IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ シーメンス エナジー グローバル ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフトの特許一覧

<>
  • 特許-電流遮断器システム 図1
  • 特許-電流遮断器システム 図2
  • 特許-電流遮断器システム 図3
  • 特許-電流遮断器システム 図4
  • 特許-電流遮断器システム 図5
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-06-09
(45)【発行日】2023-06-19
(54)【発明の名称】電流遮断器システム
(51)【国際特許分類】
   H01H 33/666 20060101AFI20230612BHJP
   H01H 3/46 20060101ALI20230612BHJP
   H01H 33/42 20060101ALI20230612BHJP
【FI】
H01H33/666 M
H01H3/46 A
H01H33/42 B
【請求項の数】 10
(21)【出願番号】P 2021557469
(86)(22)【出願日】2020-02-17
(65)【公表番号】
(43)【公表日】2022-05-25
(86)【国際出願番号】 EP2020054040
(87)【国際公開番号】W WO2020200565
(87)【国際公開日】2020-10-08
【審査請求日】2022-01-31
(31)【優先権主張番号】102019204443.3
(32)【優先日】2019-03-29
(33)【優先権主張国・地域又は機関】DE
(73)【特許権者】
【識別番号】521001582
【氏名又は名称】シーメンス エナジー グローバル ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト
【氏名又は名称原語表記】SIEMENS ENERGY GLOBAL GMBH & CO. KG
(74)【代理人】
【識別番号】110003317
【氏名又は名称】弁理士法人山口・竹本知的財産事務所
(74)【代理人】
【識別番号】100075166
【弁理士】
【氏名又は名称】山口 巖
(74)【代理人】
【識別番号】100133167
【弁理士】
【氏名又は名称】山本 浩
(74)【代理人】
【識別番号】100169627
【弁理士】
【氏名又は名称】竹本 美奈
(72)【発明者】
【氏名】コス,シルビオ
(72)【発明者】
【氏名】ニコリッチ,パウル グレーゴール
【審査官】井上 信
(56)【参考文献】
【文献】特公昭49-45912(JP,B1)
【文献】特開2014-203795(JP,A)
【文献】米国特許第5347096(US,A)
【文献】国際公開第2012/019775(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H01H 33/666
H01H 33/42
H01H 3/46
(57)【特許請求の範囲】
【請求項1】
少なくとも2つの遮断器ユニット(4、6)を直列に配置し、そのうちの少なくとも1つの遮断器ユニット(4、6)が真空管であり、前記少なくとも2つの遮断器ユニット(4、6)が駆動システム(8)と機械的に接続されており、前記駆動システム(8)は駆動アッセンブリ(9)を備えている、電流遮断器システムにおいて、前記駆動システム(8)はさらに、クランクシャフト(10)として少なくとも2つのクランク(12、14)を備え付けられている駆動軸を有しており、前記少なくとも2つのクランク(12、14)が2つの異なる高さのクランクストローク(16、18)を有することを特徴とする、電流遮断器システム。
【請求項2】
前記クランクシャフト(10)が前記遮断器ユニット(4、6)の開離プロセス中に、一方向回転運動(20)を実行することを特徴とする、請求項1に記載の電流遮断器システム。
【請求項3】
前記クランクシャフト(10)が前記遮断器ユニット(4、6)の開離プロセス中に、170°から190°の間の一方向回転運動(20)を実行することを特徴とする、請求項2に記載の電流遮断器システム。
【請求項4】
前記クランクシャフト(10)が前記遮断器ユニット(4、6)の開離プロセス中およびそれに続く閉鎖プロセス中に、350°および360°+10°の間の一方向回転運動(20)を実行することを特徴とする、請求項1から3のいずれか1項に記載の電流遮断器システム
【請求項5】
