IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 宮村 幸春の特許一覧

特許7296130微細泡生成装置、および微細泡供給装身具
<>
  • 特許-微細泡生成装置、および微細泡供給装身具 図1
  • 特許-微細泡生成装置、および微細泡供給装身具 図2
  • 特許-微細泡生成装置、および微細泡供給装身具 図3
  • 特許-微細泡生成装置、および微細泡供給装身具 図4
  • 特許-微細泡生成装置、および微細泡供給装身具 図5
  • 特許-微細泡生成装置、および微細泡供給装身具 図6
  • 特許-微細泡生成装置、および微細泡供給装身具 図7
  • 特許-微細泡生成装置、および微細泡供給装身具 図8
  • 特許-微細泡生成装置、および微細泡供給装身具 図9
  • 特許-微細泡生成装置、および微細泡供給装身具 図10
  • 特許-微細泡生成装置、および微細泡供給装身具 図11
  • 特許-微細泡生成装置、および微細泡供給装身具 図12
  • 特許-微細泡生成装置、および微細泡供給装身具 図13
  • 特許-微細泡生成装置、および微細泡供給装身具 図14
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-06-14
(45)【発行日】2023-06-22
(54)【発明の名称】微細泡生成装置、および微細泡供給装身具
(51)【国際特許分類】
   B01F 23/2373 20220101AFI20230615BHJP
   B01F 25/44 20220101ALI20230615BHJP
   B01F 27/072 20220101ALI20230615BHJP
   B01F 27/1143 20220101ALI20230615BHJP
   B01F 27/55 20220101ALI20230615BHJP
【FI】
B01F23/2373
B01F25/44
B01F27/072
B01F27/1143
B01F27/55
【請求項の数】 6
(21)【出願番号】P 2020170833
(22)【出願日】2020-10-09
(65)【公開番号】P2022062734
(43)【公開日】2022-04-21
【審査請求日】2023-01-12
【早期審査対象出願】
(73)【特許権者】
【識別番号】399120763
【氏名又は名称】宮村 幸春
(74)【代理人】
【識別番号】100210804
【弁理士】
【氏名又は名称】榎 一
(72)【発明者】
【氏名】宮村 幸春
【審査官】山田 陸翠
(56)【参考文献】
【文献】韓国登録特許第10-1829734(KR,B1)
【文献】特開平02-026658(JP,A)
【文献】特開2008-119567(JP,A)
【文献】特開2017-176924(JP,A)
【文献】特開2015-205257(JP,A)
【文献】韓国公開特許第10-2020-0032860(KR,A)
【文献】特開2015-183390(JP,A)
【文献】特開2018-023562(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B01F 23/20-23/2375
A47K 3/00- 3/40
B01F 25/00-25/90
B01F 27/00-27/96
F04D 25/04
F16L 11/00-11/26
(57)【特許請求の範囲】
【請求項1】
液体を供給するための液体供給路と、
気体を供給するための気体供給路と、
前記液体供給路から供給される前記液体と、前記気体供給路から供給される前記気体とを混合した気液混合体を流す導管と、
前記導管を流れた前記気液混合体を出力するための気液導出口と、
前記導管の流路に配置され、前記気液混合体の流れによって回転するスクリューと、
前記導管の流路において前記スクリューの近傍に配置され、前記気液混合体に対して流れ抵抗を加える流れ抵抗体とを備え、
前記流れ抵抗体は、「前記気液混合体の流れる方向に沿って筒の対称軸を配して多孔の側面を有する多孔筒」と「前記多孔筒の下流側の端面に位置して多孔のフィルタ面を有する多孔フィルタ」とを有する部材を、筒径を異ならせた大径流れ抵抗体と小径流れ抵抗体として、前記大径流れ抵抗体と前記小径流れ抵抗体を前記多孔筒の側面を一部重ねて略同軸に配置した同軸流れ抵抗体を備え、
前記スクリューは、前記同軸流れ抵抗体を構成する2つの前記多孔フィルタの軸間に挿置され、
前記気体供給路は前記小径流れ抵抗体の前記多孔筒の外周付近に配置されて、前記外周付近に生じた気泡は、前記スクリューの回転による遠心分離作用によって前記多孔筒の外周から回転中心の方向へ誘導されて前記多孔筒の側面を通過する
ことを特徴とする微細泡生成装置。
【請求項2】
請求項に記載の微細泡生成装置であって、
前記スクリューの回転を前記流れ抵抗体に伝達する回転伝達部を備え、
前記流れ抵抗体は、前記スクリューの回転によって回転駆動される回転体である
ことを特徴とする微細泡生成装置。
【請求項3】
請求項1~のいずれか一項に記載の微細泡生成装置であって、
前記液体供給路に前記液体が供給されると共に前記気体供給路に前記気体を供給し、前記液体供給路に前記液体が供給停止されると共に前記気体供給路に前記気体を供給停止する連動開閉弁を備えた
ことを特徴とする微細泡生成装置。
【請求項4】
請求項1~のいずれか一項に記載の微細泡生成装置であって、
前記気液導出口から出力される前記気液混合体を流すための微細泡出力ホースをさらに備え、
前記微細泡出力ホースは、
フレキシブルなホースと、
「前記ホースの流路径を狭める縮径部」および「狭めた流路径を拡げる拡径部」を対称構造に備え、前記ホースの流路内に一つ以上挿置される加圧パーツとを有する
ことを特徴とする微細泡生成装置。
【請求項5】
請求項1~のいずれか一項に記載の微細泡生成装置と、
ユーザに装着することによって、前記微細泡生成装置から出力された前記気液混合体をユーザの装着箇所に供給する装身具と、
を備えたことを特徴とする微細泡供給装身具。
【請求項6】
請求項に記載の微細泡供給装身具であって、
前記装身具は、出力された前記気液混合体をユーザの顔に供給するためのフェイスマスク形状をなす
ことを特徴とする微細泡供給装身具。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、微細泡生成装置、および微細泡供給装身具に関する。
【背景技術】
【0002】
従来、微細化した気泡(ナノバブルやマイクロバブルなど)を液体に混合させて気液混合体を生成する技術が知られている。
【0003】
例えば、特許文献1には、『2本の円筒(大径・小径)を同軸に嵌合させ、2本の円筒間にできる微小な隙間(以下「狭隘路」という)に炭酸ガスと水の混合流体(気液混合体)を流すことによって、炭酸ガスを混合する多目的ガス溶解装置』が開示される。
【先行技術文献】
【特許文献】
【0004】
【文献】特開2012-228637号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
上述した特許文献1の技術は、狭隘路に気液混合体を流すことによって、高い動圧を気液混合体にかけて液中の気泡を微細化するという点で優れている。
【0006】
しかし、狭隘路を流路に使用するため、微細泡を含む気液混合体の収量を増やすことが難しいという問題点があった。
【0007】
また、気液混合体が狭隘路を通るように高い液圧をかけるため、ガス溶解装置の壁面に亀裂が入って液体が漏れるなどのおそれがあり、ガス溶解装置には頑丈な素材(肉厚の金属など)を使用する必要があった。そのため、汎用かつ安価なプラスチック素材を使用できないという問題点があった。
