IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ テレフオンアクチーボラゲット エル エム エリクソン(パブル)の特許一覧

特許7296422新無線アップリンクシングルユーザ多入力多出力通信の電力制御
<>
  • 特許-新無線アップリンクシングルユーザ多入力多出力通信の電力制御 図1
  • 特許-新無線アップリンクシングルユーザ多入力多出力通信の電力制御 図2
  • 特許-新無線アップリンクシングルユーザ多入力多出力通信の電力制御 図3
  • 特許-新無線アップリンクシングルユーザ多入力多出力通信の電力制御 図4
  • 特許-新無線アップリンクシングルユーザ多入力多出力通信の電力制御 図5
  • 特許-新無線アップリンクシングルユーザ多入力多出力通信の電力制御 図6
  • 特許-新無線アップリンクシングルユーザ多入力多出力通信の電力制御 図7
  • 特許-新無線アップリンクシングルユーザ多入力多出力通信の電力制御 図8
  • 特許-新無線アップリンクシングルユーザ多入力多出力通信の電力制御 図9
  • 特許-新無線アップリンクシングルユーザ多入力多出力通信の電力制御 図10
  • 特許-新無線アップリンクシングルユーザ多入力多出力通信の電力制御 図11
  • 特許-新無線アップリンクシングルユーザ多入力多出力通信の電力制御 図12
  • 特許-新無線アップリンクシングルユーザ多入力多出力通信の電力制御 図13
  • 特許-新無線アップリンクシングルユーザ多入力多出力通信の電力制御 図14
  • 特許-新無線アップリンクシングルユーザ多入力多出力通信の電力制御 図15
  • 特許-新無線アップリンクシングルユーザ多入力多出力通信の電力制御 図16
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-06-14
(45)【発行日】2023-06-22
(54)【発明の名称】新無線アップリンクシングルユーザ多入力多出力通信の電力制御
(51)【国際特許分類】
   H04B 7/0426 20170101AFI20230615BHJP
   H04W 52/04 20090101ALI20230615BHJP
【FI】
H04B7/0426
H04W52/04
【請求項の数】 7
【外国語出願】
(21)【出願番号】P 2021065062
(22)【出願日】2021-04-07
(62)【分割の表示】P 2019561159の分割
【原出願日】2019-01-04
(65)【公開番号】P2021153297
(43)【公開日】2021-09-30
【審査請求日】2021-12-28
(31)【優先権主張番号】62/654,286
(32)【優先日】2018-04-06
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】598036300
【氏名又は名称】テレフオンアクチーボラゲット エルエム エリクソン(パブル)
(74)【代理人】
【識別番号】100109726
【弁理士】
【氏名又は名称】園田 吉隆
(74)【代理人】
【識別番号】100161470
【弁理士】
【氏名又は名称】冨樫 義孝
(74)【代理人】
【識別番号】100194294
【弁理士】
【氏名又は名称】石岡 利康
(74)【代理人】
【識別番号】100194320
【弁理士】
【氏名又は名称】藤井 亮
(74)【代理人】
【識別番号】100150670
【弁理士】
【氏名又は名称】小梶 晴美
(72)【発明者】
【氏名】ヴェルナーソン, ニクラス
(72)【発明者】
【氏名】ハリソン, ロバート マーク
【審査官】北村 智彦
(56)【参考文献】
【文献】特表2013-524584(JP,A)
【文献】CATT,Discussion on remaining details of codebook based UL transmission[online],3GPP TSG RAN WG1 #91 R1-1720178,2017年11月18日,[検索日:2018.08.02],Internet<URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_91/Docs/R1-1720178.zip>
【文献】OPPO,Remaining issues on uplink non-codebook transmission[online],3GPP TSG RAN WG1 #91 R1-179965,2017年11月18日,[検索日:2018.08.02],Internet<URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_91/Docs/R1-1719965.zip>
【文献】Ericsson,Power control for UL MIMO[online],3GPP TSG RAN WG1 #92b R1-1805205,2018年04月07日,[検索日:2018.09.28],Internet<URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_92b/Docs/R1-1805205.zip>
(58)【調査した分野】(Int.Cl.,DB名)
H04B 7/0426
H04W 52/04
IEEE Xplore
3GPP TSG RAN WG1-4
SA WG1-2
CT WG1
(57)【特許請求の範囲】
【請求項1】
処理回路構成(520)を備えるユーザ機器(UE)(510)であって、前記処理回路構成が、
物理アップリンク共有チャネル送信のアップリンク電力制御に使用される電力Pを導き出すように設定され、かつ
前記UE(510)が前記物理アップリンク共有チャネル送信にコードブックベースの送信または非コードブックベースの送信のどちらを利用しているかに応じて決まる規則にしたがって、前記電力Pに基づいてアンテナポートセットに使用される電力を決定するように設定され、ここで前記アンテナポートセットが、前記物理アップリンク共有チャネル送信が非ゼロ電力で送信されるアンテナポートであり、
前記規則は、コードブックベースの送信の場合、前記規則にしたがって前記電力Pに基づいて前記アンテナポートセットに対して使用される前記電力を決定するために、前記処理回路構成(520)がさらに、
比Rで電力Pを基準化することによって、第2の電力P’を導き出すように設定され、ここで前記比Rは、アンテナポートの第1の数をアンテナポートの第2の数で割った数であり、前記アンテナポートの第1の数は、前記物理アップリンク共有チャネル送信が非ゼロ電力で送信されるアンテナポートの数であり、前記アンテナポートの第2の数は、マルチアンテナ送信設定にしたがって、(a)新無線基地局(gNB)によって指示されるプリコーダで使用されるポートの第3の数、又は(b)前記gNBによって指示される空間レイヤの第4の数のいずれかに決定され、かつ
前記物理アップリンク共有チャネル送信が非ゼロ電力で送信される前記アンテナポートセットの間で前記第2の電力P’を均等に分割するように設定される
ような規則である、UE(510)。
【請求項2】
前記UE(510)がインターフェース(514)を更に備え、前記処理回路構成(520)が、前記インターフェース(514)を介して、前記アンテナポートセットを使用して前記物理アップリンク共有チャネル送信を送信するように更に設定される、請求項1に記載のUE(510)。
【請求項3】
前記UE(510)における前記アンテナポートが、前記UE(510)におけるSRSリソースのサウンディング参照信号(SRS)ポートである、請求項1または2に記載のUE(510)。
【請求項4】
前記規則が、
完全コヒーレンス送信を実施する能力、部分コヒーレンス送信を実施する能力、非コヒーレンス送信を実施する能力から成るUE能力群からの少なくとも2つのUE能力、ならびに/あるいは、
コードブックベースおよび非コードブックベースの両方の送信
に関して、ランク1の送信に対して前記第2の電力P’が前記電力Pに等しいような規則である、請求項1から3のいずれか一項に記載のUE(510)。
【請求項5】
ユーザ機器(UE)(510)において実施される方法であって、
物理アップリンク共有チャネル送信のアップリンク電力制御に使用される電力Pを導き出すこと(1600)と、
前記UE(510)が前記物理アップリンク共有チャネル送信にコードブックベースの送信または非コードブックベースの送信のどちらを利用しているかに応じて決まる規則にしたがって、前記電力Pに基づいてアンテナポートセットに使用される電力を決定することであって、前記アンテナポートセットが、前記物理アップリンク共有チャネル送信が非ゼロ電力で送信されるアンテナポートである、電力を決定すること(1602)と
を含み、
前記規則は、コードブックベースの送信の場合、前記規則にしたがって前記電力Pに基づいて前記アンテナポートセットに対して使用される前記電力を決定することが、
比Rで電力Pを基準化することによって、第2の電力P’を導き出すことと、ここで前記比Rは、アンテナポートの第1の数をアンテナポートの第2の数で割った数であり、前記アンテナポートの第1の数は、前記物理アップリンク共有チャネル送信が非ゼロ電力で送信されるアンテナポートの数であり、前記アンテナポートの第2の数は、マルチアンテナ送信設定にしたがって、(a)新無線基地局(gNB)によって指示されるプリコーダで使用されるポートの第3の数、又は(b)前記gNBによって指示される空間レイヤの第4の数のいずれかに決定され、
前記物理アップリンク共有チャネル送信が非ゼロ電力で送信される前記アンテナポートセットの間で前記第2の電力P’を均等に分割することと
を含むような規則である、方法。
【請求項6】
前記アンテナポートセットを使用して前記物理アップリンク共有チャネル送信を送信することを更に含む、請求項5に記載の方法。
【請求項7】
前記UE(510)における前記アンテナポートが、前記UE(510)におけるSRSリソースのサウンディング参照信号(SRS)ポートである、請求項5または6に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願
本出願は、2018年4月6日に出願された仮特許出願第62/654,286号の利益を主張し、その開示の全体を参照により本明細書に援用する。
【0002】
開示する主題は、概して、電気通信に関する。特定の実施形態は、より詳細には、新無線(NR)、アップリンク(UL)電力制御、非コードブックベースのプリコーディング、コードブックベースのプリコーディング、およびシングルユーザ多入力多出力(MIMO)通信に関する。
【背景技術】
【0003】
次世代移動体無線通信システム(第5世代(5G))、即ち新無線(NR)は、広範な使用事例および広範な配備シナリオに対応するようになる。後者は、今日のロングタームエボリューション(LTE)と同様の低周波数、即ち数百メガヘルツ(MHz)と、超高周波数、即ち数十ギガヘルツ(GHz)のミリメートル(mm)波の両方での展開を含む。
【0004】
コードブックベースのプリコーディング
マルチアンテナ技術は、無線通信システムのデータ転送率および信頼性を大幅に増大させることができる。性能は、特に、送信機および受信機両方が複数のアンテナを備える場合に改善され、それによって多入力多出力(MIMO)通信チャネルがもたらされる。かかるシステムおよび/または関連技術は一般にMIMOと呼ばれる。
【0005】
NR規格は最近規定されている。NRのコア構成要素は、MIMOアンテナ展開およびMIMO関連技術に対応することである。NRは、チャネル依存のプリコーディングを用いる少なくとも4つのアンテナポートを使用する、少なくとも4レイヤの空間多重化を含むアップリンクMIMOに対応するようになる。空間多重化モードは、好ましいチャネル条件における高データ転送率を目標とする。サイクリックプレフィックス直交周波数分割多重(CP-OFDM)がアップリンク(UL)で使用される、空間多重化動作の例示を図1に示している。
【0006】
図で分かるように、情報伝達シンボルベクトルsは、N×rのプリコーダ行列Wによって乗算されて、N(N個のアンテナポートに対応)次元ベクトル空間の部分空間において送信エネルギーを分配するのに役立つ。プリコーダ行列は、一般的に、可能なプリコーダ行列のコードブックから選択され、また一般的に、所与の数のシンボルストリームに対してコードブック内の一意のプリコーダ行列を指定する、送信プリコーダ行列インジケータ(TPMI)によって指示される。sにおけるr個のシンボルはそれぞれレイヤに対応し、rは送信ランクと呼ばれる。このように、同じ時間/周波数リソース要素(TFRE)を通じて複数のシンボルを同時に送信することができるので、空間多重化が達成される。シンボルrの数は、一般的に、現在のチャネル特性に適するように適合される。
【0007】
したがって、サブキャリアn(あるいは、データTFRE数n)における特定のTFREに対して、受信したN×1のベクトルynは、次式によってモデル化される。
=HWs+e
式中、eは、ランダムプロセスの実施の際に得られるノイズ/干渉ベクトルである。プリコーダWは、周波数を通じて一定であるかまたは周波数選択的である、広帯域プリコーダであることができる。
【0008】
プリコーダ行列Wは、N×NのMIMOチャネル行列Hの特徴に合致するように選ばれる場合が多く、それによっていわゆるチャネル依存のプリコーディングがもたらされる。これはまた、一般に閉ループプリコーディングと呼ばれ、本質的に、送信されたエネルギーの多くをユーザ機器デバイス(UE)へと伝えるという意味で強力である部分空間に送信エネルギーを集中させるように努める。それに加えて、プリコーダ行列はまた、チャネルを直交化するよう努めるように選択されてもよく、つまり、UEにおいて適切に線形等化された後、レイヤ間干渉が低減される。
【0009】
UEがプリコーダ行列Wを選択する一例の方法は、仮定された等価チャネルのフロベニウスノルムを最大限にするWを選択するものであることができる。
式中、
は、場合によってはSRSから導き出された、チャネル推定値、
は、指数kの仮定されたプリコーダ行列、
は、仮定された等価チャネルである。
【0010】
NRアップリンクの閉ループプリコーディングでは、送受信ポイント(TRP)は、逆方向リンク(UL)におけるチャネル測定に基づいて、TPMIをUEに送信し、UEはそれをULアンテナで使用すべきである。NR基地局(gNB)は、UEがUL送信に使用してチャネル測定ができるようにする、UEアンテナの数にしたがって、サウンディング参照信号(SRS)を送信するようにUEを設定する。大きい帯域幅(広帯域プリコーディング)をカバーすると想定される単一のプリコーダがシグナリングされてもよい。
【0011】
TPMI以外の情報は、一般に、SRSリソースインジケータ(SRI)、ならびに送信ランクインジケータ(TRI)など、UL MIMO送信状態を決定するのに使用される。これらのパラメータ、ならびに変調およびコーディング状態(MCS)、および物理アップリンク共有チャネル(PUSCH)が送信されるULリソースも、UEからのSRS送信から導き出されるチャネル測定によって決定される。送信ランク、またしたがって空間多重化レイヤの数は、プリコーダWのコラムの数に反映される。効率的な性能のため、チャネル特性に合致する送信ランクが選択されることが重要である。
【0012】
NRにおけるSRS送信
SRSは、LTEで様々な目的で使用され、NRにおいて同様の目的に役立つことが予測される。SRSの1つの主要な用途は、ULチャネル状態推定であって、チャネル品質推定によって、ULリンクの適合(UEがどのMCS状態で送信を行うかの決定を含む)および/または周波数選択的スケジューリングを可能にすることができる。UL MIMOに関連して、UEがULアンテナアレイでの送信に使用するとき、良好なULスループットおよび/または信号対干渉雑音比(SINR)を提供する、プリコーダおよび多数のレイヤの決定に使用することもできる。更なる用途としては、電力制御およびULタイミングアドバンス調節が挙げられる。
【0013】
LTEリリース14とは異なり、少なくともいくつかのNR UEは、複数のSRSリソースを送信することができてもよい。これは、ダウンリンク(DL)における複数のチャネル状態情報参照信号(CSI-RS)リソースと概念的に類似しており、SRSリソースは1つまたは複数のSRSポートを備え、UEは、ビーム成形器および/またはプリコーダをSRSリソース内のSRSポートに適用して、同じ実効アンテナパターンで送信されるようにしてもよい。UEにおいて複数のSRSリソースを規定する主な動機付けは、UEが様々なビームパターンで、ただし一度に1つのみ送信することができる、UEのアナログビーム成形に対応することである。かかるアナログビーム成形は、特にNRが対応することができる高い周波数において、比較的高い指向性を有してもよい。初期のLTEアップリンクMIMOおよび送信ダイバーシティ設計は、高い指向性のビーム成形を異なるSRSポートに使用することができる事例に焦点を当てておらず、そのため単一のSRSリソースで十分だった。NR UEが異なるビームで送信すると、TRPが受信する電力は実質的に異なることができる。1つの方策は、単一のSRSリソースを有し、ただし、ビームのうちどれを送信に使用するかをUEに示すことであり得る。しかしながら、UEアンテナ設計はUE同士で大きく異なり、UEアンテナパターンは非常に不規則な場合があるので、TRPがUE ULプリコーディングまたはビーム成形を制御するのに用いることができる、所定のUEアンテナパターンセットを有することは実行不能である。したがって、NR UEは、離散的な実効アンテナパターンを各SRSリソースに使用して複数のSRSリソースで送信して、UEが使用する異なる実効アンテナパターンに対して、TRPが複合チャネル特性および品質を決定するのを可能にしてもよい。各実効アンテナパターンと対応するSRSリソースとのこの関連を所与として、TRPは次に、1つまたは複数の実効アンテナパターンのどれを、PUSCH(または他の物理チャネルもしくは信号)での送信に使用すべきかを、1つまたは複数のSRSリソースインジケータ(「SRI」)を通して、UEに示すことができる。
【0014】
非コードブックベースのプリコーディング
NRはまた、コードブックベースのプリコーディングに加えて、PUSCHの非コードブックベースの送信/プリコーディングに対応する。この方式の場合、SRSリソースセットが送信され、各SRSリソースは、UEが選択した何らかのプリコーダによってプリコーディングされた1つのSRSポートに対応する。gNBは次に、送信されたSRSリソースを測定し、1つまたは複数のSRIをUEにフィードバックして、参照されたSRSリソースに対応するプリコーダを使用してPUSCH送信を実施するようにUEに命令することができる。この場合のランクは、UEにフィードバックされたSRIの数から決定される。
【0015】
「非コードブック」に対してセットされた上位レイヤパラメータSRS-AssocCSIRSおよび上位レイヤパラメータulTxConfigを用いてUEを設定することによって、UEは、非ゼロ電力(NZP)CSI-RSを用いて、SRSおよびPUSCH送信に使用されるプリコーダを作成するのに相反性を利用するように設定されてもよい。したがって、指定されたCSI-RSに対して測定を行うことによって、UEは、相反性に基づいたgNB透過プリコーディングを実施することができるようになる。