互いに電気的に直列に接続された前記少なくとも2つの遮断器ユニット(4、6)が、異なるクランクストローク(16、18)を有するそれぞれのクランク(12、14)と機械的な接続状態にあり、前記2つの遮断器ユニット(4、6)が異なる定格電圧を有していることを特徴とする、請求項1から4のいずれか1項に記載の電流遮断器システム。
【請求項6】
前記クランクシャフト(10)に、直列に接続された前記遮断器ユニット(4、6)の3つの同種のペア(22)が、機械的に接続されていることを特徴とする、請求項5に記載の電流遮断器システム。
【請求項7】
前記クランクシャフト(10)とそれぞれの遮断器ユニット(4、6)との間の機械的な接続部がクランクピン(24)を含み、前記クランクピン(24)が2つのクランク(12、12’、14、14’)間で前記クランクシャフト(10)の回転軸(26)から離間して配置されており、前記クランクピン(24)がスラストロッド(30)に配置されている滑り軸受(28)によって囲まれていることを特徴とする、請求項1から6のいずれか1項に記載の電流遮断器システム。
【請求項8】
前記スラストロッド(30)が接触ボルト(32)と機械的な接続状態にあることを特徴とする、請求項7に記載の電流遮断器システム。
【請求項9】
前記スラストロッド(30)と前記接触ボルト(32)との間の前記機械的な接続部が別の滑り軸受(50)を備えることを特徴とする、請求項8に記載の電流遮断器システム。
【請求項10】
2つの隣り合う前記クランク(12、14)のクランクストローク(16、18)の半径方向の向きが前記クランクシャフト(10)に沿って180°ずらされていることを特徴とする、請求項1から9のいずれか1項に記載の電流遮断器システム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、請求項1の前提部分に記載の電流遮断器システムに関する。
【0002】
高電圧用途用の真空開閉管を使用する場合、要求される絶縁耐性を達成するために、2つ以上の真空開閉管を直列に接続することが、往々にして経済的により有利である。設計上この直列接続は、構造的に異なる真空開閉管を同時に開閉しなければならないことを意味する。このために各開閉管には通常はそれ自体の駆動部またはそれ自体の駆動システムが設けられており、その際駆動システムは互いに同期されている。同様の課題は、真空開閉管が種々の用途のためのガスラインと並列に接続される場合に発生する。ここでも、両方の遮断器ユニットを同期して開閉するためには、それぞれに別の駆動機構が必要である。しかしながら、複数の駆動アッセンブリを有する複数の駆動システムの使用もまた、2つの直列に接続された真空管を使用する場合にもしくは真空管とガスラインを直列に接続する場合に、経済的バランスを不利にする。
【発明の概要】
【発明が解決しようとする課題】
【0003】
本発明の課題は、共通の駆動システムによって駆動される異なる構造タイプの少なくとも2つの遮断器ユニットを有する電流遮断器システムを提供することである。
【課題を解決するための手段】
【0004】
この課題は、請求項1に記載の特徴を有する電流遮断器システムによって解決される。
【0005】
請求項1に記載の電流遮断器システムは、少なくとも2つの遮断器ユニットの直列的な配置を有する。このうち、少なくとも1つの遮断器ユニットは真空管であり、その際、少なくとも2つの遮断器ユニットは、1つの駆動システムに機械的に接続されている。この駆動システムは1つの駆動アッセンブリを有し、それは少なくとも2つのクランクを有する駆動軸としてクランクシャフトが設けられており、その少なくとも2つのクランクは異なる高さの2つのクランクストロークを有していることを、特徴とする。
【0006】
クランクシャフトの異なる高さのストロークによって、唯一の駆動軸を介して、異なる構造形式であり、従って異なるストロークの2つの遮断器ユニットを、1つの駆動アッセンブリと1つの駆動システムを用いて、作動させることができる。これは、2つの遮断器ユニットに対して1つの駆動システムのみ、特に1つの駆動アッセンブリトのみ、が必要であるので、経済的な利点を提供する。
【0007】
クランクという用語は、クランクシャフトに取り付けられた偏心機構であって、クランクシャフトの回転軸に対してほぼ垂直に延びる偏心機構、を意味するものとする。クランクは最も単純な場合ほぼ棒形状に形成されていてもよい。クランクは、実際には、不均衡を避けるために通常は、非対称偏心板の形で設計されている。クランクという用語はクランクペアも意味し、これはクランクシャフトに沿って互いに距離を置いて配置されており、回転軸に関して偏心的に、回転軸に関してほぼ平行に延びるクランクピンを介して、互いに連結されている。