【0008】
さらに、狭隘路に大きな気泡が混入するたびに、圧縮された大きな気泡で栓をされた状態になり、気液混合体は瞬間的に流れにくくなる。そのため、狭隘路中の気液混合体はたびたび詰まって間欠的に吹き出すようになる。したがって、気液混合体の円滑な流れを得ることが難しいという問題点があった。
【0009】
そこで、本願発明は、これら問題点のいずれかを解決するために、気液混合体の気泡を効率よく微細化して出力する技術を提供することを目的とする。
【課題を解決するための手段】
【0010】
上記課題を解決するために、本発明の代表的な微細泡生成装置の一つは、液体を供給するための液体供給路と、気体を供給するための気体供給路と、前記液体供給路から供給される前記液体と、前記気体供給路から供給される前記気体とを混合した気液混合体を流す導管と、前記導管を流れた前記気液混合体を出力するための気液導出口と、前記導管の流路に配置されて前記気液混合体の流れによって回転するスクリューと、前記導管の流路において前記スクリューの近傍に配置されて前記気液混合体に対して流れ抵抗を加える流れ抵抗体とを備えることを特徴とする。
【発明の効果】
【0011】
本発明によれば、気液混合体の気泡を効率よく微細化して出力することが可能になる。
【0012】
上記した以外の課題、構成および効果については、以下の実施形態の説明において、さらに詳しく説明される。
【図面の簡単な説明】
【0013】
図1図1は、微細泡生成装置100の全体構成を例示する断面図である。
図2図2は、微細化ブロック130の内側部分を例示する図である。
図3図3は、微細化ブロック130の外側部分を例示する図である。
図4図4は、微細化ブロック130の外側部分(一部切り欠き)を例示する図である。
図5図5は、微細化ブロック130のパーツ構成を例示する図である。
図6図6は、微細泡生成装置100内の気泡の経路を例示する図である。
図7図7は、流れ抵抗体による気泡の剪断作用を説明する図である。
図8図8は、微細泡生成装置100Aの微細化ブロック130A(一部切り欠き)を例示する図である。
図9図9は、微細泡生成装置100Bの構成を示す図である。
図10図10は、微細泡出力ホース200の構造を例示する図である。
図11図11は、加圧パーツ220の配列構造を例示する図である。
図12図12は、フェイスマスクへの応用を説明する図である。
図13図13は、サウナスーツへの応用を説明する図である。
図14図14は、脚部装着への応用を説明する図である。
【発明を実施するための形態】
【0014】
以下、図面を参照して本発明の実施例を説明する。
【実施例1】
【0015】
<微細泡生成装置100の全体構成>
図1は、微細泡生成装置100の全体構成を例示する断面図である。
【0016】
同図において、微細泡生成装置100は、樹脂成形品である供給ブロック110と、樹脂成形品である導出ブロック120と、微細化ブロック130とから概略構成される。
【0017】
供給ブロック110と導出ブロック120とは、微細化ブロック130を間に挟んだ状態で、互いの螺合部110a、120aを介して螺合される。この螺合箇所にOリング110b、120bを挟むことによって微細泡生成装置100の気密性および液密性が保たれる。
【0018】
この供給ブロック110は、供給側軸支部111、液体供給路112、気体供給路114、および導管116(上流方向の片側)を備える。
【0019】
供給側軸支部111は、微細化ブロック130の片軸を軸支する。この供給側軸支部111は、図1に例示するように流路の上流側に向けて先細りの形状をなすことによって、流れ抵抗を少なくしている。
【0020】
液体供給路112は、水道管などの供給源から液体弁112aを介して液体が供給される導入路である。この液体供給路112の内壁には、液体の無用な流れを整流するための整流フィン112bが設けられる。
【0021】
気体供給路114は、ガス管やガスボンベなどの供給源から気体が供給される導入路であって、連動開閉弁114aを備える。連動開閉弁114aは、液体弁112aの開閉操作または液圧などに連動して開閉するエアー弁である。
【0022】
導管116は、液体供給路112から供給される液体と、気体供給路114から供給される気体(気泡)とを混合した気液混合体を流すための流路である。
【0023】
一方、導出ブロック120は、導管116(下流方向の片側)、導出側軸支部121、および気液導出口122を備える。
【0024】
導出側軸支部121は、微細化ブロック130の片軸を軸支する。この導出側軸支部121は、図1に例示するように流路の下流側に向けて先細りの形状をなすことによって、流れ抵抗を少なくしている。
【0025】
気液導出口122は、導管116を流れた気液混合体の出口であって、導出する気液混合体を整流するための整流フィン122aを備える。
【0026】
<微細化ブロック130の内側部分>
次に、微細化ブロック130の内側部分について説明する。
図2は、微細化ブロック130の内側部分を例示する図である。
同図において、微細化ブロック130は、内側部分として、回転軸131、ベアリング132、スクリュー133、ホイール134、およびベアリング135を備える。
【0027】
この回転軸131は、スクリュー133およびホイール134の回転中心を実体的(または見かけ上)貫通して設けられる。この回転軸131の両端には、回転抵抗を軽減するベアリング132、135が設けられる。ベアリング132、135は、図1に示した供給側軸支部111および導出側軸支部121に嵌合する。この構造により、回転軸131、スクリュー133、およびホイール134は、ベアリング132、135を介して回転する。
【0028】
スクリュー133は、導管116の中心軸の方向に対して捻れた回転翼(例えば図2では6枚の回転翼)を有する。スクリュー133は、図1に示す導管116の流路内に配置され、回転翼で気液混合体の流れを受けることによって回転する。
【0029】
ホイール134は、気液混合体の流圧に抗して、後述する同軸流れ抵抗体142を流路上に位置させるための抑え部材である。
【0030】
<微細化ブロック130の外側部分>
続いて、微細化ブロック130の外側部分について説明する。
図3は、微細化ブロック130の外側部分を例示する図である。
図4は、微細化ブロック130の外側部分(一部切り欠き)を例示する図である。
図5は、微細化ブロック130のパーツ構成を例示する図である。
【0031】
図3図5において、微細化ブロック130は、スクリュー133の周囲に近傍配置される流れ抵抗体として、比較的小径の流れ抵抗体140と、比較的大径の流れ抵抗体141とを備える。これら流れ抵抗体140、141は、互いの対称軸を略同軸にして、互いの側面を一部重ねることによって、同軸流れ抵抗体142を構成する。
【0032】
以下、ここでの「近傍」とは、気液混合体に対して、流れ抵抗体が気泡の微細化に寄与する(好ましくは、有効、十分、または高効率な)流れ抵抗を加えることができるほどに接近した配置関係という意味である。より具体的な「近傍」については、液の粘性や、流れ抵抗の値や、気泡の物理特性や、実験的な微細化の効果確認などに応じて設定される。
【0033】
流れ抵抗体140は、気液混合体の流れる方向に沿って対称軸が配置されて側面に多孔を設けた多孔筒143と、多孔を設けたフィルタ面を多孔筒143の端面(上流側または下流側の端面、図3~5では下流側の端面)に接合した多孔フィルタ144とを備える。この多孔フィルタ144は、導管116の流束の断面方向に沿って配置される。