【0016】
別の動作モードは、代わりに、各SRSリソースが1つのUEアンテナに対応するように、UEがプリコーダを選ぶようにするものである。したがって、この場合、SRSリソースは一度に1つのUEアンテナから送信され、したがってSRIは異なるアンテナに対応するであろう。したがって、このようにUEプリコーダを選ぶことによって、gNBは、次に異なるアンテナに対応するようになる異なるSRIを参照することによって、UEでアンテナ選択を実施できるようになる。
【0017】
上述したように、非コードブックベースのプリコーディングは、アンテナ選択とgNB透過の相反性ベースのプリコーディングとの両方を含む。
【0018】
NRにおけるUEコヒーレンス能力
UEの実装形態に応じて、送信チェーンの相対位相を維持するのが可能なことがある。この場合、UEは、各送信チェーンにおいてビームを選択することによって、また送信チェーン間の異なるゲインおよび/または位相を使用して、両方の送信チェーンの選択されたビームにおいて同じ変調シンボルを送信することによって、適応的アレイを形成することができる。位相が制御された複数のアンテナ要素における共通の変調シンボルまたは信号のこの送信は、「コヒーレント」送信と呼ぶことができる。LTEリリース10におけるコヒーレントアップリンクMIMO送信の対応は、UL空間多重化に対する相対送信位相連続性の機能グループ指示を介して指示され、UEは、コヒーレント送信に対応するために、長時間にわたって送信チェーンの相対位相を適切に維持できるかを示す。
【0019】
他のUE実装形態では、送信チェーンの相対位相は十分に制御されないことがあり、コヒーレント送信は使用されないことがある。かかる実装形態では、一度に送信チェーンの1つで送信するか、または送信チェーンで異なる変調シンボルを送信するかが依然として可能なことがある。後者の場合、各送信チェーンの変調シンボルは、空間多重化、即ち「MIMO」レイヤを形成してもよい。この送信クラスは、「非コヒーレント」送信と呼ばれることがある。かかる非コヒーレント送信方式は、複数の送信チェーンを有するが、相対送信位相連続性には対応していない、LTEリリース10のUEによって使用されてもよい。
【0020】
更に他のUE実装形態では、送信チェーンのサブセットの相対位相は十分に制御されているが、全ての送信チェーンに対してではない。1つの可能なかかる例は、パネル内の送信チェーンの間では位相が十分に制御されるが、パネル間の位相は十分に制御されない、マルチパネル動作である。この送信クラスは、「部分コヒーレント」と呼ばれることがある。
【0021】
相対位相制御のこれらの変形例は3つともNRに対応することが合意されているので、完全コヒーレンス、部分コヒーレンス、および非コヒーレント送信に対してUE能力が規定されている。完全コヒーレンス、部分コヒーレンス、および非コヒーレントUE能力は、第3世代パートナーシッププロジェクト(3GPP)技術仕様書(TS)38.331バージョン15.0.1の専門用語集にしたがって、「fullAndPartialAndNonCoherent」、「partialCoherent」、および「nonCoherent」とそれぞれ特定される。この専門用語集は、完全コヒーレント送信に対応するUEが部分および非コヒーレント送信にも対応することができるため、また部分コヒーレント送信に対応するUEが非コヒーレント送信にも対応することができるために使用される。そのため、UEは、そのコヒーレンス能力によって対応することができるUL MIMOコードブックのサブセットを使用して、送信するように設定することができる。38.214のセクション6.1.1では、UEは、完全コヒーレント、部分コヒーレント、および非コヒーレント送信チェーンを用いてUEが対応することができるコードブックのサブセットをUEが使用することを示す、「fullAndPartialAndNonCoherent」、「partialAndNonCoherent」、および「nonCoherent」の値を有することができる、上位レイヤパラメータULCodebookSubsetを用いて設定することができる。
【0022】
アンテナポート
TS 38.211 V15.0.0のセクション6.3.1.5では、アンテナポートに対応するベクトルzは、次のように、コードブックベースおよび非コードブックベースのプリコーディングに対して規定されている。
ベクトルのブロック
は、次式にしたがってプリコーディングされるものとする。
式中、
アンテナポートセット{p,…,pρ-1}は、[6,TS 38.214]の手順にしたがって決定されるものとする。
非コードブックベースの送信の場合、プリコーディング行列Wは単位行列に等しい。
コードブックベースの送信の場合、プリコーディング行列Wは、単一アンテナポートの単一レイヤ送信の場合はW=1によって、他の場合は、アップリンク送信をスケジューリングするDCIから得られるTPMI指数とともに、表6.3.1.5-1~6.3.1.5-7によって与えられる。
【0023】
UL電力制御
移動体システムにおける送信機、DLの基地局、およびULの移動局の出力電力レベルのセットは、一般に電力制御(PC)と呼ばれる。PCの目的は、容量の改善、カバレッジ、システムの堅牢性の改善、および電力消費の低減を含む。
【0024】
LTEでは、PCメカニズムは、(i)開ループ、(ii)閉ループ、および(iii)開ループと閉ループの組み合わせという群に分類することができる。これらは、送信電力を決定するのにどの入力が使用されるかという点で異なる。開ループの場合、送信機が受信機から送られる何らかの信号を測定し、これに基づいて出力電力をセットする。閉ループの場合、受信機が送信機からの信号を測定し、これに基づいて送信電力制御(TPC)コマンドを送信機に送り、送信機が次に送信電力を適宜セットする。開ループと閉ループを組み合わせた方式では、送信電力をセットするのに両方の入力が使用される。
【0025】
端末と基地局との間に複数のチャネルを、例えばトラフィックおよび制御チャネルを有するシステムでは、異なる電力制御原理が異なるチャネルに適用されてもよい。異なる原理を使用することで、電力制御原理を個々のチャネルの必要性に適応させる自由度が上がる。欠点は、いくつかの原理を維持する複雑さが増すことである。
【0026】
NRの電力制御
TS 38.213(V15.0.1)では、NRに対するUL電力制御はセクション7で規定されており、UL電力制御フレームワークからの「出力」として説明することができる、PPUSCH,f、c(i,j,q,l)をどのように導き出すかが規定されており、これは、PUSCH送信を実施するのにUEが使用すべきである意図される出力電力である。PUSCH送信を実施する場合、TS 38.213セクション7.1で次のように規定されている。
「PUSCHの場合、UEは最初に、下位条項7.1.1に定義されているようなパラメータを用いて、非ゼロPUSCH送信を用いるアンテナポートの数と送信方式に対して設定されたアンテナポートの数との比によって、下位条項12に記載されているように、サービングセルcのキャリアfのUL BWP bにおける送信電力PPUSCH,f、c(i,j,q,l)の線形値
を基準化する。結果として得られる基準化された電力を次に、非ゼロPUSCH送信に用いられるアンテナポートの間で均等に分割する。」
【0027】
本明細書に記載するように、本発明者らは、NRに対して規定されたPUSCHの現在のUL電力制御方式には、いくつかの問題があることを見出している。これらの問題に対処する解決策を本明細書に開示する。
【発明の概要】
【0028】
物理アップリンク共有チャネル送信のアンテナポートセットに使用される電力を決定または制御する、システムおよび方法を本明細書に開示する。いくつかの実施形態では、ユーザ機器(UE)は、物理アップリンク共有チャネル送信のアップリンク電力制御に使用される電力Pを導き出し、UEが物理アップリンク共有チャネル送信にコードブックベースの送信または非コードブックベースの送信のどちらを利用しているかに応じて決まる規則にしたがって、電力Pに基づいてアンテナポートセットに使用される電力を決定するように設定された、処理回路構成を備える。アンテナポートセットは、物理アップリンク共有チャネル送信が非ゼロ電力で送信されるアンテナポートである。いくつかの実施形態では、UEはインターフェースを更に備え、処理回路構成は、インターフェースを介して、アンテナポートセットを使用して物理アップリンク共有チャネル送信を送信するように更に設定される。
【0029】
いくつかの実施形態では、非コードブックベースのプリコーディングおよび相反性ベースの送信の場合に、規則は、電力Pが、物理アップリンク共有チャネル送信が非ゼロ電力で送信されるアンテナポートセットの間で均等に分割されるような規則である。規則にしたがって電力Pに基づいてアンテナポートセットに使用される電力を決定するために、処理回路構成は、物理アップリンク共有チャネル送信が非ゼロ電力で送信されるアンテナポートセットの間で電力Pを均等に分割するように更に設定される。更に、いくつかの実施形態では、規則は、非コードブックベースのプリコーディングおよび非コヒーレント送信の場合に、規則にしたがって電力Pに基づいてアンテナポートセットに使用される電力を決定するために、処理回路構成が、物理アップリンク共有チャネル送信が非ゼロ電力で送信されるアンテナポートの数とUEにおける設定されたアンテナポートの数との比で、電力Pを基準化することによって第2の電力P’を導き出し、第2の電力P’を、物理アップリンク共有チャネル送信が非ゼロ電力で送信されるアンテナポートセットの間で均等に分割するように、更に設定されるような規則である。
【0030】
いくつかの実施形態では、規則は、コードブックベースの送信の場合に、規則にしたがって電力Pに基づいてアンテナポートセットに使用される電力を決定するために、処理回路構成が、物理アップリンク共有チャネル送信が非ゼロ電力で送信されるアンテナポートの数とUEにおけるアンテナポートの数との比で、電力Pを基準化することによって第2の電力P’を導き出し、第2の電力P’を、物理アップリンク共有チャネル送信が非ゼロ電力で送信されるアンテナポートセットの間で均等に分割するように、更に設定されるような規則である。いくつかの実施形態では、UEにおけるアンテナポートの数は、UEにおけるSRSリソースのサウンディング参照信号(SRS)ポートの数である。
【0031】
いくつかの実施形態では、規則は、規則にしたがって電力Pに基づいてアンテナポートセットに使用される電力を決定するために、処理回路構成が、比
を導き出すように更に設定されるような規則である。式中、ρは、物理アップリンク共有チャネル送信に使用されるアンテナポートの数、ρは、物理アップリンク共有チャネル送信が非ゼロ電力で送信されるアンテナポートの数である。コードブックベースの送信の場合にUEが完全コヒーレンス送信能力を有する場合、K=1であり、4つのアンテナポートを用いるコードブックベースの送信の場合に、UEが部分コヒーレンス送信能力を有する場合、K=2であり、コードブックベースの送信および2つまたは4つのアンテナポートの場合に、UEが非コヒーレンス送信能力を有する場合、それぞれK=2またはK=4である。規則は更に、規則にしたがって電力Pに基づいてアンテナポートセットに使用される電力を決定するために、処理回路構成が、電力Pを比β=min{1,α}で基準化することによって第2の電力P’を導き出し、物理アップリンク共有チャネル送信が非ゼロ電力で送信されるアンテナポートセットの間で第2の電力P’を均等に分割するように更に設定されるような規則である。いくつかの実施形態では、UEが非コードブックベースの送信を実施する場合、K=1である。
【0032】
いくつかの実施形態では、規則は、規則にしたがって電力Pに基づいてアンテナポートセットに使用される電力を決定するために、処理回路構成が、比を用いて電力Pを基準化することによって第2の電力P’を導き出すように更に設定されるような規則である。比は、UEが物理アップリンク共有チャネル送信にコードブックベースの送信または非コードブックベースの送信を利用しているか否か、ならびに完全コヒーレンス、部分コヒーレンス、または非コヒーレンス送信に関するUEの能力、非ゼロの物理アップリンク共有チャネルが送信されるアンテナポートセットにおけるアンテナポートの数、物理アップリンク共有チャネル送信に使用されるアンテナポートセットにおけるアンテナポートの数、ならびに/あるいはUEでのアンテナポートセットにおけるアンテナポートの数に応じた関数として導き出される。いくつかの実施形態では、比は、所定の値のセットから比を選択することによって導き出される。いくつかの実施形態では、規則にしたがって電力Pに基づいてアンテナポートセットに使用される電力を決定するために、処理回路構成は、物理アップリンク共有チャネル送信が非ゼロ電力で送信されるアンテナポートセットの間で第2の電力P’を均等に分割するように更に設定される。
【0033】
いくつかの実施形態では、規則は、完全コヒーレンス送信を実施する能力と、部分コヒーレンス送信を実施する能力と、非コヒーレンス送信を実施する能力とから成るUE能力群からの少なくとも2つのUE能力に関して、ならびに/あるいはコードブックベースおよび非コードブックベース両方の送信に関して、第2の電力P’がランク1送信の電力Pに等しくてもよいような規則である。
【0034】
他のいくつかの実施形態では、UEは、物理アップリンク共有チャネル送信のアップリンク電力制御に使用される電力Pを導き出し、規則にしたがって電力Pに基づいてアンテナポートセットに使用される電力を決定するように設定された、処理回路構成を備える。規則は、完全コヒーレンス、部分コヒーレンス、または非コヒーレンス送信に関するUEの能力に応じて決まり、アンテナポートセットは、物理アップリンク共有チャネル送信が非ゼロ電力で送信されるアンテナポートである。いくつかの実施形態では、UEはインターフェースを更に備え、処理回路構成は、インターフェースを介して、アンテナポートセットを使用して物理アップリンク共有チャネル送信を送信するように更に設定される。
【0035】
いくつかの実施形態では、規則は、非コードブックベースのプリコーディングおよび相反性ベースの送信の場合に、規則にしたがって電力Pに基づいてアンテナポートセットに使用される電力を決定するために、処理回路構成が、物理アップリンク共有チャネル送信が非ゼロ電力で送信されるアンテナポートセットの間で電力Pを均等に分割するように更に設定されるような規則である。いくつかの実施形態では、規則は、非コードブックベースのプリコーディングおよび非コヒーレント送信の場合に、規則にしたがって電力Pに基づいてアンテナポートセットに使用される電力を決定するために、処理回路構成が、物理アップリンク共有チャネル送信が非ゼロ電力で送信されるアンテナポートの数とUEにおける設定されたアンテナポートの数との比で、電力Pを基準化することによって第2の電力P’を導き出し、第2の電力P’を、物理アップリンク共有チャネル送信が非ゼロ電力で送信されるアンテナポートセットの間で均等に分割するように、更に設定されるような規則である。
【0036】
いくつかの実施形態では、規則は、コードブックベースの送信の場合に、規則にしたがって電力Pに基づいてアンテナポートセットに使用される電力を決定するために、処理回路構成が、物理アップリンク共有チャネル送信が非ゼロ電力で送信されるアンテナポートの数とUEにおけるアンテナポートの数との比で、電力Pを基準化することによって第2の電力P’を導き出し、第2の電力P’を、物理アップリンク共有チャネル送信が非ゼロ電力で送信されるアンテナポートセットの間で均等に分割するように、更に設定されるような規則である。いくつかの実施形態では、UEにおけるアンテナポートの数は、UEにおけるSRSリソースのSRSポートの数である。
【0037】
いくつかの実施形態では、規則は、規則にしたがって電力Pに基づいてアンテナポートセットに使用される電力を決定するために、処理回路構成が、比
を導き出すように更に設定されるような規則である。式中、ρは、物理アップリンク共有チャネル送信に使用されるアンテナポートの数、ρは、物理アップリンク共有チャネル送信が非ゼロ電力で送信されるアンテナポートの数である。コードブックベースの送信の場合にUEが完全コヒーレンス送信能力を有する場合、K=1であり、4つのアンテナポートを用いるコードブックベースの送信の場合に、UEが部分コヒーレンス送信能力を有する場合、K=2であり、コードブックベースの送信および2つまたは4つのアンテナポートの場合に、UEが非コヒーレンス送信能力を有する場合、それぞれK=2またはK=4である。規則は更に、規則にしたがって電力Pに基づいてアンテナポートセットに使用される電力を決定するために、処理回路構成が、電力Pを比β=min{1,α}で基準化することによって第2の電力P’を導き出し、物理アップリンク共有チャネル送信が非ゼロ電力で送信されるアンテナポートセットの間で第2の電力P’を均等に分割するように更に設定されるような規則である。いくつかの実施形態では、UEが非コードブックベースの送信を実施する場合、K=1である。
【0038】
いくつかの実施形態では、規則は、規則にしたがって電力Pに基づいてアンテナポートセットに使用される電力を決定するために、処理回路構成が、比を用いて電力Pを基準化することによって第2の電力P’を導き出すように更に設定されるような規則である。比は、完全コヒーレンス、部分コヒーレンス、または非コヒーレンス送信に関するUEの能力、UEが物理アップリンク共有チャネル送信にコードブックベースの送信または非コードブックベースの送信を利用しているか否か、非ゼロの物理アップリンク共有チャネルが送信されるアンテナポートセットにおけるアンテナポートの数、物理アップリンク共有チャネル送信に使用されるアンテナポートセットにおけるアンテナポートの数、ならびに/あるいはUEでのアンテナポートセットにおけるアンテナポートの数に応じた関数として導き出される。いくつかの実施形態では、比は、所定の値のセットから比を選択することによって導き出される。いくつかの実施形態では、規則にしたがって電力Pに基づいてアンテナポートセットに使用される電力を決定するために、処理回路構成は、物理アップリンク共有チャネル送信が非ゼロ電力で送信されるアンテナポートセットの間で第2の電力P’を均等に分割するように更に設定される。
【0039】
いくつかの実施形態では、規則は、完全コヒーレンス送信を実施する能力と、部分コヒーレンス送信を実施する能力と、非コヒーレンス送信を実施する能力とから成るUE能力群からの少なくとも2つのUE能力に関して、ならびに/あるいはコードブックベースおよび非コードブックベース両方の送信に関して、第2の電力P’がランク1送信の電力Pに等しくてもよいような規則である。
【0040】