【0008】
クランクストロークという用語は、クランクシャフトの回転軸に対するクランクピンの偏心率を意味するもので、この場合クランクピンはクランクシャフトの回転運動時には、クランクシャフトの回転軸の周りでの円形状の運動を描く。したがってクランクストロークは、描かれたこのクランクピンの円運動の半径にも相応する。
【0009】
遮断器ユニットの直列的な配置、という用語は、複数の遮断器ユニットが電気的に直列に接続されていること、を意味するものとする。
【0010】
本発明の有利な一実施形態では、クランクシャフトは、遮断器ユニットの開離プロセス中に一方向の運動を実行する。これは、駆動機構が単に一方向に回転可能であれば良いので、駆動機構が従来技術よりも技術的に簡単に形成できる、という利点を有する。開離プロセス時、特に170°から10°の、好ましくは180°の、回転の開離プロセス時における一方向回転運動が、本発明に係るクランクシャフトの使用により可能となる。
【0011】
遮断器ユニットの開離プロセスおよびこれに続く閉鎖プロセスが350°と360°+10°の間の一方向運動を行う場合には、駆動システムの駆動シャフトとしてクランクシャフトを使用することは、さらなる利点をもたらす。この場合、クランクシャフトは、好ましくは360°である完全な一回転で開離プロセスおよび閉鎖プロセスを実行するが、特定の接点オーバーストロークを設定することによって、クランクシャフトが360°からわずかに、すなわち+/-10°分、異なる回転運動を実行することも、合目的的である。
【0012】
この場合、本発明の好ましい実施形態では、それぞれ2つの異なる遮断器ユニットが、異なるクランクストロークを有するクランクシャフトのそれぞれ異なるクランクと機械的な接続状態にあり、これらの2つの遮断器ユニットは、異なる定格電圧を有する点で、異なっている。この場合、遮断器ユニットの定格電圧とは、遮断器ユニットが技術的に許容される電流を遮断できるまでの電圧である。このようにして、定格電圧の異なる遮断器ユニットを互いに直列に接続することができるので、これによって、より高いクラスの定格電圧がもたらされる。このためには、異なる遮断器ユニットを使用することが、合目的である。
【0013】
機械的な接続状態にあるという用語は、2つのシステム間で力、インパルス又はアクションを伝達するために機械的な接続が存在することを意味し、この接続は、たとえば、ベアリングやジョイントなどの可動接続部を介しても、材料結合または摩擦結合のような固定接続を介しても、または、可動接続と固定接続との組み合わせからも、作ることもできる。
【0014】
本発明の別の実施形態では、直列に接続された遮断器ユニットの、3つの同種のペアを、機械的に互いに接続すること、もまた合目的である。遮断器ユニットの3つのペアは、電力ネットワークの3つの相を表し、その結果、この3つの相は、この実施形態により、その都度2つの直列接続された遮断器ユニットを用いて、指定された定格電圧まで、唯1つの駆動システムを用いて作動させることができる。
【0015】
電流遮断器システムの構造的な実施形態においては、クランクシャフトとそれぞれの遮断器ユニットとの間の機械的な接続部は、1つのクランクピンを有しており、このクランクピンは、2つのクランクの間に、クランクシャフトの回転軸に対して間隔を置いて延びるように、配置されており、その際、クランクピンは、スラストロッドに配置されている滑り軸受によって、囲まれている。このような構造的な実施形態により、クランクシャフトの回転運動を、遮断器システムの可動接触子の並進運動に変換することが、可能になる。スラストロッドはさらに、接触ボルトに機械的な接続状態にあり、これは特に、スラストロッド上の別の滑り軸受によってもたらされるが、この滑り軸受は同様に接触ボルト上のピンに取り付けられている。両端に滑り軸受を有する上記のスラストロッドは、コネクティングロッドと呼ぶこともできる。
【0016】
本発明のさらに別の実施形態では、クランクシャフトは、隣り合う2つのクランクのクランクストロークの半径方向の位置合わせが、クランクシャフトに沿って180°ずれて配置されているように、設計されている。これは、クランクシャフトのそれぞれのクランクピンと機械的な接続状態にある個々の遮断器ユニットが、クランクシャフトに沿った線に対して互いにずれて配置されていることを導き、これは設置スペースの節約をもたらす。遮断器ユニットのこのような配置は、したがって、より少ない設置スペースを必要とし、これは遮断器ユニットが閉鎖された空間内に配置されている場合に特に効果がある。
【0017】