【0034】
流れ抵抗体141は、気液混合体の流れる方向に沿って対称軸が配置されて側面に多孔を設けた多孔筒145と、多孔筒145の端面(上流側または下流側の端面、図3~5では下流側の端面)に接合された多孔フィルタ146とを備える。この多孔フィルタ146は、導管116の流束の断面方向に沿って配置される。
【0035】
ここでの「多孔」の好ましい一例は、
・孔の幅…0.4mm程度
・孔の中心間隔…0.5mm程度
・孔の配列…六角孔のハニカム配列
・孔の加工方法…金属薄板をエッチング処理
などである。
【0036】
<回転の伝達機構について>
次に、図4および図5を用いて、スクリュー133から流れ抵抗体(ここでは同軸流れ抵抗体142)への回転の伝達機構について説明する。
【0037】
ホイール134には、回転軸131を中心に挟んで一対の回転伝達部134Pが設けられる。一対の回転伝達部134Pは、図4に例示するように、多孔フィルタ146の対応する穴を貫通しつつ、スクリュー133の対応する箇所に嵌合する。さらに、多孔フィルタ146は多孔筒145の端面に接合される。
【0038】
このような構造により、スクリュー133の回転は、一対の回転伝達部134Pを介して、
(1)ホイール134
(2)多孔フィルタ146
(3)多孔筒145
に伝達される。
【0039】
さらに、スクリュー133の回転翼には、回転軸131を中心に挟んで一対の回転伝達部133Pが設けられる。一対の回転伝達部133Pは、図4に例示するように、多孔フィルタ144の対応する穴を貫通する。さらに、多孔フィルタ144は多孔筒143の端面に接合される。
【0040】
このような構造により、スクリュー133の回転は、一対の回転伝達部133Pを介して、
(1)多孔フィルタ144
(2)多孔筒143
に伝達される。
【0041】
このような回転の伝達機構によって、同軸流れ抵抗体142は、スクリュー133の回転に伴って、同軸状態を保ちながら一体に回転駆動される。
【0042】
<気体の供給源について>
続いて、気体の供給源について、炭酸ガスを例にあげて説明する。
炭酸ガスの供給源としては、ビールサーバー用などの汎用のガスボンベや、微細泡生成装置100専用に設計されたガスボンベや供給管などが使用可能である。ガスの供給源と気体供給路114との間には、ガスレギュレータが配置される。連動開閉弁114aには、このガスレギュレータを介して適度に減圧されて安定化された炭酸ガスが供給される。このときのガス圧は、気液混合体が気体供給路114を逆流せず、気体が液体供給路112から噴出せず、かつ気泡が液体に所望割合で混合するのに必要な圧力値(例えば0.3MPa)に調整される。
【0043】
<気泡の微細化作用について>
図6は、微細泡生成装置100内の気泡の経路を例示する図である。
図7は、流れ抵抗体による気泡の剪断作用を説明する図である。
以下、図6および図7を用いて、気泡の微細化作用について説明する。
【0044】
連動開閉弁114aは、液体弁112aの開閉操作や液圧に連動して開閉することによって、液体供給路112に液体が供給開始されると共に気体を供給開始し、液体が供給停止されると共に気体を供給停止する。
【0045】
気体供給路114に供給された気体は、図6に例示するように多孔筒143の外周付近の1箇所に到達して、導管116内を流れる液体に気泡として混合する。混合後の気泡は、導管116の周壁に沿って回転する多孔筒143と液の粘性作用によって旋回し、多孔筒143の外周付近の1箇所から導管116の周壁方向に拡幅する。
【0046】
このように導管116の周壁方向に拡幅した気泡の流れは、図6に例示する複数の経路を通って流れる。
以下、図6の経路ごとに気泡の微細化作用を説明する。
【0047】
(1)経路R1の場合
多孔筒143およびスクリュー133の回転によって近傍の気液混合体は周壁方向に旋回するため、遠心分離作用が働く。この遠心分離作用によって、液体よりも比重の軽い気泡は、多孔筒143の外周から多孔壁を通り抜けて回転中心の方向へ誘導される。この多孔筒143を気泡が通過する前後において、流れ抵抗体である多孔筒143の多孔壁(透過孔)の回転と液の粘性作用とによって、気泡には周壁方向へ引きちぎるような剪断力が作用する。その結果、多孔筒143の回転駆動によって、気泡は、図7[B]に例示するように引きちぎられ、細かく剪断され微細化される。
このように微細化された気泡は、導管116の中心域の流れに導かれて旋回しながら、多孔フィルタ144、スクリュー133、および多孔フィルタ146を順番に通過する。まず、多孔フィルタ144の多孔壁(透過孔)の回転と液の粘性作用によって、気泡には回転方向へ引きちぎるような剪断力が作用する。次に、スクリュー133による流れ方向の曲折と液の粘性作用によって、気泡には引きちぎるような剪断力が作用する。さらに、多孔フィルタ146の多孔壁(透過孔)の回転と液の粘性作用によって、気泡には回転方向へ引きちぎるような剪断力が作用する。
以上の代表的な剪断作用によって、経路R1を通って流れる気泡は効率よく多段階に微細化(例えばナノバブルやマイクロバブル程度に微細化)される。
【0048】
(2)経路R2の場合
多孔筒143の多孔壁を通り抜けなかった気泡は、そのまま下流方向へ流れて、多孔筒143と多孔筒145との円筒間にできる隙間(以下「第1狭隘路S1」という)に入る。気泡は、第1狭隘路S1を通過することによって大きな動圧差が作用して引きちぎられ、剪断されて微細化される。
なお、第1狭隘路S1の内周壁(多孔筒143)と外周壁(多孔筒145)が回転するため、第1狭隘路S1を流れる気泡と液体との間には攪拌作用が働きやすい。この攪拌作用によって第1狭隘路S1が大きな気泡で栓をされた状態は起こりづらく、気泡は円滑に流れる。
このように微細化された気泡は、導管116の中心域の流れに導かれて旋回しながら、多孔フィルタ146を通過する。多孔フィルタ146の多孔壁(透過孔)の回転と液の粘性作用によって、気泡には回転方向へ引きちぎるような剪断力が作用する。
以上の代表的な剪断作用によって、経路R2を通って流れる気泡は効率よく多段階に微細化(例えばナノバブルやマイクロバブル程度に微細化)される。
【0049】
(3)経路R3の場合
経路R2と同様にして、気泡は、多孔筒143と多孔筒145との円筒間にできる第1狭隘路S1を円滑に流れて剪断され微細化される。
このように微細化された気泡は、導管116の周壁(静止状態)と、多孔筒145およびホイール134の周壁(回転状態)との隙間(以下「第2狭隘路S2」という)に生じる流れに巻き込まれて、第2狭隘路S2に入る。第2狭隘路S2では、静止状態の外周壁と、回転状態の内周壁との狭い隙間に大きな動圧差が生じる。気泡がこの動圧差に晒されることによって、気泡には引きちぎるような剪断力が作用する。
なお、第2狭隘路S2を流れる気泡と液体との間には、回転による攪拌作用が働く。この攪拌作用によって第2狭隘路S2が大きな気泡で栓をされた状態は起こりづらく、気泡は円滑に流れる。
以上の代表的な剪断作用によって、経路R3を通って流れる気泡は効率よく多段階に微細化(例えばナノバブルやマイクロバブル程度に微細化)される。
【0050】
<実施例1の効果>
【0051】
(1)本実施例1では、導管116内のスクリュー133が回転することによって、同軸流れ抵抗体142を構成する複数の流れ抵抗体は一体になって自動的に回転駆動される。
このような流れ抵抗体の一つ一つの自動回転と、液の粘性とによって、気液混合体に含まれる気泡は剪断されて微細化される。