UEにおいて実施される方法の実施形態も開示される。いくつかの実施形態では、UEにおいて実施される方法は、物理アップリンク共有チャネル送信のアップリンク電力制御に使用される電力Pを導き出すことと、UEが物理アップリンク共有チャネル送信にコードブックベースの送信または非コードブックベースの送信のどちらを利用しているかに応じて決まる規則にしたがって、電力Pに基づいてアンテナポートセットに使用される電力を決定することとを含み、アンテナポートセットは、物理アップリンク共有チャネル送信が非ゼロ電力で送信されるアンテナポートである。いくつかの実施形態では、方法は、アンテナポートセットを使用して物理アップリンク共有チャネル送信を送信することを更に含む。
【0041】
いくつかの実施形態では、規則は、非コードブックベースのプリコーディングおよび相反性ベースの送信の場合に、規則にしたがって電力Pに基づいてアンテナポートセットに使用される電力を決定することが、物理アップリンク共有チャネル送信が非ゼロ電力で送信されるアンテナポートセットの間で電力Pを均等に分割することを含むような規則である。
【0042】
いくつかの実施形態では、規則は、コードブックベースの送信の場合に、規則にしたがって電力Pに基づいてアンテナポートセットに使用される電力を決定することが、物理アップリンク共有チャネル送信が非ゼロ電力で送信されるアンテナポートの数とUEにおけるアンテナポートの数との比で、電力Pを基準化することによって第2の電力P’を導き出すことと、第2の電力P’を、物理アップリンク共有チャネル送信が非ゼロ電力で送信されるアンテナポートセットの間で均等に分割することとを含むような規則である。いくつかの実施形態では、UEにおけるアンテナポートの数は、UEにおけるSRSリソースのSRSポートの数である。
【0043】
いくつかの実施形態では、規則は、規則にしたがって電力Pに基づいてアンテナポートセットに使用される電力を決定することが、比
を導き出すことを含むような規則である。式中、ρは、物理アップリンク共有チャネル送信に使用されるアンテナポートの数、ρは、物理アップリンク共有チャネル送信が非ゼロ電力で送信されるアンテナポートの数である。コードブックベースの送信の場合にUEが完全コヒーレンス送信能力を有する場合、K=1であり、4つのアンテナポートを用いるコードブックベースの送信の場合に、UEが部分コヒーレンス送信能力を有する場合、K=2であり、コードブックベースの送信および2つまたは4つのアンテナポートの場合に、UEが非コヒーレンス送信能力を有する場合、それぞれK=2またはK=4である。規則は更に、規則にしたがって電力Pに基づいてアンテナポートセットに使用される電力を決定することが、電力Pを比β=min{1,α}で基準化することによって第2の電力P’を導き出すことと、物理アップリンク共有チャネル送信が非ゼロ電力で送信されるアンテナポートセットの間で第2の電力P’を均等に分割することとを更に含むような規則である。いくつかの実施形態では、UEが非コードブックベースの送信を実施する場合、K=1である。
【0044】
いくつかの実施形態では、規則は、規則にしたがって電力Pに基づいてアンテナポートセットに使用される電力を決定することが、電力Pを比で基準化することによって第2の電力P’を導き出すことを含むような規則であり、比は、UEが物理アップリンク共有チャネル送信にコードブックベースの送信または非コードブックベースの送信を利用しているか否か、ならびに完全コヒーレンス、部分コヒーレンス、または非コヒーレンス送信に関するUEの能力、非ゼロの物理アップリンク共有チャネルが送信されるアンテナポートセットにおけるアンテナポートの数、物理アップリンク共有チャネル送信に使用されるアンテナポートセットにおけるアンテナポートの数、ならびに/あるいはUEでのアンテナポートセットにおけるアンテナポートの数に応じた関数として導き出される。いくつかの実施形態では、規則にしたがって電力Pに基づいてアンテナポートセットに使用される電力を決定することは、物理アップリンク共有チャネル送信が非ゼロ電力で送信されるアンテナポートセットの間で第2の電力P’を均等に分割することを更に含む。
【0045】
いくつかの実施形態では、UEにおいて実施される方法は、物理アップリンク共有チャネル送信のアップリンク電力制御に使用される電力Pを導き出すことと、完全コヒーレンス、部分コヒーレンス、または非コヒーレンス送信に関するUEの能力に応じて決まる規則にしたがって、電力Pに基づいてアンテナポートセットに使用される電力を決定することとを含み、アンテナポートセットは、物理アップリンク共有チャネル送信が非ゼロ電力で送信されるアンテナポートである。いくつかの実施形態では、方法は、アンテナポートセットを使用して物理アップリンク共有チャネル送信を送信することを更に含む。
【0046】
いくつかの実施形態では、規則は、非コードブックベースのプリコーディングおよび相反性ベースの送信の場合に、規則にしたがって電力Pに基づいてアンテナポートセットに使用される電力を決定することが、物理アップリンク共有チャネル送信が非ゼロ電力で送信されるアンテナポートセットの間で電力Pを均等に分割することを含むような規則である。
【0047】
いくつかの実施形態では、規則は、コードブックベースの送信の場合に、規則にしたがって電力Pに基づいてアンテナポートセットに使用される電力を決定することが、物理アップリンク共有チャネル送信が非ゼロ電力で送信されるアンテナポートの数とUEにおけるアンテナポートの数との比で、電力Pを基準化することによって第2の電力P’を導き出すことと、第2の電力P’を、物理アップリンク共有チャネル送信が非ゼロ電力で送信されるアンテナポートセットの間で均等に分割することとを含むような規則である。いくつかの実施形態では、UEにおけるアンテナポートの数は、UEにおけるSRSリソースのSRSポートの数である。
【0048】
いくつかの実施形態では、規則は、規則にしたがって電力Pに基づいてアンテナポートセットに使用される電力を決定することが、比
を導き出すことを含むような規則である。式中、ρは、物理アップリンク共有チャネル送信に使用されるアンテナポートの数、ρは、物理アップリンク共有チャネル送信が非ゼロ電力で送信されるアンテナポートの数である。コードブックベースの送信の場合にUEが完全コヒーレンス送信能力を有する場合、K=1であり、4つのアンテナポートを用いるコードブックベースの送信の場合に、UEが部分コヒーレンス送信能力を有する場合、K=2であり、コードブックベースの送信および2つまたは4つのアンテナポートの場合に、UEが非コヒーレンス送信能力を有する場合、それぞれK=2またはK=4である。規則は更に、規則にしたがって電力Pに基づいてアンテナポートセットに使用される電力を決定することが、電力Pを比β=min{1,α}で基準化することによって第2の電力P’を導き出すことと、物理アップリンク共有チャネル送信が非ゼロ電力で送信されるアンテナポートセットの間で第2の電力P’を均等に分割することとを更に含むような規則である。いくつかの実施形態では、UEが非コードブックベースの送信を実施する場合、K=1である。
【0049】
いくつかの実施形態では、規則は、規則にしたがって電力Pに基づいてアンテナポートセットに使用される電力を決定することが、電力Pを比で基準化することによって第2の電力P’を導き出すことを含むような規則であり、比は、完全コヒーレンス、部分コヒーレンス、または非コヒーレンス送信に関するUEの能力、ならびにUEが物理アップリンク共有チャネル送信にコードブックベースの送信または非コードブックベースの送信を利用しているか否か、非ゼロの物理アップリンク共有チャネルが送信されるアンテナポートセットにおけるアンテナポートの数、物理アップリンク共有チャネル送信に使用されるアンテナポートセットにおけるアンテナポートの数、ならびに/あるいはUEでのアンテナポートセットにおけるアンテナポートの数に応じた関数として導き出される。いくつかの実施形態では、規則にしたがって電力Pに基づいてアンテナポートセットに使用される電力を決定することは、物理アップリンク共有チャネル送信が非ゼロ電力で送信されるアンテナポートセットの間で第2の電力P’を均等に分割することを更に含む。
【0050】
図面は、開示される主題の選択された実施形態を例示する。図面中、同様の参照符号は同様の機構を指す。
【図面の簡単な説明】
【0051】
図1】新無線(NR)におけるプリコーディングされた空間多重化モードの送信構造を示す図である。
図2】例示のユーザ機器(UE)実装形態を示す図である。
図3】例示のユーザ機器(UE)実装形態を示す図である。
図4】例示のユーザ機器(UE)実装形態を示す図である。
図5】いくつかの実施形態による無線ネットワークを示す図である。
図6】いくつかの実施形態によるUEを示す図である。
図7】いくつかの実施形態による仮想化環境を示す図である。
図8】いくつかの実施形態による、中間ネットワークを介してホストコンピュータに接続される電気通信ネットワークを示す図である。
図9】いくつかの実施形態による、部分無線接続を通じて基地局を介してUEと通信しているホストコンピュータを示す図である。
図10】いくつかの実施形態による、ホストコンピュータ、基地局、およびUEを含む通信システムにおいて実施される方法を示す図である。
図11】いくつかの実施形態による、ホストコンピュータ、基地局、およびUEを含む通信システムにおいて実施される方法を示す図である。
図12】いくつかの実施形態による、ホストコンピュータ、基地局、およびUEを含む通信システムにおいて実施される方法を示す図である。
図13】いくつかの実施形態による、ホストコンピュータ、基地局、およびUEを含む通信システムにおいて実施される方法を示す図である。
図14】いくつかの実施形態による仮想化装置を示す図である。
図15】いくつかの実施形態による方法を示す図である。
図16】いくつかの実施形態によるUEの動作を示すフローチャートである。
【発明を実施するための形態】
【0052】
以下、本明細書において想到される実施形態のいくつかについて、添付図面を参照して更に十分に記載する。しかしながら、他の実施形態が本明細書に開示する主題の範囲内に含まれ、開示する主題は、本明細書で説明する実施形態のみに限定されるものと解釈されるべきではなく、それよりもむしろ、これらの実施形態は、主題の範囲を当業者に伝えるために例として提供されるものである。追加の情報が、本明細書の付表において提供されるいずれかの文献に見出されることもある。
【0053】
一般に、本明細書で使用する全ての用語は、異なる意味が明確に与えられない限り、ならびに/あるいは異なる意味がその用語を使用している文脈から示唆されない限り、関連技術分野におけるそれらの本来の意味にしたがって解釈されるべきものである。要素、装置、構成要素、手段、ステップなどに対する全ての参照は、別の形で明示的に定義されない限り、要素、装置、構成要素、手段、ステップなどの少なくとも一例を指すものと広く解釈されるべきである。本明細書に開示するいずれかの方法のステップは、あるステップが別のステップの後または前に行われると明示的に記載されない限り、ならびに/あるいはあるステップが別のステップの後または前に行われなければならないと示唆されない限り、開示する順序で正確に実施されなければならないものではない。本明細書に開示する実施形態のいずれかにおけるあらゆる特徴は、適切であれば、他のいずれかの実施形態に適用されてもよい。同様に、実施形態のいずれかにおけるあらゆる利点は、他のいずれかの実施形態に当てはまることがあり、その逆もまた真である。含まれる実施形態の他の目的、特徴、および利点は説明から明白になるであろう。
【0054】
特定の概念が、特定の技術分野または規格を参照して、ならびに/あるいはそれらの分野および/または規格に適用可能な言語を使用して、本明細書に記載されることがある。例えば、特定の実施形態が、ロングタームエボリューション(LTE)の文脈で理解されるような、セル、サブフレーム/スロット、チャネルなどを参照して、または第3世代パートナーシッププロジェクト(3GPP)新無線(NR)の文脈で理解されるような、ビーム、スロット/ミニスロット、チャネルなどを参照して、記載されることがある。それでもなお、別の形で示されない限り、記載される概念はより全体的に適用可能であってもよく、かかるいずれかの分野、規格、言語などにしたがって限定されるべきではない。
【0055】
上述したように、3GPP NRにおけるアップリンク(UL)電力制御は、技術仕様書(TS)38.213(V15.0.1)で規定されている。TS 38.213(V15.0.1)では、NRのUL電力制御はセクション7で規定されている。TS 38.213(V15.0.1)のセクション7は、UL電力制御フレームワークからの「出力」として説明することができる、PPUSCH,f、c(i,j,q,l)をどのように導き出すかを規定している。これは、ユーザ機器(UE)が物理アップリンク共有チャネル(PUSCH)送信を実施するのに使用されるべきである、意図される出力電力である。PUSCH送信を実施する場合、TS 38.213のセクション7.1は次のように規定している。
「PUSCHの場合、UEは最初に、下位条項7.1.1に定義されているようなパラメータを用いて、非ゼロPUSCH送信を用いるアンテナポートの数と送信方式に対して設定されたアンテナポートの数との比によって、下位条項12に記載されているように、サービングセルcのキャリアfのUL BWP bにおける送信電力PPUSCH,f、c(i,j,q,l)の線形値
を基準化する。結果として得られる基準化された電力を次に、非ゼロPUSCH送信に用いられるアンテナポートの間で均等に分割する。」
【0056】
TS 38.213のセクション7.1(V15.0.1)で規定されているようなPUSCHのUL電力制御は、いくつかの意味がある。上述の電力制御は、ランク1の送信が示される、コードブックベースの動作に関する、図2に示されるUE実装形態#1に対応している。各送信チェーンは、本明細書ではPとして示される、合計送信電力
の4分の1の能力がある電力増幅器(PA)のみを要する。この例の各送信チェーンは、サウンディング参照信号(SRS)を伝達するもの、つまり「プリコーディングされない」SRSが使用されるものと仮定されることが注目される。結果的に、NR基地局(gNB)は、全てのUE送信チェーンから受信する合計電力を、SRSにおける電力の合計として推定することができる。
【0057】
これらの例は、コードブックベースのプリコーディングを使用する実装形態#1に関して下記に例示する。4つのアンテナポートおよびランク1の送信が考慮される。これらの例に関して、次のことが注目される。
第1の例「CB、非コヒーレント」は、非コヒーレント、部分コヒーレント、および完全コヒーレントに関して3つ全ての異なるUE能力を有する、UEが使用することができるコード語に相当する。
第2の例「CB、部分コヒーレント」は、部分コヒーレントおよび完全コヒーレント能力を有するUEが使用することができる。
第3の例「CB、完全コヒーレント」は、完全コヒーレント能力を有するUEのみが使用することができる。
【0058】
上述の例から、アンテナ選択、即ち「CB、非コヒーレント」の場合、P/4のみが送信されることが注目される。この理由は、「非ゼロPUSCH送信を用いるアンテナポートの数と、送信方式に対して設定されたアンテナポートの数との比によって」電力Pを基準化すべきであると、仕様書が述べていることである。そのため、電力を送信しないアンテナポートは合計電力を低減させることになる。したがって、このプリコーダを使用することによって発生する合計電力は、送信プリコーダ行列インジケータ(TPMI)=12によって与えられるコード語が使用された場合よりも低くなる。この性質は、上述したようなUE実装形態を可能にするので望ましい。
【0059】
次のような従来の技法および技術と関連付けられる欠点を認識した上で、特定の実施形態が本明細書に提示される。送信を実施するときにPPUSCH,f、c(i,j,q,l)をどのように使用するかに関する現在の仕様書は、一般的なUEレイアウト、および完全コヒーレンス能力を有するUEのコードブックベースの送信については良好に働く。しかしながら、その設計は、非コードブックベースの送信、および他の能力を有するUEに対しては同じように有効ではない。
【0060】
次に多数の問題について記載する。第1の問題(問題1)は、非コードブックベースの送信に関する。非コードブックベースの送信を示す、図3(実装形態#2)および図4(実装形態#3)に示される2つの実装形態について考慮する。
【0061】
アンテナ選択に相当する実装形態#2の場合、第1のSRSリソースは次式を用いてプリコーディングされると仮定される。
これは、SRSリソースインジケータ(SRI)=1がgNBからUEに信号伝送されるものとすると、PUSCHが下記の表のように送信されることを示唆する。非ゼロ電力(NZP)PUSCH送信を用いるアンテナポートの数は1であり、非コードブックベースの送信に対して4つのアンテナポートが設定されるので、電力制御は合計出力電力をP/4にセットする。UEは各送信チェーンで必要な最大電力を送信することが望ましいので、これは実装形態#2にとって有益ではない。
【0062】
実装形態#3は、gNB透過の相反性ベースのプリコーディングに相当し、そのため、gNBではなくUEがプリコーダを決定する。したがって、プリコーディングウェイトは、実装形態#1で使用したwの代わりにvとして表される。各vは、UEが選択する任意の適切な値を得ることができ、wの可能な値はvの可能な値のサブセットである。1つの可能性は、第1のSRSリソースが次式を用いてプリコーディングされることである。
これは、SRI=1がgNBからUEに信号伝達されるものとすると、PUSCHが下記のように送信されることを示唆する。送信を行うアンテナの数は4つであるが、非ゼロPUSCH送信を用いるアンテナポートの数は、上述の例のように1のままである。更に、4つのアンテナポートが非コードブックベースの送信に対して設定されるので、電力制御は、単一の送信アンテナポートにおける出力電力をP/4にセットし、つまり合計出力電力はやはりP/4である。したがって、全てのアンテナが送信に使用されるが、全てのアンテナポートが使用されるわけではないので、UEは電力のバックオフを行う。これは、非コードブックプリコーディングの性能を低下させるので、望ましくない挙動である。
【0063】
第2の問題(問題2)は、非コヒーレントおよび部分コヒーレンス能力を有するUEに関する。完全コヒーレンス能力を有するUEが考慮される場合、このUEは、現在の仕様を所与として、コードブックベースの送信に対して下記のように送信してもよい。
【0064】
ここで、UEのランクが上がると、レイヤごとの電力が下がることが注目される。これは、UEが、より低いランクを選んで信号雑音比(SNR)を増加させるか、あるいはSNRが大きいときにランクを上昇させることができるようになるので、意図される挙動である。
【0065】
非コヒーレント能力を有するUEの場合、UEは代わりに次のように送信してもよい。
【0066】
したがって、挙動は望ましい挙動の逆であり、レイヤごとの電力は一定なので、ランクを下げてもSNRは増加しない。これによって、UEがより低いランクを使用することは魅力的でなくなる。更に、UEは、UL電力制御フレームワークによって定義されるように、合計電力Pで送信することが可能であるが、UEは完全ランクを使用する場合のみそれを行う。これは、Pがその最大可能値P_cmaxに達したときに、UEがP_cmax/4で送信することを示唆するので、重大な制限である。P_cmaxに達したUEは、一般的に低SNRに相当するUEであり、またかかるUEの場合、できるだけ高電力での低ランク送信が、一般的に適切な戦略である。
