(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-06-13
(45)【発行日】2023-06-21
(54)【発明の名称】導電性フィルム、並びに、それを用いた導電性フィルムロール、電子ペーパー、タッチパネル、及びフラットパネルディスプレイ
(51)【国際特許分類】
H01B 5/14 20060101AFI20230614BHJP
B32B 7/025 20190101ALI20230614BHJP
B32B 15/08 20060101ALI20230614BHJP
B32B 15/04 20060101ALI20230614BHJP
G06F 3/041 20060101ALI20230614BHJP
G06F 3/044 20060101ALI20230614BHJP
【FI】
H01B5/14 A
B32B7/025
B32B15/08 M
B32B15/04 B
H01B5/14 B
G06F3/041 495
G06F3/044 122
G06F3/041 422
B32B15/08 D
(21)【出願番号】P 2022073088
(22)【出願日】2022-04-27
(62)【分割の表示】P 2020534683の分割
【原出願日】2019-07-30
【審査請求日】2022-07-04
(31)【優先権主張番号】P 2018142101
(32)【優先日】2018-07-30
(33)【優先権主張国・地域又は機関】JP
(31)【優先権主張番号】P 2018142057
(32)【優先日】2018-07-30
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000000033
【氏名又は名称】旭化成株式会社
(74)【代理人】
【識別番号】100079108
【氏名又は名称】稲葉 良幸
(74)【代理人】
【識別番号】100109346
【氏名又は名称】大貫 敏史
(74)【代理人】
【識別番号】100117189
【氏名又は名称】江口 昭彦
(74)【代理人】
【識別番号】100134120
【氏名又は名称】内藤 和彦
(72)【発明者】
【氏名】上城 武司
(72)【発明者】
【氏名】飛田 空
(72)【発明者】
【氏名】杉本 哲郎
(72)【発明者】
【氏名】伴野 裕
【審査官】神田 太郎
(56)【参考文献】
【文献】特開2011-34889(JP,A)
【文献】国際公開第2014/034920(WO,A1)
【文献】特開2011-91788(JP,A)
【文献】特開2016-139688(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B32B 15/08
B32B 7/025
B32B 15/04
H01B 5/14
G06F 3/041
G06F 3/044
(57)【特許請求の範囲】
【請求項1】
透明基材と、前記透明基材の片面又は両面に配された金属細線パターンからなる導電部
と、を有する導電性フィルムであって、
前記金属細線パターンが、金属細線から構成されており、
下記(i)
且つ(ii)の条件を満たす、
(i)前記金属細線は、空隙を有し、且つ、前記金属細線の延伸方向に直交する前記金属細線の断面において、金属細線断面積をS
Mとし、前記金属細線の断面に含まれる全空隙断面積をS
Vtotalとするとき、S
Vtotal/S
Mが
0.15以上0.37以下
であ
り、
前記金属細線の延伸方向に直交する前記金属細線の断面において、前記金属細線の最大厚さをTとしたとき、前記透明基材側の金属細線界面から0.2Tまでの厚さ領域における空隙断面積をS
V0.2
、前記透明基材側の金属細線界面から0.8Tまでの厚さ領域における空隙断面積をS
V0.8
とするとき、(S
V0.2
+S
V0.8
)/S
Vtotal
が1.23以上1.60以下である、
(ii)前記金属細線の延伸方向に直交する前記金属細線の断面において、金属細線の最大厚さをTとし、前記透明基材側の金属細線界面から0.90Tの高さにおける金属細線の幅をW
0.90とし、金属細線界面における前記金属細線の幅をW
0としたとき、W
0.90/W
0が、0.40以上0.90以下である、
導電性フィルム。
【請求項2】
(1+W
0.90/W
0)・(1-S
Vtotal/S
M)が0.84以上1.71以下である、
請求項1に記載の導電性フィルム。
【請求項3】
前記金属細線が、前記透明基材側の前記金属細線の界面に前記空隙を有する、
請求項1又は2に記載の導電性フィルム。
【請求項4】
S
V0.2/S
Vtotalが0.15以上0.60以下である、
請求項1~3のいずれか一項に記載の導電性フィルム。
【請求項5】
S
V0.8/S
Vtotalが0.80以上1.00以下である、
請求項1~4のいずれか一項に記載の導電性フィルム。
【請求項6】
前記透明基材側の金属細線界面から0.50Tの厚さにおける金属細線の幅をW
0.50としたとき、
W
0.50/W
0が、0.70以上1.00未満である、
請求項1~
5のいずれか一項に記載の導電性フィルム。
【請求項7】
W
0.90/W
0.50が、0.50以上0.95以下である、
請求項1~
6のいずれか一項に記載の導電性フィルム。
【請求項8】
W
0.50/W
0がW
0.90/W
0.50よりも大きい
、
請求項1~
7のいずれか一項に記載の導電性フィルム。
【請求項9】
前記金属細線の線幅が、0.1μm以上5.0μm以下である、
請求項1~
8のいずれか一項に記載の導電性フィルム。
【請求項10】
前記金属細線のアスペクト比が、0.05以上1.00以下である、
請求項1~
9のいずれか一項に記載の導電性フィルム。
【請求項11】
前記導電性フィルムのシート抵抗が、0.1Ω/sq以上1,000Ω/sq以下である、
請求項1~
10のいずれか一項に記載の導電性フィルム。
【請求項12】
前記導電性フィルムの可視光透過率が、80%以上100%以下である、
請求項1~
11のいずれか一項に記載の導電性フィルム。
【請求項13】
前記導電性フィルムのヘイズが、0.01%以上5.00%以下である、
請求項1~
12のいずれか一項に記載の導電性フィルム。
【請求項14】
前記金属細線パターンの開口率が、80%以上100%未満である、
請求項1~
13のいずれか一項に記載の導電性フィルム。
【請求項15】
前記金属細線パターンがメッシュパターンである、
請求項1~
14のいずれか一項に記載の導電性フィルム。
【請求項16】
前記金属細線パターンがラインパターンである、
請求項1~
15のいずれか一項に記載の導電性フィルム。
【請求項17】
前記金属細線は、金、銀、銅、又はアルミニウムからなる群より選ばれる少なくとも1種以上の金属元素を含む、
請求項1~
16のいずれか一項に記載の導電性フィルム。
【請求項18】
前記透明基材と前記導電部の間に中間層を有する、
請求項1~
17のいずれか一項に記載の導電性フィルム。
【請求項19】
前記中間層が、酸化ケイ素、窒化ケイ素、酸化アルミニウム、及びフッ化マグネシウムからなる群より選ばれる少なくとも1種を含む、
請求項
18に記載の導電性フィルム。
【請求項20】
前記導電部を被覆する保護層を更に有する、
請求項1~
19のいずれか一項に記載の導電性フィルム。
【請求項21】
請求項1~
20のいずれか一項に記載の導電性フィルムを捲回してなる、
導電性フィルムロール。
【請求項22】
請求項1~
20のいずれか一項に記載の導電性フィルムを備える、
電子ペーパー。
【請求項23】
請求項1~
20のいずれか一項に記載の導電性フィルムを備える、
タッチパネル。
【請求項24】
請求項1~
20のいずれか一項に記載の導電性フィルムを備える、
フラットパネルディスプレイ。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、導電性フィルム、並びに、それを用いた導電性フィルムロール、電子ペーパー、タッチパネル、及びフラットパネルディスプレイに関する。
【背景技術】
【0002】
従来、電子ペーパー、タッチパネル、及びフラットパネルディスプレイ等の電子デバイスには、酸化インジウムスズ(以下、「ITO」ともいう。)を用いた透明な導電性フィルムが用いられている。今後、電子デバイスの更なる高付加価値化にむけて、大面積化、応答性向上、フレキシブル化が重要である。そのため、これに用いられる導電性フィルムには、高い透過率を維持しながら、導電性と可撓性を向上させることが求められる。
【0003】
ITOは材料固有の導電率が低いため、高い導電性を発現するためには厚膜化が必要でありそれに伴い透過率が低下する。また厚膜化により曲げや撓み、屈曲等の変形によりクラックが発生しやすくなるため、ITOを用いた導電性フィルムでは高い透過率、導電性、可撓性を同時に実現することは困難である。
【0004】
そこで、ITOに代わる導電性フィルムの研究開発が精力的に行われており、透明基材上にパターニングした金属細線を有する導電性フィルムが注目されている。金属細線は酸化物であるITOよりも導電率が高く、これを用いた導電性フィルムは高い導電性を示すことが期待される。また、金属細線は延伸性も高いため、これを用いた導電性フィルムは導電性と可撓性に優れる。
【0005】
他方、ITOとは異なり金属細線は不透明であるため視認性が高く、例えば、金属細線の線幅を5μm以下に細線化することで、低い視認性と高い透過率を実現する必要がある。この点、非特許文献1には、プラスチック基板上に、最小線幅0.8μmの金属細線を印刷で作製する技術が開示されている。
【0006】
また、金属細線を用いた導電性フィルムでは、ハンドリングやデバイス実装における曲げ、撓み、屈曲等の変形により、金属細線の断線や透明基材からの剥離が発生し、導電性の低下や欠陥が発生しやすいという問題がある。このような問題に対して、基板との密着性が良好な金属細線パターンを有する透明電極を提供する方法としては、透明樹脂基板と金属細線パターンの間に多孔質層を形成し、金属細線パターン上に透明導電性保護層を形成する方法が知られている(例えば、特許文献1参照)。なお、特許文献1における多孔質層は、製造途中では多孔を有するが、金属細線形成の際にはその多孔にインクを浸漬させるアンカー層として用いるものであり、最終的に得られる透明電極の状態において多孔を有するものではない。
【0007】
また、このような導電性フィルムとして、特許文献2には、基体と、基体の一主面に形成された導電部とを有し、少なくとも導電部が粘着剤を介して他の物体に接着される導電シートにおいて、導電部が金属細線による網目状構造部を有する導電シートが開示されている。この文献には、基体の主面と金属細線の側壁とのなす角を鋭角とし、導電部における粘着剤とのピール粘着力を特定の範囲内とする。これにより、導電シートは、導電シートと粘着剤間の気泡の混入を抑制でき、粘着剤の貼着作業及び貼り直し作業を容易にでき、更にはタッチパネルの歩留まりを向上できることが開示されている。
【先行技術文献】
【非特許文献】
【0008】
【文献】Nature Communications 7, Article number: 11402
【特許文献】
【0009】
【文献】国際公開第2014/034920号
【文献】特開2012-185607号公報
【発明の概要】
【発明が解決しようとする課題】
【0010】
ここで、特許文献1で検討されている金属細線の線幅は10μm以上である。発明者らの検討によれば、導電性フィルムに求められる透明性を向上させるために、例えば、線幅5μm以下の金属細線を使用する場合には、特許文献1に記載されたような多孔質層を用いたとしても、導電性フィルムの曲げや撓み、屈曲等の変形により、その導電性が低下するという課題があることがわかった。
【0011】
本発明は、上記問題に鑑みてなされたものであり、透明性及び導電性を維持しながら、可撓性に優れる導電性フィルム、並びに、それを用いた導電性フィルムロール、電子ペーパー、タッチパネル、及びフラットパネルディスプレイを提供することを目的とする。
【課題を解決するための手段】
【0012】
本発明者らは、上記課題を解決すべく鋭意検討し実験を重ねた結果、金属細線内に空隙を設け、金属細線の断面積における全空隙断面積の比を特定の範囲に調整することで、該金属細線を有する導電性フィルムの曲げ、撓み、屈曲等の変形による金属細線の断線や透明基材からの剥離を抑制し、低い視認性と高い導電性を維持しながら、可撓性を向上できることを見出した。また、本発明者らは、金属細線の延伸方向に直交する金属細線の断面において、金属細線の最大厚さをTとし、透明基材側の金属細線界面から0.90Tの高さにおける金属細線の幅をW0.90とし、金属細線界面における前記金属細線の幅をW0としたとき、W0.90/W0を特定範囲内に調整することにより保護層などの被覆層をより均一に形成できることを見出した。本発明者らは、これらのうちいずれかの手段により、上述の課題を解決できること見出して本発明を完成させるに至った。
【0013】
本発明は、以下のとおりのものである。
〔1〕
透明基材と、前記透明基材の片面又は両面に配された金属細線パターンからなる導電部と、を有する導電性フィルムであって、
前記金属細線パターンが、金属細線から構成されており、
下記(i)又は(ii)の条件を満たす、
(i)前記金属細線は、空隙を有し、且つ、前記金属細線の延伸方向に直交する前記金属細線の断面において、金属細線断面積をSMとし、前記金属細線の断面に含まれる全空隙断面積をSVtotalとするとき、SVtotal/SMが0.10以上0.40以下である、
(ii)前記金属細線の延伸方向に直交する前記金属細線の断面において、金属細線の最大厚さをTとし、前記透明基材側の金属細線界面から0.90Tの高さにおける金属細線の幅をW0.90とし、金属細線界面における前記金属細線の幅をW0としたとき、W0.90/W0が、0.40以上0.90以下である、
導電性フィルム。
〔2〕
(1+W0.90/W0)・(1-SVtotal/SM)が0.84以上1.71以下である、
〔1〕に記載の導電性フィルム。
〔3〕
前記金属細線が、前記透明基材側の前記金属細線の界面に前記空隙を有する、
〔1〕又は〔2〕に記載の導電性フィルム。
〔4〕
前記金属細線の最大厚さをTとしたとき、前記透明基材側の金属細線界面から0.2Tまでの厚さ領域における空隙断面積をSV0.2とするとき、SV0.2/SVtotalが0.15以上0.60以下である、
〔1〕~〔3〕のいずれか一項に記載の導電性フィルム。
〔5〕
前記金属細線の最大厚さをTとしたとき、前記透明基材側の金属細線界面から0.8Tまでの厚さ領域における空隙断面積をSV0.8とするとき、SV0.8/SVtotalが0.80以上1.00以下である、
〔1〕~〔4〕のいずれか一項に記載の導電性フィルム。
〔6〕
(SV0.2+SV0.8)/SVtotalが1.00超1.60以下である、
〔1〕~〔5〕のいずれか一項に記載の導電性フィルム。
〔7〕
前記透明基材側の金属細線界面から0.50Tの厚さにおける金属細線の幅をW0.50としたとき、
W0.50/W0が、0.70以上1.00未満である、
〔1〕~〔6〕のいずれか一項に記載の導電性フィルム。
〔8〕
W0.90/W0.50が、0.50以上0.95以下である、
〔1〕~〔7〕のいずれか一項に記載の導電性フィルム。
〔9〕
W0.50/W0がW0.90/W0.50よりも大きい〔1〕~〔8〕のいずれか一項に記載の導電性フィルム。
〔10〕
前記金属細線の線幅が、0.1μm以上5.0μm以下である、
〔1〕~〔9〕のいずれか一項に記載の導電性フィルム。
〔11〕
前記金属細線のアスペクト比が、0.05以上1.00以下である、
〔1〕~〔10〕のいずれか一項に記載の導電性フィルム。
〔12〕
前記導電性フィルムのシート抵抗が、0.1Ω/sq以上1,000Ω/sq以下である、
〔1〕~〔11〕のいずれか一項に記載の導電性フィルム。
〔13〕
前記導電性フィルムの可視光透過率が、80%以上100%以下である、
〔1〕~〔12〕のいずれか一項に記載の導電性フィルム。
〔14〕