したがって、本実施例1は、導管116内に「回転する流れ抵抗体」を配置したことによって、気液混合体の気泡を効率よく微細化して出力できるという点で優れている。
【0052】
(2)本実施例1では、特許文献1に比べて、気液混合体を通す経路(導管116)の径が広く、気液混合体の収量を増やすことが容易になる。
したがって、本実施例1は、特許文献1に比べて、気液混合体の収量を増やしやすいという点で優れている。
【0053】
(3)本実施例1では、特許文献1に比べて、気液混合体を通す経路(導管116)の径が広く、かつ気液混合体が複数経路(図6参照)に分流して流れる。そのため、導管116の内壁に過大な圧力はかかりづらい。そのため、導管116の壁面に亀裂が入って液体が漏れるなどのおそれが少ない。
したがって、本実施例1は、導管116の素材に汎用かつ安価なプラスチック素材を使用できるという点で優れている。
【0054】
(4)本実施例1では、特許文献1に比べて、気液混合体を通す経路(導管116)の径が広い上に、導管116内で微細化ブロック130(流れ抵抗体)が回転する。この回転による攪拌作用によって、導管116を流れる気液混合体は円滑に流れる。
したがって、本実施例1は、気液混合体の円滑な流れを得ることができるという点で優れている。
【0055】
(5)本実施例1では、回転する流れ抵抗体として多孔フィルタ144、146を備える。そのため、多孔フィルタ144、146を通過して流れる気泡は、多孔フィルタ144、146の回転駆動によって、流束の断面方向に剪断され微細化される。
したがって、本実施例1は、多孔フィルタ144、146が導管116内で回転することによって、気液混合体の気泡を効率よく微細化して出力できるという点で優れている。
【0056】
(6)本実施例1では、回転する流れ抵抗体として多孔筒143、145を備える。そのため、多孔筒143、145を通過して流れる気泡は、多孔筒143、145の回転駆動によって周壁方向に剪断され微細化される。
したがって、本実施例1は、多孔筒143、145が導管116内で回転することによって、気液混合体の気泡を効率よく微細化して出力できるという点で優れている。
【0057】
(7)本実施例1では、回転する流れ抵抗体として、複数の多孔壁(筒の側面、フィルタ面)を有する流れ抵抗体140、141を備える。そのため、流れ抵抗体140、141を通過して流れる気泡は、回転する複数の多孔壁(筒の側面、フィルタ面)を段階的に経て剪断され微細化される。
したがって、本実施例1は、流れ抵抗体140、141が導管116内で回転することによって、気液混合体の気泡を筒の側面およびフィルタ面で段階的に効率よく微細化して出力できるという点で優れている。
【0058】
(8)本実施例1では、回転する流れ抵抗体として、複数の流れ抵抗体140、141を略同軸にして側面を一部重ねた同軸流れ抵抗体142を備える。この同軸流れ抵抗体142を通過して流れる気泡は、図6に例示するように、多様な経路(例えばR1~R3)に分流して流れる。これら多様な経路それぞれにおいて、先に詳述したように気泡は剪断され微細化される。
したがって、本実施例1は、同軸流れ抵抗体142が導管116内で回転することによって、複数の分流経路を介して、気液混合体の気泡を効率よく微細化して出力できるという点で優れている。
【0059】
(9)本実施例1では、スクリュー133は、同軸流れ抵抗体142を構成する2つの多孔フィルタ144、146の軸間に挿置され、前後の流れ抵抗体140、141に連結される。このようなスクリュー133を中間にした直線的な連結関係によって、スクリュー133から前後の流れ抵抗体140、141までの間隔がそれぞれ略最短になり、回転駆動の伝達損失を低減することが可能になる。
したがって、本実施例1は、同軸流れ抵抗体142が低損失で効率よくスクリュー回転するという点で優れている。
【0060】
(10)本実施例1では、多孔筒143の外周付近に気泡を供給する。スクリュー133および多孔筒143の回転による遠心分離作用によって、液よりも比重の軽い気泡を多孔筒143の外周から回転中心の方向へ効率的に誘導する。その結果、効率的に誘導される多くの気泡を多孔筒143の多孔壁で剪断して微細化することが可能になる。
したがって、本実施例1は、スクリュー133および多孔筒143の回転による遠心分離作用によって気泡を誘導して、一段と効率的に気泡を微細化して出力できるという点で優れている。
【0061】
(11)本実施例1では、液体供給に連動して自動的に気体供給を行う連動開閉弁114aを備える。そのため、装置の利用者は、液体供給の開始/停止のみを操作すればよく、気体供給の開始/停止を操作する必要がない。また、液体と気体の供給タイミングがずれて、気液導出口122から液体や気体の一方のみが無駄に出力されることもない。
したがって、本実施例1は、連動開閉弁114aを備えることによって、装置の操作を簡単にし、かつ液体や気体の無駄を省くことができるという点で優れている。
【実施例2】
【0062】
次に、実施例2として、微細泡生成装置100Aについて説明する。
図8は、微細泡生成装置100Aの微細化ブロック130A(一部切り欠き)を例示する図である。
なお、その他の構成や動作は、実施例1と同様のため、実施例1(図1~7参照)と同じ参照符号を付与して、ここでの重複説明を省略する。
【0063】
同図において、微細化ブロック130Aは、スクリュー133の周囲に近傍配置される流れ抵抗体として、比較的小径の流れ抵抗体140Aと、比較的大径の流れ抵抗体141Aとを備える。これらの流れ抵抗体140A、141Aは、互いの対称軸を略同軸にして、互いの側面を一部重ねることによって、同軸流れ抵抗体142Aを構成する。
【0064】
流れ抵抗体140Aは、気液混合体の流れる方向に沿って対称軸が配置されて側面に多孔を設けた多孔筒143Aと、多孔を設けたフィルタ面を多孔筒143の端面(上流側または下流側の端面、図3~5では下流側の端面)に接合した多孔フィルタ144Aとを備える。この多孔フィルタ144Aは、導管116の流束の断面方向に沿って配置される。
【0065】
さらに、多孔フィルタ144Aは、貫通する回転軸131との間に、摺動抵抗を軽減するための回転摺動部144Sを備える。
【0066】
流れ抵抗体141Aは、気液混合体の流れる方向に沿って対称軸が配置されて側面に多孔を設けた多孔筒145Aと、多孔を設けたフィルタ面を多孔筒145Aの端面(上流側または下流側の端面、図3~5では下流側の端面)に接合した多孔フィルタ146Aとを備える。この多孔フィルタ146Aは、導管116の流束の断面方向に沿って配置される。
【0067】
さらに、多孔フィルタ146Aは、貫通する回転軸131との間に、摺動抵抗を軽減するための回転摺動部146Sを備える。
【0068】
ここでの「多孔」の好ましい一例は、
・孔の幅…0.4mm程度
・孔の中心間隔…0.5mm程度
・孔の配列…六角孔のハニカム配列
・孔の加工方法…金属薄板をエッチング処理
などである。
【0069】
<流れ抵抗体の回転フリー機構について>
次に、図8を用いて、同軸流れ抵抗体142Aの回転フリー機構について説明する。
【0070】
実施例2は、スクリュー133と多孔フィルタ146Aとの間に回転伝達部134P(実施例1参照)を有しない。さらに、回転摺動部146Sは回転軸131に対して滑る。そのため、流れ抵抗体141A(多孔フィルタ146A、多孔筒145A)は回転フリーの状態に置かれる。
【0071】