【0067】
上述の問題に対処する実施形態を本明細書に記載する。開示する主題の特定の実施形態では、PUSCH送信に対する電力(P)を制御する新しい方策が提供される。特定の実施形態は、例えば、(i)非コードブックベースまたはコードブックベースの送信に関する情報、(ii)コヒーレント送信に対するUEの能力に関する情報、および/または(iii)設定されたアンテナポートの数の代わりに、PUSCH送信に使用されるアンテナポートの数に対する依存に基づいて、送信されるべきPの比を定義することを伴う。
【0068】
開示する主題の特定の実施形態は、以下の例など、従来の技法および技術と比較して潜在的な利益を提供してもよい。特定の実施形態は、コードブックベースのプリコーディングならびに非コードブックベースのプリコーディングの両方に対して効率的な送信を提供する。いくつかのかかる実施形態は、(a)UEが、非コードブックベースの相反性で送信して、ランク1の全電力を利用すること、または(b)非コヒーレントおよび部分コヒーレント能力を有するUEが、ランク1の全電力で送信を行うことを可能にし、また、UEがレイヤごとの電力が低い代わりにランクを増加させることを可能にする。
【0069】
以下の説明は、PUSCH送信に対するいくつかの実施形態を提示する。合計電力に関する特定の異なる実施形態の挙動は、表1に示されている。
【0070】
実施形態1:使用されるアンテナポートの間で電力を均等に分割する
一実施形態では、使用されるべき電力の比は、設定されたポートの数の代わりに、PUSCHにおけるポートの数{p,…,pρ-1}(即ち、PUSCH送信に使用されるアンテナポートの数)に関して規定される。仕様書の文章に関して、これは、3GPP TS 38.213、セクション7.1のバージョン15.0.1に基づいて、次のように書かれている。
PUSCHの場合、UEは最初に、下位条項7.1.1に定義されているようなパラメータを用いて、非ゼロPUSCH送信を用いるアンテナポートの数とρ(ρは、38.211 6.3.1.5によるアンテナポートの数{p,…,pρ-1})との比によって、下位条項12に記載されているように、サービングセルcのキャリアfのUL BWP bにおける送信電力PPUSCH,f、c(i,j,q,l)の線形値
を基準化する。結果として得られる基準化された電力を次に、非ゼロPUSCH送信に用いられるアンテナポートの間で均等に分割する。
【0071】
いくつかの実施形態では、コードブックベースの動作モードが使用されているとき、ρはコードブックのプリコーダをPUSCH送信に適用することができる多数のアンテナポートに相当し、非コードブックベースの動作モードが使用されているとき、ρはPUSCHの送信に用いられる多数のアンテナポートおよび空間レイヤに相当する。したがって、非コードブック送信の場合、ランク1の送信の場合に異なるアンテナポートで分割されるべきである比1が得られる(3GPP TS 38.213 V15.0.1の現在の文章にあるような1/4の代わり)。
【0072】
実施形態2:送信の方策に応じて異なる電力分割戦略を適用する
いくつかの実施形態では、最大電力P/N(実装形態#1および#3と同様)のPAを有するN個の送信チェーンを含むUEの実装形態に対応するのが望ましいことがある。1つのかかる実施形態では、Pは次のように決定される。
コードブックベースのプリコーディングの場合、仕様書38.213 V15.0.1、セクション7.1にあるように行う。
非コードブックベースのプリコーディングおよび非コヒーレント動作の場合、38.213 V15.0.1、セクション7.1にあるように行う。
非コヒーレント動作は、UEが相反性を使用してプリコーダを計算しない場合の非コードブックベースの動作に関して特徴付けられてもよい。より詳細には、非コードブックベースの送信を使用するUEは、PUSCHおよびSRSの送信に使用されるプリコーダを計算するのに、NZPチャネル状態情報参照信号(CSI-RS)リソースを測定しない。かかる設定は、UEが、「NonCodebook」に対してセットされた上位レイヤのパラメータulTxConfigを用いて設定されるが、SRS-AssocCSIRSを用いて設定されない場合として特定されてもよい。
非コードブックベースのプリコーディングおよび相反性ベースの送信の場合、アンテナポート{p,…,pρ-1}の間で電力Pを等しく分割する。
コヒーレント動作は、UEが上記定義にしたがって相反性を使用してプリコーダを計算する場合の非コードブックベースの動作に関して特徴付けられてもよい。かかる設定は、UEが、「NonCodebook」に対してセットされた上位レイヤのパラメータulTxConfigを用いて設定され、SRS-AssocCSIRSを用いて設定される場合として特定されてもよい。
【0073】
したがって、これが、「NCB、相反性ベース」の場合の問題に対処する。この実施形態の潜在的な利益は、コヒーレント動作を用いる非コードブックベースの動作の合計送信電力が、現在の仕様書と比較して増加するので、非コードブックベースの動作の合計電力が、所与の数の送信チェーンに関するコードブックベースの動作の場合、コヒーレント動作における送信チェーンごとの最大送信電力と同じであることを含むことができる。
【0074】
実施形態3
一実施形態では、ρは、TS 38.211 6.3.1.5にしたがって、アンテナポート{p,…,pρ-1}の数として定義される。更に、ρは、{p,…,pρ-1}における非ゼロアンテナポートの数とする。Kは次のように定義される。
コードブックベースのプリコーディングの場合、完全コヒーレンス能力を有するUEでは、K=1。
4アンテナポートを有するコードブックベースのプリコーディングの場合、部分コヒーレンス能力を有するUEでは、K=2。
コードブックベースのプリコーディングおよび2または4アンテナポートの場合、非コヒーレンス能力を有するUEでは、それぞれK=2またはK=4。
非コードブックベースのプリコーディングの場合、K=1。
【0075】
このことから、比
が定義され、換算係数(β)はβ=min{1,α}として導き出される。PUSCH電力制御は、TS 38.213 V15.0.1、セクション7.1の現在の文言に対する変更に関して、後述するように定義される。
PUSCHの場合、UEは最初に、下位条項7.1.1に定義されているようなパラメータを用いて、βによって、下位条項12に記載されているように、サービングセルcのキャリアfのUL BWP bにおける送信電力PPUSCH,f、c(i,j,q,l)の線形値
を基準化し、結果として得られる基準化された電力を次に、非ゼロPUSCH送信に用いられるアンテナポートの間で均等に分割する。
【0076】
2つまたは4つの設定されたポートを想定したβのいくつかの例を次に示す。
【0077】
いくつかの実施形態では、UEが単一のアンテナポートでPUSCHを送信するように設定された場合、K=1であり、他の実施形態では、UEが単一のアンテナポートでPUSCHを送信するように設定された場合、β=1である。
【0078】
いくつかの実施形態では、UEは、そのコヒーレンス能力が対応している、UL多入力多出力(MIMO)コードブックのサブセットを使用するように設定される。かかる実施形態では、UEは、完全コヒーレント、部分コヒーレント、および非コヒーレント送信チェーンを用いてUEが対応することができるコードブックのサブセットをUEが使用することを示す、「fullAndPartialAndNonCoherent」、「partialAndNonCoherent」、および「nonCoherent」の値を有することができる、上位レイヤパラメータULCodebookSubsetを用いて設定することができる。かかる実施形態では、コードブックサブセットパラメータを使用することによって、UEがその電力制御を調節してコヒーレンス能力に合致させることが可能になる。この挙動は次のように説明することができる。
PUSCHの場合、UEは最初に、下位条項7.1.1に定義されているようなパラメータを用いて、βによって、下位条項12に記載されているように、サービングセルcのキャリアfのUL BWP bにおける送信電力PPUSCH,f、c(i,j,q,l)の線形値
を基準化し、結果として得られる基準化された電力を次に、非ゼロPUSCH送信に用いられるアンテナポートの間で均等に分割する。β=1は、単一アンテナポート送信の場合であり、マルチアンテナポート送信の場合、
β=min{1,α}であって、
であり、式中、
ρは、TS 38.211 6.3.1.5にしたがって、アンテナポート{p,…,pρ-1}の数として定義され、
ρは、TS 38.211 6.3.1.5にしたがって、{p,…,pρ-1}における非ゼロアンテナポートの数である。
非コードブックベースの送信の場合、K=1である。コードブックベースの送信の場合、Kは次の表から与えられ、ULCodebookSubsetは上位レイヤのパラメータである。
【0079】
注:設定されたポートの数は、UEが送信することができる空間レイヤの最大数に相当することができる。コードブックベースのプリコーディングの場合、これは、SRSリソースにおけるSRSポートの数を指すことができ、非コードブックベースのプリコーディングの場合、これは、非コードブックベースの動作でUEに対して設定されたSRSポートの合計数を指すことができ、またはコードブックベースの動作で使用することが意図されるSRSリソースセットのSRSポートの合計数を指すことができる。
【0080】
CBおよびNCBはそれぞれ、コードブックベースおよび非コードブックベースのUEの能力を指す。完全、部分、および非コヒーレントのUEの能力はそれぞれ、「fullAndPartialAndNonCoherent」、「partialCoherent」、および「nonCoherent」として、3GPP TS 38.331 V15.0.1の専門用語集にしたがって特定されてもよい。
【0081】
PUSCHで送信されるべきPの比としてβを使用することによって、表のほとんどの場合において、全電力が送信されることが注目される。より少ない電力使用に相当する事例は、gNBが、UEの能力よりも「低い能力」に相当する構造のコード語を選んでいる、コードブックベースの送信の場合のみであり、UEは、この意味において、その分岐の一部を切断し、それによって消費電力を低減する機会を有する。
【0082】
次の表は、上述した特定の実施形態の特性を示している。
【0083】
図5は、いくつかの実施形態による無線ネットワークを示している。本明細書に記載する主題は、任意の適切な構成要素を使用する任意の適切なタイプのシステムで実装されてもよいが、本明細書に開示する実施形態は、図5に示される例示の無線ネットワークなどの無線ネットワークに関連して記載する。単純にするため、図5の無線ネットワークは、ネットワーク506、ネットワークノード560および560b、ならびに無線デバイス(WD)510、510b、および510cのみを示している。実際上、無線ネットワークは、無線デバイス間の通信、あるいは無線デバイスと地上電話、サービスプロバイダ、または他の任意のネットワークノードもしくはエンドデバイスなど、別の通信デバイスとの間の通信に対応するのに適した、任意の追加の要素を更に含んでもよい。図示される構成要素のうち、ネットワークノード560およびWD 510が更に詳細に図示されている。無線ネットワークは、通信および他のタイプのサービスを1つまたは複数の無線デバイスに提供して、無線ネットワークによってもしくは無線ネットワークを介して提供されるサービスに関する、無線デバイスのアクセスおよび/または使用を容易にしてもよい。
【0084】
無線ネットワークは、任意のタイプの通信、電気通信、データ、移動体、および/または無線ネットワーク、もしくは他の同様のタイプのシステムを備えてもよく、ならびに/あるいはそれらとインターフェース接続してもよい。いくつかの実施形態では、無線ネットワークは、特定の規格、または他のタイプの規定の規則もしくは手順にしたがって動作するように設定されてもよい。したがって、無線ネットワークの特定の実施形態は、グローバル移動体通信システム(GSM)、ユニバーサル移動体通信システム(UMTS)、ロングタームエボリューション(LTE)、および/または他の適切な第2、第3、第4、もしくは第5世代(2G、3G、4G、もしくは5G)規格、IEEE 802.11規格などの無線ローカルエリアネットワーク(WLAN)規格、ならびに/あるいは、ワールドワイド・インターオペラビリティ・フォー・マイクロウェーブ・アクセス(WiMax)、ブルートゥース、Z波、および/またはジグビー規格などの他の任意の適切な無線通信規格などの、通信規格を実装してもよい。
【0085】
ネットワーク506は、1つもしくは複数のバックホールネットワーク、コアネットワーク、インターネットプロトコル(IP)ネットワーク、公衆交換電話網(PSTN)、パケットデータネットワーク、光ネットワーク、広域ネットワーク(WAN)、ローカルエリアネットワーク(LAN)、WLAN、有線ネットワーク、無線ネットワーク、メトロポリタンエリアネットワーク、およびデバイス間で通信できるようにする他のネットワークを含んでもよい。
【0086】
ネットワークノード560およびWD 510は、更に詳細に後述する様々な構成要素を備える。これらの構成要素は、無線ネットワークにおける無線接続を提供するなど、ネットワークノードおよび/または無線デバイスの機能性を提供するために共に働く。異なる実施形態では、無線ネットワークは、任意の数の有線もしくは無線ネットワーク、ネットワークノード、基地局、コントローラ、無線デバイス、中継局、ならびに/あるいは、有線もしくは無線接続のどちらかを介するデータおよび/または信号の通信を容易にするかもしくはそれに関与することができる、他の任意の構成要素またはシステムを含んでもよい。
【0087】
本明細書で使用するとき、ネットワークノードは、無線デバイスと、ならびに/あるいは無線デバイスへの無線アクセスを可能にする、および/または無線アクセスを提供する、および/または無線ネットワークにおける他の機能(例えば、管理)を実施する、無線ネットワーク内の他のネットワークノードもしくは機器と、直接もしくは間接的に通信することができる、通信するように設定された、通信するように配置された、ならびに/あるいは通信するように動作可能である、機器を指す。ネットワークノードの例としては、アクセスポイント(AP)(例えば、無線アクセスポイント)、基地局(BS)(例えば、無線基地局、ノードB、進化型ノードB(eNB)、およびgNB)が挙げられるが、それらに限定されない。基地局は、それらが提供するカバレッジの量(または換言すれば、それらの送信電力レベル)に基づいて分類されてもよく、そのため、フェムト基地局、ピコ基地局、マイクロ基地局、またはマクロ基地局とも呼ばれることがある。基地局は、中継を制御する中継ノードまたは中継ドナーノードであってもよい。ネットワークノードはまた、中央デジタルユニット、および/またはリモート無線ヘッド(RRH)と呼ばれることがあるリモート無線ユニット(RRU)など、分散無線基地局の1つまたは複数(もしくは全て)の部分を含んでもよい。かかるRRUは、アンテナ統合無線として、アンテナと統合されてもされなくてもよい。分散無線基地局の部分はまた、分散アンテナシステム(DAS)のノードと呼ばれることもある。ネットワークノードの更なる他の例としては、MSR BSなどのマルチスタンダード無線(MSR)機器、無線ネットワークコントローラ(RNC)または基地局コントローラ(BSC)などのネットワークコントローラ、ベーストランシーバ基地局(BTS)、送信ポイント、送信ノード、マルチセル/マルチキャスト調整エンティティ(MCE)、コアネットワークノード(例えば、MSC、MME)、操作および保守(O&M)ノード、操作サポートシステム(OSS)ノード、自己最適化ネットワーク(SON)ノード、ポジショニングノード(例えば、進化型サービングモバイルロケーションセンタ(E-SMLC))、ならびに/あるいはドライブテストの最小化(MDT)が挙げられる。別の例として、ネットワークノードは、更に詳細に後述するような仮想ネットワークノードであってもよい。しかしながら、より一般的には、ネットワークノードは、無線デバイスが無線ネットワークにアクセスできるようにすること、もしくは無線ネットワークにアクセスしている無線デバイスに何らかのサービスを提供できるようにすること、および/または無線ネットワークにアクセスしている無線デバイスに何らかのサービスを提供することが、可能である、そのように設定されている、そのように配置されている、ならびに/あるいはそれを可能にするように動作可能である、任意の適切なデバイス(またはデバイス群)を表してもよい。
【0088】
図5では、ネットワークノード560は、処理回路構成570と、デバイス可読媒体580と、インターフェース590と、補助機器584と、電源586と、電源回路構成587と、アンテナ562とを含む。図5の例示の無線ネットワークに示されるネットワークノード560は、ハードウェア構成要素の図示される組み合わせを含むデバイスを表すことがあるが、他の実施形態は、構成要素の異なる組み合わせを含むネットワークノードを備えてもよい。ネットワークノードは、本明細書に開示するタスク、機構、機能、および方法を実施するのに必要な、ハードウェアおよび/またはソフトウェアの任意の適切な組み合わせを含むことが理解されるべきである。更に、ネットワークノード560の構成要素は、より大きいボックス内に位置するかまたは複数のボックス内に入れ子状になった、単独のボックスとして示されているが、実際上、ネットワークノードは、単一の図示される構成要素を設定する複数の異なる物理的構成要素を含んでもよい(例えば、デバイス可読媒体580は、複数の別個のハードドライブならびに複数のランダムアクセスメモリ〈RAM〉モジュールを備えてもよい)。
【0089】
同様に、ネットワークノード560は、各々がそれぞれ自身の構成要素を有してもよい、複数の物理的に別個の構成要素(例えば、ノードBコンポーネントおよびRNCコンポーネント、またはBTSコンポーネントおよびBSCコンポーネントなど)から成ってもよい。ネットワークノード560が複数の別個の構成要素(例えば、BTSおよびBSCコンポーネント)を備える特定のシナリオでは、別個の構成要素の1つまたは複数が、いくつかのネットワークノードの間で共有されてもよい。例えば、単一のRNCが複数のノードBを制御してもよい。かかるシナリオでは、ノードBおよびRNCの固有の各対が、場合によっては、単一の別個のネットワークノードと見なされてもよい。いくつかの実施形態では、ネットワークノード560は、複数の無線アクセス技術(RAT)に対応するように設定されてもよい。かかる実施形態では、いくつかの構成要素が重複してもよく(例えば、異なるRATに対して別個のデバイス可読媒体580)、いくつかの構成要素は再使用されてもよい(例えば、同じアンテナ562がRATによって共有されてもよい)。ネットワークノード560はまた、例えば、GSM、広帯域符号分割多重アクセス(WCDMA)、LTE、NR、WiFi、またはブルートゥース無線技術など、ネットワークノード560に統合された異なる無線技術に関する複数組の様々な図示される構成要素を含んでもよい。これらの無線技術は、同じまたは異なるチップもしくはチップセット、およびネットワークノード560内の他の構成要素に統合されてもよい。