前記導電性フィルムのヘイズが、0.01%以上5.00%以下である、
〔1〕~〔13〕のいずれか一項に記載の導電性フィルム。
〔15〕
前記金属細線パターンの開口率が、80%以上100%未満である、
〔1〕~〔14〕のいずれか一項に記載の導電性フィルム。
〔16〕
前記金属細線パターンがメッシュパターンである、
〔1〕~〔15〕のいずれか一項に記載の導電性フィルム。
〔17〕
前記金属細線パターンがラインパターンである、
〔1〕~〔16〕のいずれか一項に記載の導電性フィルム。
〔18〕
前記金属細線は、金、銀、銅、又はアルミニウムからなる群より選ばれる少なくとも1種以上の金属元素を含む、
〔1〕~〔17〕のいずれか一項に記載の導電性フィルム。
〔19〕
前記透明基材と前記導電部の間に中間層を有する、
〔1〕~〔18〕のいずれか一項に記載の導電性フィルム。
〔20〕
前記中間層が、酸化ケイ素、窒化ケイ素、酸化アルミニウム、及びフッ化マグネシウムからなる群より選ばれる少なくとも1種を含む、
〔19〕に記載の導電性フィルム。
〔21〕
前記導電部を被覆する保護層を更に有する、〔1〕~〔20〕のいずれか一項に記載の導電性フィルム。
〔22〕
〔1〕~〔21〕のいずれか一項に記載の導電性フィルムを捲回してなる、
導電性フィルムロール。
〔23〕
〔1〕~〔22〕のいずれか一項に記載の導電性フィルムを備える、
電子ペーパー。
〔24〕
〔1〕~〔23〕のいずれか一項に記載の導電性フィルムを備える、
タッチパネル。
〔25〕
〔1〕~〔24〕のいずれか一項に記載の導電性フィルムを備える、
フラットパネルディスプレイ。
【発明の効果】
【0014】
本発明によれば、透明性及び導電性を維持しながら、可撓性に優れる導電性フィルム、並びに、それを用いた導電性フィルムロール、電子ペーパー、タッチパネル、及びフラットパネルディスプレイを提供することができる。
【図面の簡単な説明】
【0015】
【
図1】メッシュパターンを有する本実施形態の導電性フィルムの一態様を表す上面図
【
図2】メッシュパターンを有する本実施形態の導電性フィルムの別態様を表す上面図
【
図3】ラインパターンを有する本実施形態の導電性フィルムの一態様を表す上面図
【
図4】ラインパターンを有する本実施形態の導電性フィルムの別態様を表す上面図
【
図5】
図1の導電性フィルムのIII-III’の部分断面図
【
図6】メッシュパターンを有する本実施形態の導電性フィルムの開口率とピッチとの関係を説明するための金属細線パターンの上面図
【
図7】ラインパターンを有する本実施形態の導電性フィルムの開口率とピッチとの関係を説明するための金属細線パターンの上面図
【
図8】被覆層を備える一般的な導電性フィルムのIII-III’の部分断面図
【
図9】被覆層を備えた場合の
図1の導電性フィルムのIII-III’の部分断面図
【
図10】本実施形態の導電性フィルムを備える電子ペーパーの一態様を表す上面図
【
図11】本実施形態の電子ペーパーのV-V’の部分断面図
【
図12】従来の導電性フィルムを備える電子ペーパーの一態様を表す上面図
【
図13】本実施形態の導電性フィルムを備えるタッチパネルの一態様を表す斜視図
【
図14】本実施形態の導電性フィルムを備えるタッチパネルの別態様を表す斜視図
【
図15】シート抵抗の測定方法を説明するための斜視図
【発明を実施するための形態】
【0016】
以下、本発明の実施の形態(以下、「本実施形態」という。)について詳細に説明するが、本発明はこれに限定されるものではなく、その要旨を逸脱しない範囲で様々な変形が可能である。本実施形態の各数値範囲における上限値及び下限値は任意に組み合わせて任意の数値範囲を構成することができる。また、図においては、説明の便宜上、各部の構造は、適宜簡略化して示す場合があり、各部の寸法などは図の条件に限定されない。
【0017】
[導電性フィルム]
本実施形態の導電性フィルムは、透明基材と、前記透明基材の片面又は両面に配された金属細線パターンからなる導電部と、を有する導電性フィルムである。
本実施形態の導電性フィルムにおける前記金属細線パターンが、金属細線から構成されている。
本実施形態の導電性フィルムは、下記(i)又は(ii)の条件を満たす。
(i)前記金属細線は、空隙を有し、且つ、前記金属細線の延伸方向に直交する前記金属細線の断面において、金属細線断面積をSMとし、前記金属細線の断面に含まれる全空隙断面積をSVtotalとするとき、SVtotal/SMが0.10以上0.40以下である
(ii)前記金属細線の延伸方向に直交する前記金属細線の断面において、金属細線の最大厚さをTとし、前記透明基材側の金属細線界面から0.90Tの高さにおける金属細線の幅をW0.90とし、金属細線界面における前記金属細線の幅をW0としたとき、W0.90/W0が、0.40以上0.90以下である。
本実施形態の導電性フィルムによれば、透明性及び導電性を十分に維持しながら、可撓性に優れる導電性フィルムを提供することができる。さらに、金属細線表面上に保護層などの被覆層をより均一に形成でき耐候性などの機能性を付与できる導電性フィルムを提供することができる。
以下、(i)の条件を満たす本実施形態の導電性フィルムは、第1実施形態の導電性フィルムとして説明し、(ii)の条件を満たす本実施形態の導電性フィルムは、第2実施形態の導電性フィルムとして説明する。なお、本実施形態の導電性フィルムは、(i)及び(ii)の条件を満たすことを妨げるものではない。
【0018】
SVtotal/SMの調整による可撓性の向上と、W0.90/W0の調整による被覆層を均一に形成できる効果を兼ね備えながら、より高い導電性を実現するには(1+W0.90/W0)・(1-SVtotal/SM)を特定の範囲に調整することが望ましい。(1+W0.90/W0)・(1-SVtotal/SM)は空隙を除く金属細線の断面積の大きさを示す指標である。(1+W0.90/W0)・(1-SVtotal/SM)は、好ましくは0.84以上1.71以下である。下限値は、より好ましくは1.00以上、さらに好ましくは1.10以上、特に好ましくは1.15以上である。(1+W0.90/W0)・(1-SVtotal/SM)が0.84以上であれば、空隙を除く金属細線の断面積を十分に大きくできるため、導電性に優れる。他方、(1+W0.90/W0)・(1-SVtotal/SM)が1.71以下であれば、上述のSVtotal/SMとW0.90/W0の効果を十分に発揮できる。導電性の観点から、(1+W0.90/W0)・(1-SVtotal/SM)は大きい値に調整することが好ましい。なお、(1+W0.90/W0)・(1-SVtotal/SM)の最大値は2.00であり、このとき金属細線は空隙がなく断面形状は正方形状若しくは長方形状となる。
【0019】
(1+W0.90/W0)・(1-SVtotal/SM)の値は、特に制限されないが、例えば、金属細線を形成する際の焼成条件を調整することにより、その増減を制御することができる。その他、後述のSVtotal/SM等の各値を制御する方法により調整することも可能である。金属細線パターンにおけるW0.90/W0をそれぞれ所望範囲内とするためには、所望範囲となる形状となるように、粘度調整剤等を用いたインク粘度の調整や、パターン形成工程において、インクが版や転写媒体に塗工されてから、基材に転写されるまでの時間を制御する方法、例えば、転写媒体表面上のインクを凸版に転写する際のプロセス時間制御の方法が挙げられる。
【0020】
〔第1実施形態の導電性フィルム〕
第1実施形態の導電性フィルムは、透明基材と、前記透明基材の片面又は両面に配された金属細線パターンからなる導電部と、を有し、前記金属細線パターンが、金属細線から構成されており、前記金属細線は空隙を有し、前記金属細線の延伸方向に直交する前記金属細線の断面において、金属細線断面積をSMとし、前記金属細線の断面に含まれる全空隙断面積をSVtotalとするとき、SVtotal/SMが0.10以上0.40以下であることを特徴とする。
【0021】
ここで、特許文献1で検討されている金属細線の線幅は10μm以上である。発明者らの検討によれば、導電性フィルムに求められる透明性を向上させるために線幅5μm以下の金属細線を使用する場合には、特許文献1に記載されたような多孔質層を用いたとしても、導電性フィルムの曲げや撓み、屈曲等の変形による金属細線の断線や透明基材からの剥離に対する、導電性低下抑制効果が不十分であることがわかった。
【0022】
線幅5μm以下の金属細線では、多孔質層への導電性インクの浸透量が少なく、また、金属細線と透明樹脂基板とが接する面積も少ないため、特許文献1のような構成としても、金属細線と透明樹脂基板との十分な密着性が確保できないことに起因するものと推測される。
【0023】
第1実施形態は、上記問題に鑑みてなされたものであり、透明性及び導電性を十分に維持しながら、可撓性に優れる導電性フィルム、並びに、それを用いた導電性フィルムロール、電子ペーパー、タッチパネル、及びフラットパネルディスプレイを提供することを目的とする。
【0024】
そして、上述の第1実施形態によれば、透明性及び導電性を十分に維持しながら、可撓性に優れる導電性フィルム、並びに、それを用いた導電性フィルムロール、電子ペーパー、タッチパネル、及びフラットパネルディスプレイを提供することができる。
【0025】
図1に、本実施形態の導電性フィルムの一態様として、金属細線パターンがメッシュパターンである導電性フィルムの上面図を示す。本実施形態の導電性フィルム10は、透明基材11上に、金属細線パターン12からなる導電部13を有する。
【0026】
透明基材11上には、導電部13の他、導電性フィルム10の使用用途に応じてコントローラー等に接続するための取り出し電極(不図示)が形成されていてもよい。なお、透明基材11は片面又は両面に導電部13を有していてもよく、一方の面に複数の導電部13を有していてもよい。導電部13は、通電又は荷電(帯電)させることができるように構成された金属細線パターン12からなる。本実施形態の導電性フィルム10を電子デバイスに組み入れたときに、導電部13は、電子ペーパー、タッチパネル、及びフラットパネルディスプレイ等の画面部分の透明電極として機能する。
【0027】
このような導電性フィルムにおいて金属細線の線幅が細くなるほど、導電性フィルムの曲げ、撓み、屈曲等による金属細線の断線や透明基材からの剥離は顕著となるが、金属細線を保護層で覆ったり、アンカー層で密着性を向上させたりすることにより金属細線を補強したとしても、金属細線自体の機械特性自体が変わるわけではない。そのため、このような手法は、細い金属細線を有する導電性フィルムの可撓性の課題を完全に解決しうるものとは言い難い。
【0028】
これに対して、第1実施形態によれば、このような金属細線そのものにクッション部となる空隙を設けた構成とすることにより、金属細線自体の機械特性を調整する。これにより、視認性の観点から金属細線を細くした場合であっても、金属細線の可撓性を確保することが可能となる。また、このような金属細線において空隙を所定の範囲とすることで、導電性を損ねることなく、可撓性を確保することが可能となる。さらに、このような金属細線を用いた導電性フィルムは印刷にて作製することができるため、真空蒸着法やスパッタリング法により製膜するITOを用いた導電性フィルムに対して製造における低コスト化、環境負荷低減の観点でも優れる。
【0029】
〔導電部〕
導電部は、透明基材上に配された金属細線から構成される金属細線パターンである。金属細線パターンは規則的なパターンであっても不規則なパターンであってもよい。第1実施形態において、金属細線パターンを構成する金属細線は、金属細線の延伸方向に直交する金属細線の断面において、所定の割合で空隙を有する。
【0030】
第1実施形態における、SVtotal/SMは、0.10以上0.40以下であり、好ましくは0.13以上0.37以下であり、より好ましくは0.15以上0.35以下であり、さらに好ましくは0.17以上0.33以下である。SVtotal/SMが0.10以上であることにより、屈曲に伴う応力集中を緩和することができ、可撓性がより向上する。また、SVtotal/SMが0.40以下であることにより、導電性がより向上する上、金属細線の機械的強度がより向上する。SVtotal及びSMは金属細線の延伸方向に直交する金属細線の断面の電子顕微鏡写真から算出することができる。
【0031】
金属細線の断面内における空隙の偏在性及び均一性については、特に制限されず、空隙は金属細線断面中におよそ一様に分布していてもよいし、例えば、透明基材側の金属細線の界面に偏在していてもよいし、金属細線の表面側(透明基材側とは反対側)に偏在していてもよい。このなかでも、金属細線が、透明基材側の金属細線の界面に空隙を有することが好ましい。このような構成とすることにより、可撓性がより向上する傾向にある。なお、「界面に空隙を有する」とは「少なくとも一部の空隙が透明基材と接触している」ことをいい、後述する中間層を有する場合には「少なくとも一部の空隙が中間層と接触している」ことをいう。
【0032】
この原理としては特に制限されないが、例えば、以下のように考えられる。第1実施形態の導電性フィルムのように、透明基材と金属細線という剛性や延伸性等の機械性質の異なる2種の部材を曲げ、撓み、屈曲等により変形させる際には、その界面に応力が集中し、それを繰り返すことで、金属細線の断線や剥離が生じうる。この場合において、透明基材側の金属細線の界面に空隙があることにより、応力が緩和されやすく可撓性がより向上する。また、金属細線の可撓性に等方性を持たせるという観点からは、金属細線の断面における空隙は均一に分布していることが好ましい。そして、この両者の観点からすれば、金属細線が透明基材側の金属細線の界面に空隙を有しつつも、一部の空隙については金属細線の断面内で分布するような態様が好ましい。
【0033】
上記偏在性及び均一性は、特定の厚さ領域における空隙断面積を用いて表すことができる。例えば、透明基材側の金属細線界面から0.2Tまでの厚さ領域における空隙断面積をSV0.2とするとき、SV0.2/SVtotalは透明基材側の金属細線の界面側の領域に存在する空隙の割合を示す指標となる。このようなSV0.2/SVtotalは、好ましくは0.15以上0.60以下であり、より好ましくは0.18以上0.55以下であり、さらに好ましくは0.20以上0.50以下である。SV0.2/SVtotalが0.15以上であることにより、透明基材側の金属細線の界面における応力が緩和されやすくなり、可撓性がより向上する傾向にある。また、SV0.2/SVtotalが0.60以下であることにより、透明基材と金属細線とが接する面積が大きくなり密着性がより向上するとともに、他の領域に存在する空隙割合が相対的に大きくなることから、等方的な可撓性がより向上する傾向にある。なお、本実施形態において、Tとは、透明基材側の金属細線界面から金属細線表面までの厚さのうち、最大の厚さを意味し、電子顕微鏡写真より測定することができる。
【0034】
また、透明基材側の金属細線界面から0.8Tまでの厚さ領域における空隙断面積をSV0.8とするとき、SV0.8/SVtotalは金属細線の表面側以外の領域に存在する空隙の割合を示す指標となる。このようなSV0.8/SVtotalは、好ましくは0.80以上1.00以下であり、下限値はより好ましくは0.85以上であり、さらに好ましくは0.90以上である。SV0.8/SVtotalが0.80以上であることにより、透明基材側の金属細線の界面における応力が緩和されやすくなり、可撓性がより向上する傾向にあり、また導電性も向上する傾向にある。
【0035】
以上のように、SVtotal/SMや、好ましくはさらにSV0.2/SVtotal、SV0.8/SVtotalを特定の範囲に調整することで、導電性フィルムの曲げ、撓み、屈曲等の変形による金属細線の断線や透明基材からの剥離を抑制し、低い視認性と高い導電性を維持しながら可撓性を向上させることができる。
【0036】