さらに、実施例2は、スクリュー133と多孔フィルタ144Aとの間に回転伝達部133P(実施例1参照)を有しない。さらに、回転摺動部144Sは回転軸131に対して滑る。そのため、流れ抵抗体140A(多孔フィルタ144A、多孔筒143A)は回転フリーの状態に置かれる。
【0072】
<気泡の微細化作用について>
以下、実施例2における気泡の微細化作用について説明する。
【0073】
連動開閉弁114aによって気体供給路114に供給された気体は、多孔筒143Aの外周付近の1箇所に到達して、導管116内を流れる液体に気泡として混合する。混合後の気泡は、スクリュー133の回転作用と液の粘性によって旋回し、多孔筒143Aの外周付近の1箇所から導管116の周壁方向に拡幅する。
【0074】
このように導管116の周壁方向に拡幅した気泡の流れは、実施例1(図6参照)と同様に複数の経路R1~R3を通って流れる。
以下、これらの経路R1~R3ごとに気泡の微細化作用を説明する。
【0075】
(1)経路R1の場合
気液混合体の流れは、スクリュー133と共に回転することによって、導管116内を旋回しながら流れる。この旋回による遠心分離作用によって、液体よりも比重の軽い気泡は、多孔筒143Aの外周から多孔壁を通り抜けて回転中心の方向へ誘導される。この多孔筒143Aを気泡が通過する前後において、多孔筒143Aの多孔壁(透過孔)の流れ抵抗と、旋回する液の粘性作用によって、気泡には周壁方向へ引きちぎるような剪断力が作用する。その結果、気泡は、引きちぎられ、細かく剪断され微細化される。
このように微細化された気泡は、導管116の中心域の流れに導かれて旋回しながら、多孔フィルタ144A、スクリュー133、および多孔フィルタ146Aを順番に通過する。まず、多孔フィルタ144Aの多孔壁(透過孔)の流れ抵抗と旋回する液の粘性作用によって、気泡には旋回方向へ引きちぎるような剪断力が作用する。次に、スクリュー133による流れ方向の曲折と液の粘性作用によって、気泡には引きちぎるような剪断力が作用する。さらに、多孔フィルタ146Aの多孔壁(透過孔)の流れ抵抗と旋回する液の粘性作用によって、気泡には回転方向へ引きちぎるような剪断力が作用する。
以上の代表的な剪断作用によって、経路R1を通って流れる気泡は効率よく多段階に微細化(例えばナノバブルやマイクロバブル程度に微細化)される。
【0076】
(2)経路R2の場合
多孔筒143Aの多孔壁を通り抜けなかった気泡は、そのまま下流方向へ流れて、多孔筒143Aと多孔筒145Aとの円筒間にできる隙間(以下「第1狭隘路S1」という)に入る。気泡は、第1狭隘路S1を通過することによって大きな動圧差が作用して引きちぎられ、剪断されて微細化される。
なお、第1狭隘路S1の周壁を構成する多孔筒143Aと多孔筒145Aとは回転フリーのため気液混合体の旋回に引っ張られて独立に回転する。そのため、第1狭隘路S1を流れる気泡と液体との間には攪拌作用が働きやすい。この攪拌作用によって第1狭隘路S1が大きな気泡で栓をされた状態は起こりづらく、気泡は円滑に流れる。
このように微細化された気泡は、導管116の中心域の流れに導かれて旋回しながら、多孔フィルタ146Aを通過する。多孔フィルタ146Aの多孔壁(透過孔)の流れ抵抗と液の粘性作用によって、気泡には旋回方向へ引きちぎるような剪断力が作用する。
以上の代表的な剪断作用によって、経路R2を通って流れる気泡は効率よく多段階に微細化(例えばナノバブルやマイクロバブル程度に微細化)される。
【0077】
(3)経路R3の場合
経路R2と同様にして、気泡は、多孔筒143Aと多孔筒145Aとの円筒間にできる第1狭隘路S1を円滑に流れて剪断され微細化される。
このように微細化された気泡は、導管116の周壁(静止状態)と、回転フリー状態の多孔筒145Aおよびホイール134の周壁との隙間(以下「第2狭隘路S2」という)に生じる流れに巻き込まれて、第2狭隘路S2に入る。第2狭隘路S2では、静止状態の外周壁と、回転フリー状態の内周壁との狭い隙間に大きな動圧差が生じる。気泡がこの動圧差に晒されることによって、気泡には引きちぎるような剪断力が作用する。
なお、第2狭隘路S2を流れる気泡と液体との間には、気液混合体の旋回による攪拌作用が働く。この攪拌作用によって第2狭隘路S2が大きな気泡で栓をされた状態は起こりづらく、気泡は円滑に流れる。
以上の代表的な剪断作用によって、経路R3を通って流れる気泡は効率よく多段階に微細化(例えばナノバブルやマイクロバブル程度に微細化)される。
【0078】
<実施例2の効果>
【0079】
(1)本実施例2では、導管116内にスクリュー133を配置したことによって、導管116を流れる気液混合体は、スクリュー133と一緒に旋回する。
さらに、スクリュー133の近傍に流れ抵抗体を配置する。そのため、スクリュー133の近傍で旋回する液の粘性と、流れ抵抗体の流れ抵抗とによって、気液混合体の気泡には引きちぎるような剪断力が作用する。この剪断力によって気泡は微細化される。
したがって、本実施例2は、導管116内にスクリュー133と流れ抵抗体とを近傍配置したことによって、気液混合体の気泡を効率よく微細化して出力できるという点で優れている。
【0080】
(2)本実施例2では、特許文献1に比べて、気液混合体を通す経路(導管116)の径が広く、気液混合体の収量を増やすことが容易になる。
したがって、本実施例2は、特許文献1に比べて、気液混合体の収量を増やしやすいという点で優れている。
【0081】
(3)本実施例2では、特許文献1に比べて、気液混合体を通す経路(導管116)の径が広く、かつ気液混合体が複数経路(経路R1~R3など)に分流して流れる。そのため、導管116の内壁に過大な圧力はかかりづらい。そのため、導管116の壁面に亀裂が入って液体が漏れるなどのおそれが少ない。
したがって、本実施例2は、導管116の素材に汎用かつ安価なプラスチック素材を使用できるという点で優れている。
【0082】
(4)本実施例2では、特許文献1に比べて、気液混合体を通す経路(導管116)の径が広い上に、スクリュー133によって導管116内を流れる気液混合体は旋回する。この旋回による攪拌作用によって、導管116を流れる気液混合体は円滑に流れる。
したがって、本実施例2は、気液混合体の円滑な流れを得ることができるという点で優れている。
【0083】
(5)本実施例2では、スクリュー133の近傍に流れ抵抗体として多孔フィルタ144A、146Aを配置する。そのため、多孔フィルタ144A、146Aの多孔壁(透過孔)の流れ抵抗と、スクリュー133と共に旋回する液の粘性とによって、多孔フィルタ144A、146Aを通過する気泡には、引きちぎるような剪断力が働く。その結果、気泡は微細化される。
したがって、本実施例2は、スクリュー133の近傍に多孔フィルタ144A、146Aを配置したことによって、気液混合体の気泡を効率よく微細化して出力できるという点で優れている。
【0084】
(6)本実施例2では、スクリュー133の近傍に流れ抵抗体として多孔筒143A、145Aを配置する。そのため、多孔筒143A、145Aの多孔壁(透過孔)の流れ抵抗と、スクリュー133と共に旋回する液の粘性とによって、多孔筒143A、145Aを通過する気泡に引きちぎるような剪断力が働く。その結果、気泡は微細化される。
したがって、本実施例2は、スクリュー133の近傍に多孔筒143A、145Aを配置したことによって、気液混合体の気泡を効率よく微細化して出力できるという点で優れている。
【0085】
(7)本実施例2では、スクリュー133の近傍に流れ抵抗体として、複数の多孔壁(筒の側面、フィルタ面)を有する流れ抵抗体140A、141Aを配置する。そのため、流れ抵抗体140A、141Aを通過して流れる気泡は、複数の多孔壁(筒の側面、フィルタ面)を段階的に経て剪断され微細化される。