【0090】
処理回路構成570は、ネットワークノードによって提供されるものとして本明細書に記載される、任意の決定、計算、または類似の動作(例えば、特定の取得動作)を実施するように設定される。処理回路構成570によって実施されるこれらの動作は、例えば、取得された情報を他の情報に変換すること、取得された情報または変換された情報をネットワークノードに格納された情報と比較すること、ならびに/あるいは取得された情報または変換された情報に基づいて1つもしくは複数の動作を実施することによって、処理回路構成570によって取得される情報を処理すること、ならびに前記処理の結果として決定を行うことを含んでもよい。
【0091】
処理回路構成570は、マイクロプロセッサ、コントローラ、マイクロコントローラ、中央処理装置(CPU)、デジタル信号プロセッサ(DSP)、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)、または他の任意の適切なコンピューティングデバイス、リソース、あるいは単独で、または他のネットワークノード560の構成要素(デバイス可読媒体580、ネットワークノード560の機能性など)と併せて提供するように動作可能な、ハードウェア、ソフトウェア、および/または符号化論理の組み合わせのうち、1つもしくは複数のものの組み合わせを備えてもよい。例えば、処理回路構成570は、デバイス可読媒体580に、または処理回路構成570内のメモリに格納された命令を実行してもよい。かかる機能性は、本明細書で考察する様々な無線の機構、機能、または利益のいずれかを提供することを含んでもよい。かかる実施形態では、処理回路構成570はシステムオンチップ(SOC)を含んでもよい。
【0092】
いくつかの実施形態では、処理回路構成570は、無線周波数(RF)送受信機回路構成572およびベースバンド処理回路構成574の1つまたは複数を含んでもよい。いくつかの実施形態では、RF送受信機回路構成572およびベースバンド処理回路構成574は、別個のチップ(もしくはチップセット)、ボード、または無線ユニットおよびデジタルユニットなどのユニット上にあってもよい。代替実施形態では、RF送受信機回路構成572およびベースバンド処理回路構成574の一部または全ては、同じチップもしくはチップセット、ボード、またはユニットの上にあってもよい。
【0093】
特定の実施形態では、ネットワークノード、基地局、eNB、または他のかかるネットワークデバイスによって提供されるものとして本明細書に記載する機能性の一部または全ては、デバイス可読媒体580または処理回路構成570内のメモリに格納された命令を実行する、処理回路構成570によって実施されてもよい。代替実施形態では、機能性の一部または全ては、ハードワイヤード方式などで、別個のまたは離散的なデバイス可読媒体に格納された命令を実行することなく、処理回路構成570によって提供されてもよい。それらの実施形態のいずれかにおいて、デバイス可読記憶媒体に格納された命令を実行するか否かにかかわらず、処理回路構成570は、記載される機能性を実施するように設定することができる。かかる機能性によって提供される利益は、処理回路構成570のみに、またはネットワークノード560の他の構成要素に限定されず、ネットワークノード560全体ならびに/あるいはエンドユーザおよび無線ネットワーク全般によって享受される。
【0094】
デバイス可読媒体580は、非限定的に、永続記憶装置、固体メモリ、リモート実装メモリ、磁気媒体、光学媒体、RAM、読出し専用メモリ(ROM)、大容量記憶媒体(例えば、ハードディスク)、リムーバブル記憶媒体(例えば、フラッシュドライブ、コンパクトディスク(CD)、もしくはデジタルビデオディスク(DVD))、および/または他の任意の揮発性もしくは不揮発性非一時的デバイス可読および/またはコンピュータ実行可能メモリデバイスを含む、処理回路構成570によって使用されてもよい情報、データ、および/または命令を格納する、任意の形態の揮発性または不揮発性コンピュータ可読メモリを含んでもよい。デバイス可読媒体580は、論理、規則、コード、テーブルなどの1つもしくは複数を含むコンピュータプログラム、ソフトウェア、アプリケーションを含む、任意の適切な命令、データまたは情報、および/あるいは処理回路構成570によって実行され、ネットワークノード560によって利用され得る他の命令を格納してもよい。デバイス可読媒体580は、処理回路構成570によって行われる任意の計算、および/またはインターフェース590を介して受信される任意のデータを格納するのに使用されてもよい。いくつかの実施形態では、処理回路構成570およびデバイス可読記憶媒体580は、統合されたものと見なされてもよい。
【0095】
インターフェース590は、ネットワークノード560、ネットワーク506、および/またはWD 510の間における、シグナリングならびに/あるいはデータの有線または無線通信で使用される。図示されるように、インターフェース590は、例えば、有線接続を通じてネットワーク506との間でデータを送受信する、ポート/端子594を備える。インターフェース590はまた、アンテナ562に、または特定の実施形態ではその一部に連結されてもよい、無線フロントエンド回路構成592を含む。無線フロントエンド回路構成592はフィルタ598および増幅器596を備える。無線フロントエンド回路構成592はアンテナ562および処理回路構成570に接続されてもよい。無線フロントエンド回路構成は、アンテナ562と処理回路構成570との間で通信される信号を調整するように設定されてもよい。無線フロントエンド回路構成592は、無線接続を介して他のネットワークノードまたはWDに対して送出されるべきである、デジタルデータを受信してもよい。無線フロントエンド回路構成592は、フィルタ598および/または増幅器596の組み合わせを使用して、デジタルデータを、適切なチャネルおよび帯域幅パラメータを有する無線信号へと変換してもよい。無線信号は次に、アンテナ562を介して送信されてもよい。同様に、データを受信するとき、アンテナ562は無線信号を収集してもよく、それらは次に、無線フロントエンド回路構成592によってデジタルデータへと変換される。デジタルデータは処理回路構成570に渡されてもよい。他の実施形態では、インターフェースは、異なる構成要素および/または構成要素の異なる組み合わせを備えてもよい。
【0096】
特定の代替実施形態では、ネットワークノード560は別個の無線フロントエンド回路構成592を含まなくてもよく、代わりに、処理回路構成570は、無線フロントエンド回路構成を備えてもよく、別個の無線フロントエンド回路構成592なしでアンテナ562に接続されてもよい。同様に、いくつかの実施形態では、RF送受信機回路構成572の全てまたは一部はインターフェース590の一部と見なされてもよい。更に他の実施形態では、インターフェース590は、無線ユニット(図示なし)の一部として、1つもしくは複数のポートまたは端子594、無線フロントエンド回路構成592、およびRF送受信機回路構成572を含んでもよく、インターフェース590は、デジタルユニット(図示なし)の一部である、ベースバンド処理回路構成574と通信してもよい。
【0097】
アンテナ562は、無線信号を送出および/または受信するように設定された、1つもしくは複数のアンテナまたはアンテナアレイを含んでもよい。アンテナ562は、無線フロントエンド回路構成590に連結されてもよく、データおよび/または信号を無線で送受信することができる、任意のタイプのアンテナであってもよい。いくつかの実施形態では、アンテナ562は、例えば、2ギガヘルツ(GHz)~66GHzの無線信号を送受信するように動作可能な、1つまたは複数の全方向性、セクター、またはパネルアンテナを含んでもよい。全方向性アンテナは、任意の方向で無線信号を送受信するのに使用されてもよく、セクターアンテナは、特定のエリア内でデバイスから無線信号を送受信するのに使用されてもよく、パネルアンテナは、比較的直線で無線信号を送受信するのに使用される見通し線アンテナであってもよい。いくつかの例では、1つを超えるアンテナの使用はMIMOと呼ばれることがある。特定の実施形態では、アンテナ562は、ネットワークノード560とは別個であってもよく、インターフェースまたはポートを通してネットワークノード560に接続可能であってもよい。
【0098】
アンテナ562、インターフェース590、および/または処理回路構成570は、ネットワークノードによって実施されるものとして、本明細書に記載するあらゆる受信動作および/または特定の取得動作を実施するように設定されてもよい。あらゆる情報、データ、および/または信号は、無線デバイス、別のネットワークノード、および/または他の任意のネットワーク機器から受信されてもよい。同様に、アンテナ562、インターフェース590、および/または処理回路構成570は、ネットワークノードによって実施されるものとして、本明細書に記載するあらゆる送信動作を実施するように設定されてもよい。あらゆる情報、データ、および/または信号は、無線デバイス、別のネットワークノード、および/または他の任意のネットワーク機器に送信されてもよい。
【0099】
電力回路構成587は、電力管理回路構成を含むかまたはそれに連結されてもよく、ネットワークノード560の構成要素に、本明細書に記載する機能性を実施する電力を供給するように設定される。電力回路構成587は電源586から電力を受信してもよい。電源586および/または電力回路構成587は、それぞれの構成要素に適した形態で(例えば、それぞれの構成要素に必要な電圧および電流レベルで)、ネットワークノード560の様々な構成要素に電力を提供するように設定されてもよい。電源586は、回路構成587および/またはネットワークノード560に含まれるか、あるいはその外部にあってもよい。例えば、ネットワークノード560は、入力回路構成、または電気ケーブルなどのインターフェースを介して、外部電源(例えば、電気コンセント)に接続可能であってもよく、外部電源は電力を電力回路構成587に供給する。更なる例として、電源586は、電力回路構成587に接続されるかまたは統合される、電池もしくは電池パックの形態の電源を含んでもよい。電池は、外部電源が故障した場合のバックアップ電力を提供してもよい。光起電デバイスなど、他のタイプの電源も使用されてもよい。
【0100】
ネットワークノード560の代替実施形態は、本明細書に記載する機能性のいずれか、および/または本明細書に記載する主題に対応するのに必要な任意の機能性を含む、ネットワークノードの機能性の特定の態様を提供することに関与してもよい、図5に示されるものを超える追加の構成要素を含んでもよい。例えば、ネットワークノード560は、情報をネットワークノード560に入力するのを可能にし、情報をネットワークノード560から出力するのを可能にする、ユーザインターフェース機器を含んでもよい。これは、ネットワークノード560に対する診断、保守、修理、および他の管理機能をユーザが実施するのを可能にしてもよい。
【0101】
本明細書で使用するとき、WDは、ネットワークノードおよび/または他の無線デバイスと無線で通信することができる、そのように設定されている、そのように配置されている、ならびに/あるいはそのように動作可能であるデバイスを指す。別段の記述がない限り、WDという用語は、本明細書ではUEと交換可能に使用されてもよい。無線通信には、電磁波、電波、赤外線波、および/または空気を通して情報を伝達するのに適した他のタイプの信号を使用して、無線信号を送信および/または受信することが関与してもよい。いくつかの実施形態では、WDは、直接的な人間の相互作用なしに情報を送信および/または受信するように設定されてもよい。例えば、WDは、内部もしくは外部イベントによって起動されると、またはネットワークからの要求に応答して、所定のスケジュールでネットワークに情報を送信するように設計されてもよい。WDの例としては、スマートフォン、モバイル電話、携帯電話、ボイスオーバーIP(VoIP)電話、無線ローカルループ電話、デスクトップコンピュータ、個人情報端末(PDA)、無線カメラ、ゲームコンソールもしくはデバイス、音楽記憶デバイス、再生器具、ウェアラブル端末デバイス、無線エンドポイント、移動局、タブレット、ラップトップ、ラップトップ内蔵機器(LEE)、ラップトップ搭載機器(LME)、スマートデバイス、無線カスタマー構内設備(CPE)、車載型無線端末デバイスなどが挙げられるが、それらに限定されない。WDは、例えば、サイドリンク通信の3GPP規格を実装することによるデバイス間(D2D)通信、車車間(V2V)、路車間(V2I)、ビークルトゥエブリシング(V2X)に対応してもよく、この場合、D2D通信デバイスと呼ばれることがある。更に別の特定の例として、物のインターネット(IoT)のシナリオでは、WDは、監視および/または測定を実施し、かかる監視および/または測定の結果を別のWDおよび/またはネットワークノードに送信する、機械または他のデバイスを表してもよい。WDは、この場合、3GPPの文脈ではマシンタイプ通信(MTC)デバイスと呼ばれることがある、マシンツーマシン(M2M)デバイスであってもよい。1つの特定の例として、WDは、3GPP狭帯域IoT(NB-IoT)規格を実装するUEであってもよい。かかるマシンまたはデバイスの特定の例は、センサ、電力計などの計量デバイス、工業用機械類、家庭用または個人用電気器具(例えば、冷蔵庫、テレビなど)、個人用ウェアラブル(例えば、時計、フィットネストラッカーなど)である。他のシナリオでは、WDは、その動作状態またはその動作と関連付けられた他の機能に関して監視および/または報告することができる、車両用または他の機器を表してもよい。上述したようなWDは、無線接続のエンドポイントを表してもよく、その場合、デバイスは無線端末と呼ばれることがある。更に、上述したようなWDは移動体であってもよく、その場合、移動デバイスまたは移動端末と呼ばれることもある。
【0102】
図示されるように、無線デバイス510は、アンテナ511、インターフェース514、処理回路構成520、デバイス可読媒体530、ユーザインターフェース機器532、補助機器534、電源536、および電力回路構成537を含む。WD 510は、例えば、例を挙げると、GSM、WCDMA、LTE、NR、WiFi、WiMAX、またはブルートゥース無線技術など、WD 510が対応する異なる無線技術に対して、図示される構成要素のうち1つまたは複数のものの複数組を含んでもよい。これらの無線技術は、WD 510内の他の構成要素と同じもしくは異なるチップまたはチップセットに統合されてもよい。
【0103】
アンテナ511は、無線信号を送出および/または受信するように設定された、1つもしくは複数のアンテナまたはアンテナアレイを含んでもよく、インターフェース514に接続される。特定の代替実施形態では、アンテナ511は、WD 510とは別個であってもよく、インターフェースまたはポートを通してWD 510に接続可能であってもよい。アンテナ511、インターフェース514、および/または処理回路構成520は、WDによって実施されるものとして本明細書に記載される、あらゆる受信または送信動作を実施するように設定されてもよい。あらゆる情報、データ、および/または信号は、ネットワークノードおよび/または別のWDから受信されてもよい。いくつかの実施形態では、無線フロントエンド回路構成および/またはアンテナ511は、インターフェースと見なされてもよい。
【0104】
図示されるように、インターフェース514は無線フロントエンド回路構成512およびアンテナ511を備える。無線フロントエンド回路構成512は、1つまたは複数のフィルタ518および増幅器516を備える。無線フロントエンド回路構成514は、アンテナ511および処理回路構成520に接続され、アンテナ511と処理回路構成520との間で通信される信号を調整するように設定される。無線フロントエンド回路構成512は、アンテナ511に連結されるか、またはその一部であってもよい。いくつかの実施形態では、WD 510は、別個の無線フロントエンド回路構成512を含まなくてもよく、それよりもむしろ、処理回路構成520は、無線フロントエンド回路構成を備えてもよく、アンテナ511に接続されてもよい。同様に、いくつかの実施形態では、RF送受信機回路構成522の全てまたは一部はインターフェース514の一部と見なされてもよい。無線フロントエンド回路構成512は、無線接続を介して他のネットワークノードまたはWDに対して送出されるべきである、デジタルデータを受信してもよい。無線フロントエンド回路構成512は、フィルタ518および/または増幅器516の組み合わせを使用して、デジタルデータを、適切なチャネルおよび帯域幅パラメータを有する無線信号へと変換してもよい。無線信号は次に、アンテナ511を介して送信されてもよい。同様に、データを受信するとき、アンテナ511は無線信号を収集してもよく、それらは次に、無線フロントエンド回路構成512によってデジタルデータへと変換される。デジタルデータは処理回路構成520に渡されてもよい。他の実施形態では、インターフェースは、異なる構成要素および/または構成要素の異なる組み合わせを備えてもよい。
【0105】
処理回路構成520は、マイクロプロセッサ、コントローラ、マイクロコントローラ、CPU、DSP、ASIC、FPGA、または他の任意の適切なコンピューティングデバイス、リソース、あるいは単独で、または他のWD 510の構成要素(デバイス可読媒体530、WD 510の機能性など)と併せて提供するように動作可能な、ハードウェア、ソフトウェア、および/または符号化論理の組み合わせのうち、1つもしくは複数のものの組み合わせを備えてもよい。かかる機能性は、本明細書で考察する様々な無線の機構または利益のいずれかを提供することを含んでもよい。例えば、処理回路構成520は、デバイス可読媒体530に、または処理回路構成520内のメモリに格納された命令を実行して、本明細書に開示する機能性を提供してもよい。
【0106】
図示されるように、処理回路構成520は、RF送受信機回路構成522、ベースバンド処理回路構成524、およびアプリケーション処理回路構成526の1つまたは複数を含む。他の実施形態では、処理回路構成は、異なる構成要素および/または構成要素の異なる組み合わせを備えてもよい。特定の実施形態では、WD 510の処理回路構成520はSOCを備えてもよい。いくつかの実施形態では、RF送受信機回路構成522、ベースバンド処理回路構成524、およびアプリケーション処理回路構成526は、別個のチップまたはチップセット上にあってもよい。代替実施形態では、ベースバンド処理回路構成524およびアプリケーション処理回路構成526の一部または全ては、1つのチップまたはチップセットに組み入れられてもよく、RF送受信機回路構成522は別個のチップまたはチップセット上にあってもよい。更なる代替実施形態では、RF送受信機回路構成522およびベースバンド処理回路構成524の一部または全てが、同じチップまたはチップセット上にあってもよく、アプリケーション処理回路構成526が別個のチップまたはチップセット上にあってもよい。更なる他の代替実施形態では、RF送受信機回路構成522、ベースバンド処理回路構成524、およびアプリケーション処理回路構成526の一部または全てが、同じチップまたはチップセットに組み入れられてもよい。いくつかの実施形態では、RF送受信機回路構成522はインターフェース514の一部であってもよい。RF送受信機回路構成522は、処理回路構成520に対するRF信号を調整してもよい。