(SV0.2+SV0.8)/SVtotalは、金属細線の表面側(0.8TからTまでの厚さ領域)に対する金属細線の界面側(金属細線界面から0.2Tまでの厚さ領域)の空隙の偏在度合いを示す指標である。金属細線の界面側、すなわち金属細線界面から0.2Tまでの厚さ領域に空隙が存在し、かつ、(SV0.2+SV0.8)/SVtotalが1.00超であると、金属細線の表面側よりも界面側に空隙が偏在していることを示す。(SV0.2+SV0.8)/SVtotalは、好ましくは1.00超1.60以下であり、より好ましくは1.10以上1.55以下であり、さらに好ましくは1.15以上1.50以下である。(SV0.2+SV0.8)/SVtotalが1.00超であると金属細線の界面側に空隙が偏在しているため、金属細線の界面における応力が緩和されやすくなり、可撓性がより向上する傾向にある。(SV0.2+SV0.8)/SVtotalが1.60以下であると界面以外の領域に存在する空隙割合が相対的に大きくなることから、等方的な可撓性がより向上する傾向にある。なお、(SV0.2+SV0.8)/SVtotalの最大値は2.00であり、このとき空隙はすべて透明基材側の金属細線界面から0.2Tまでの厚さ領域に存在する。
【0037】
SVtotal/SM、SV0.2/SVtotal、SV0.8/SVtotal、及び(SV0.2+SV0.8)/SVtotalの各値は、特に制限されないが、例えば、金属細線を形成する際の焼成条件を調整することにより、その増減を制御することができる。金属細線は、透明基材上に金属成分を含むインクを用いてパターンを形成し、これを焼成して金属成分同士を結合させることにより形成することができる。この焼成工程において金属成分は、拡散、凝集しながら近傍の金属成分と融着し、金属成分焼結膜を形成していくと考えられる。そのため、焼成時のエネルギー(例えば、熱、プラズマ、電子線や光源の照射エネルギー)や焼成時間を調整することで金属成分の拡散、凝集を調整し、これにより金属細線中の空隙量を調整することができる。また、インク中に含まれる界面活性剤や分散剤、還元剤の種類や含有量を調整することで、焼成中に発生するこれらの分解ガスにより金属細線中の空隙量を調整することも可能である。
【0038】
本明細書におけるSVtotal/SM、SV0.2/SVtotal、SV0.8/SVtotal、及び(SV0.2+SV0.8)/SVtotalは、金属細線の延伸方向に直交する金属細線の断面の電子顕微鏡写真から算出することができる。以下、具体的な測定方法について記載する。なお、後述する金属細線の断面の形成やSEM観察は、金属細線断面の酸化やコンタミを防止する観点から、アルゴン等の不活性雰囲気下や真空中で行うことが好ましい。
【0039】
まず、導電性フィルムを切断し、金属細線の延伸方向に直交する金属細線の断面を含む測定サンプルを得る。測定サンプルの作製方法は、断面の形成・加工による金属細線断面へのダメージ(変形)を抑制できる方法であれば特に制限されないが、好ましくはイオンビームを用いた加工法(例えば、BIB(Broad Ion Beam)加工法やFIB(Focused Ion Beam)加工法)や精密機械研磨、ウルトラミクロトーム等を用いることができる。特に、金属細線断面へのダメージを抑制する観点からアルゴンイオンビームを用いたBIB加工法を用いることが好ましい。本実施形態及び実施例では、BIB加工法を用いる。
【0040】
以下、BIB加工法を用いた金属細線の断面を形成する方法について説明する。まず、金属細線の延伸方向に直交する面で導電性フィルムを切断し、観察したい断面が露出した試料を得る。このとき、試料の断面は切断加工により若干の変形を受けている可能性がある。そこで、BIB加工法では、この若干の変形を受けている可能性がある断面をブロードイオンビームで削り、変形のない精細な断面を得る。具体的には、まず、試料のうち、導電部が形成されていない側の透明基材の表面に遮蔽板を密着させる。このとき、遮蔽板を、ブロードイオンビームにより削りたい部分が露出し、その他の部分が露出しないように、試料に対して密着させる。次いで、遮蔽板の上方からブロードイオンビームを照射する。これにより、露出した部分(変形を受けている可能性がある断面)がブロードイオンビームにより削られて、変形を受けていない断面を有する測定サンプルが得られる。なお、透明基材面側からブロードイオンビームを照射することにより、導電部側からブロードイオンビームを照射する場合と比較して、より精細な金属細線の断面を得ることができる。
【0041】
あるいは、金属細線の延伸方向に直交する面で導電性フィルムを切断する際に、直接ブロードイオンビームで切断してもよい。この場合、導電性フィルムの導電部が形成されていない方の透明基材面に遮蔽板を密着させて、遮蔽版の上からブロードイオンビームを照射する。
【0042】
上記のようにして得られた測定サンプルをSEMにより観察し、金属細線断面のSEM像を得る。得られたSEM画像からSM、SVtotal、SV0.2、及びSV0.8をそれぞれ算出し、SVtotal/SM、SV0.2/SVtotal、SV0.8/SVtotal、及び(SV0.2+SV0.8)/SVtotalを算出することができる。なお、金属細線断面積SMは、上述の金属細線の断面の構造体と空隙を含む全断面積である。
【0043】
なお、SVtotal/SM、SV0.2/SVtotal、SV0.8/SVtotal、及び(SV0.2+SV0.8)/SVtotalの算出にあたっては、旭化成社製IP-1000(ソフト名:A像くん)やImageJ等の公知の画像処理ソフトを補助的に用いてもよい。本実施の形態及び実施例ではImageJを利用した。
【0044】
金属細線は、特に限定されないが、例えば、金、銀、銅、又はアルミニウムからなる群より選ばれる少なくとも1種以上の金属元素を含む導電性成分を有することが好ましい。特に、導電性成分は、コスト及び導電性の観点から、銀又は銅が主成分であることが好ましく、さらにコストの観点から、銅が主成分であることがより好ましい。本実施形態において「主成分」とは、50質量%以上を占める成分を意味する。
【0045】
さらに、金属細線は、導電性成分に加え、非導電性成分を含んでもよい。非導電性成分としては、特に制限されないが、例えば、金属酸化物や金属化合物、有機化合物などが挙げられる。なお、これら非導電性成分としては、後述するインクに含まれる成分に由来する成分であって、インクに含まれる成分のうち焼成を経た後の金属細線に残留する金属酸化物、金属化合物、及び有機化合物などが挙げられる。導電性成分の含有割合は、好ましくは50質量%以上であり、より好ましくは60質量%以上であり、さらに好ましくは70質量%以上である。導電性成分の含有割合の上限は、特に制限されないが、100質量%である。また、非導電性成分の含有割合は、好ましくは50質量%以下であり、より好ましくは40質量%以下、さらに好ましくは30質量%以下である。非導電性成分の含有割合の下限は、特に制限されないが、0質量%である。
【0046】
(金属細線パターン)
金属細線パターンは、目的とする電子デバイスの用途に応じて設計することができ、特に限定されないが、例えば、複数の金属細線が網目状に交差して形成されるメッシュパターン(
図1及び2)や、複数の略平行な金属細線が形成されたラインパターン(
図3及び4)が挙げられる。また、金属細線パターンは、メッシュパターンとラインパターンとが組み合わされたものであってもよい。メッシュパターンの網目は、
図1に示されるような正方形又は長方形であっても、
図2に示されるようなひし形等の多角形であってもよい。また、ラインパターンを構成する金属細線は、
図3に示されるような直線であっても、
図4に示されるような曲線であってもよい。さらに、メッシュパターンを構成する金属細線においても、金属細線を曲線とすることができる。
【0047】
本実施形態の金属細線の線幅Wとは、透明基材11の金属細線パターン12が配された面側から、金属細線14を透明基材11の表面上に投影したときの金属細線14の線幅をいう。
図5に
図1の導電性フィルムのIII-III’の部分断面図を示す。この
図5を例にすると、台形の断面を有する金属細線14においては、透明基材11と接している金属細線14の面の幅が線幅Wとなる。また、金属細線の厚さTは表面粗さを考慮した場合の最大厚さを意味し、ピッチPは、線幅Wと金属細線間の距離の和を意味する。
【0048】
(線幅W)
金属細線の線幅Wは、好ましくは0.1μm以上5.0μm以下であり、より好ましくは0.2μm以上4.0μm以下であり、さらに好ましくは0.3μm以上3.0μm以下であり、よりさらに好ましくは0.4μm以上2.5μm以下である。金属細線の線幅Wが0.1μm以上であることにより、導電性がより向上する傾向にある。また、金属細線表面の酸化や腐食等による導電性の低下を十分に抑制できる傾向にある。さらに、開口率を同じとした場合、金属細線の線幅が細いほど、金属細線の本数を増やすことが可能となる。これにより、導電性フィルムの電界分布がより均一となり、より高解像度の電子デバイスを作製することが可能となる。また、一部の金属細線で断線が生じたとしても、それによる影響を他の金属細線が補うことができる。他方、金属細線の線幅Wが5.0μm以下であることにより、金属細線の視認性がより低下し、導電性フィルムの透明性がより向上する傾向にある。
【0049】
金属細線の厚さTは、好ましくは10nm以上1,000nm以下である。厚さTの下限は、より好ましくは50nm以上あり、さらに好ましくは75nm以上である。金属細線の厚さTが10nm以上であることにより、導電性がより向上する傾向にある。また、金属細線表面の酸化や腐食等による導電性の低下を十分に抑制できる傾向にある。他方、金属細線の厚さTが1,000nm以下であることにより、広い視野角において高い透明性を発現できる。
【0050】
(アスペクト比)
金属細線の線幅Wに対する金属細線の厚さTで表されるアスペクト比は、好ましくは0.05以上1.00以下である。アスペクト比の下限は、より好ましくは0.08以上、さらに好ましく0.10以上である。アスペクト比が0.05以上であることにより、透過率を低下させることなく、導電性をより向上できる傾向にある。
【0051】
(ピッチ)
金属細線パターンのピッチPは、好ましくは5μm以上であり、より好ましくは50μm以上であり、さらに好ましくは100μm以上である。金属細線パターンのピッチPが5μm以上であることで、良好な透過率を得ることができる。また、金属細線パターンのピッチPは、好ましくは1,000μm以下であり、より好ましくは500μm以下であり、さらに好ましくは250μm以下である。金属細線パターンのピッチPが1,000μm以下であることにより、導電性をより向上できる傾向にある。なお、金属細線パターンの形状がメッシュパターンである場合には、線幅1μmの金属細線パターンのピッチを200μmとすることにより、開口率99%とすることができる。
【0052】
なお、金属細線パターンの線幅、アスペクト比、及びピッチは、導電性フィルム断面を電子顕微鏡等で見ることにより確認することができる。また、金属細線パターンの線幅とピッチはレーザー顕微鏡や光学顕微鏡でも観察できる。また、ピッチと開口率は後述する関係式を有するため、一方が分かればもう一方を算出することもできる。また、金属細線パターンの線幅、アスペクト比、及びピッチを所望の範囲に調整する方法としては、後述する導電性フィルムの製造方法において用いる版の溝を調整する方法、インク中の金属粒子の平均粒子径を調整する方法等が挙げられる。
【0053】
(開口率)
金属細線パターンの開口率の下限値は、好ましくは60%以上であり、より好ましくは70%以上であり、さらに好ましくは80%以上であり、特に好ましくは90%以上である。金属細線パターンの開口率を上述の特定値以上とすることにより、導電性フィルムの透過率がより向上する傾向にある。また、金属細線パターンの開口率の上限値は、好ましくは100%未満であり、より好ましくは95%以下であり、さらに好ましくは90%以下であり、よりさらに好ましくは80%以下であり、さらにより好ましくは70%以下であり、特に好ましくは60%以下である。金属細線パターンの開口率を上述の特定値以下とすることにより、導電性フィルムの導電性がより向上する傾向にある。金属細線パターンの開口率は、金属細線パターンの形状によっても適正な値が異なる。また、金属細線パターンの開口率は、目的とする電子デバイスの要求性能(透過率及びシート抵抗)に応じて、上記上限値と下限値を適宜組み合わせることができる。
【0054】
なお、「金属細線パターンの開口率」とは、透明基材上の金属細線パターンが形成されている領域について以下の式で算出することができる。透明基材上の金属細線パターンが形成されている領域とは、
図1のSで示される範囲であり、金属細線パターンが形成されていない縁部等は除かれる。
開口率=(1-金属細線パターンの占める面積/透明基材の面積)×100
【0055】
また、開口率とピッチの関係式は、金属細線パターンの形状によって異なるが、以下のように算出することができる。
図6に、パターン単位16を有するメッシュパターン(グリッド(格子)パターン)の模式図を示す。このメッシュパターンの場合、開口率とピッチは下記関係式を有する。
開口率={開口部15の面積/パターン単位16の面積}×100
={((ピッチP1-線幅W1)×(ピッチP2-線幅W2))/(ピッチP1×ピッチP2)}×100
【0056】
また、
図7にラインパターンの模式図を示す。このラインパターンの場合は、開口率とピッチは下記関係式を有する。
開口率={(ピッチP-線幅W)/ピッチP}×100
【0057】
(シート抵抗)
導電性フィルムのシート抵抗は、好ましくは0.1Ω/sq以上1,000Ω/sq以下であり、より好ましくは0.1Ω/sq以上500Ω/sq以下であり、さらに好ましくは0.1Ω/sq以上300Ω/sq以下であり、よりさらに好ましくは0.1Ω/sq以上200Ω/sq以下であり、さらにより好ましくは0.1Ω/sq以上100Ω/sq以下であり、さらにより好ましくは0.1Ω/sq以上20Ω/sq以下であり、さらにより好ましくは0.1Ω/sq以上10Ω/sq以下である。シート抵抗が低いほど電力損失が抑制される傾向にある。そのため、シート抵抗の低い導電性フィルムを用いることにより、消費電力の少ない電子ペーパー、タッチパネル、及びフラットパネルディスプレイを得ることが可能となる。導電性フィルムのシート抵抗は、以下の方法により測定できる。
【0058】
図15にシート抵抗の測定方法を説明するための斜視図を示す。先ず、導電性フィルムから金属細線パターンが全面に配された部分を矩形状に切り出して、測定サンプルを得る。得られた測定サンプルの両端部に金属細線パターンと電気的に接続されたシート抵抗測定用の集電部を形成し、集電部間の電気抵抗R(Ω)を測定する。得られた電気抵抗R(Ω)、及び測定サンプルの集電部間の距離L(mm)、奥行方向の長さD(mm)を用いて、次式によりシート抵抗R
s(Ω/sq)を算出することができる。
R
s=R/L×D
【0059】
導電性フィルムのシート抵抗は、金属細線のアスペクト比(厚さ)の増加にともない、低下する傾向にある。また、金属細線を構成する金属材料種の選択によっても調整することが可能である。
【0060】
シート抵抗が低いほど電力損失が抑制される傾向にある。そのため、消費電力の少ない電子ペーパー、タッチパネル、及びフラットパネルディスプレイを得ることが可能となる。
【0061】
(可視光透過率)
導電性フィルムの可視光透過率は、好ましくは80%以上100%以下であり、より好ましくは90%以上100%以下である。ここで、可視光透過率は、JIS K 7361-1:1997の全光線透過率に準拠して、その可視光(360~830nm)の範囲の透過率を算出することで測定することができる。
【0062】
導電性フィルムの可視光透過率は、金属細線パターンの線幅を小さくしたり、開口率を向上させたりすることにより、より向上する傾向にある。
【0063】
(ヘイズ)