したがって、本実施例1は、スクリュー133の近傍に流れ抵抗体140A、141Aを配置したことによって、気液混合体の気泡を複数の多孔壁(筒の側面、フィルタ面)で段階的に効率よく微細化して出力できるという点で優れている。
【0086】
(8)本実施例2では、複数の流れ抵抗体140A、141Aを略同軸にして側面を一部重ねた同軸流れ抵抗体142Aを備える。この同軸流れ抵抗体142Aを通過して流れる気泡は、多様な経路(例えばR1~R3)に分流して流れる。これらの多様な経路それぞれにおいて、先に詳述したように気泡は剪断され微細化される。
したがって、本実施例2は、スクリュー133の近傍に同軸流れ抵抗体142Aを配置したことによって、複数の多様な分流経路を介して、気液混合体の気泡を効率よく微細化して出力できるという点で優れている。
【0087】
(9)本実施例2では、スクリュー133は、同軸流れ抵抗体142Aを構成する2つの多孔フィルタ144A、146Aの軸間に挿置される。さらに、同軸流れ抵抗体142Aを構成する多孔筒143A、145Aの側面は一部が重なる。その結果、スクリュー133の全周囲を殆ど囲むように同軸流れ抵抗体142Aが配置される。この構造によって、スクリュー133の全周囲(上流方向、下流方向、周方向など)に生じる旋回流に対して、全周囲の同軸流れ抵抗体142Aが作用することで、気泡の微細化を漏れなく(または漏れ少なく)行うことができる。
したがって、本実施例2は、スクリュー133を2つの多孔フィルタ144A、146Aの軸間に挿置したことによって、スクリュー133の全周囲について漏れなく(または漏れ少なく)気泡の微細化が可能になるという点で優れている。
【0088】
(10)本実施例2では、多孔筒143Aの外周付近に気泡を供給する。スクリュー133の回転による遠心分離作用によって、液よりも比重の軽い気泡を多孔筒143Aの外周から回転中心の方向へ効率的に誘導する。その結果、効率的に誘導される多くの気泡を多孔筒143Aの多孔壁(透過孔)で剪断して微細化することが可能になる。
したがって、本実施例2は、スクリュー133の回転による遠心分離作用によって気泡を誘導することによって、一段と効率的に気泡を微細化して出力できるという点で優れている。
【0089】
(11)本実施例2では、液体供給に連動して自動的に気体供給を行う連動開閉弁114aを備える。そのため、装置の利用者は、液体供給の開始/停止のみを操作すればよく、気体供給の開始/停止を操作する必要がない。また、液体と気体の供給タイミングがずれて、気液導出口122から液体や気体の一方のみが無駄に出力されることもない。
したがって、本実施例2は、連動開閉弁114aを備えることによって、装置の操作を簡単にし、かつ液体や気体の無駄を省くことができるという点で優れている。
【実施例3】
【0090】
続いて、実施例3として、微細泡生成装置100Bについて説明する。
図9は、微細泡生成装置100Bの構成を示す図である。
実施例3の構成上の特徴は、流れ抵抗体の回転を導管116に固定する手段として、固定部150Bを備える点である。
【0091】
固定部150Bは、多孔筒143A、145Aの縁の一部を供給ブロック110に固着する。その結果、同軸流れ抵抗体142Aは、気液混合体の旋回に抵抗して、導管116内において常に固定される。
【0092】
なお、その他の構成および動作については、実施例2と同じため、ここでの重複説明を省略する。
【0093】
<実施例3の効果>
【0094】
(1)本実施例3における気泡の微細化作用は、基本的には実施例2と同様である。すなわち、スクリュー133と共に旋回する液の粘性と、スクリュー133の近傍に配置された流れ抵抗体とによって、気液混合体の気泡に引きちぎるような剪断力を作用させて気泡の微細化が行われる。
したがって、本実施例3は、上述した実施例2の効果と同様の効果を奏する点で優れている。
【0095】
(2)さらに、本実施例3における気泡の微細化作用の更なる改善点は、流れ抵抗体(ここでは同軸流れ抵抗体142A)の回転を固定した点である。
その結果、流れ抵抗体が、気液混合体の旋回に引きずられて回転することがなく、旋回する液の粘性が引っ張る力に対して、固定状態の流れ抵抗体が抗する反力が大きく作用するため、気泡に働く剪断力は相対的に強くなる。
したがって、本実施例3は、流れ抵抗体の回転を固定することによって、気泡を微細化する剪断力を強めることができるという点で優れている。
【実施例4】
【0096】
続いて、実施例4について説明する。
実施例4の構成上の特徴は、実施例1~3で説明した微細泡生成装置100、100A、100Bのいずれか(以下「微細泡生成装置100X」という)に対して、微細泡出力ホース200が追加される点である。
【0097】
図10は、この微細泡出力ホース200の構造を例示する図である。
同図において、微細泡出力ホース200は、ホース210、接続パーツ210a、および加圧パーツ220を備える。
【0098】
ホース210は、フレキシブルなホースである。このホース210は、例えば、シャワーヘッドに接続されるシャワーホースや、気液混合体を中継するための中継ホースなどである。
【0099】
接続パーツ210aは、微細泡生成装置100Xの気液導出口122に直接または間接に接続するための接続部である。
【0100】
加圧パーツ220は、ホース210内の流路に沿って一つ以上挿置される部品であって、好ましくはシリコンゴムなどの可撓性を有する素材で形成される。
【0101】
図11は、加圧パーツ220の配列構造を例示する図である。
同図において、加圧パーツ220の配列構造は、縮径部221、拡径部222、中空軸223、中心軸線223a、遊び幅223b、補強フィン224、および切り込み部225を備える。
【0102】
縮径部221は、ホース210の下流方向に向かって先細りのカップ形状をなし、ホース210の流路径を狭める。なお、ホース210の周壁近傍の周辺流については縮径部221の周辺の隙間から入って流路断面が拡がる。この縮径部221によって、ホース210の中心流は動圧および流速が高まり、ホース210の周辺流は動圧および流速が低くなる。そのため、ホース210内を流れる気液混合体は縮径部221を通過する際に高い動圧差に晒される。この動圧差によって、気液混合体中の気泡は剪断され微細化される。
【0103】
一方、拡径部222は、ホース210の下流方向に向かって先太りのカップ形状(縮径部221とは対称形)をなし、狭まったホース210の流路径を拡げる。なお、ホース210の周壁近傍の周辺流については拡径部222の周辺から入って流路断面が狭まる。この拡径部222によって、ホース210の中心流は動圧および流速が低くなり、ホース210の周辺流は動圧および流速が高くなる。そのため、ホース210内を流れる気液混合体は拡径部222を通過する際に高い動圧差に晒される。この動圧差によって、気液混合体中の気泡は剪断され微細化される。
【0104】
中空軸223は、縮径部221および拡径部222の間を連結して固定するための中空の軸である。
【0105】
中心軸線223aは、この中空軸223の中空部分を貫くことによって、複数の加圧パーツ220を一列につなぐ。なお、中心軸線223aの端部には、中空軸223が抜けないように結び目や留め具(不図示)を設けてもよい。また、ホース210内を加圧パーツ220が移動しないように、ホース210の中継点などに中心軸線223aの端部を固定してもよい。
【0106】