【0107】
特定の実施形態では、WDによって実施されるものとして本明細書に記載される機能性の一部または全ては、特定の実施形態ではコンピュータ可読記憶媒体であってもよい、デバイス可読媒体に格納された命令を処理回路構成520が実行することによって提供されてもよい。代替実施形態では、機能性の一部または全ては、ハードワイヤード方式などで、別個のまたは離散的なデバイス可読記憶媒体に格納された命令を実行することなく、処理回路構成520によって提供されてもよい。これら特定の実施形態のいずれかにおいて、デバイス可読記憶媒体に格納された命令を実行するか否かにかかわらず、処理回路構成520は、記載される機能性を実施するように設定することができる。かかる機能性によって提供される利益は、処理回路構成520のみに、またはWD 510の他の構成要素に限定されず、WD 510全体ならびに/あるいはエンドユーザおよび無線ネットワーク全般によって享受される。
【0108】
処理回路構成520は、WDによって実施されるものとして本明細書に記載される、任意の決定、計算、または類似の動作(例えば、特定の取得動作)を実施するように設定されてもよい。処理回路構成520によって実施されるようなこれらの動作は、例えば、取得された情報を他の情報に変換すること、取得された情報または変換された情報をWD 510によって格納された情報と比較すること、ならびに/あるいは取得された情報または変換された情報に基づいて1つもしくは複数の動作を実施することによって、処理回路構成520によって取得される情報を処理すること、ならびに前記処理の結果として決定を行うことを含んでもよい。
【0109】
デバイス可読媒体530は、1つもしくは複数の論理、規則、符号、テーブルなどを含む、コンピュータプログラム、ソフトウェア、アプリケーション、ならびに/あるいは処理回路構成520によって実行することができる他の命令を格納するように動作可能であってもよい。デバイス可読媒体530の例としては、コンピュータメモリ(例えば、RAMもしくはROM)、大容量記憶媒体(例えば、ハードディスク)、リムーバブル記憶媒体(例えば、CDもしくはDVD)、ならびに/あるいは、処理回路構成520によって使用されてもよい情報、データ、および/または命令を格納する、他の任意の揮発性もしくは不揮発性非一時的デバイス可読および/またはコンピュータ実行可能メモリデバイスを挙げることができる。いくつかの実施形態では、処理回路構成520およびデバイス可読媒体530は、統合されたものと見なされてもよい。
【0110】
ユーザインターフェース機器532は、人間のユーザがWD 510と相互作用することを可能にする構成要素を提供してもよい。かかる相互作用は、視覚、聴覚、触覚など、多くの形態のものであってもよい。ユーザインターフェース機器532は、ユーザに対する出力を生成し、ユーザがWD 510への入力を提供できるように動作可能であってもよい。相互作用のタイプは、WD 510にインストールされるユーザインターフェース機器532のタイプに応じて変わってもよい。例えば、WD 510がスマートフォンの場合、相互作用はタッチスクリーンを介してもよく、WD 510がスマートメータの場合、相互作用は、使用(例えば、使用したガロン数)を提供する画面、または(例えば、煙が検出された場合に)可聴警告音を提供するスピーカーを通すものであってもよい。ユーザインターフェース機器532は、入力インターフェース、デバイス、および回路、ならびに出力インターフェース、デバイス、および回路を含んでもよい。ユーザインターフェース機器532は、WD 510への情報の入力を可能にするように設定され、処理回路構成520に接続されて、処理回路構成520が入力情報を処理するのを可能にする。ユーザインターフェース機器532は、例えば、マイクロフォン、近接センサもしくは他のセンサ、キー/ボタン、タッチディスプレイ、1つもしくは複数のカメラ、ユニバーサルシリアルバス(USB)ポート、または他の入力回路構成を含んでもよい。ユーザインターフェース機器532はまた、WD 510からの情報の出力を可能にし、処理回路構成520が情報をWD 510から出力するのを可能にするように設定される。ユーザインターフェース機器532は、例えば、スピーカー、ディスプレイ、振動回路構成、USBポート、ヘッドフォンインターフェース、または他の出力回路構成を含んでもよい。ユーザインターフェース機器532の1つまたは複数の入力および出力インターフェース、デバイス、ならびに回路を使用して、WD 510は、エンドユーザおよび/または無線ネットワークと通信し、それらが本明細書に記載する機能性から利益を得ることを可能にしてもよい。
【0111】
補助機器534は、一般にはWDによって実施されないことがある、より具体的な機能性を提供するように動作可能である。これは、様々な目的の測定を行う専用センサ、有線通信などの追加のタイプの通信のためのインターフェースなどを含んでもよい。補助機器534を含むこと、またその構成要素のタイプは、実施形態および/またはシナリオに応じて異なってもよい。
【0112】
電源536は、いくつかの実施形態では、電池または電池パックの形態のものであってもよい。外部電源(例えば、電気コンセント)、光起電デバイス、またはパワーセルなど、他のタイプの電源も使用されてもよい。WD 510は、本明細書に記載または示唆される任意の機能性を実施するのに電源536からの電力を必要とするWD 510の様々な部分に、電源536から電力を送達する、電力回路構成537を更に備えてもよい。電力回路構成537は、特定の実施形態では、電力管理回路構成を含んでもよい。電力回路構成537は、それに加えてまたはその代わりに、外部電源から電力を受信するように動作可能であってもよく、その場合、WD 510は、入力回路構成、または電力ケーブルなどのインターフェースを介して、外部電源(電気コンセントなど)に接続可能であってもよい。電力回路構成537はまた、特定の実施形態では、外部電源から電源536に電力を送達するように動作可能であってもよい。これは、例えば、電源536を充電するものであってもよい。電力回路構成537は、電源536からの電力に対して任意のフォーマット化、変換、または他の修正を実施して、電力が供給されるWD 510のそれぞれの構成要素に適した電力にしてもよい。
【0113】
図6は、本明細書に記載する様々な態様による、UEの一実施形態を示している。本明細書で使用するとき、ユーザ機器、即ちUEは、関連デバイスを所有および/または操作する人間のユーザという意味では、必ずしもユーザを有さなくてもよい。代わりに、UEは、人間のユーザに販売するか人間のユーザによって操作されることが意図されるが、特定の人間のユーザと関連付けられないことがある、または最初は関連付けられないことがあるデバイスを表してもよい(例えば、スマートスプリンクラーコントローラ)。あるいは、UEは、エンドユーザに販売するかエンドユーザによって操作されることは意図されないが、ユーザと関連付けられるかまたはユーザの利益のために操作されてもよいデバイスを表してもよい(例えば、スマート電力計)。UE 600は、NB-IoT UE、MTC UE、および/または拡張型MTC(eMTC)UEを含む、3GPPによって特定される任意のUEであってもよい。図6に示されるようなUE 600は、3GPPのGSM、UMTS、LTE、および/または5G規格など、3GPPによって普及される1つまたは複数の通信規格にしたがった通信向けに設定されたWDの一例である。上述したように、WDおよびUEという用語は交換可能に使用されてもよい。したがって、図6はUEであるが、本明細書で考察する構成要素はWDに等しく適用可能であり、その逆もまた真である。
【0114】
図6では、UE 600は、入出力インターフェース605、RFインターフェース609、ネットワーク接続インターフェース611、メモリ615(RAM 617、ROM 619、および記憶媒体621などを含む)通信サブシステム631、電源633、および/または他の任意の構成要素、あるいはそれらの任意の組み合わせに動作可能に連結された、処理回路構成601を含む。記憶媒体621は、オペレーティングシステム623、アプリケーションプログラム625、およびデータ627を含む。他の実施形態では、記憶媒体621は他の類似のタイプの情報を含んでもよい。特定のUEは、図6に示される構成要素の全て、または構成要素のサブセットのみを利用してもよい。構成要素間の統合レベルはUEごとに異なってもよい。更に、特定のUEは、複数のプロセッサ、メモリ、送受信機、送信機、受信機など、構成要素の複数の例を含んでもよい。
【0115】
図6では、処理回路構成601は、コンピュータ命令およびデータを処理するように設定されてもよい。処理回路構成601は、1つもしくは複数のハードウェア実装状態機械(例えば、離散的な論理、FPGA、ASICなど)、適切なファームウェアを伴うプログラマブル論理、1つもしくは複数の格納されたプログラム、適切なソフトウェアを伴うマイクロプロセッサもしくはDSPなどの汎用プロセッサ、または上記のものの任意の組み合わせなど、機械可読コンピュータプログラムとしてメモリに格納された機械命令を実行するように動作可能な、任意の連続状態機械を実装するように設定されてもよい。例えば、処理回路構成601は2つのCPUを含んでもよい。データは、コンピュータが使用するのに適した形態の情報であってもよい。
【0116】
図示される実施形態では、入出力インターフェース605は、入力デバイス、出力デバイス、または入出力デバイスに対する通信インターフェースを提供するように設定されてもよい。UE 600は、入出力インターフェース605を介して出力デバイスを使用するように設定されてもよい。出力デバイスは、入力デバイスと同じタイプのインターフェースポートを使用してもよい。例えば、UE 600に対する入出力を提供するのに、USBポートが使用されてもよい。出力デバイスは、スピーカー、サウンドカード、ビデオカード、ディスプレイ、モニタ、プリンタ、アクチュエータ、エミッタ、スマートカード、別の出力デバイス、またはそれらの任意の組み合わせであってもよい。UE 600は、入出力インターフェース605を介して入力デバイスを使用して、ユーザがUE 600への情報を捕捉することを可能にするように設定されてもよい。入力デバイスは、タッチセンサ式または存在センサ式ディスプレイ、カメラ(例えば、デジタルカメラ、デジタルビデオカメラ、ウェブカメラなど)、マイクロフォン、センサ、マウス、トラックボール、指向性パッド、トラックパッド、スクロールホイール、スマートカードなどを含んでもよい。存在センサ式ディスプレイは、ユーザからの入力を感知する、容量性または抵抗性タッチセンサを含んでもよい。センサは、例えば、加速度計、ジャイロスコープ、傾きセンサ、力センサ、磁力計、光学センサ、近接センサ、別の同様のセンサ、またはそれらの任意の組み合わせであってもよい。例えば、入力デバイスは、加速度計、磁力計、デジタルカメラ、マイクロフォン、および光学センサであってもよい。
【0117】
図6では、RFインターフェース609は、通信インターフェースを、送信機、受信機、およびアンテナなどのRF構成要素に提供するように設定されてもよい。ネットワーク接続インターフェース611は、通信インターフェースをネットワーク643aに提供するように設定されてもよい。ネットワーク643aは、LAN、WAN、コンピュータネットワーク、無線ネットワーク、電気通信ネットワーク、他の類似のネットワーク、またはそれらの任意の組み合わせなど、有線および/または無線ネットワークを包含してもよい。例えば、ネットワーク643aはWiFiネットワークを含んでもよい。ネットワーク接続インターフェース611は、イーサネット、伝送制御プロトコル(TCP)/IP、同期光通信ネットワーク(SONET)、非同期転送モード(ATM)など、1つまたは複数の通信プロトコルにしたがって、通信ネットワークを通じて1つもしくは複数の他のデバイスと通信するのに使用される、受信機および送信機インターフェースを含むように設定されてもよい。ネットワーク接続インターフェース611は、通信ネットワークリンク(例えば、光学、電気など)に適切な受信機および送信機の機能性を実装してもよい。送信機および受信機機能は、回路構成要素、ソフトウェア、もしくはファームウェアを共有してもよく、あるいは別個に実装されてもよい。
【0118】
RAM 617は、バス602を介して処理回路構成601にインターフェース接続して、オペレーティングシステム、アプリケーションプログラム、およびデバイスドライバなどのソフトウェアプログラムを実行する間、データまたはコンピュータ命令を格納もしくはキャッシングするように設定されてもよい。ROM 619は、コンピュータ命令またはデータを処理回路構成601に提供するように設定されてもよい。例えば、ROM 619は、基本的入出力(I/O)、起動、または不揮発性メモリに格納されたキーボードからのキーストロークの受信など、基本的なシステム機能に対する不変の低レベルシステムコードまたはデータを格納するように設定されてもよい。記憶媒体621は、RAM、ROM、プログラマブルROM(PROM)、消去可能PROM(EPROM)、電気的EPROM(EEPROM)、磁気ディスク、光学ディスク、フロッピーディスク、ハードディスク、取外し可能カートリッジ、またはフラッシュドライブなどのメモリを含むように設定されてもよい。一例では、記憶媒体621は、オペレーティングシステム623、ウェブブラウザアプリケーションなどのアプリケーションプログラム625、ウィジェットもしくはガジェットエンジンまたは別のアプリケーション、およびデータファイル627を含むように設定されてもよい。記憶媒体621は、UE 600が使用するため、多種多様の様々なオペレーティングシステムまたはオペレーティングシステムの組み合わせのいずれかを格納してもよい。
【0119】
記憶媒体621は、独立ディスクの冗長アレイ(RAID)、フロッピーディスクドライブ、フラッシュメモリ、USBフラッシュドライブ、外部ハードディスクドライブ、サムドライブ、ペンドライブ、キードライブ、高密度デジタル多用途ディスク(HD-DVD)光学ディスクドライブ、内部ハードディスクドライブ、ブルーレイ光学ディスクドライブ、ホログラフィックデジタルデータ記録(HDDS)光学ディスクドライブ、外部ミニデュアルインラインメモリモジュール(DIMM)、同期式動的RAM(SDRAM)、外部マイクロDIMM SDRAM、スマートカードメモリ(加入者識別モジュール(SIM)もしくはリムーバブルユーザ識別(RUIM)モジュールなど)、他のメモリ、またはそれらの任意の組み合わせなど、多数の物理的ドライブユニットを含むように設定されてもよい。記憶媒体621によって、UE 600が、一時的もしくは非一時的メモリ媒体に格納された、コンピュータ実行可能命令、アプリケーションプログラムなどにアクセスするか、データをオフロードするか、またはデータをアップロードすることが可能になってもよい。通信システムを利用するものなどの製品は、デバイス可読媒体を含んでもよい、記憶媒体621の形で有形的に具体化されてもよい。
【0120】
図6では、処理回路構成601は、通信サブシステム631を使用してネットワーク643bと通信するように設定されてもよい。ネットワーク643aおよびネットワーク643bは、同じネットワークまたは異なるネットワークであってもよい。通信サブシステム631は、ネットワーク643bと通信するのに使用される1つまたは複数の送受信機を含むように設定されてもよい。例えば、通信サブシステム631は、IEEE 802.2、符号分割多重アクセス(CDMA)、WCDMA、GSM、LTE、ユニバーサル地上RAN(UTRAN)、WiMaxなどの1つまたは複数の通信プロトコルにしたがって、別のWD、UE、または無線アクセスネットワーク(RAN)の基地局など、無線通信することができる別のデバイスの1つまたは複数のリモート送受信機と通信するのに使用される、1つまたは複数の送受信機を含むように設定されてもよい。各送受信機は、RANリンクに適した送信機または受信機の機能性(例えば、周波数割当てなど)をそれぞれ実装する、送信機633および/または受信機635を含んでもよい。更に、各送受信機の送信機633および受信機635は、回路構成要素、ソフトウェア、もしくはファームウェアを共有してもよく、あるいは別個に実装されてもよい。
【0121】
図示される実施形態では、通信サブシステム631の通信機能は、データ通信、音声通信、マルチメディア通信、ブルートゥースなどの近距離通信、近距離通信、位置を決定するのに全地球測位システム(GPS)を使用するものなどの位置依存型通信、別の類似の通信機能、またはそれらの任意の組み合わせを含んでもよい。例えば、通信サブシステム631は、セルラー通信、WiFi通信、ブルートゥース通信、およびGPS通信を含んでもよい。ネットワーク643bは、LAN、WAN、コンピュータネットワーク、無線ネットワーク、電気通信ネットワーク、別の類似のネットワーク、またはそれらの任意の組み合わせなど、有線および/または無線ネットワークを包含してもよい。例えば、ネットワーク643bは、セルラーネットワーク、WiFiネットワーク、および/または近距離ネットワークであってもよい。電源613は、交流(AC)または直流(DC)電力をUE 600の構成要素に提供するように設定されてもよい。
【0122】
本明細書に記載する特徴、利益、および/または機能は、UE 600の構成要素の1つで実装されてもよく、またはUE 600の複数の構成要素にわたって分割されてもよい。更に、本明細書に記載する特徴、利益、および/または機能は、ハードウェア、ソフトウェア、またはファームウェアの任意の組み合わせで実装されてもよい。一例では、通信サブシステム631は、本明細書に記載する構成要素のいずれかを含むように設定されてもよい。更に、処理回路構成601は、バス602を通じてかかる構成要素のいずれかと通信するように設定されてもよい。別の例では、かかる構成要素のいずれかは、処理回路構成601によって実行されると、本明細書に記載される対応する機能を実施する、メモリに格納されたプログラム命令によって表されてもよい。別の例では、かかる構成要素のいずれかの機能性は、処理回路構成601と通信サブシステム631との間で分割されてもよい。別の例では、かかる構成要素のいずれかの非コンピュータ集約的機能は、ソフトウェアまたはファームウェアの形で実装されてもよく、コンピュータ集約的機能はハードウェアの形で実装されてもよい。
【0123】