導電性フィルムのヘイズは、好ましくは0.01%以上5.00%以下である。ヘイズの上限はより好ましくは、3.00%以下、さらに好ましくは1.00%以下である。ヘイズの上限が5.00%以下であれば、可視光に対する導電性フィルムの曇りを十分に低減できる。本明細書におけるヘイズは、JIS K 7136:2000のヘイズに準拠して測定することができる。
【0064】
〔透明基材〕
透明基材の「透明」とは、可視光透過率が、好ましくは80%以上であることをいい、より好ましくは90%以上であることをいい、さらに好ましくは95%以上であることをいう。ここで、可視光透過率は、JIS K 7361-1:1997に準拠して測定することができる。
【0065】
透明基材の材料としては、特に限定されないが、例えば、ガラス等の透明無機基材;アクリル酸エステル、メタクリル酸エステル、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート、ポリアリレート、ポリ塩化ビニル、ポリエチレン、ポリプロピレン、ポリスチレン、ナイロン、芳香族ポリアミド、ポリエーテルエーテルケトン、ポリスルホン、ポリエーテルスルホン、ポリイミド、ポリエーテルイミド等の透明有機基材が挙げられる。このなかでも、ポリエチレンテレフタレート、ポリイミド、又はポリエチレンナフタレートが好ましい。ポリエチレンテレフタレートを用いることにより、導電性フィルムを製造するための生産性(コスト削減効果)がより優れ、また、透明基材と金属細線との密着性がより向上する傾向にある。また、ポリイミドを用いることにより、導電性フィルムの耐熱性がより向上する傾向にある。さらに、ポリエチレンナフタレートを用いることにより、透明基材と金属細線との密着性がより優れる傾向にある。
【0066】
透明基材は、1種の材料からなるものであっても、2種以上の材料が積層されたものであってもよい。また、透明基材が2種以上の材料が積層された多層体である場合には、該透明基材は有機基材又は無機基材同士が積層されたものであっても、有機基材及び無機基材が積層されたものであってもよい。
【0067】
透明基材の厚さは、好ましくは5μm以上500μm以下であり、より好ましくは10μm以上100μm以下である。
【0068】
〔中間層〕
本実施形態の導電性フィルムは、透明基材と導電部の間に中間層を有していてもよい。該中間層は、透明基材と導電部の金属細線との密着性の向上に寄与しうる。
【0069】
中間層に含まれる成分としては、特に限定されないが、例えば、ケイ素化合物(例えば、(ポリ)シラン類、(ポリ)シラザン類、(ポリ)シルチアン類、(ポリ)シロキサン類、ケイ素、炭化ケイ素、酸化ケイ素、窒化ケイ素、塩化ケイ素、ケイ素酸塩、ゼオライト、シリサイド等)、アルミニウム化合物(例えば、酸化アルミニウム等)、マグネシウム化合物(例えばフッ化マグネシウム)等が挙げられる。この中でも、酸化ケイ素、窒化ケイ素、酸化アルミニウム、及びフッ化マグネシウムからなる群より選ばれる少なくとも1種であることが好ましい。このような成分を用いることにより、導電性フィルムの透明性及び耐久性がより向上する傾向にあり、導電性フィルムを製造するための生産性(コスト削減効果)がより優れる。中間層は、PVD、CVDなどの気相成膜法や、上記中間層に含まれる成分が分散媒に分散した中間体形成組成物を塗布、乾燥する方法により成膜することができる。中間体形成組成物は、必要に応じて、分散剤、界面活性剤、結着剤等を含有してもよい。
【0070】
中間層の厚さは、好ましくは0.01μm以上500μm以下であり、より好ましくは0.05μm以上300μm以下であり、さらに好ましくは0.10μm以上200μm以下である。中間層の厚みが0.01μm以上であることで、中間層と金属細線の密着性が発現され、中間層の厚みが500μm以下であれば透明基材の可撓性が担保できる。
【0071】
中間層を透明基材上に積層することで、プラズマ等の焼成手段でインク中の金属成分を焼結させる際に、プラズマ等によって金属細線パターン部で被覆されていない箇所の透明基材のエッチングを防ぐことができる。
【0072】
さらにこの中間層は静電気による金属細線パターンの断線を防ぐために、帯電防止機能を持っていることが好ましい。中間層が帯電防止機能を有するために、中間層は導電性無機酸化物及び導電性有機化合物の少なくともいずれかを含むことが好ましい。導電性有機化合物としては、例えば、導電性の有機シラン化合物、脂肪族共役系のポリアセチレン、芳香族共役系のポリ(パラフェニレン)、複素環式共役系のポリピロール等が挙げられる。これらの中でも、導電性の有機シラン化合物が好ましい。
【0073】
中間層の体積抵抗率は100Ωcm以上100000Ωcm以下であることが好ましく、1000Ωcm以上10000Ωcm以下であることがより好ましく、2000Ωcm以上8000Ωcm以下であることがさらにより好ましい。中間層の体積抵抗率が100000Ωcm以下であることで、帯電防止機能を発現することができる。また中間層の体積抵抗率が100Ωcm以上であることで金属細線パターン間の電気伝導が好ましくないタッチパネル等の用途に好適に用いることができる。体積抵抗率は、中間層内の導電性無機酸化物や導電性有機化合物等の帯電防止機能を発揮する成分の含有量により調整することができる。例えば、プラズマ耐性の高い酸化ケイ素(体積比抵抗1014Ω・cm以上)と導電性有機化合物である有機シラン化合物を中間層に含む場合、導電性の有機シラン化合物の含有量を増やすことで体積抵抗率を低下することができる。一方で、酸化ケイ素の含有量を増やすことで体積抵抗率は増加するが高いプラズマ耐性を有するため薄膜にすることができ、光学的特性を損なうことがない。
【0074】
〔保護層〕
また、第1実施形態の導電性フィルムは、導電部を被覆する保護層を設けてもよい。保護層は、導電部を構成する金属細線のみを被覆してもよく、金属細線と透明基材(又は中間層)の表面を被覆してもよい。
【0075】
保護層の材料としては、透光性を有し、金属細線や透明基材(又は中間層)と良好な密着性が発現できるものであれば、特に限定されないが、例えば、フェノール樹脂、熱硬化型エポキシ樹脂、熱硬化性ポリイミド、メラミン樹脂、尿素樹脂、不飽和ポリエステル樹脂、アルキド樹脂、ポリウレタン、ジアリルフタレート樹脂、シリコーン樹脂などの熱硬化性樹脂や、ウレタンアクリレート、アクリル樹脂アクリレート、エポキシアクリレート、シリコーンアクリレート、UV硬化型エポキシ樹脂などのUV硬化性樹脂、市販のコーティング剤などを用いることができる。
【0076】
保護層の厚さは、0.01μm以上1.00μm以下であることが好ましく、0.03μm以上0.80μm以下であることがより好ましく、0.05μm以上0.50μm以下であることが更に好ましい。保護層の厚さが0.01μm以上であることにより、保護層によって保護された金属細線の酸化を防止でき、保護層の厚さが1.00μm以下であることにより、導電性フィルムの透明性を向上させることができる。
【0077】
〔導電性フィルムの製造方法〕
本実施形態の導電性フィルムの製造方法は、特に制限されないが、例えば、透明基材上に金属成分を含むインクを用いてパターンを形成するパターン形成工程と、当該パターンを焼成して金属細線を形成する焼成工程と、を有する方法が挙げられる。また、本実施形態の導電性フィルムの製造方法は、パターン形成工程に先立ち、透明基材の表面に中間層を形成する中間層形成工程を含んでもよい。
【0078】
〔中間層形成工程〕
中間層形成工程は、透明基材の表面に中間層を形成する工程である。中間層の形成方法としては、特に制限されないが、例えば、物理蒸着法(PVD)、化学蒸着法(CVD)などの気相成膜法により、透明基材表面に蒸着膜を形成する方法;透明基材表面に中間層形成用組成物を塗布し、乾燥することで塗膜を形成する方法が挙げられる。
【0079】
中間層形成用組成物は、上記中間層に含まれる成分として例示した成分あるいはその前駆体と、溶剤とを含み、必要に応じて、界面活性剤、分散剤、結着剤等を含有してもよい。
【0080】
〔パターン形成工程〕
パターン形成工程は、金属成分を含むインクを用いてパターンを形成する工程である。パターン形成工程は、所望の金属細線パターンの溝を有する版を用いる有版印刷方法であれば特に限定されないが、例えば、転写媒体表面にインクをコーティングする工程と、インクをコーティングした転写媒体表面と、凸版の凸部表面とを対向させて、押圧、接触して、凸版の凸部表面に転写媒体表面上のインクを転移させる工程と、インクをコーティングした転写媒体表面と透明基材の表面とを対向させて、押圧、接触して、転写媒体表面に残ったインクを透明基材の表面に転写する工程とを有する。なお、透明基材に中間層が形成されている場合には、中間層表面にインクが転写される。
【0081】
(インク)
上記パターン形成工程に用いられるインクは、金属成分と溶剤を含み、必要に応じて、界面活性剤、分散剤、還元剤等を含んでもよい。金属成分は、金属粒子としてインクに含まれていてもよいし、金属錯体としてインクに含まれていてもよい。なお、ここでいう金属成分に含まれる金属元素種としては、特に限定されないが、例えば、金、銀、銅、アルミニウムが挙げられる。これらの中でも、銀又は銅が好ましく、銅がより好ましい。
【0082】
金属粒子を用いる場合、その平均一次粒径は、好ましくは100nm以下であり、より好ましくは50nm以下であり、さらに好ましくは30nm以下である。また、金属粒子の平均一次粒径の下限は特に制限されないが、1nm以上が挙げられる。金属粒子の平均一次粒径が100nm以下であることにより、得られる金属細線の線幅Wをより細くすることができる。なお、本実施形態において「平均一次粒径」とは、金属粒子1つ1つ(所謂一次粒子)の粒径をいい、金属粒子が複数個集まって形成される凝集体(所謂二次粒子)の粒径である平均二次粒径とは区別される。
【0083】
金属粒子としては、酸化銅等の金属酸化物や金属化合物、コア部が銅でありシェル部が酸化銅であるようなコア/シェル粒子の態様であってもよい。金属粒子の態様は、分散性や焼結性の観点から、適宜決めることができる。
【0084】
インク中、金属粒子の含有量は、インク組成物の全質量に対して、好ましくは1質量%以上40質量%以下であり、より好ましくは5質量%以上35質量%以下であり、さらに好ましくは10質量%以上35質量%以下である。インク中の金属粒子の含有量がインク組成物の全質量に対して1質量%以上あれば、導電性を有する金属細線パターンを得ることができ、40質量%以下であれば、インクを金属細線パターン状に印刷することができる。
【0085】
界面活性剤としては、特に制限されないが、例えば、シリコーン系界面活性剤やフッ素系界面活性剤などが挙げられる。このような界面活性剤を用いることにより、転写媒体(ブランケット)へのインクのコーティング性、コーティングされたインクの平滑性が向上し、より均一な塗膜が得られる傾向にある。なお、界面活性剤は、金属成分を分散可能であり、かつ焼成の際に残留しにくいよう構成されていることが好ましい。
【0086】
インク中、界面活性剤の含有量は、インク組成物の全質量に対して、好ましくは0.01質量%以上10質量%以下であり、より好ましくは0.1質量%以上5質量%以下であり、さらに好ましくは0.5質量%以上2質量%以下である。インク中の界面活性剤の含有量がインク組成物の全質量に対して0.01質量%以上あれば、インクのコーティング性、コーティングされたインクの平滑性を向上させることができ、10質量%以下であれば、抵抗が低い金属細線パターンを得ることができる。
【0087】
また、分散剤としては、特に制限されないが、例えば、金属成分に非共有結合又は相互作用をする分散剤、金属成分に共有結合をする分散剤が挙げられる。非共有結合又は相互作用をする官能基としてはリン酸基を有する分散剤が挙げられる。このような分散剤を用いることにより、金属成分の分散性がより向上する傾向にある。
【0088】
インク中、分散剤の含有量は、インク組成物の全質量に対して、好ましくは0.1質量%以上30質量%以下であり、より好ましくは1質量%以上20質量%以下であり、さらに好ましくは2質量%以上10質量%以下である。インク中の分散剤の含有量がインク組成物の全質量に対して0.1質量%以上あれば、金属粒子が分散されたインクを得ることができ、30質量%以下であれば、抵抗が低い金属細線パターンを得ることができる。
【0089】
さらに、溶剤としては、モノアルコール及び多価アルコール等のアルコール系溶剤;アルキルエーテル系溶剤;炭化水素系溶剤;ケトン系溶剤;エステル系溶剤などが挙げられる。これらは単独で使用されてもよく、1種以上で併用されても良い。たとえば、炭素数10以下のモノアルコールと炭素数10以下の多価アルコールとの併用などが挙げられる。このような、溶剤を用いることにより、転写媒体(ブランケット)へのインクのコーティング性、転写媒体から凸版へのインクの転移性、転写媒体から透明基材へのインクの転写性、及び金属成分の分散性がより向上する傾向にある。なお、溶剤は、金属成分を分散可能であり、かつ焼成の際に残留しにくいよう構成されていることが好ましい。
【0090】
インク中、溶媒の含有量は、上述の金属粒子、界面活性剤、分散剤等の成分の残部であるが、例えば、インク組成物の全質量に対して、好ましくは50質量%以上99質量%以下であり、より好ましくは60質量%以上90質量%以下であり、さらに好ましくは70質量%以上80質量%以下である。インク中の溶媒の含有量がインク組成物の全質量に対して50質量%以上あれば、インクを金属細線パターン状に印刷することができ、99質量%以下であれば、導電性を有する金属細線パターンを得ることができる。
【0091】
なお、焼成中に発生するこれらの分解ガス等により金属細線中の空隙量を調整するという観点から、インクに含まれる上記成分の含有量を適宜調整することができる。
【0092】
〔焼成工程〕
焼成工程は、パターンを焼成して金属細線を形成する工程であり、これにより、インクを塗布したパターンと同様の金属細線パターンを有する導電部を得ることができる。焼成は、金属成分が融着して、金属成分焼結膜を形成することができる方法であれば特に制限されない。焼成は、例えば、焼成炉で行ってもよいし、プラズマ、加熱触媒、紫外線、真空紫外線、電子線、赤外線ランプアニール、フラッシュランプアニール、レーザーなどを用いて行ってもよい。得られる焼結膜が酸化されやすい場合には、非酸化性雰囲気中において焼成することが好ましい。また、インクに含まれ得る還元剤のみで金属酸化物等が還元されにくい場合には、還元性雰囲気で焼成することが好ましい。
【0093】
非酸化性雰囲気とは酸素等の酸化性ガスを含まない雰囲気であり、不活性雰囲気と還元性雰囲気がある。不活性雰囲気とは、例えば、アルゴン、ヘリウム、ネオンや窒素等の不活性ガスで満たされた雰囲気である。また、還元性雰囲気とは、水素、一酸化炭素等の還元性ガスが存在する雰囲気を指す。これらのガスを焼成炉中に充填して密閉系としてインクの塗布膜(分散体塗布膜)を焼成してもよい。また、焼成炉を流通系にしてこれらのガスを流しながら塗布膜を焼成してもよい。塗布膜を非酸化性雰囲気で焼成する場合には、焼成炉中を一旦真空に引いて焼成炉中の酸素を除去し、非酸化性ガスで置換することが好ましい。また、焼成は、加圧雰囲気で行なってもよいし、減圧雰囲気で行なってもよい。
【0094】
焼成温度は、特に制限されないが、好ましくは20℃以上400℃以下であり、より好ましくは50℃以上300℃以下であり、さらに好ましくは80℃以上200℃以下である。焼成温度が400℃以下であることにより、耐熱性の低い基板を使用することができるので好ましい。また、焼成温度が20℃以上であることにより、焼結膜の形成が十分に進行し、導電性が良好となる傾向にあるため好ましい。なお、得られる焼結膜は、金属成分に由来する導電性成分を含み、そのほか、インクに用いた成分や焼成温度に応じて、非導電性成分を含みうる。
【0095】
この中でも、金属成分の拡散、凝集を調整し、これにより金属細線中の空隙量を調整する観点から、焼成時のエネルギーとしては、例えば、熱、プラズマ、電子線や光源を用いることが好ましく、フラッシュランプアニールを用いることが好ましい。また、同様の観点から、焼成時間は、好ましくは100μsec~50msecであり、より好ましくは800μsec~10msecであり、1msec~2.4msecである。なお、必要に応じて、フラッシュランプアニールを複数回用いて焼成してもよい。