複数の加圧パーツ220の間には、可撓用の遊び幅223bが設けられる。この遊び幅223bによって、ホース210の曲げに対して加圧パーツ220は位置をずらすことができる。そのため、ホース210を適度に曲げることが可能になる。
【0107】
補強フィン224は、ホース210の中心を通る中空軸223の位置をなるべく維持するための補強構造である。この補強フィン224により、ホース210の曲げに対して加圧パーツ220の過度な変形を抑制し、加圧パーツ220の機能を維持できる。
【0108】
切り込み部225は、縮径部221および拡径部222のカップ部分の縁に複数の切り込みを入れて成型される。この切り込み部225がカップ部分の可撓性を高めることによって、ホース210をさらに適度に曲げることが可能になる。また、切り込み部225は、気液混合体の流れに適度な変化をもたらすことで、気泡の微細化にも寄与する。
【0109】
<実施例4の効果>
実施例4では、上述した実施例1~3の効果に加えて、さらに次の効果を奏する。
【0110】
(1)本実施例4では、微細泡出力ホース200によって、微細泡生成装置100Xから出力される気液混合体に対して、気泡の微細化を継続する。
したがって、本実施例4は、微細泡出力ホース200の中継先に対して、気泡の微細化された気液混合体を安定的に供給できるという点で優れている。
【0111】
(2)本実施例4では、加圧パーツ220の縮径部221および拡径部222がホース210内に流速や動圧の分布差を生じさせることによって、気泡を剪断して微細化する。
したがって、本実施例4は、加圧パーツ220によって、気液混合体の気泡を効率よく微細化できるという点で優れている。
【0112】
(3)本実施例4では、加圧パーツ220の縮径部221および拡径部222が対称な形状を有する。そのため、ホース210に対して加圧パーツ220を正逆どちら向きに挿置しても、加圧パーツ220は正常に機能する。
したがって、本実施例4は、ホース210内に対して加圧パーツ220を正逆どちら向きにも挿置できるため、微細泡出力ホース200の組み立て作業が容易になるという点で優れている。
【0113】
(4)本実施例4では、対称形の加圧パーツ220をホース210内に挿置する。そのため、微細泡出力ホース200を正逆どちら向きに接続しても、微細泡出力ホース200は正常に機能する。
したがって、本実施例4は、微細泡出力ホース200を正逆どちら向きにも接続できるため、微細泡出力ホース200の接続作業が容易になるという点で優れている。
【0114】
(5)本実施例4では、複数の加圧パーツ220を一列に連ねて、ホース210内に挿置される。そのため、微細泡出力ホース200の長さに応じて加圧パーツ220の数を増減調整できる。
したがって、本実施例4は、微細泡出力ホース200の長さを必要に応じて柔軟に変更可能であるという点で優れている。
【0115】
(6)本実施例4では、中心軸線223aが複数の加圧パーツ220を一列につなぎ、隣接する加圧パーツ220の間に可撓用の遊び幅223bが設けられる。そのため、ホース210の曲げ形状に形を合わせて、内部の加圧パーツ220の位置が適度に変位し、ホース210を柔軟に曲げることが可能になる。
したがって、本実施例4は、中心軸線223aおよび遊び幅223bによって、微細泡出力ホース200を柔軟に曲げることができるという点で優れている。
【0116】
(7)本実施例4では、補強フィン224が加圧パーツ220の略中心をホース210の中心線に維持しつつ、切り込み部225によって加圧パーツ220の縮径部221および拡径部222のカップ部分に可撓性を与える。
したがって、本実施例4は、補強フィン224および切り込み部225によって、加圧パーツ220の過度な変形(潰れ)を防ぎつつ、微細泡出力ホース200を柔軟に曲げることができるという点で優れている。
【実施例5】
【0117】
続いて、微細泡生成装置100、100A、100Bの応用例について説明する。
図12は、フェイスマスクへの応用を説明する図である。
図12に示す微細泡供給装身具300は、上述した微細泡生成装置100、100A、100Bのいずれか(以下、「微細泡生成装置100X」という)と、実施例4の微細泡出力ホース200と、装身具320とを接続して構成される。
【0118】
ここでの微細泡生成装置100Xには、気体として炭酸ガスが供給され、液体として水(冷水、常温水、または温水)が適量ずつ供給される。微細泡生成装置100Xは、気液混合体として、炭酸ガスのナノバブルを含む水を出力する。出力された水は、微細泡出力ホース200を通して炭酸ガスのナノバブル化をさらに継続しつつ、装身具320に供給される。
【0119】
装身具320は、フェイスマスク形状であってユーザの顔面に装着される。装身具320からは、適量ずつ供給される水が浸潤、噴出、または噴霧される。
【0120】
水に含まれる炭酸ガスのナノバブルはユーザの顔面の皮膚組織から血管に入り、血中の炭酸ガス濃度を上昇させる。人体は、この状態を酸素欠乏状態と判断し、血管を拡張させる。その結果、血管を流れる血流が増大する。このような血管拡張や血流増大による紅潮効果によって、顔のくすみを改善したり、血流増大による発汗効果によって毛穴などの汚れを落としたり、血管の詰まりを流したり、人体の新陳代謝を高めるなどの顔面に対する美容や健康の効果が期待される。
【0121】
図13は、サウナスーツへの応用を説明する図である。
図13に示す微細泡供給装身具400は、微細泡生成装置100Xと、実施例4の微細泡出力ホース200と、ユーザの上半身に装着されるフード付きサウナスーツ形状の装身具420とを備える。
【0122】
微細泡生成装置100Xは、炭酸ガスのナノバブルを含む水を出力する。出力された水は、微細泡出力ホース200を経由して装身具420に供給される。
【0123】
装身具420のサウナスーツ部分からは、ユーザの上半身に対して、炭酸ガスのナノバブルを含む水が適量ずつ浸潤、噴出、または噴霧される。
【0124】
さらに、装身具420のフード(頭巾)部分からは、ユーザの頭部に対して、炭酸ガスのナノバブルを含む水が適量ずつ浸潤、噴出、または噴霧される。
【0125】
炭酸ガスのナノバブルはユーザの上半身や頭部の皮膚組織から血管に入り、血中の炭酸ガス濃度を上昇させる。人体は、この状態を酸素欠乏状態と判断し、血管を拡張させる。その結果、血管を流れる血流が増大する。このような血管拡張や血流増大による紅潮効果によって肌のくすみを改善したり、血流増大による発汗効果によって毛穴などの汚れを落としたり、血管の詰まりを流したり、人体の新陳代謝を高めるなどの上半身に対する美容や健康の効果が期待される。また、頭部における血管拡張や血流増大によって、頭皮の毛穴洗浄や、毛髪の育成や、毛表皮(キューティクル)の改善なども期待される。
【0126】
図14は、脚部装着への応用を説明する図である。
図14に示す微細泡供給装身具500は、微細泡生成装置100Xと、実施例4の微細泡出力ホース200と、ブーツ形状の装身具520、530とを備える。
装身具520は、ユーザの脚部全体を覆うように装着される。装身具530は、ユーザのすねから下に装着される。
微細泡生成装置100Xは、炭酸ガスのナノバブルを含む水を出力する。出力された水は、微細泡出力ホース200を経由して装身具520、530に供給される。
装身具520、530からは、ユーザの脚部に対して、炭酸ガスのナノバブルを含む水が適量ずつ浸潤、噴出、または噴霧される。
【0127】