図7は、いくつかの実施形態によって実装される機能が仮想化されてもよい、仮想化環境700を示す概略ブロック図である。この文脈では、仮想化とは、ハードウェアプラットフォーム、記憶デバイス、およびネットワーキングリソースを仮想化することを含んでもよい、装置またはデバイスを仮想化したものを作成することを意味する。本明細書で使用するとき、仮想化は、ノード(例えば、仮想化基地局もしくは仮想化無線アクセスノード)、あるいはデバイス(例えば、UE、無線デバイス、もしくは他の任意のタイプの通信デバイス)またはその構成要素に適用することができ、機能性の少なくとも一部分が(例えば、1つまたは複数のネットワークにおいて1つまたは複数の物理的処理ノードで実行する、1つもしくは複数のアプリケーション、コンポーネント、機能、仮想機械、またはコンテナを介して)1つまたは複数の仮想構成要素として実装される実装形態に関する。
【0124】
いくつかの実施形態では、本明細書に記載する機能の一部または全ては、1つまたは複数のハードウェアノード730がホストする1つまたは複数の仮想環境700において実装される、1つまたは複数の仮想機械によって実行される仮想構成要素として実装されてもよい。更に、仮想ノードが無線アクセスノードではなく、無線接続性(例えば、コアネットワークノード)を要しない実施形態では、ネットワークノードは全体的に仮想化されてもよい。
【0125】
機能は、本明細書に開示する実施形態のうちいくつかの特徴、機能、および/または利益の一部を実装するように動作する、1つまたは複数のアプリケーション720(あるいは、ソフトウェアインスタンス、仮想アプライアンス、ネットワーク機能、仮想ノード、仮想ネットワーク機能などと呼ばれることがある)によって実装されてもよい。アプリケーション720は、処理回路構成760およびメモリ790を備えるハードウェア730を提供する仮想化環境700で稼動する。メモリ790は、処理回路構成760によって実行可能な命令795を含み、それによってアプリケーション720は、本明細書に開示する特徴、利益、および/または機能の1つもしくは複数を提供するように動作する。
【0126】
仮想化環境700は、商用オフザシェルフ(COTS)プロセッサ、専用ASIC、あるいはデジタルもしくはアナログハードウェア構成要素または専用プロセッサを含む他の任意のタイプの処理回路構成であってもよい、1つもしくは複数のプロセッサまたは処理回路構成760のセットを備える、汎用または専用ネットワークハードウェアデバイス730を備える。各ハードウェアデバイスは、処理回路構成760によって実行される命令795またはソフトウェアを一時的に格納する非永続的メモリであってもよい、メモリ790-1を備えてもよい。各ハードウェアデバイスは、物理ネットワークインターフェース780を含む、ネットワークインターフェースカードとしても知られる、1つまたは複数のネットワークインターフェースコントローラ(NIC)770を備えてもよい。各ハードウェアデバイスはまた、処理回路構成760によって実行可能なソフトウェア795および/または命令が格納された、非一時的な永続的機械可読記憶媒体790-2を含んでもよい。ソフトウェア795は、1つまたは複数の仮想化レイヤ750(ハイパーバイザーとも呼ばれる)の実例となるソフトウェア、仮想機械740を実行するソフトウェア、ならびに本明細書に記載するいくつかの実施形態に関連して記載される機能、特徴、および/または利益を実行することを可能にするソフトウェアを含む、任意のタイプのソフトウェアを含んでもよい。
【0127】
仮想機械740は、仮想処理、仮想メモリ、仮想ネットワーキングまたはインターフェース、および仮想記憶装置を含み、対応する仮想化レイヤ750またはハイパーバイザーによって稼動してもよい。仮想アプライアンス720のインスタンスの異なる実施形態は、仮想機械740の1つまたは複数で実装されてもよく、実装は異なる形で行われてもよい。
【0128】
動作中、処理回路構成760は、場合によっては仮想機械モニタ(VMM)と呼ばれることがある、ハイパーバイザーまたは仮想化レイヤ750の実例となるソフトウェア795を実行する。仮想化レイヤ750は、仮想機械740に対するネットワーキングハードウェアのように見える、仮想オペレーティングプラットフォームを表してもよい。
【0129】
図7に示されるように、ハードウェア730は、一般または特定構成要素を備えた独立型ネットワークノードであってもよい。ハードウェア730は、アンテナ7225を備えてもよく、仮想化によって一部の機能を実装してもよい。あるいは、ハードウェア730は、多くのハードウェアノードが共に働き、中でも特にアプリケーション720のライフサイクル管理を監督する、管理およびオーケストレーション(MANO)7100を介して管理される、ハードウェアの(例えば、データセンタもしくはCPEにおける)より大きいクラスタの一部であってもよい。
【0130】
ハードウェアの仮想化は、文脈によっては、ネットワーク機能仮想化(NFV)と呼ばれる。NFVは、多くのネットワーク機器タイプを、業界標準の大容量サーバハードウェア、物理的スイッチ、およびデータセンタに位置することができる物理的記憶装置、およびCPE上へと統合するのに使用されてもよい。
【0131】
NFVの文脈では、仮想機械740は、物理的な非仮想化機械で実行しているかのようにプログラムを走らせる、物理的機械のソフトウェア実装形態であってもよい。各仮想機械740、およびその仮想機械を実行するハードウェア730の部分は、その仮想機械専用のハードウェアであり、ならびに/あるいはその仮想機械と他の仮想機械740とで共有されるハードウェアは、別個の仮想ネットワーク要素(VNE)を形成する。
【0132】
やはりNFVの文脈では、仮想ネットワーク機能(VNF)は、ハードウェアネットワーキングインフラストラクチャ730の最上位にある1つまたは複数の仮想機械740で稼動する特定のネットワーク機能の取り扱いに関与し、図7のアプリケーション720に相当する。
【0133】
いくつかの実施形態では、1つまたは複数の送信機7220および1つまたは複数の受信機7210をそれぞれ含む、1つまたは複数の無線ユニット7200は、1つまたは複数のアンテナ7225に結合されてもよい。無線ユニット7200は、1つまたは複数の適切なネットワークインターフェースを介してハードウェアノード730と直接通信してもよく、仮想ノードに無線アクセスノードまたは基地局などの無線能力を提供する、仮想構成要素との組み合わせで使用されてもよい。
【0134】
いくつかの実施形態では、一部のシグナリングは、ハードウェアノード730と無線ユニット7200との間の通信に代わりに使用されてもよい、制御システム7230を使用することによって実施することができる。
【0135】
図8は、いくつかの実施形態による、中間ネットワークを介してホストコンピュータに接続される電気通信ネットワークを示している。
【0136】
図8を参照すると、一実施形態によれば、通信システムは、無線アクセスネットワークなどのアクセスネットワーク811とコアネットワーク814とを含む、3GPPタイプのセルラーネットワークなどの電気通信ネットワーク810を含む。アクセスネットワーク811は、対応するカバレッジエリア813a、813b、813cをそれぞれ規定する、ノードB、eNB、gNB、または他のタイプの無線アクセスポイントなど、複数の基地局812a、812b、812cを備える。各基地局812a、812b、812cは、有線または無線接続815を通じてコアネットワーク814に接続可能である。カバレッジエリア813cに位置する第1のUE 891は、対応する基地局812cに無線接続するように、またはそれによってページングするように設定される。カバレッジエリア813aのUE 892は、対応する基地局812aに無線接続可能である。この例では複数のUE 891、892が示されているが、開示される実施形態は、単一のUEがカバレッジエリアにあるか、または単一のUEが対応する基地局812に接続している状況に等しく適用可能である。
【0137】
電気通信ネットワーク810自体は、スタンドアロンサーバ、クラウド実装サーバ、分散サーバのハードウェアおよび/またはソフトウェアの形で、あるいはサーバファームの処理リソースとして具体化されてもよい、ホストコンピュータ830に接続される。ホストコンピュータ830は、サービスプロバイダの所有もしくは制御下にあってもよく、またはサービスプロバイダによって、もしくはサービスプロバイダに代わって操作されてもよい。電気通信ネットワーク810とホストコンピュータ830との間の接続821および822は、コアネットワーク814からホストコンピュータ830まで直接延在してもよく、または任意の中間ネットワーク820を介して通ってもよい。中間ネットワーク820は、公衆、私設、もしくはホストされたネットワークの1つ、または1つを超えるものの組み合わせであってもよく、中間ネットワーク820がある場合、バックボーンネットワークまたはインターネットであってもよく、特に、中間ネットワーク820は、2つ以上のサブネットワーク(図示なし)を含んでもよい。
【0138】
図8の通信システム全体は、接続されたUE 891、892とホストコンピュータ830との間の接続性を可能にする。接続性は、オーバーザトップ(OTT)接続850として説明されてもよい。ホストコンピュータ830および接続されたUE 891、892は、アクセスネットワーク811、コアネットワーク814、任意の中間ネットワーク820、および場合によっては仲介物としての更なるインフラストラクチャ(図示なし)を使用して、OTT接続850を介してデータおよび/またはシグナリングを通信するように設定される。OTT接続850は、OTT接続850が通っている関与する通信デバイスが、アップリンクおよびダウンリンク通信の経路指定を意識していないという意味で透明であり得る。例えば、基地局812は、ホストコンピュータ830からのデータが接続されたUE 891に転送される(例えば、ハンドオーバーされる)、入ってくるダウンリンク通信の過去の経路指定に関して通知されなくてもよいか、または通知される必要がない。同様に、基地局812は、UE 891からホストコンピュータ830に向かう、出て行くUL通信の今後の経路指定を意識する必要はない。
【0139】
図9は、いくつかの実施形態による、部分無線接続を通じて基地局を介してユーザ機器と通信しているホストコンピュータを示している。
【0140】
次に、一実施形態によるUE、基地局、および上述のパラグラフで考察したホストコンピュータの例示の実装形態について、図9を参照して記載する。通信システム900では、ホストコンピュータ910は、通信システム900の異なる通信デバイスのインターフェースとの有線または無線接続をセットアップし維持するように設定された、通信インターフェース916を含むハードウェア915を備える。ホストコンピュータ910は、記憶および/または処理能力を有してもよい、処理回路構成918を更に備える。特に、処理回路構成918は、1つもしくは複数のプラグラマブルプロセッサ、ASIC、FPGA、または命令を実行するように適合されたこれらの組み合わせ(図示なし)を含んでもよい。ホストコンピュータ910は、ホストコンピュータ910に格納されるかそれによってアクセス可能であり、処理回路構成918によって実行可能である、ソフトウェア911を更に備える。ソフトウェア911はホストアプリケーション912を含む。ホストアプリケーション912は、UE 930およびホストコンピュータ910で終端するOTT接続950を介して接続するUE 930などのリモートユーザに、サービスを提供するように動作可能であってもよい。サービスをリモートユーザに提供する際、ホストアプリケーション912は、OTT接続950を使用して送信されるユーザデータを提供してもよい。
【0141】
通信システム900は、電気通信システムに提供され、ホストコンピュータ910およびUE 930と通信できるようにするハードウェア925を備える、基地局920を更に含む。ハードウェア925は、通信システム900の異なる通信デバイスのインターフェースとの有線または無線接続をセットアップし維持する通信インターフェース926、ならびに基地局920がサーブするカバレッジエリア(図9には図示なし)に位置するUE 930との少なくとも無線接続970をセットアップし維持する無線インターフェース927を含んでもよい。通信インターフェース926は、ホストコンピュータ910への接続960を容易にするように設定されてもよい。接続960は、直接であってもよく、または電気通信システムのコアネットワーク(図9には図示なし)、および/または電気通信システム外の1つもしくは複数の中間ネットワークを通過してもよい。図示される実施形態では、基地局920のハードウェア925は、1つもしくは複数のプログラマブルプロセッサ、ASIC、FPGA、または命令を実行するように適合されたこれらの組み合わせ(図示なし)を含んでもよい、処理回路構成928を更に含む。基地局920は、内部に格納されるか、または外部接続を介してアクセス可能な、ソフトウェア921を更に有する。
【0142】
通信システム900は、既に言及したUE 930を更に含む。そのハードウェア935は、UE 930が現在位置しているカバレッジエリアにサーブする基地局との無線接続970をセットアップし維持するように設定された、無線インターフェース937を含んでもよい。UE 930のハードウェア935は、1つもしくは複数のプログラマブルプロセッサ、ASIC、FPGA、または命令を実行するように適合されたこれらの組み合わせ(図示なし)を含んでもよい、処理回路構成938を更に含む。UE 930は、UE 930に格納されるかそれによってアクセス可能であり、処理回路構成938によって実行可能である、ソフトウェア931を更に備える。ソフトウェア931はクライアントアプリケーション932を含む。クライアントアプリケーション932は、ホストコンピュータ910が対応しているUE 930を介して人間または人間以外のユーザにサービスを提供するように動作可能であってもよい。ホストコンピュータ910では、実行中のホストアプリケーション912は、UE 930およびホストコンピュータ910で終端するOTT接続950を介して、実行中のクライアントアプリケーション932と通信してもよい。サービスをユーザに提供する際、クライアントアプリケーション932は、要求データをホストアプリケーション912から受信し、要求データに応答してユーザデータを提供してもよい。OTT接続950は、要求データおよびユーザデータの両方を転送してもよい。クライアントアプリケーション932は、ユーザと相互作用して、提供するユーザデータを生成してもよい。
【0143】
図9に示されるホストコンピュータ910、基地局920、およびUE 930はそれぞれ、図8のホストコンピュータ830、基地局812a、812b、812cの1つ、およびUE 891、892の1つと同様または同一であってもよいことが注目される。つまり、これらのエンティティの内部仕事は図9に示されるようなものであってもよく、また独立して、周囲のネットワークトポロジーは図8のものであってもよい。
【0144】
図9では、OTT接続950は、仲介デバイスおよびそれらのデバイスを介したメッセージの正確な経路指定に明示的に言及することなく、基地局920を介したホストコンピュータ910とUE 930との間の通信を示すため、抽象的に描かれている。ネットワークインフラストラクチャは、UE 930から、またはホストコンピュータ910を動作させるサービスプロバイダから、または両方から隠れるように設定されてもよい、経路指定を決定してもよい。OTT接続950がアクティブである間、ネットワークインフラストラクチャは更に、(例えば、ネットワークのロードバランシングの考慮または再設定に基づいて)経路指定を動的に変更する決定を行ってもよい。
【0145】
UE 930と基地局920との間の無線接続970は、本開示を通して記載される実施形態の教示にしたがっている。様々な実施形態の1つまたは複数は、無線接続970が最後のセグメントを形成するOTT接続950を使用してUE 930に提供される、OTTサービスの性能を改善する。例えば、特定の実施形態は、コードブックベースのプリコーディングならびに非コードブックベースのプリコーディングの両方に対して効率的な送信を提供し得る。いくつかのかかる実施形態は、(a)UEが、非コードブックベースの相反性で送信して、ランク1の全電力を利用すること、または(b)非コヒーレントおよび部分コヒーレント能力を有するUEが、ランク1の全電力で送信を行うことを可能にし、また、UEがレイヤごとの電力が低い代わりにランクを増加させることを可能にする。かかる改善は、OTTサービスの品質または応答性を向上させるなどの利益を提供してもよい。
【0146】
測定手順は、データ転送率、レイテンシ、および1つまたは複数の実施形態を改善する際の他の因子を監視する目的のために提供されてもよい。更に、測定結果の変動に応答して、ホストコンピュータ910とUE 930との間でOTT接続950を再設定する任意のネットワーク機能性があってもよい。測定手順、および/またはOTT接続950を再設定するネットワーク機能性は、ホストコンピュータ910のソフトウェア911およびハードウェア915の形、またはUE 930のソフトウェア931およびハードウェア935の形で、または両方で実施されてもよい。実施形態では、センサ(図示なし)は、OTT接続950が通過する通信デバイスにおいて、またはそれと関連して展開されてもよく、センサは、上記に例示した監視量の値を供給することによって、または監視量を計算もしくは推定するのにソフトウェア911、931が用いる他の物理的量の値を供給することによって、測定手順に関与してもよい。OTT接続950の再設定は、メッセージ形式、再送信セッティング、好ましい経路指定などを含んでもよく、再設定は、基地局920に必ずしも影響を及ぼさなくてもよく、基地局920にとって未知または認識不能であってもよい。かかる手順および機能性は、当該分野において知られており実践されていることがある。特定の実施形態では、測定には、ホストコンピュータ910がスループット、伝播時間、レイテンシなどを測定するのを容易にする、所有UEシグナリングが関与してもよい。測定は、伝播時間、エラーなどを監視している状態のOTT接続950を使用して、ソフトウェア911および931によってメッセージが、特に空または「ダミー」メッセージが送信されるという点で実施されてもよい。
【0147】
図10は、一実施形態による、通信システムにおいて実施される方法を示すフローチャートである。通信システムは、図8および9を参照して記載したものであってもよい、ホストコンピュータ、基地局、およびUEを含む。簡潔にするため、図10に対する参照のみを本セクションに含める。ステップ1010で、ホストコンピュータはユーザデータを提供する。ステップ1010のサブステップ1011(任意であってもよい)で、ホストコンピュータは、ホストアプリケーションを実行することによってユーザデータを提供する。ステップ1020で、ホストコンピュータは、ユーザデータをUEに伝達する送信を開始する。ステップ1030(任意であってもよい)で、基地局は、本開示全体を通して記載する実施形態の教示にしたがって、ホストコンピュータが開始した送信によって伝達されたユーザデータをUEに送信する。ステップ1040(やはり任意であってもよい)で、UEは、ホストコンピュータが実行したホストアプリケーションと関連付けられたクライアントアプリケーションを実行する。