【0096】
また、上述の観点に加え金属成分の融着を促進でき、より高い導電性を有する導電性フィルムが得られるため、プラズマによる焼成方法を用いることがより好ましい。同様の観点から、プラズマの出力は好ましくは0.5kW以上であり、より好ましくは0.6kW以上であり、さらに好ましくは0.7kW以上である。プラズマの出力の上限値は、特に制限はなく、使用する透明基材や中間層に損傷がない範囲であればよい。また焼成時間の下限値はプラズマ出力に依るが、生産性の観点から上限値は好ましくは1000sec以下であり、より好ましくは600sec以下である。なお、必要に応じて、プラズマ焼成を複数回用いて焼成してもよい。
【0097】
〔保護層形成工程〕
本実施形態の導電性フィルムの製造方法は、焼成工程の後に、導電部を被覆する保護層を形成する保護層形成工程を含んでもよい。保護層形成工程の具体例としては、保護層を形成する成分又はそれらの前駆体や、それらが溶剤に溶解又は分散した保護層形成組成物を導電部に塗布し、乾燥、加熱、又はUV照射等を施すことにより保護層を形成する方法が挙げられる。保護層を塗布する方法としては、導電部に対して層をコーティングし導電部が雰囲気に露出しない方法であれば特に制限されないが、例えば、スピンコーティング、ダイコーティング、バーコーティングなどを用いることができる。保護層を形成する成分としては、〔保護層〕の項で例示した成分が挙げられる。また、保護層形成組成物は、必要に応じて、分散剤、界面活性剤、結着剤等を含んでもよい。
【0098】
〔第2実施形態の導電性フィルム〕
第2実施形態の導電性フィルムは、透明基材と、透明基材の片面又は両面に配された金属細線パターンからなる導電部と、を有する導電性フィルムである。前記金属細線パターンが、金属細線から構成されており、金属細線の延伸方向に直交する金属細線の断面において、金属細線の最大厚さをTとし、透明基材側の金属細線界面から0.90Tの高さにおける金属細線の幅をW0.90とし、金属細線界面における金属細線の幅をW0としたとき、W0.90/W0が、0.40以上0.90以下である。
【0099】
また、例えば、特許文献2に示されるような金属細線を用いた導電性フィルムでは、耐候性の向上や更なる機能性を付与する目的から、金属細線表面上に保護層や機能性層などの被覆層を設けることができる。例えば、露出した金属細線を構成する金属原子が経時的に酸化され導電性が低下することを抑制する目的で、金属細線上に保護層を形成することができる。しかしながら、一般的な金属細線の断面形状は、ほぼ正方形状若しくはほぼ長方形状であり、このような金属細線を保護層により十分に保護しようとすると、保護層の厚さが薄くなる部分が生じてしまい、保護層により十分に保護されない金属細線の部位から経時的に酸化され、導電性が低下するという課題があった。
【0100】
したがって、本実施形態は、金属細線表面上に保護層などの被覆層をより均一に形成可能な導電性フィルム、導電性フィルムロール、電子ペーパー、タッチパネル、及びフラットパネルディスプレイに関する。
【0101】
本発明者らは、上記課題を解決すべく鋭意検討した。その結果、金属細線の延伸方向に直交する金属細線の断面において、金属細線の最大厚さをTとし、透明基材側の金属細線界面から0.90Tの高さにおける金属細線の幅をW0.90とし、金属細線界面における前記金属細線の幅をW0としたとき、W0.90/W0を特定範囲内に調整することにより、上記課題を解決しうることを見出し、本実施形態を完成させるに至った。
【0102】
本実施形態によれば、金属細線表面に保護層などの被覆層をより均一に形成可能な導電性フィルム、導電性フィルムロール、電子ペーパー、タッチパネル、及びフラットパネルディスプレイを提供することができる。
【0103】
金属細線パターンは、金属成分を含むインクを透明基材上に転写させて形成されるため、金属細線の表面は必ずしも平坦面であるとは限らず、凹凸面を有している。このため、金属細線の表面と、側壁面との角を規定することは困難であり、この角の丸みを表現するものとして、W0.90/W0を規定している。
【0104】
一般的な導電性フィルムを
図8に示す。
図8に示すようなW
0.90/W
0が0.90を超えている金属細線14を有する導電性フィルムでは、金属細線14上に被覆層17を形成すると、
図8に示すように角が形成される付近で被覆層の厚みが薄い部分が生じる。これに対し、
図9に示すようなW
0.90/W
0が0.90以下の金属細線14A上に被覆層17を形成すると、角が形成される付近であっても十分な厚さの被覆層17が形成される。このため、
図9の被覆層17が保護層である場合、保護層の厚さが薄くなる部分が生じることがなく、金属細線における金属原子が経時的に酸化されることが抑制され、これにより導電性の低下を抑制できる。
【0105】
また、W0.90/W0が0.40以上であることにより、金属細線の断面積を確保できるため、導電性フィルムの導電性を十分なものとすることができる。
【0106】
同様の観点から、W0.90/W0は、0.55以上0.85以下であることが好ましい。
【0107】
透明基材側の金属細線界面から0.50Tの高さにおける金属細線の幅をW0.50としたとき、W0.50/W0は、0.70以上1.00未満であるであることが好ましく、0.75以上0.99以下であることがより好ましく、0.80以上0.95以下であることが更に好ましい。W0.50/W0が、1.00未満であることにより、0.50Tの領域において、被覆層の厚さが薄くなる部分が生じにくく、例えば、被覆層が保護層である場合には、金属細線における金属原子の酸化を抑制でき、結果的に経時的な導電性の低下を一層抑制できる。一方、W0.50/W0が0.70以上であると、金属細線の断面積を確保できるため、導電性フィルムの導電性を一層十分なものとすることができる。
【0108】
また、W0.90/W0.50は、0.50以上0.95以下であることが好ましく、0.55以上0.90以下であることがより好ましく、0.60以上0.85以下であることが更に好ましい。W0.90/W0.50が0.95以下であることにより、0.90T~0.50Tの領域において、被覆層を一層十分に厚くできる傾向にあるため、例えば、被覆層が保護層である場合には、金属細線における金属原子の酸化を抑制でき、結果的に経時的な導電性の低下を一層抑制できる。W0.90/W0.50が0.50以上であることにより、金属細線の断面積を確保できるため、導電性フィルムの導電性を一層向上できる傾向にある。
【0109】
第2実施形態の導電性フィルムにおいて、W0.50/W0がW0.90/W0.50よりも大きいことが好ましい。これにより、金属細線の断面におけるエッジを低減し、金属細線に付着する被覆層の膜厚の均一性が一層向上する傾向にある。
【0110】
透明基材側の金属細線界面から0.90Tの厚さにおける高さ位置において、角が形成されていないことが好ましい。これにより、金属細線界面から0.90Tの厚さにおける高さ位置の領域において、被覆層を一層十分に厚くできる傾向にある。
【0111】
透明基材側の金属細線界面から0.50Tの厚さにおける高さ位置から0.90Tの厚さにおける高さ位置に向かって金属細線の幅が漸減することが好ましい。これにより、0.90T~0.50Tの領域において、被覆層を一層十分に厚くできる傾向にある。
【0112】
金属細線の延伸方向に直交する金属細線の断面形状は、金属細線の表面は必ずしも平坦面であるとは限らず、凹凸面を有していることが多いことから厳密に定められないが、略台形状、略半円状、略半楕円状等が挙げられる。ここでいう「略台形状」は、台形の脚に相当するものが、直線(辺)であっても曲線であってもよいことをいい、台形の脚に相当するものが、曲線である場合は、外側に凸にであっても、内側に凸であってもよいことをいう。また、「略台形状」は、上底に相当するものが、直線(辺)であっても凹凸を有するものであってもよい。
【0113】
本明細書において、金属細線の延伸方向に直交する前記金属細線の断面において、金属細線界面から所定の高さにおける金属細線の幅は、金属細線の延伸方向に直交する金属細線の断面の電子顕微鏡写真から算出することができる。以下、具体的な測定方法について記載する。なお、後述する金属細線の断面の形成やSEM観察は、金属細線断面の酸化やコンタミを防止する観点から、アルゴン等の不活性雰囲気下や真空中で行うことが好ましい。
まず、導電性フィルムを切断し、金属細線の延伸方向に直交する金属細線の断面を含む測定サンプルを得る。測定サンプルの作製方法は、断面の形成・加工による金属細線断面へのダメージ(変形)を抑制できる方法であれば特に制限されないが、好ましくはイオンビームを用いた加工法(例えば、BIB(Broad Ion Beam)加工法やFIB(Focused Ion Beam)加工法)や精密機械研磨、ウルトラミクロトーム等を用いることができる。特に、金属細線断面へのダメージを抑制する観点からアルゴンイオンビームを用いたBIB加工法を用いることが好ましい。本実施形態及び実施例では、BIB加工法を用いる。
【0114】
以下、BIB加工法を用いた金属細線の断面を形成する方法について説明する。まず、金属細線の延伸方向に直交する面で導電性フィルムを切断し、観察したい断面が露出した試料を得る。このとき、試料の断面は切断加工により若干の変形を受けている可能性がある。そこで、BIB加工法では、この若干の変形を受けている可能性がある断面をブロードイオンビームで削り、変形のない精細な断面を得る。具体的には、まず、試料のうち、導電部が形成されていない側の透明基材の表面に遮蔽板を密着させる。このとき、遮蔽板を、ブロードイオンビームにより削りたい部分が露出し、その他の部分が露出しないように、試料に対して密着させる。つづいて、遮蔽板の上方からブロードイオンビームを照射する。これにより、露出した部分(変形を受けている可能性がある断面)がブロードイオンビームにより削られて、変形を受けていない断面を有する測定サンプルが得られる。なお、透明基材面側からブロードイオンビームを照射することにより、導電部側からブロードイオンビームを照射する場合と比較して、より精細な金属細線の断面を得ることができる。
【0115】
あるいは、金属細線の延伸方向に直交する面で導電性フィルムを切断する際に、直接ブロードイオンビームで切断してもよい。この場合、導電性フィルムの導電部が形成されていない方の透明基材面に遮蔽板を密着させて、遮蔽版の上からブロードイオンビームを照射する。
【0116】
上記のようにして得られた測定サンプルをSEMにより観察し、金属細線断面のSEM像を得る。
【0117】
金属細線断面のSEM像より透明基材側の金属細線界面から金属細線表面までの最大の厚さTを算出する。ここでいう「最大の厚さT」は、透明基材側の金属細線界面から金属細線表面までの厚さのうち、最大の厚さをいう。この最大の厚さTを基準として、所定の厚さにおける金属細線の幅を算出する。
【0118】
図1に、本実施形態の導電性フィルムの一態様として、金属細線パターンがメッシュパターンである導電性フィルムの上面図を示す。本実施形態の導電性フィルム10は、透明基材11上に、金属細線パターン12からなる導電部13を有する。
【0119】
透明基材11上には、導電部13の他、導電性フィルム10の使用用途に応じてコントローラー等に接続するための取り出し電極(不図示)が形成されていてもよい。なお、透明基材11は片面又は両面に導電部13を有することができ、一方の面に複数の導電部13を有していてもよい。導電部13は、通電または荷電(帯電)させることができるように構成された金属細線パターン12からなる。本実施形態の導電性フィルム10を電子デバイスに組み入れたときに、導電部13は、電子ペーパー、タッチパネル、及びフラットパネルディスプレイ等の画面部分の透明電極として機能する。
【0120】
〔透明基材〕
透明基材の「透明」とは、可視光透過率が、好ましくは80%以上であることをいい、より好ましくは90%以上であることをいい、さらに好ましくは95%以上であることをいう。ここで、可視光透過率は、JIS K 7361-1:1997に準拠して測定することができる。
【0121】
透明基材の材料としては、特に限定されないが、例えば、ガラス等の透明無機基材;アクリル酸エステル、メタクリル酸エステル、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート、ポリアリレート、ポリ塩化ビニル、ポリエチレン、ポリプロピレン、ポリスチレン、ナイロン、芳香族ポリアミド、ポリエーテルエーテルケトン、ポリスルホン、ポリエーテルスルホン、ポリイミド、ポリエーテルイミド等の透明有機基材が挙げられる。このなかでも、ポリエチレンテレフタレートを用いることにより、導電性フィルムを製造するための生産性(コスト削減効果)がより優れる。また、ポリイミドを用いることにより、導電性フィルムの耐熱性がより優れる。さらに、ポリエチレンテレフタレート及び/又はポリエチレンナフタレートを用いることにより、透明基材と金属細線との密着性がより優れる。
【0122】
透明基材は、1種の材料からなるものであっても、2種以上の材料が積層されたものであってもよい。また、透明基材が、2種以上の材料が積層された多層体である場合、透明基材は、有機基材又は無機基材同士が積層されたものであっても、有機基材及び無機基材が積層されたものであってもよい。
【0123】
透明基材の厚さは、好ましくは5μm以上500μm以下であり、より好ましくは10μm以上100μm以下である。
【0124】
〔中間層〕
本実施形態の導電性フィルムは、透明基材と導電部の間に中間層を有していてもよい。該中間層は、透明基材と導電部の金属細線との密着性の向上に寄与しうる。
【0125】
中間層に含まれる成分としては、特に限定されないが、例えば、ケイ素化合物(例えば、(ポリ)シラン類、(ポリ)シラザン類、(ポリ)シルチアン類、(ポリ)シロキサン類、ケイ素、炭化ケイ素、酸化ケイ素、窒化ケイ素、塩化ケイ素、ケイ素酸塩、ゼオライト、シリサイド等)、アルミニウム化合物(例えば、酸化アルミニウム等)、マグネシウム化合物(例えばフッ化マグネシウム)等が挙げられる。この中でも、酸化ケイ素、窒化ケイ素、酸化アルミニウム、及びフッ化マグネシウムからなる群より選ばれる少なくとも1種であることが好ましい。このような成分を用いることにより、導電性フィルムの透明性及び耐久性がより向上する傾向にあり、導電性フィルムを製造するための生産性(コスト削減効果)がより優れる。中間層は、PVD、CVDなどの気相成膜法や、上記中間層に含まれる成分が分散媒に分散した中間体形成組成物を塗布、乾燥する方法により成膜することができる。中間体形成組成物は、必要に応じて、分散剤、界面活性剤、結着剤等を含有してもよい。
【0126】
中間層の厚さは、好ましくは0.01μm以上500μm以下であり、より好ましくは0.05μm以上300μm以下であり、さらに好ましくは0.10μm以上200μm以下である。中間層の厚みが0.01μm以上であることで、中間層と金属細線の密着性が発現され、中間層の厚みが500μm以下であれば透明基材の可撓性が担保できる。
【0127】
中間層を透明基材上に積層することで、プラズマ等の焼成手段でインク中の金属成分を焼結させる際に、プラズマ等によって金属細線パターン部で被覆されていない箇所の透明基材のエッチングを防ぐことができる。
【0128】
さらにこの中間層は静電気による金属細線パターンの断線を防ぐために、帯電防止機能を持っていることが好ましい。中間層が帯電防止機能を有するために、中間層は導電性無機酸化物及び導電性有機化合物の少なくともいずれかを含むことが好ましい。導電性有機化合物としては、例えば、導電性の有機シラン化合物、脂肪族共役系のポリアセチレン、芳香族共役系のポリ(パラフェニレン)、複素環式共役系のポリピロール等が挙げられる。これらの中でも、導電性の有機シラン化合物が好ましい。