炭酸ガスのナノバブルはユーザの脚部の皮膚組織から血管に入り、血中の炭酸ガス濃度を上昇させる。人体は、この状態を酸素欠乏状態と判断し、血管を拡張させる。その結果、血管を流れる血流が増大する。このような脚部の血管拡張や血流増大によって血流不足の改善や、血管の詰まりを流したり、糖尿病や凍傷などによる脚部の壊疽症状の改善など、美容や健康の効果が期待される。
【0128】
<実施形態の補足事項>
【0129】
なお、本発明の用途としては、実施形態に説明した以外にも多様な用途が存在する。
【0130】
例えば、本発明によって酸素ガスのナノバブルを燃料に混合することによって、燃料の燃焼効率を高めることが可能になる。
【0131】
また、本発明によって炭酸ガスのナノバブルを混入した水を、植物の葉や水生植物の池や水槽に与えることによって、植物の光合成を促進することが可能になる。
【0132】
さらに、本発明によって炭酸ガスのナノバブルを混入した水を、入浴や足湯やシャワーに使用することによって、炭酸泉の効果を得ることも可能になる。炭酸泉は保温効果に優れ、皮膚に優しい温泉として世界的に知られる。
【0133】
さらに、高濃度の炭酸泉は、動脈硬化による閉塞や冷え性等に治療効果があると認識され始めている。最近では、炭酸泉は、頭皮や毛髪にも良いということから、美容室などの施設にも導入され始めている。このような炭酸泉の生成用途にも本発明は応用が可能である。
【0134】
また、本発明によって水素ガスのナノバブルを液体に混合することによって、クリーンな燃料の生成や、常温常圧下での水素貯蔵が可能になる。
【0135】
さらに、本発明によって酸素ガスのナノバブルを液体に混合することによって、酸素供給可能な液体(例えば皮膚への酸素供給液や人工血液)が生成可能になる。
【0136】
なお、本発明は上記した各実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は分かりやすく説明するために詳細に説明したものであり、本発明は必ずしも説明した全ての構成や工程を備えるものに限定されない。また、ある実施例の一部を他の実施例に置き換えることが可能であり、また、ある実施例に他の実施例の一部または全部を加えることも可能である。さらに、ある実施例の一部について、ある構成の追加・削除・置換をすることも可能である。
以下、本願出願時の[特許請求の範囲]を付記の形式に替えて引用する。
[付記1]
液体を供給するための液体供給路と、
気体を供給するための気体供給路と、
前記液体供給路から供給される前記液体と、前記気体供給路から供給される前記気体とを混合した気液混合体を流す導管と、
前記導管を流れた前記気液混合体を出力するための気液導出口と、
前記導管の流路に配置され、前記気液混合体の流れによって回転するスクリューと、
前記導管の流路において前記スクリューの近傍に配置され、前記気液混合体に対して流れ抵抗を加える流れ抵抗体と
を備えたことを特徴とする微細泡生成装置。
[付記2]
付記1に記載の微細泡生成装置であって、
前記流れ抵抗体として、フィルタ面に多孔を有し、前記導管の流束の断面方向に沿って前記フィルタ面を配置した多孔フィルタを備える
ことを特徴とする微細泡生成装置。
[付記3]
付記1に記載の微細泡生成装置であって、
前記流れ抵抗体として、筒の側面に多孔を有し、前記気液混合体の流れる方向に沿って前記筒の対称軸を配置した多孔筒を備える
ことを特徴とする微細泡生成装置。
[付記4]
付記1に記載の微細泡生成装置であって、
前記流れ抵抗体として、
筒の側面に多孔を有し、前記気液混合体の流れる方向に沿って前記筒の対称軸を配置した多孔筒と、
多孔を有するフィルタ面が前記多孔筒の端面に接合された多孔フィルタと
を備えることを特徴とする微細泡生成装置。
[付記5]
付記4のいずれか一項に記載の微細泡生成装置であって、
前記流れ抵抗体として、
筒径の異なる複数の前記多孔筒を略同軸に配置して、前記多孔筒の側面を一部重ねた同軸流れ抵抗体を備える
ことを特徴とする微細泡生成装置。
[付記6]
付記5に記載の微細泡生成装置であって、
前記スクリューは、
前記同軸流れ抵抗体を構成する2つの前記多孔フィルタの軸間に挿置される
ことを特徴とする微細泡生成装置。
[付記7]
付記3~6のいずれか一項に記載の微細泡生成装置であって、
前記気体供給路は、前記多孔筒の少なくとも一つの外周付近に配置され、
前記外周付近に生じた気泡は、前記スクリューの回転による遠心分離作用によって前記多孔筒の外周から回転中心の方向へ誘導されて前記多孔筒の側面を通過する
ことを特徴とする微細泡生成装置。
[付記8]
付記1~7のいずれか一項に記載の微細泡生成装置であって、
前記スクリューの回転を前記流れ抵抗体に伝達する回転伝達部を備え、
前記流れ抵抗体は、前記スクリューの回転によって回転駆動される回転体である
ことを特徴とする微細泡生成装置。
[付記9]
付記1~8のいずれか一項に記載の微細泡生成装置であって、
前記液体供給路に前記液体が供給されると共に前記気体供給路に前記気体を供給し、前記液体供給路に前記液体が供給停止されると共に前記気体供給路に前記気体を供給停止する連動開閉弁を備えた
ことを特徴とする微細泡生成装置。
[付記10]
付記1~9のいずれか一項に記載の微細泡生成装置であって、
前記気液導出口から出力される前記気液混合体を流すための微細泡出力ホースをさらに備え、
前記微細泡出力ホースは、
フレキシブルなホースと、
「前記ホースの流路径を狭める縮径部」および「狭めた流路径を拡げる拡径部」を対称構造に備え、前記ホースの流路内に一つ以上挿置される加圧パーツとを有する
ことを特徴とする微細泡生成装置。
[付記11]
付記1~10のいずれか一項に記載の微細泡生成装置と、
ユーザに装着することによって、前記微細泡生成装置から出力された前記気液混合体をユーザの装着箇所に供給する装身具と、
を備えたことを特徴とする微細泡供給装身具。
[付記12]
付記11に記載の微細泡供給装身具であって、
前記装身具は、出力された前記気液混合体をユーザの顔に供給するためのフェイスマスク形状をなす
ことを特徴とする微細泡供給装身具。
【符号の説明】
【0137】
100…微細泡生成装置、100A…微細泡生成装置、100B…微細泡生成装置、100X…微細泡生成装置、110…供給ブロック、110a…螺合部、110b…Oリング、111…供給側軸支部、112…液体供給路、112a…液体弁、112b…整流フィン、114…気体供給路、114a…連動開閉弁、116…導管、120…導出ブロック、120a…螺合部、120b…Oリング、121…導出側軸支部、122…気液導出口、122a…整流フィン、130…微細化ブロック、130A…微細化ブロック、131…回転軸、132…ベアリング、133…スクリュー、133P…回転伝達部、134…ホイール、134P…回転伝達部、135…ベアリング、140…流れ抵抗体、140A…流れ抵抗体、141…流れ抵抗体、141A…流れ抵抗体、142…同軸流れ抵抗体、142A…同軸流れ抵抗体、143…多孔筒、143A…多孔筒、144…多孔フィルタ、144A…多孔フィルタ、144S…回転摺動部、145…多孔筒、145A…多孔筒、146…多孔フィルタ、146A…多孔フィルタ、146S…回転摺動部、150B…固定部、200…微細泡出力ホース、210…ホース、210a…接続パーツ、220…加圧パーツ、221…縮径部、222…拡径部、223…中空軸、223a…中心軸線、223b…遊び幅、224…補強フィン、225…切り込み部、320…装身具(フェイスマスク)、420…装身具(サウナスーツ)、520…装身具(脚部装着)、530…装身具(脚部装着)、S1…第1狭隘路、S2…第2狭隘路
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14