
図41を参照して上述した損傷部(901、902、903)を形成することに加えて、
図45を参照して上述したCTI損傷部2500を形成する必要があるだろう。左肺静脈損傷部901、右肺静脈損傷部902、後壁損傷部903およびCTI損傷部2500を形成するための処置で使用されるステップは、処置の後ですべての肺静脈入口部が隔離されて右心房の潜在的なリエントリー回路の大半が遮断/防止される限り任意の順序で行うことができることは、当業者には容易に明らかであろう。
【0209】
いくつかの実施形態において、一定の患者については、
図39~
図41を参照して上述した損傷部(901、902、903)および
図43A、
図43Bおよび
図44を参照して上述した僧帽弁損傷部975を形成することに加えて、
図45を参照して上述したCTI損傷部2500を形成する必要があるだろう。左肺静脈損傷部901、右肺静脈損傷部902、後壁損傷部903、僧帽弁損傷部975およびCTI損傷部2500を形成するための処置で使用されるステップは、処置の後ですべての肺静脈入口部が隔離され、電流950の流路が遮断され、右心房の潜在的なリエントリー回路の大半が遮断/防止される限り任意の順序で行うことができることは、当業者には容易に明らかであろう。
【0210】
上記教示に照らして、本発明の多くの修正および変型が可能である。そのため、具体的に述べられたもの以外でも、添付の特許請求の範囲内で本発明が実施されうることは理解されるべきである。