【0129】
中間層の体積抵抗率は100Ωcm以上100000Ωcm以下であることが好ましく、1000Ωcm以上10000Ωcm以下であることがより好ましく、2000Ωcm以上8000Ωcm以下であることがさらにより好ましい。中間層の体積抵抗率が100000Ωcm以下であることで、帯電防止機能を発現することができる。また中間層の体積抵抗率が100Ωcm以上であることで金属細線パターン間の電気伝導が好ましくないタッチパネル等の用途に好適に用いることができる。体積抵抗率は、中間層内の導電性無機酸化物や導電性有機化合物等の帯電防止機能を発揮する成分の含有量により調整することができる。例えば、プラズマ耐性の高い酸化ケイ素(体積比抵抗1014Ω・cm以上)と導電性有機化合物である有機シラン化合物を中間層に含む場合、導電性の有機シラン化合物の含有量を増やすことで体積抵抗率を低下することができる。一方で、酸化ケイ素の含有量を増やすことで体積抵抗率は増加するが高いプラズマ耐性を有するため薄膜にすることができ、光学的特性を損なうことがない。
【0130】
〔保護層〕
また、本実施形態の導電性フィルムは、導電部を被覆する保護層を設けてもよい。保護層は、導電部を構成する金属細線のみを被覆してもよく、金属細線と透明基材(又は中間層)の表面を被覆してもよい。
【0131】
保護層の材料としては、透光性を有し、金属細線や透明基材(又は中間層)と良好な密着性が発現できるものであれば、特に限定されないが、例えば、フェノール樹脂、熱硬化型エポキシ樹脂、熱硬化性ポリイミド、メラミン樹脂、尿素樹脂、不飽和ポリエステル樹脂、アルキド樹脂、ポリウレタン、ジアリルフタレート樹脂、シリコーン樹脂などの熱硬化性樹脂や、ウレタンアクリレート、アクリル樹脂アクリレート、エポキシアクリレート、シリコーンアクリレート、UV硬化型エポキシ樹脂などのUV硬化性樹脂、市販のコーティング剤などを用いることができる。
【0132】
保護層の厚さは、0.01μm以上1.00μm以下であることが好ましく、0.03μm以上0.80μm以下であることがより好ましく、0.05μm以上0.50μm以下であることが更に好ましい。保護層の厚さが0.01μm以上であることにより、保護層によって保護された金属細線の酸化を十分に防止でき、保護層の厚さが1.00μm以下であることにより、導電性フィルムの透明性を向上させることができる。
【0133】
〔導電部〕
第2実施形態における導電部は、透明基材上に配された金属細線から構成される金属細線パターンである。金属細線パターンは規則的なパターンであっても不規則なパターンであってもよい。金属細線は、特に限定されないが、例えば、金、銀、銅、又はアルミニウムからなる群より選ばれる少なくとも1種以上の金属元素を含む導電性成分を有することが好ましい。特に、導電性成分は、コスト及び導電性の観点から、銀又は銅が主成分であることが好ましく、さらにコストの観点から、銅が主成分であることがより好ましい。本実施形態において「主成分」とは、50質量%以上を占める成分を意味する。
このような材料を用いることにより、導電性フィルムの導電性がより向上する傾向にあり、導電性フィルムを製造するための生産性(コスト削減効果)が優れる。
【0134】
さらに、金属細線は、導電性成分に加え、非導電性成分を含んでもよい。非導電性成分としては、特に制限されないが、例えば、金属酸化物や金属化合物、及び有機化合物が挙げられる。なお、非導電性成分としては、後述するインクに含まれる成分に由来する成分であって、インクに含まれる成分のうち焼成を経た後の金属細線に残留する金属酸化物、金属化合物及び有機化合物が挙げられる。導電性成分の含有割合は、好ましくは50質量%以上であり、より好ましくは60質量%以上であり、さらに好ましくは70質量%以上である。導電性成分の含有割合の上限は、特に制限されないが、100質量%である。また、非導電性成分の含有割合は、好ましくは50質量%以下であり、より好ましくは40質量%以下であり、さらに好ましくは30量%以下である。非導電性成分の含有割合の下限は、特に制限されないが、0質量%である。
【0135】
(金属細線パターン)
金属細線パターンは、目的とする電子デバイスの用途に応じて設計することができ、特に限定されないが、例えば、複数の金属細線が網目状に交差して形成されるメッシュパターン(
図1及び2)や、複数の略平行な金属細線が形成されたラインパターン(
図3及び4)が挙げられる。また、金属細線パターンは、メッシュパターンとラインパターンとが組み合わされたものであってもよい。メッシュパターンの網目は、
図1に示されるような正方形又は長方形であっても、
図2に示されるようなひし形等の多角形であってもよい。また、ラインパターンを構成する金属細線は、
図3に示されるような直線であっても、
図4に示されるような曲線であってもよい。さらに、メッシュパターンを構成する金属細線においても、金属細線を曲線とすることができる。
【0136】
第2実施形態の金属細線界面における金属細線の幅W
0とは、
図9を例にすると、略台形の断面を有する金属細線14Aにおいては、透明基材11と接している金属細線14Aの面の幅が線幅W
0となる。金属細線パターンの線幅W
0及び最大の厚さT、0.50T、0.90T及びは、それぞれ
図9に示されるように定義される。ピッチPは、線幅W
0と金属細線間の距離の和である。
【0137】
第2実施形態の金属細線界面における金属細線の幅W0は、例えば、0.1μm以上5.0μm以下であり、好ましくは0.2μm以上4.0μm以下であり、より好ましくは0.3μm以上3.0μm以下であり、さらに好ましくは0.4μm以上2.5μm以下である。金属細線の線幅が0.1μm以上であれば、金属細線の導電性を十分に確保できる。さらに開口率を同じとした場合、金属細線の線幅が細いほど、金属細線の本数を増やすことが可能となる。これにより、導電性フィルムの電界分布がより均一となり、より高解像度の電子デバイスを作製することが可能となる。また、一部の金属細線で断線が生じたとしても、それによる影響を他の金属細線が補うことができる。他方、金属細線の線幅が5.0μm以下であれば、金属細線の視認性がより低下し、導電性フィルムの透明性がより向上する傾向にある。
【0138】
金属細線の最大の厚さTは、好ましくは10nm以上1,000nm以下である。最大の厚さTの下限は、より好ましくは50nm以上あり、さらに好ましくは75nm以上である。金属細線の最大の厚さTが10nm以上であることにより、導電性がより向上する傾向にある。他方、金属細線の厚さTが1,000nm以下であることにより、広い視野角において高い透明性を発現できる。
【0139】
(アスペクト比)
金属細線の幅W0に対する金属細線の最大の厚さTで表されるアスペクト比は、好ましくは0.05以上1.00以下である。アスペクト比の下限は、より好ましくは0.08以上、さらに好ましく0.10以上である。アスペクト比を0.05以上にすることにより、透過率を低下させることなく導電性をより向上できる傾向にある。
【0140】
(ピッチ)
金属細線パターンのピッチPは、好ましくは5μm以上であり、より好ましくは50μm以上であり、さらに好ましくは100μm以上である。金属細線パターンのピッチPが5μm以上であることで、良好な透過率を得ることができる。また、金属細線パターンのピッチPは、好ましくは1,000μm以下であり、より好ましくは500μm以下であり、さらに好ましくは250μm以下である。金属細線パターンのピッチPが1,000μm以下であることにより、導電性をより向上できる傾向にある。なお、金属細線パターンの形状がメッシュパターンである場合には、線幅1μmの金属細線パターンのピッチを200μmとすることにより、開口率99%とすることができる。
【0141】
なお、金属細線パターンの線幅、アスペクト比、及びピッチは、導電性フィルム断面を電子顕微鏡等で見ることにより確認することができる。また、金属細線パターンの線幅とピッチはレーザー顕微鏡や光学顕微鏡でも観察できる。また、ピッチと開口率は後述する関係式を有するため、一方が分かればもう一方を算出することもできる。また、金属細線パターンの線幅、アスペクト比、及びピッチを所望の範囲に調整する方法としては、後述する導電性フィルムの製造方法において用いる版の溝を調整する方法、インク中の金属粒子の平均粒子径を調整する方法等が挙げられる。
【0142】
(開口率)
金属細線パターンの開口率は、好ましくは60%以上であり、より好ましくは70%以上であり、さらに好ましくは80%以上であり、特に好ましくは90%以上である。金属細線パターンの開口率を上述の特定値以上とすることにより、導電性フィルムの透過性がより向上する傾向にある。また、金属細線パターンの開口率は、好ましくは100%未満であり、より好ましくは95%以下であり、さらに好ましくは90%以下であり、よりさらに好ましくは80%以下であり、さらにより好ましくは70%以下であり、特に好ましくは60%以下である。金属細線パターンの開口率を上述の特定値以下とすることにより、導電性フィルムの導電性がより向上する傾向にある。金属細線パターンの開口率は、金属細線パターンの形状によっても適正な値が異なる。また、金属細線パターンの開口率は、目的とする電子デバイスの要求性能(透過率及びシート抵抗)に応じて、上記上限値と下限値を適宜組み合わせることができる。
【0143】
なお、「金属細線パターンの開口率」とは、透明基材上の金属細線パターンが形成されている領域について以下の式で算出することができる。透明基材上の金属細線パターンが形成されている領域とは、
図1のSで示される範囲であり、金属細線パターンが形成されていない縁部等は除かれる。
金属細線パターンの開口率
=(1-金属細線パターンの占める面積/透明基材の面積)×100
【0144】
また、開口率とピッチの関係式は、金属細線パターンの形状によって異なるが、以下のように算出することができる。
図6に、パターン単位16を有するメッシュパターン(グリッド(格子)パターン)の模式図を示す。このメッシュパターンの場合、開口率とピッチは下記関係式を有する。
開口率={開口部15の面積/パターン単位16の面積}×100
={((ピッチP1-線幅W1)×(ピッチP2-線幅W2))/(ピッチP1×ピッチP2)}×100
【0145】
また、
図7にラインパターンの模式図を示す。このラインパターンの場合は、開口率とピッチは下記関係式を有する。
開口率={(ピッチP-線幅W)/ピッチP}×100
【0146】
(シート抵抗)
導電性フィルムのシート抵抗は、好ましくは0.1Ω/sq以上1,000Ω/sq以下であり、より好ましくは0.1Ω/sq以上500Ω/sq以下であり、さらに好ましくは0.1Ω/sq以上300Ω/sq以下であり、よりさらに好ましくは0.1Ω/sq以上200Ω/sq以下であり、さらにより好ましくは0.1Ω/sq以上100Ω/sq以下であり、さらにより好ましくは0.1Ω/sq以上20Ω/sq以下であり、さらにより好ましくは0.1Ω/sq以上10Ω/sq以下である。導電性フィルムのシート抵抗は、以下の方法により測定できる。
【0147】
先ず、導電性フィルムから金属細線パターンが全面に配された部分を矩形状に切り出し測定サンプルを得る。得られる測定サンプルの両端部に金属細線パターンと電気的に接続されたシート抵抗測定用の集電部を形成し、両端部に設けられた集電部間の電気抵抗R(Ω)を測定する。上述した電気抵抗R(Ω)、及び測定サンプルの集電部間の距離に相当する幅方向の長さL(mm)、奥行方向の長さD(mm)を用いて、次式によりシート抵抗Rs(Ω/sq)を算出できる。
Rs=R/L×D
【0148】
シート抵抗が低いほど電力損失が抑制される傾向にある。そのため、消費電力の少ない電子ペーパー、タッチパネル、及びフラットパネルディスプレイを得ることが可能となる。
【0149】
導電性フィルムのシート抵抗は、金属細線のアスペクト比(高さ)を向上させることにより、低下する傾向にある。また、金属細線を構成する金属材料種の選択によっても調整することが可能である。
【0150】
(可視光透過率)
導電性フィルムの可視光透過率は、好ましくは80%以上100%以下であり、より好ましくは90%以上100%以下である。ここで、可視光透過率は、JIS K 7361-1:1997の全光線透過率に準拠して、その可視光(360~830nm)の範囲の透過率を算出することで測定することができる。
【0151】
導電性フィルムの可視光透過率は、金属細線パターンの線幅を小さくしたり、開口率を向上させたりすることにより、向上する傾向にある。
【0152】
(ヘイズ)
導電性フィルムのヘイズは、好ましくは0.01%以上5.00%以下である。ヘイズの上限はより好ましくは、3.00%以下、さらに好ましくは1.00%以下である。ヘイズの上限が5.00%以下であれば、可視光に対する導電性フィルムの曇りを十分に低減できる。本明細書におけるヘイズは、JIS K 7136:2000のヘイズに準拠して測定することができる。
【0153】
〔第2実施形態の導電性フィルムの製造方法〕
第2実施形態の導電性フィルムの製造方法は、特に制限されないが、例えば、透明基材上に金属成分を含むインクを用いてパターンを形成するパターン形成工程と、該パターンを焼成して金属細線を形成する焼成工程と、を有する方法が挙げられる。また、第2実施形態の導電性フィルムの製造方法は、パターン形成工程に先立ち、透明基材の表面に中間層を形成する中間層形成工程を含んでもよい。
【0154】
〔中間層形成工程〕
中間層形成工程の具体例としては、中間層を形成する成分を、PVD、CVD等の気相製膜法を用いて中間層を形成する成分を透明基材の表面に成膜させることにより中間層を形成する方法が挙げられる。中間層形成工程の別の具体例としては、中間層を形成する成分が分散媒に分散してなる中間体形成組成物を透明基材の表面に塗布し、乾燥させることにより中間層を形成する方法が挙げられる。中間層を形成する成分としては、〔中間層〕の項で例示した成分が挙げられる。また、中間層形成組成物は、必要に応じて、分散剤、界面活性剤、結着剤等を含んでもよい。
【0155】
〔パターン形成工程〕
パターン形成工程は、金属成分を含むインクを用いてパターンを形成する工程である。パターン形成工程は、所望の金属細線パターンの溝を有する版を用いる有版印刷方法であれば特に限定されないが、例えば、転写媒体表面にインクをコーティングする工程と、インクをコーティングした転写媒体表面と、凸版の凸部表面とを対向させて、押圧、接触して、凸版の凸部表面に転写媒体表面上のインクを転移させる工程と、インクをコーティングした転写媒体表面と透明基材の表面とを対向させて、押圧、接触して、転写媒体表面に残ったインクを透明基材の表面に転写する工程とを有する。なお、透明基材に中間層が形成されている場合には、中間層表面にインクが転写される。
【0156】
(インク)
上記パターン形成工程に用いられるインクは、金属成分と溶剤を含み、必要に応じて、界面活性剤、分散剤、還元剤等を含んでもよい。金属成分は、金属粒子としてインクに含まれていてもよいし、金属錯体としてインクに含まれていてもよい。なお、ここでいう金属成分に含まれる金属元素種としては、特に限定されないが、例えば、金、銀、銅、アルミニウムが挙げられる。これらの中でも、銀又は銅が好ましく、銅がより好ましい。
【0157】
金属粒子の平均一次粒径は、好ましくは100nm以下であり、より好ましくは50nm以下であり、さらに好ましくは30nm以下である。また、金属粒子の平均一次粒径の下限は特に制限されないが、1nm以上が挙げられる。金属粒子の平均一次粒径が100nm以下であることにより、得られる金属細線の幅W0をより細くすることができる。なお、本実施形態において「平均一次粒径」とは、金属粒子1つ1つ(所謂一次粒子)の粒径をいい、金属粒子が複数個集まって形成される凝集体(所謂二次粒子)の粒径である平均二次粒径とは区別される。
【0158】
金属粒子としては、酸化銅等の金属酸化物や金属化合物、コア部が銅でありシェル部が酸化銅であるようなコア/シェル粒子の態様であってもよい。金属粒子の態様は、分散性や焼結性の観点から、適宜決めることができる。