本発明のさらなる実施形態およびさらなる特徴を以下の図面に基づいてより詳細に説明する。これは保護範囲の制限を意味しない純粋に概略的な説明である。異なる実施形態において同一の記号を示す特徴には同一の符号が付されるが、場合によっては付加的にダッシュが付けられている。
【図面の簡単な説明】
【0018】
図1図1は、駆動ユニットと真空開閉管の形をした2つの異なる遮断器ユニットを備えた電流遮断器システムを示す。
図2図2は、開離状態にある図1による電流遮断器システムを示す。
図3図3は、クランクピンの領域における駆動システムのクランクシャフトの横断面を示す。
図4図4は、3つの相のために直列接続されたそれぞれ2つの遮断器ユニットを備え、合計6台の遮断器ユニットを備えた電流遮断器システムの概略図を示す。
図5図5は、図4と類似の概略図を示し、1つのラインに対してずれて配置された複数の遮断器ユニットと半径方向に異なる方向のクランクストロークを有している。
【発明を実施するための形態】
【0019】
図1には、電流遮断器システム2が示されており、この電流遮断器システム2は、一方では2つの異なる遮断器ユニット4および6を一緒に駆動する駆動システム8を有する。この駆動システム8は、駆動アッセンブリ9並びにクランクシャフト10とを備える。クランクシャフト10は、この実施形態では一例として、2つのクランクシャフト軸受34にて支持されており、矢印20に沿って一方向の回転運動を実行する。このクランクシャフト10は2つのクランク12もしくは14を有し、これらはそれぞれ異なるクランクストローク18および16を有する。ここでクランク12という用語は一対のクランク12および12’もしくは14および14’を意味することもあり、これらの間にはクランクピン24が配置されている。このクランクピン24は、クランクシャフト10の回転軸26に平行に延びている。回転運動20に際しては、クランクピン24は、回転軸26の周りに円運動を描く。クランクピン24には滑り軸受28も取り付けられており、これはスラストロッド30との接続状態にある。スラストロッド30の端部には別の滑り軸受50も配置されており、これは遮断器ユニットの接触ボルト32との接続状態にある。
【0020】
遮断器ユニット4、6は、この場合、可動接触子38と固定接触子40の2つの接触子を含む接触システム36を有する。この接触システム36は、ハウジング42によって囲まれて、真空室44内に配置されている。図1および図2の図面は概略的にのみ見られるものであり、真空開閉管の形態で設計されている遮断器ユニット4、6の詳細は、ここでは示されていない。可動接触子38は、上述の接触ボルト32に接続されており、接触ボルト32の並進運動の際には、図2に示されているように、接触システム36は開かれる。クランクシャフト10の回転運動20によって伝えられ、コネクティングロッドの形態のスラストロッド30によって、接触ボルト32ひいては可動接触子38の並進運動へ変換される。この運動力学的シーケンスは、両方の遮断器ユニット4、6に同じように適用される。接触システム36および36’の開離中のシーケンス間の相違は、この図によれば、小さい方の遮断器ユニット6のクランクストローク18が、大きい方の遮断器ユニット4のクランクストローク16よりも、小さいことにある。このようにして、異なる定格電圧を有し互いに直列に接続されている異なる遮断器ユニット4、6を、1つの駆動システム8を用いて作動させることができる。
【0021】
2つの遮断器ユニット4、6の直列接続は、可撓性の電流帯46と電気的に接続された状態にある電流レール48を介する接触によってもたらされ、この電流帯46は接触ボルト50とも接触している。電流レール48および電流帯46を介したさらなる接続は、固定接触子40およびそれに割り当てられたボルトと、遮断器ユニット6の可動接触子3’と、を介して行われる。ここでは、2つの真空開閉管が対象となっており、それらはたとえば170kVの定格電圧(遮断器ユニット4)と145kVの定格電圧(遮断器ユニット6)とを有している。このように定格電圧の異なる真空開閉管を直列に配置することによって、個々の遮断器ユニットの定格電圧が加算されて電流遮断器システム全体の定格電圧がもたらされる。
【0022】
図1には遮断器ユニット4および6の閉鎖状態における電流遮断器システム2の基本的な位置が示されており、クランクシャフト10の一方向の回転運動を具体的に示している矢印20は、図1の図面が動的な図であり、それは、矢印20に沿って180°回転すると図2に示す電流遮断器システム2の開離位置をもたらすことをも示している。図2に示す開離位置から矢印20に沿ってさらに一方向回転すると、再び閉鎖運動が生じ、最終的には図1に示される状態に至る。したがってクランクシャフト10の360°の回転は遮断器ユニット4、6が一旦開かれ、再び閉じられることを意味する。さらに180°回転するならば、再び開離運動が生じることになる。