【0159】
インク中、金属粒子の含有量は、インク組成物の全質量に対して、好ましくは1質量%以上40質量%以下であり、より好ましくは5質量%以上35質量%以下であり、さらに好ましくは10質量%以上35質量%以下である。インク中の金属粒子の含有量がインク組成物の全質量に対して1質量%以上あれば、導電性を有する金属細線パターンを得ることができ、40質量%以下であれば、インクを金属細線パターン状に印刷することができる。
【0160】
界面活性剤としては、特に制限されないが、例えば、シリコーン系界面活性剤やフッ素系界面活性剤などが挙げられる。このような界面活性剤を用いることにより、転写媒体(ブランケット)へのインクのコーティング性、コーティングされたインクの平滑性が向上し、より均一な塗膜が得られる傾向にある。なお、界面活性剤は、金属成分を分散可能であり、かつ焼成の際に残留しにくいよう構成されていることが好ましい。
【0161】
インク中、界面活性剤の含有量は、インク組成物の全質量に対して、好ましくは0.01質量%以上10質量%以下であり、より好ましくは0.1質量%以上20質量%以下であり、さらに好ましくは2質量%以上10質量%以下である。インク中の界面活性剤の含有量がインク組成物の全質量に対して0.01質量%以上あれば、インクのコーティング性、コーティングされたインクの平滑性を向上させることができ、10質量%以下であれば、抵抗が低い金属細線パターンを得ることができる。
【0162】
また、分散剤としては、特に制限されないが、例えば、金属成分表面に非共有結合又は相互作用をする分散剤、金属成分表面に共有結合をする分散剤が挙げられる。非共有結合又は相互作用をする官能基としてはリン酸基を有する分散剤が挙げられる。このような分散剤を用いることにより、金属成分の分散性がより向上する傾向にある。
【0163】
インク中、分散剤の含有量は、インク組成物の全質量に対して、好ましくは0.1質量%以上30質量%以下であり、より好ましくは1質量%以上20質量%以下であり、さらに好ましくは2質量%以上10質量%以下である。インク中の分散剤の含有量がインク組成物の全質量に対して0.1質量%以上あれば、金属粒子が分散されたインクを得ることができ、30質量%以下であれば、抵抗が低い金属細線パターンを得ることができる。
【0164】
さらに、溶剤としては、モノアルコール及び多価アルコール等のアルコール系溶剤;アルキルエーテル系溶剤;炭化水素系溶剤;ケトン系溶剤;エステル系溶剤などが挙げられる。これらは単独で使用されてもよく、1種以上で併用されても良い。たとえば、炭素数10以下のモノアルコールと炭素数10以下の多価アルコールとの併用などが挙げられる。このような、溶剤を用いることにより、転写媒体(ブランケット)へのインクのコーティング性、転写媒体から凸版へのインクの転移性、転写媒体から透明基材へのインクの転写性、及び金属成分の分散性がより向上する傾向にある。なお、溶剤は、金属成分を分散可能であり、かつ焼成の際に残留しにくいよう構成されていることが好ましい。
【0165】
インク中、溶媒の含有量は、上述の金属粒子、界面活性剤、分散剤等の成分の残部であるが、例えば、インク組成物の全質量に対して、好ましくは50質量%以上99質量%以下であり、より好ましくは60質量%以上90質量%以下であり、さらに好ましくは70質量%以上80質量%以下である。インク中の溶媒の含有量がインク組成物の全質量に対して50質量%以上あれば、インクを金属細線パターン状に印刷することができ、99質量%以下であれば、導電性を有する金属細線パターンを得ることができる。
【0166】
金属細線パターンにおけるW0.90/W0、W0.50/W0、W0.90/W0.50をそれぞれ所望範囲内とするためには、所望範囲となる形状となるように、粘度調整剤等を用いたインク粘度の調整や、パターン形成工程において、転写媒体表面上のインクを凸版に転写する際のプロセス時間制御の方法が挙げられる。
【0167】
〔焼成工程〕
焼成工程では、例えば、透明基材又は中間層の表面に転写されたインク中の金属成分を焼結する。焼成は、金属成分が融着して、金属成分焼結膜を形成することができる方法であれば特に制限されない。焼成は、例えば、焼成炉で行ってもよいし、プラズマ、加熱触媒、紫外線、真空紫外線、電子線、赤外線ランプアニール、フラッシュランプアニール、レーザーなどを用いて行ってもよい。得られる焼結膜が酸化されやすい場合には、非酸化性雰囲気中において焼成することが好ましい。また、インクに含まれ得る還元剤のみで金属酸化物等が還元されにくい場合には、還元性雰囲気で焼成することが好ましい。
【0168】
非酸化性雰囲気とは酸素等の酸化性ガスを含まない雰囲気であり、不活性雰囲気と還元性雰囲気がある。不活性雰囲気とは、例えば、アルゴン、ヘリウム、ネオンや窒素等の不活性ガスで満たされた雰囲気である。また、還元性雰囲気とは、水素、一酸化炭素等の還元性ガスが存在する雰囲気を指す。これらのガスを焼成炉中に充填して密閉系としてインクの塗布膜(分散体塗布膜)を焼成してもよい。また、焼成炉を流通系にしてこれらのガスを流しながら分散体塗布膜を焼成してもよい。分散体塗布膜を非酸化性雰囲気で焼成する場合には、焼成炉中を一旦真空に引いて焼成炉中の酸素を除去し、非酸化性ガスで置換することが好ましい。また、焼成は、加圧雰囲気で行なってもよいし、減圧雰囲気で行なってもよい。
【0169】
焼成温度は、特に制限はないが、好ましくは20℃以上400℃以下であり、より好ましくは50℃以上300℃以下であり、さらに好ましくは80℃以上200℃以下である。焼成温度が400℃以下であることにより、耐熱性の低い基板を使用することができるので好ましい。また、焼成温度が20℃以上であることにより、焼結膜の形成が十分に進行し、導電性が良好となる傾向にあるため好ましい。なお、得られる焼結膜は、金属成分に由来する導電性成分を含み、そのほか、インクに用いた成分や焼成温度に応じて、非導電性成分を含みうる。
【0170】
この中でも、金属成分の拡散、凝集を調整し、これにより金属細線中の空隙量を調整する観点から、焼成時のエネルギーとしては、例えば、熱、プラズマ、電子線や光源を用いることが好ましく、フラッシュランプアニールを用いることが好ましい。また、同様の観点から、焼成時間は、好ましくは100μsec~50msecであり、より好ましくは800μsec~10msecであり、1msec~2.4msecである。なお、必要に応じて、フラッシュランプアニールを複数回用いて焼成してもよい。
【0171】
また、上述の観点に加え金属成分の融着を促進でき、より高い導電性を有する導電性フィルムが得られるため、プラズマによる焼成方法を用いることがより好ましい。同様の観点から、プラズマの出力は好ましくは0.5kW以上であり、より好ましくは0.6kW以上であり、さらに好ましくは0.7kW以上である。プラズマの出力の上限値は、特に制限はなく、使用する透明基材や中間層に損傷がない範囲であればよい。また焼成時間の下限値はプラズマ出力に依るが、生産性の観点から上限値は好ましくは1000sec以下であり、より好ましくは600sec以下である。なお、必要に応じて、プラズマ焼成を複数回用いて焼成してもよい。
【0172】
〔保護層形成工程〕
本実施形態の導電性フィルムの製造方法は、焼成工程の後に、導電部を被覆する保護層を形成する保護層形成工程を含んでもよい。保護層形成工程の具体例としては、保護層を形成する成分又はそれらの前駆体や、それらが溶剤に溶解又は分散した保護層形成組成物を導電部に塗布し、乾燥、加熱、又はUV照射等を施すことにより保護層を形成する方法が挙げられる。保護層を塗布する方法としては、導電部に対して層をコーティングし導電部が雰囲気に露出しない方法であれば特に制限されないが、例えば、スピンコーティング、ダイコーティング、バーコーティングなどを用いることができる。保護層を形成する成分としては、〔保護層〕の項で例示した成分が挙げられる。また、保護層形成組成物は、必要に応じて、分散剤、界面活性剤、結着剤等を含んでもよい。
【0173】
〔導電性フィルムロール〕
本実施形態の導電性フィルムロールは、上記導電性フィルムを捲回してなるものである。導電性フィルムロールは、中心部に、導電性フィルムを巻き付けるための巻芯を有してもよい。本実施形態の導電性フィルムロールは、所望の用途(例えば、電子ペーパー、タッチパネル、フラットパネルディスプレイ等)に応じて適切なサイズに切断されて用いられる。
【0174】
〔電子ペーパー〕
本実施形態の電子ペーパーは、上記導電性フィルムを備えるものであれば特に制限されない。
図10に、本実施形態の導電性フィルム(メッシュパターン)を備える電子ペーパーの一態様を表す上面図を示し、
図11に本実施形態の電子ペーパーのV-V’の部分断面図を示し、
図12に、
図10と同じ開口率を有し、金属細線の線幅が太い、従来の導電性フィルムを備える電子ペーパーの一態様を表す上面図を示す。
【0175】
図10に示されるように、電子ペーパー20においては、カップ21上に金属細線パターン12が配されカップ21に対して電界をかけることができるように構成されている。具体的には、
図11に示されるように、電子ペーパー20のカップ21中には、帯電した黒顔料22と帯電した白顔料23とが収容されており、ボトム電極24と導電性フィルム10の間の電界により帯電黒顔料22と帯電白顔料23の挙動が制御される。
【0176】
この際、
図10と
図12の対比で示されるように、開口率が同じであっても、金属細線パターンが細かい方がカップ21の直上を横断する金属細線14が多くなり、カップ21により均一に電界をかけることが可能となる。したがって、本実施形態の導電性フィルム10を備える電子ペーパー20はより高解像度の画像を与えることが可能となる。なお、本実施形態の電子ペーパー20の構成は上記に限定されない。
【0177】
〔タッチパネル〕
本実施形態のタッチパネルは、上記導電性フィルムを備えるものであれば特に制限されない。
図13に、本実施形態の導電性フィルム(ラインパターン)を備えるタッチパネルの一態様を表す斜視図を示す。静電容量方式のタッチパネル30においては、絶縁体31の表裏面に2枚の導電性フィルム10が存在し、2枚の導電性フィルム10は、ラインパターンが交差するように対向する。また、導電性フィルム10は、取り出し電極32を有していてもよい。取り出し電極32は、金属細線14と、金属細線14への通電切り替えを行うためのコントローラー33(CPU等)とを接続する。
【0178】
また、
図14に、本実施形態の導電性フィルム(ラインパターン)を備えるタッチパネルの別態様を表す斜視図を示す。このタッチパネル30は、絶縁体31の表裏面に2枚の導電性フィルム10を備える代わりに、本実施形態の導電性フィルム10の両面に金属細線パターン12を備える。これにより、絶縁体31(透明基材11)の表裏面に2つの金属細線パターン12を備えるものとなる。
【0179】
なお、本実施形態のタッチパネルは、静電容量方式に限定されず、抵抗膜方式、投影型静電容量方式、及び表面型静電容量方式等としてもよい。
【0180】
〔フラットパネルディスプレイ〕
本実施形態のフラットパネルディスプレイは、上記導電性フィルムを備えるものであれば特に制限されない。
【実施例】
【0181】
以下、実施例及び比較例を示して本発明の実施形態を具体的に説明するが、本発明は、以下の実施例及び比較例により何ら限定されるものではない。
【0182】
《透明基材》
[透明基材A1の調製]
ポリエチレンテレフタレート(PET)を透明基材として用いて、PET上に酸化ケイ素ナノ粒子と導電性の有機シラン化合物を含む中間層形成用組成物を塗布し、乾燥して、帯電防止機能を有する厚み150nm、体積抵抗率5000Ωcmの酸化ケイ素含有膜を中間層として製膜した、透明基材A1を得た。
【0183】
[透明基材A2の調製]
PETに代えてポリエチレンナフタレート(PEN)を透明基材として用いたこと以外は、透明基材A1の調製方法と同様の方法により、透明基材A2を得た。
【0184】
《インク》
[インクA1]
酸化銅ナノ粒子(CIKナノテック社製 酸化第二銅微粒子)20質量部と、分散剤(ビッグケミー社製、製品名:Disperbyk-145)4質量部と、界面活性剤(セイミケミカル社製、製品名:S-611)1質量部と、有機溶剤(n-ブタノール、及び2-プロピレングリコール)75質量部とを混合し、酸化銅ナノ粒子が分散したインクA1を調製した。
【0185】
[インクA2]
DIC社製銀ナノインク(RAGT-29)100質量部にエタノールを50質量部添加し、インクA2を調製した。
【0186】
<実施例A1>
《導電性フィルムの調製》
先ず転写媒体表面にインクを塗布し、次いでインクが塗布された転写媒体表面と金属細線パターンの溝を有する版を対向させて、押圧、接触して、版の凸部表面に転写媒体表面上の一部のインクを転移させた。その後、転移されたインク以外のインクがコーティングされた転写媒体表面と透明基材とを対向させて、押圧、接触させ、透明基材の上に所望の金属細線パターン状のインクを転写させた。次いで、NovaCentrix社製Pulseforge1300を用いて、インクのパターンに対して以下の条件でフラッシュランプアニールにより焼成を施し、線幅1μmのメッシュパターンの金属細線を有する導電性フィルムを得た。得られた導電性フィルムは、金属細線の視認性が低く、目視では金属細線は確認できなかった。得られた導電性フィルムの各種特性を表1に示す。
・光源:キセノンフラッシュランプ
・照射波長:200~1,500nm
・照射エネルギー:30J/cm2
・照射時間:1,500μsec
・環境:室温環境下
【0187】
《導電性フィルムの評価》
[シート抵抗]
得られた導電性フィルムのシート抵抗R
s0(Ω/sq)を以下の方法により測定した。先ず、導電性フィルムの金属細線パターンが全面に配された部分から100mm四方の測定サンプルを切り出した。次いで、得られた測定サンプルの表面の幅方向の両端部にスクリーン印刷装置を用いて銀ペーストを塗布、乾燥し、
図15に示すように幅10mm×奥行100mmの長尺な集電部を形成した。次いで、サンプル両端部の集電部間の電気抵抗R(Ω)を、オームメーターの測定端子を接触させる2端子法により測定した。得られた電気抵抗から下記式を用いてシート抵抗R
s0(Ω/sq)を算出した。結果を下記表1に示す。なお、表面に保護層を有する導電フィルムのシート抵抗は、金属細線パターンのうち、集電部を露出させ、その他の金属細線パターンが保護層で被覆された導電性フィルムを作製し、測定を行った。具体的には、上述の方法で形成した集電部にマスキングを行い、保護層を形成し、最後にマスキングを除去することで、集電部のみが露出した導電性フィルムを作製した。
R
s0=R/L×D
L:80(mm) :集電部間の距離
D:100(mm):測定サンプルの奥行
【0188】
[可視光透過率及びヘイズ]
JIS K 7361-1:1997の全光線透過率に準拠して、360~830nmの波長を有する可視光の透過率を算出することにより、導電性フィルムの可視光透過率を測定した。また、JIS K 7136:2000に準拠して導電性フィルムのヘイズを測定した。結果を下記表1に示す。
【0189】
[金属細線断面のSEM観察]
得られた導電性フィルムから数mm角の小片を切り出し、日本電子社製のSM-09010CPを用い、加速電圧4kVの条件で、上述した方法でアルゴンイオンビームによるBIB加工を施し、金属細線の延伸方向に直交する金属細線の断面を含む測定サンプルを作製した。次いで、金属細線の断面表面に導電性付与のためのOsプラズマコート処理を行った。
【0190】
次いで、日立ハイテクノロジーズ社製走査電子顕微鏡(SU8220)を用いて、以下の条件にて、金属細線の断面のSEM像を得た。
・加速電圧:1kV
・エミッション電流:10μA
・測定倍率:50,000倍
・検出器:Upper検出器
・作動距離:約3mm
【0191】
得られた金属細線の断面のSEM像を用いて金属細線の厚さTを測定した。
【0192】