【0023】
駆動アッセンブリ9によって駆動される、クランクシャフト10の一貫した一方向運動の利点は、唯一の駆動システム8による単純化された伝達に加えて、駆動アッセンブリ9に関してより費用効果の高い駆動バリエーションを選択できることにある。これにより技術的に複雑な双方向駆動運動を省略できるが、これは絶対に必要というわけではない。図1および図2に示すように、遮断器ユニット4、6の開離位置と閉鎖位置の移行は、基本的には双方向運動でも行うことができるが、一方向運動はクランクシャフト10の使用によってはじめて可能となり、これにより技術的に複雑でない駆動アッセンブリ9、たとえば電動機または螺旋ばねを備えたスプリングアキュームレータ、を使用することができることになる。
【0024】
図3は、クランクシャフト10の横断面図を示しており、クランクの領域における横断面の形状はクランクピン24並びに滑り軸受28を通って切断されている。クランク12または14の形に構成されていてもよいクランクは、ここでは偏心板として例示されており、不均衡を避けるために、クランクシャフト10の回転軸26の対向側にカウンターウェイトを有している。それぞれの可能なクランクストローク16または18は、回転軸26の中心点とクランクピン24の中心点との間に延びる二重矢印によって示されている。クランク12、14が回転軸26を中心に回転すると、クランクピン24は回転軸26を中心とした円運動を実行する。クランクピン24の周囲に配置されている滑り軸受28は、スラストロッド30に連結されているので一緒に回転し、スラストロッドの端部には、図1に示すように、別の滑り軸受50があるが、それはそれぞれ並進運動に沿って調整され、それは並進運動をここでは不図示の接触ボルトに伝達する。
【0025】
本発明のさらなる実施形態では、クランクシャフト10に、直列接続された遮断器ユニット4および6の3つのペア22が、それぞれ配置されている。遮断器ユニット4および6のペア22は、それぞれ図1および図2を参照して既に説明した機能を、果たす。このような構造的に同一の3対の遮断器ユニット4、6を配置することは、電流網の3つの相であって、1つの遮断器ユニットによってもしくはここでは遮断器ユニット4、6の1つのペア22によって、それぞれ同時に開離されなければならない相、に対するものである。3つの相は全て、1つの駆動システム8を用いて動作させることが可能であり、すでに述べたように、各相は2つの異なる遮断器ユニット4、6を有している。遮断器ユニット4、6の各ペア22は、それぞれ一対のクランク12、14と接続した状態にあり、それらもそれぞれ異なる接触ストローク16および18を有する。そのほかにペア22は、図1図2および図3を参照して既に説明したものと同じ技術的特徴を有している。
【0026】
図4におけるものと同様のさらなる実施形態では、図5による概略図は、直列接続された遮断器ユニット4、6の3つのペア22の配置を示している。図4との相違点は、この実施形態ではそれぞれ2つの遮断器ユニット4または6が互いにずれて配置されていることであり、これは、設置スペースが限られている多くの用途においてクランクシャフト10に沿って直線的に設置スペースを節約できること、をもたらし、決定的なコスト上の利点をもたらすことができる。図5によるクランクシャフト10は、クランク14および12が回転軸26に対して半径方向に異なる方向、特に180°だけずれた方向を指すように、設計されている。しかし注意すべきことは、この変形例においては少なくともそれぞれの第2のクランク12または14、および、それに接続されるスラストロッド30は、機械的な偏向機構を必要とするが、この機構は図5の単に概略的な図面では詳細に記載されていないことである。
【符号の説明】
【0027】
2 電流遮断器システム
4 遮断器ユニットUB1
6 遮断器ユニットUB2
8 駆動システム
9 駆動アッセンブリ
10 クランクシャフト
12 第1のクランク
14 第2のクランク
16 第1のクランクストローク
18 第2のクランクストローク
20 一方向回転運動
22 直列接続された遮断器ユニットのペア
24 クランクピン
26 回転軸
28 滑り軸受
30 スラストロッド
32 接触ボルト
34 クランクシャフト軸受
36 接触システム
38 可動接触子
40 固定接触子
42 ハウジング
44 真空室
46 電流帯
48 電流レール
50 別の滑り軸受
図1
図2
図3
図4
図5