ImageJを用いて金属細線の断面のSEM像の画像解析を行った。具体的には、SEM像(8bit)について、金属細線の断面のみを抽出し、メディアンフィルタ処理により画像に含まれる微細なノイズを除去した。続いて、抽出した金属細線の断面について、二値化処理を施し、S
M、S
Vtotal、S
V0.2、及びS
V0.8をそれぞれ算出し、S
Vtotal/S
M、S
V0.2/S
Vtotal、及びS
V0.8/S
Vtotalを算出した。結果を以下表1に示す。また、実施例A1の金属細線の延伸方向に直交する金属細線の断面の電子顕微鏡写真を
図16に示す。
【0193】
[可撓性]
得られた導電性フィルムの可撓性を評価するために、繰り返し屈曲性試験を行い、その前後におけるシート抵抗変化率(%)を測定した。可撓性に乏しい場合は、金属細線が断線等することにより、シート抵抗変化率が大きくなり、可撓性に優れる場合には、シート抵抗変化率が小さくなる。
【0194】
まず、上記と同様の方法により、繰り返し屈曲性試験前の導電性フィルムのシート抵抗Rs0(Ω/sq)を測定した。次いで、導電性フィルムについて屈曲性試験機として井本製作所社製フィルム曲げ試験機(IMC-1304)を用いてJIS C 5016:1994に準拠して、繰り返し屈曲性試験を以下の条件で行った。
・曲げ半径:5mm
・試験ストローク:20mm
・屈曲速度:90rpm
・屈曲回数:10,000回
【0195】
最後に、繰り返し屈曲性試験後の導電性フィルムのシート抵抗Rs1(Ω/sq)を測定して、次式にてシート抵抗変化率を算出した。
(シート抵抗変化率)=Rs1/Rs0×100
結果を下記表1に示す。
【0196】
<実施例A2~A12、及び比較例A1~A4、並びに参考例A1~A2>
表1に示すように、透明基材、インク、線幅、及び焼成条件等をそれぞれ変更したこと以外は、実施例A1と同様の操作により導電性フィルムを作製し、評価を行った。結果を下記表1に示す。なお、参考例を除き、得られた導電性フィルムは、金属細線の視認性が低く、目視では金属細線は確認できなかった。
【0197】
【0198】
実施例A1~A12、比較例A1~A4、及び参考例A1~A2より、金属細線の線幅が5μm以下の領域において、金属細線断面積における全空隙断面積の比を特定の範囲に調整することで、高い透明性(すなわち、小さい線幅による低い視認性)、高い導電性(すなわち、低いシート抵抗)と可撓性を同時に兼ね備える導電性フィルムが得られることが分かる。
【0199】
[透明基材B1の調製]
ポリエチレンテレフタレート(PET)を透明基材として用いて、その上にスパッタリング法により酸化ケイ素を含有した厚み50nmの中間層を成膜することにより透明基材B1を得た。なお、透明基材B1は、透明基材であるPET上に中間層が積層した形態である。
【0200】
[透明基材B2の調製]
ポリエチレンテレフタレート(PET)を透明基材として用いて、PET上に酸化ケイ素ナノ粒子と導電性の有機シラン化合物を含む中間層形成用組成物を塗布し、乾燥して、帯電防止機能を有する厚み150nm、体積抵抗率5000Ωcmの酸化ケイ素含有膜を中間層として製膜した、透明基材B2を得た。
【0201】
[インクB1]
酸化銅ナノ粒子(CIKナノテック社製 酸化第二銅微粒子)20質量部と、分散剤(ビッグケミー社製、製品名:Disperbyk-145)4質量部と、界面活性剤(セイミケミカル社製、製品名:S-611)1質量部と、有機溶剤(n-ブタノール、及び2-プロピレングリコール)75質量部とを混合し、酸化銅ナノ粒子が分散したインクB1を調製した。
【0202】
[実施例B1~B10及び比較例B1~B4]
先ず転写媒体表面にインクを塗布し、次いでインクが塗布された転写媒体表面と金属細線パターンの溝を有する版を対向させて、押圧、接触して、版の凸部表面に転写媒体表面上の一部のインクを転移させた。その後、残ったインクがコーティングされた転写媒体表面と表2に示す透明基材とを対向させて、押圧、接触させ、透明基材の上に所望の金属細線パターン状のインクを転写させた。この形成工程において、インクを凸版に転写する際のプロセス時間を異ならせることにより、各実施例及び比較例のW0.90/W0 、W0.50/W0の値を制御した。プロセス時間が長いほどW0.90/W0 、W0.50/W0が小さくなった。次いで、NovaCentrix社製Pulseforge1300を用いて室温環境下で金属細線パターン状のインクをフラッシュランプアニールにより焼成し、表2に示す線幅のメッシュパターンの金属細線を有する導電性フィルムを得た。得られた導電性フィルムは、いずれも、金属細線の視認性が低く、目視では金属細線は確認できなかった。得られた導電性フィルムの各種特性を表2に示す。
【0203】
以下に導電性フィルムの各種特性の評価方法を示す。
【0204】
[シート抵抗]
得られた導電性フィルムのシート抵抗R
s0(Ω/sq)を以下の方法により測定した。先ず、導電性フィルムの金属細線パターンが形成されている領域から幅方向100mm×奥行方向100mmの大きさの矩形状の測定サンプルを切り出した。次いで、この測定サンプルの表面の幅方向の両端部にスクリーン印刷装置を用いて銀ペーストを塗布、乾燥し、
図15に示すように、幅方向10mm×奥行方向100mmの集電部を形成した。次いで、形成した集電部間の電気抵抗R(Ω)を、オームメーターの測定端子を接触させる2端子法により測定した。次いで、測定サンプルの集電部を除き、且つ金属細線パターンが配された領域の幅方向の長さ(集電部間の距離に相当)L:80(mm)、奥行方向の長さD:100(mm)を用いて、下記式により、シート抵抗R
s0(Ω/sq)を算出した。
R
s0=R/L×D
なお、表面に保護層を有する導電フィルムのシート抵抗は、金属細線パターンのうち、集電部を露出させ、その他の金属細線パターンが保護層で被覆された導電性フィルムを作製し、測定を行った。具体的には、上述の方法で形成した集電部にマスキングを行い、保護層を形成し、最後にマスキングを除去することで、集電部のみが露出した導電性フィルムを作製した。
【0205】
[可視光透過率及びヘイズ]
JIS K 7361-1:1997の全光線透過率に準拠して、360~830nmの波長を有する可視光の透過率を算出することにより、導電性フィルムの可視光透過率を測定した。また、JIS K 7136:2000に準拠して導電性フィルムのヘイズを測定した。
【0206】
[金属細線断面のSEM観察]
得られた導電性フィルムから数mm角の小片を切り出し、日本電子社製のSM-09010CPを用い、加速電圧4kVの条件で、上述した方法でアルゴンイオンビームによるBIB加工を施し、金属細線の延伸方向に直交する金属細線の断面を含む測定サンプルを作製した。次いで、金属細線の断面表面に導電性付与のためのOsプラズマコート処理を行った。
【0207】
次いで、日立ハイテクノロジーズ社製走査電子顕微鏡(SU8220)を用いて、以下の条件にて、金属細線の断面のSEM像を得た。
・加速電圧:1kV
・エミッション電流:10μA
・測定倍率:50,000倍
・検出器:Upper検出器
・作動距離:約3mm
【0208】
図17に実施例B1の金属細線の断面SEM像を示す。
図18に実施例B7の金属細線の断面SEM像を示す。先ず、得られた金属細線の断面のSEM像から透明基材側の金属細線界面から金属細線表面までの最大厚さTを算出した。次いで、金属細線界面における金属細線の幅W
0、透明基材側の金属細線界面から0.50T、0.90Tの高さにおける金属細線の幅W
0.50、W
0.90を算出した。これらを用いて、W
0.90/W
0、W
0.50/W
0、W
0.90/W
0.50をそれぞれ算出した。
【0209】
[保護層の形成]
実施例B1~B10及び比較例B1~B4のそれぞれの導電性フィルムの金属細線上に熱硬化型エポキシ樹脂を用いて同じ形成条件にて保護層を形成した。次いで、25℃50%RHの環境下で7日間保存試験を行い、その後、保存試験後の導電性フィルムのシート抵抗Rs1を測定し、保存試験前のシート抵抗Rs0に対するシート抵抗変化率(%)を次式にて算出した。
(シート抵抗変化率)=Rs1/Rs0×100
【0210】
【0211】
実施例B1~B5、及び比較例B1~B2、並びに、実施例B6~B10、及び比較例B3~B4より、W0.90/W0を特定範囲内に調整することで、金属細線表面に保護層などの被覆層をより均一に形成できる導電性フィルムが得られることが分かった。
【0212】
[透明基材C1の調製]
ポリエチレンテレフタレート(PET)を透明基材として用いて、PET上に酸化ケイ素ナノ粒子と導電性の有機シラン化合物を含む中間層形成用組成物を塗布し、乾燥して、帯電防止機能を有する厚み150nm、体積抵抗率5000Ωcmの酸化ケイ素含有膜を中間層として製膜した、透明基材C1を得た。
【0213】
[インクC1]
粒子径21nmの酸化第一銅ナノ粒子20質量部と、分散剤(ビッグケミー社製、製品名:Disperbyk-145)4質量部と、界面活性剤(セイミケミカル社製、製品名:S-611)1質量部と、エタノール75質量部とを混合・分散し、酸化第一銅ナノ粒子の含有割合が20質量%のインクC1を調製した。
【0214】
<実施例C1~C17、及び比較例C1~C12>
《導電性フィルムの調製》
先ず転写媒体表面にインクC1を塗布し、次いでインクが塗布された転写媒体表面と金属細線パターンの溝を有する版を対向させて、押圧、接触して、版の凸部表面に転写媒体表面上の一部のインクを転移させた。その後、残ったインクがコーティングされた転写媒体表面と透明基材とを対向させて、押圧、接触させ、透明基材の上に所望の金属細線パターン状のインクを転写させた。この形成工程において、インクを凸版に転写する際のプロセス時間を異ならせることにより、各実施例及び比較例のW0.90/W0 、W0.50/W0の値を制御した。プロセス時間が長いほどW0.90/W0 、W0.50/W0が小さくなった。次いで、インクのパターンに対してプラズマ焼成装置を用いて表3に記載の条件で焼成及び還元して、メッシュパターンの金属細線を有する導電性フィルムを得た。得られた導電性フィルムの各種特性を表3に示す。得られた導電性フィルムは、いずれも、金属細線の視認性が低く、目視では金属細線は確認できなかった。
【0215】
以下に導電性フィルムの各種特性の評価方法を示す。
【0216】
[シート抵抗]
得られた導電性フィルムのシート抵抗R
s0(Ω/sq)を以下の方法により測定した。先ず、導電性フィルムの金属細線パターンが全面に配された部分から100mm四方の測定サンプルを切り出した。次いで、得られた測定サンプルの表面の幅方向の両端部にスクリーン印刷装置を用いて銀ペーストを塗布、乾燥し、
図15に示すように幅10mm×奥行100mmの長尺な集電部を形成した。次いで、サンプル両端部の集電部間の電気抵抗R(Ω)を、オームメーターの測定端子を接触させる2端子法により測定した。得られた電気抵抗から下記式を用いてシート抵抗R
s0(Ω/sq)を算出した。なお、表面に保護層を有する導電フィルムのシート抵抗は、金属細線パターンのうち、集電部を露出させ、その他の金属細線パターンが保護層で被覆された導電性フィルムを作製し、測定を行った。具体的には、上述の方法で形成した集電部にマスキングを行い、保護層を形成し、最後にマスキングを除去することで、集電部のみが露出した導電性フィルムを作製した。
R
s0=R/L×D
L:80(mm) :集電部間の距離
D:100(mm):測定サンプルの奥行
【0217】
[可視光透過率及びヘイズ]
JIS K 7361-1:1997の全光線透過率に準拠して、360~830nmの波長を有する可視光の透過率を算出することにより、導電性フィルムの可視光透過率を測定した。また、JIS K 7136:2000に準拠して導電性フィルムのヘイズを測定した。
【0218】
[金属細線断面のSEM観察]
得られた導電性フィルムから数mm角の小片を切り出し、日本電子社製のSM-09010CPを用い、加速電圧4kVの条件で、上述した方法でアルゴンイオンビームによるBIB加工を施し、金属細線の延伸方向に直交する金属細線の断面を含む測定サンプルを作製した。次いで、金属細線の断面表面に導電性付与のためのOsプラズマコート処理を行った。
【0219】
次いで、日立ハイテクノロジーズ社製走査電子顕微鏡(SU8220)を用いて、以下の条件にて、金属細線の断面のSEM像を得た。
・加速電圧:1kV
・エミッション電流:10μA
・測定倍率:50,000倍
・検出器:Upper検出器
・作動距離:約3mm
【0220】
先ず、得られた金属細線の断面のSEM像から透明基材側の金属細線界面から金属細線表面までの最大厚さTを算出した。
【0221】
ImageJを用いて金属細線の断面のSEM像の画像解析を行った。具体的には、SEM像(8bit)について、金属細線の断面のみを抽出し、メディアンフィルタ処理により画像に含まれる微細なノイズを除去した。続いて、抽出した金属細線の断面について、二値化処理を施し、SM、SVtotal、SV0.2、及びSV0.8をそれぞれ算出し、SVtotal/SM、SV0.2/SVtotal、SV0.8/SVtotal、及び(SV0.2+SV0.8)/SVtotalを算出した。
【0222】
次いで、金属細線界面における金属細線の幅W0、透明基材側の金属細線界面から0.50T、0.90Tの高さにおける金属細線の幅W0.50、W0.90を算出した。これらを用いて、W0.90/W0、W0.50/W0、W0.90/W0.50をそれぞれ算出した。
【0223】
さらに、これらを用いて(1+W0.90/W0)・(1-SVtotal/SM)を算出した。
【0224】
[可撓性]
得られた導電性フィルムの可撓性を評価するために、60℃90%RHの環境下での繰り返し屈曲性試験を行い、その前後におけるシート抵抗変化率(%)を測定した。耐久性に乏しい場合は、金属細線の断線や酸化等によりシート抵抗変化率が大きくなり、耐久性に優れる場合にはシート抵抗変化率が小さくなる。
【0225】
まず、導電性フィルムの金属細線上に熱硬化型エポキシ樹脂を用いて保護層を形成した。そして上記と同様の方法により、繰り返し屈曲性試験前の導電性フィルムのシート抵抗Rs0(Ω/sq)を測定した。次いで、導電性フィルムについて市販の屈曲性試験機を用いてJIS C 5016:1994に準拠して、繰り返し屈曲性試験を以下の条件で行った。
・曲げ半径:5mm
・試験ストローク:20mm
・屈曲速度:60rpm
・屈曲回数:10,000回
【0226】
最後に、繰り返し屈曲性試験後の導電性フィルムのシート抵抗Rs1(Ω/sq)を測定して、次式にてシート抵抗変化率を算出した。
(シート抵抗変化率)=Rs1/Rs0×100
【0227】
【0228】
【0229】
実施例C1~C17、及び比較例C1~C12から、SVtotal/SMを0.1~0.4の範囲に調整することで、細線化による低い視認性と高い透過率を実現しつつ、可撓性が向上することが分かる。さらに、W0.90/W0を0.4~0.9の範囲に調整することで、金属細線表面に保護層をより均一に形成でき高温多湿下での金属細線の酸化が抑制されていることが分かった。加えて(1+W0.90/W0)・(1-SVtotal/SM)を0.84~1.71に調整することで、上述の効果を兼ね備えつつ、より高い導電性を発現できることが分かる。
【0230】
本出願は、2018年7月30日に日本国特許庁に出願された日本特許出願(特願2018-142101、及び特願2018-142057)に基づくものであり、これらの内容はここに参照として取り込まれる。
【産業上の利用可能性】
【0231】
本発明の導電性フィルムは、電子ペーパー、タッチパネル、及びフラットパネルディスプレイ等の透明電極として、好適に利用でき、産業上の利用可能性を有する。
【符号の説明】
【0232】
10…導電性フィルム
11…透明基材
12…金属細線パターン
13…導電部
14…金属細線
15…開口部
16…パターン単位
20…電子ペーパー
21…カップ
22…黒顔料
23…白顔料
24…ボトム電極
30…タッチパネル
31…絶縁体
32…取り出し電極
33…コントローラー