【0148】
図11は、一実施形態による、通信システムにおいて実施される方法を示すフローチャートである。通信システムは、図8および9を参照して記載したものであってもよい、ホストコンピュータ、基地局、およびUEを含む。本開示を簡潔にするため、図11に対する参照のみを本セクションに含める。方法のステップ1110で、ホストコンピュータはユーザデータを提供する。任意のサブステップ(図示なし)で、ホストコンピュータは、ホストアプリケーションを実行することによってユーザデータを提供する。ステップ1120で、ホストコンピュータは、ユーザデータをUEに伝達する送信を開始する。本開示を通して記載される実施形態の教示にしたがって、送信は基地局を介してもよい。ステップ1130(任意であってもよい)で、UEは送信で伝達されるユーザデータを受信する。
【0149】
図12は、一実施形態による、通信システムにおいて実施される方法を示すフローチャートである。通信システムは、図8および9を参照して記載したものであってもよい、ホストコンピュータ、基地局、およびUEを含む。本開示を簡潔にするため、図12に対する参照のみを本セクションに含める。ステップ1210(任意であってもよい)で、UEはホストコンピュータによって提供される入力データを受信する。それに加えて、またはその代わりに、ステップ1220で、UEはユーザデータを提供する。ステップ1220のサブステップ1221(任意であってもよい)で、UEは、クライアントアプリケーションを実行することによってユーザデータを提供する。ステップ1210のサブステップ1211(任意であってもよい)で、UEは、ホストコンピュータが提供した受信入力データに反応してユーザデータを提供する、クライアントアプリケーションを実行する。ユーザデータを提供する際、実行されたクライアントアプリケーションは、ユーザから受信するユーザ入力を更に考慮してもよい。ユーザデータが提供された特定の方式にかかわらず、UEは、サブステップ1230(任意であってもよい)で、ホストコンピュータへのユーザデータの送信を開始する。方法のステップ1240で、ホストコンピュータは、本開示を通して記載される実施形態の教示にしたがって、UEから送信されたユーザデータを受信する。
【0150】
図13は、一実施形態による、通信システムにおいて実施される方法を示すフローチャートである。通信システムは、図8および9を参照して記載したものであってもよい、ホストコンピュータ、基地局、およびUEを含む。本開示を簡潔にするため、図13に対する参照のみを本セクションに含める。ステップ1310(任意であってもよい)で、本開示を通して記載される実施形態の教示にしたがって、基地局はユーザデータをUEから受信する。ステップ1320(任意であってもよい)で、基地局は、ホストコンピュータに対する受信したユーザデータの送信を開始する。ステップ1330(任意であってもよい)で、ホストコンピュータは、基地局が開始した送信で伝達されるユーザデータを受信する。
【0151】
図14は、無線ネットワーク(例えば、図5に示される無線ネットワーク)の装置1400の概略ブロック図を示している。装置は、無線デバイスまたはネットワークノード(例えば、図5に示される無線デバイス510またはネットワークノード560)で実施されてもよい。装置1400は、図15を参照して記載される例示の方法、および場合によっては本明細書に開示される他の任意のプロセスまたは方法を実施するように動作可能である。また、図15の方法は必ずしも装置1400のみによって実施されなくてもよいことが理解されるべきである。方法の少なくともいくつかの動作は、1つまたは複数の他のエンティティによって実施することができる。
【0152】
仮想装置1400は、1つもしくは複数のマイクロプロセッサまたはマイクロコントローラを含んでもよい、処理回路構成、ならびにDSP、専用デジタル論理など含んでもよい、他のデジタルハードウェアを備えてもよい。処理回路構成は、ROM、RAM、キャッシュメモリ、フラッシュメモリデバイス、光学記憶デバイスなどの1つまたは複数のタイプのメモリを含んでもよい、メモリに格納されたプログラムコードを実行するように設定されてもよい。メモリに格納されたプログラムコードとしては、1つもしくは複数の電気通信および/またはデータ通信プロトコルを実行するプログラム命令、ならびにいくつかの実施形態において本明細書に記載される技術の1つもしくは複数を実施する命令が挙げられる。いくつかの実装形態では、処理回路構成は、本開示の1つまたは複数の実施形態による対応する機能を装置1400のユニットに実施させるのに使用されてもよい。
【0153】
図14に示されるように、装置1400は、受信ユニット1402と、決定ユニット1404と、調節ユニット1406と、送信ユニット1408とを備える。これらのユニットは、図15の方法によって実施される対応する動作を実施するように設定される。
【0154】
「ユニット」という用語は、エレクトロニクス、電気デバイス、および/または電子デバイスの分野における従来の意味を有してもよく、例えば、本明細書に記載されるような、それぞれのタスク、手順、計算、出力、および/または表示機能などを実施する、電気および/または電子回路構成、デバイス、モジュール、プロセッサ、メモリ、論理固体および/または離散的デバイス、コンピュータプログラムまたは命令を含んでもよい。
【0155】
図15は、いくつかの実施形態による方法を示している。
【0156】
図15を参照すると、方法は、マルチアンテナ送信設定を特定するシグナリングを受信すること(S1505)と、NZPを有するアンテナポートの数である第1の数のアンテナポートを、(a)gNBによって示されるプリコーダで使用される第3の数のポート、および(b)gNBによって示される第4の数の空間レイヤのうちの1つとして、マルチアンテナ送信設定にしたがって決定されるアンテナポートの第2の数で割ったものである、電力換算比Rを決定すること(S1510)と、初期電力値P0を少なくとも比Rによって調節してPを決定すること(S1515)と、電力Pを使用して物理チャネルを送信すること(S1520)とを含んでもよい。
【0157】
あるいは、方法は、物理チャネルの送信に用いられる第1の数のアンテナポートと、コードブックベースまたは非コードブックベースの送信方式が使用されるかを特定するマルチアンテナ送信設定とを特定するシグナリングを受信すること(S1505)と、アンテナポートの数と、NZPを有するアンテナポートの数である第2の数のアンテナポートと、マルチアンテナ設定およびUEコヒーレント能力の少なくとも1つとにしたがって、電力換算比Rを決定すること(S1510)と、少なくとも比Rによって初期電力値P0を調節してPを決定すること(S1515)と、電力Pを使用して物理チャネルを送信すること(S1520)とを含んでもよい。
【0158】
図16は、本開示のいくつかの実施形態によるUEの動作を示すフローチャートである。図示されるように、UEは、UL電力制御に使用される電力Pを導き出す(ステップ1600)。本明細書に記載するように、UL電力制御はPUSCH送信のためのものである。UEは、いくつかの規則にしたがってアンテナポートセットに使用される第2の電力P’を判断(決定)する(ステップ1602)。この規則は、本明細書に記載する規則のいずれか(例えば、実施形態1~3に関して上述した規則のいずれか)であってもよい。本明細書に記載するように、いくつかの実施形態では、規則は、PUSCH送信に関してUEがコードブックベースの送信または非コードブックベースの送信のどちらの送信を利用しているかに応じて決まる規則であり、アンテナポートセットは、PUSCH送信がNZPを用いて送信されるアンテナポートである。やはり本明細書に記載するように、いくつかの実施形態では、規則は、完全コヒーレンス、部分コヒーレンス、または非コヒーレンス送信に関するUEの能力に応じて決まる規則であり、アンテナポートセットは、PUSCH送信がNZPを用いて送信されるアンテナポートである。これらおよび追加の実施形態に関する更なる詳細は上記に記載されており、したがってここでは繰り返さない。
【0159】
本開示のいくつかの選択された実施形態は次の通りである。
【0160】
実施形態1:マルチアンテナ送信向けに設定された物理チャネルの送信電力PをUEが決定する方法(1500)であって、マルチアンテナ送信設定を特定するシグナリングを受信すること(S1505)と、非ゼロ電力を有するアンテナポートの数である第1の数のアンテナポートを、(a)gNBによって示されるプリコーダで使用される第3の数のポート、および(b)gNBによって示される第4の数の空間レイヤのうちの1つとして、マルチアンテナ送信設定にしたがって決定されるアンテナポートの第2の数で割ったものである、電力換算比Rを決定すること(S1510)と、初期電力値P0を少なくとも比Rによって調節してPを決定すること(S1515)と、電力Pを使用して物理チャネルを送信すること(S1520)とを含む、方法。
【0161】
実施形態2:UEがコードブックを使用して物理チャネルを送信するように設定され、コードブックが、アンテナポートの第2の数における送信に対応し、少なくとも第1および第2のプリコーダを含み、第1のプリコーダがゼロの大きさの要素を含み、第2のプリコーダが非ゼロの大きさの要素のみを含む、実施形態1の方法。
【0162】
実施形態3:送信するステップが、複数のアンテナポートを使用して物理チャネルを送信することを更に含み、電力Pがアンテナポートセットの間で均等に分割され、セットの各アンテナポートが非ゼロ電力を使用して物理チャネルを送信する、実施形態1~2のいずれかの方法。
【0163】
実施形態4:マルチアンテナ送信設定が、物理チャネルを送信するのにコードブックベースの送信または非コードブックベースの送信のどちらが使用されるかを特定し、非コードブックベースの動作が使用される場合、第2の数のアンテナポートが第4の数のアンテナポートとして決定される、実施形態1~3のいずれかの方法。
【0164】
実施形態5:非コードブックベースの送信が物理チャネルを送信するのに使用され、物理チャネルのプリコーディングを計算するのに使用されるCSI-RSを用いてUEが設定される場合、第2の数のアンテナポートが第4の数のアンテナポートとして決定され、他の場合は、第2の数のアンテナポートが第3の数のアンテナポートとして決定される、実施形態1~4のいずれかの方法。
【0165】
実施形態6:マルチアンテナ送信設定が、完全コヒーレンス、部分コヒーレンス、または非コヒーレンスの少なくとも1つを含むUEのコヒーレンス能力にしたがって、物理チャネルが送信されるかを特定する、実施形態1~5のいずれかの方法。
【0166】
実施形態7:マルチアンテナ送信向けに設定された物理チャネルの送信電力PをUEが決定する方法(1500)であって、物理チャネルの送信に用いられる第1の数のアンテナポートと、コードブックベースまたは非コードブックベースの送信方式が使用されるかを特定するマルチアンテナ送信設定とを特定するシグナリングを受信すること(S1505)と、アンテナポートの数と、非ゼロ電力を有するアンテナポートの数である第2の数のアンテナポートと、マルチアンテナ設定およびUEコヒーレント能力の少なくとも1つとにしたがって、電力換算比Rを決定すること(S1510)と、少なくとも比Rによって初期電力値P0を調節してPを決定すること(S1515)と、電力Pを使用して物理チャネルを送信すること(S1520)とを含む、方法。
【0167】
実施形態8:Rが所定値のセットから選択される、実施形態7の方法。
【0168】
実施形態9:Rが第1および第2の所定値のうち小さい方であり、第1の値が、換算係数と第2の数のアンテナポートおよび第1の数のアンテナポートの比との積として計算され、換算係数が、マルチアンテナ設定およびUEコヒーレンス能力の少なくとも1つにしたがって決定される、実施形態7~8のいずれかの方法。
【0169】
実施形態10:UEがコードブックを使用して物理チャネルを送信するように設定され、コードブックが、アンテナポートの第1の数における送信に対応し、少なくとも第1および第2のプリコーダを含み、第1のプリコーダがゼロの大きさの要素を含み、第2のプリコーダが非ゼロの大きさの要素のみを含む、実施形態7~9のいずれかの方法。
【0170】
実施形態11:送信するステップが、複数のアンテナポートを使用して物理チャネルを送信することを更に含み、電力Pがアンテナポートセットの間で均等に分割され、セットの各アンテナポートが非ゼロ電力を使用して物理チャネルを送信する、実施形態7~10のいずれかの方法。
【0171】
実施形態12:マルチアンテナ送信設定が、完全コヒーレンス、部分コヒーレンス、または非コヒーレンスの少なくとも1つを含むUEのコヒーレンス能力にしたがって、物理チャネルが送信されるかを特定する、実施形態7~11のいずれかの方法。
【0172】
実施形態13:比Rが最大1である、実施形態7~12のいずれかの方法。
【0173】
実施形態14:マルチアンテナ設定がコードブックベースの送信を特定したときであって、(a)UEコヒーレンス能力が完全コヒーレンスを含み、第1の数のアンテナポートが4つ、第2の数のアンテナポートが3つ以下、(b)UEコヒーレンス能力が完全コヒーレンスを含み、第1の数のアンテナポートが2つ、第2の数のアンテナポートが1つ、(c)UEコヒーレンス能力が完全コヒーレンスを含まず、部分コヒーレンスを含み、第1の数のアンテナポートが4つ、第2の数のアンテナポートが1つ、という条件の組み合わせの1つが満たされたときのみ、比Rが1未満である、実施形態7~13のいずれかの方法。
【0174】
実施形態15:UL電力制御に使用される電力Pを導き出すように設定され、電力Pがアンテナポートセットに使用される電力を判断するのに使用され、判断が何らかの規則にしたがって決定される、処理回路構成を備えるユーザ機器(UE)。
【0175】
実施形態16:規則が、非ゼロPUSCHを送信するアンテナポートの間で均等に分割される第2の電力P’を導き出す、実施形態15のUE。
【0176】
実施形態17:前記第2の電力が、非ゼロPUSCH送信のアンテナポートの数とPUSCH送信に使用されるアンテナポートの数との比を用いて、前記第1の電力Pを基準化することによって導き出される、実施形態15~16のいずれかのUE。
【0177】
実施形態18:規則が、PUSCH送信にコードブックベースの送信または非コードブックベースの送信のどちらを利用しているかに応じて決まる、実施形態15~17のいずれかのUE。
【0178】
実施形態19:規則が、完全コヒーレンス、部分コヒーレンス、または非コヒーレンスに関するUE能力に応じて決まる、実施形態15~17のいずれかのUE。
【0179】
実施形態20:第2の電力が、第1の電力Pを比で基準化することによって導き出され、前記比が、コードブックベースの送信または非コードブックベースのPUSCH送信、完全コヒーレンス、部分コヒーレンス、もしくは非コヒーレンスに関するUE能力、非ゼロPUSCH送信のアンテナポートの数、PUSCH送信に使用されるアンテナポートの数、およびUEにおけるアンテナポートの数のうち任意の1つまたは複数に応じて関数として導き出される、実施形態15~19のいずれかのUE。
【0180】
実施形態21:規則が、第2の電力が前記第1の電力よりも小さくてもよいようなものである、実施形態15~20のいずれかのUE。
【0181】
実施形態22:規則が、UE能力の少なくとも2つに関するランク1の送信の場合、ならびに/あるいはコードブックベースおよび非コードブックベース両方の送信の場合、第2の電力が第1の電力と等しくてもよいようなものである、実施形態15~21のいずれかのUE。
【0182】
以下の略語の少なくとも一部が本開示で使用されることがある。略語の間に不一致がある場合、上記でどのように使用されているかを優先するものとする。以下で複数回列挙されている場合、最初の列挙をその後の列挙よりも優先するものとする。
2G 第2世代
3G 第3世代
3GPP 第3世代パートナーシッププロジェクト
4G 第4世代
5G 第5世代
AC 交流
AP アクセスポイント
ASIC 特定用途向け集積回路
ATM 非同期転送モード
BS 基地局
BSC 基地局コントローラ
BTS 無線送受信機基地局
CB コードブックベースのユーザ機器能力
CD コンパクトディスク
CDMA 符号分割多重化アクセス
COTS 商用オフザシェルフ
CPE 顧客構内設備
CP-OFDM サイクリックプレフィックス直交周波数分割多重
CPU 中央処理装置
CSI-RS チャネル状態情報参照信号
D2D デバイス間
DAS 分散アンテナシステム
DC 直流
DIMM デュアルインラインメモリモジュール
DL ダウンリンク
DSP デジタル信号プロセッサ
DVD デジタルビデオディスク
EEPROM 電気消去可能プログラマブル読出し専用メモリ
eMTC 拡張型マシンタイプ通信
E-SMLC エボルブドサービングモバイル位置情報センタ
eNB 発展型ノードB
EPROM 消去可能プログラマブル読出し専用メモリ
FPGA フィールドプログラマブルゲートアレイ
GHz ギガヘルツ
gNB NRの基地局
GPS 全地球測位システム
GSM モバイル通信用グローバルシステム
HDDS ホログラフィックデジタルデータ記録
HD-DVD 高密度デジタル多用途ディスク
I/O 入力および出力
IoT 物のインターネット
IP インターネットプロトコル
LAN ローカルエリアネットワーク
LEE ラップトップ埋込み機器
LME ラップトップ搭載機器
LTE ロングタームエボリューション
M2M マシンツーマシン
MANO 管理およびオーケストレーション
MCE マルチセル/マルチキャスト調整エンティティ
MCS 変調およびコーディング状態
MDT ドライブ試験の最小化
MHz メガヘルツ
MIMO 多入力多出力
mm ミリメートル
MSR マルチスタンダード無線
MTC マシンタイプ通信
NB-IoT 狭帯域の物のインターネット
NIC ネットワークインターフェースコントローラ
NCB 非コードブックベースのユーザ機器能力
NFV ネットワーク機能仮想化
NR 新無線
NZP 非ゼロ電力
O&M 動作およびメンテナンス
OSS 動作サポートシステム
OTT オーバーザトップ
PA 電力増幅器
PC 電力制御
PDA 携帯情報端末
PROM プログラマブル読出し専用メモリ
PSTN 公衆交換電話網
PUSCH 物理アップリンク共有チャネル
RAID 独立ディスクの冗長アレイ
RAM ランダムアクセスメモリ
RAN 無線アクセスネットワーク
RAT 無線アクセス技術
RF 無線周波数
RNC 無線ネットワークコントローラ
ROM 読出し専用メモリ
RRH 遠隔無線ヘッド
RRU 遠隔無線装置
RUIM リムーバブルユーザ識別
SDRAM 同期式動的ランダムアクセスメモリ
SIM 加入者識別モジュール
SINR 信号対干渉雑音比
SNR 信号雑音比
SOC システムオンチップ
SON 自己最適化ネットワーク
SONET 同期光通信ネットワーク
SRI サウンディング参照信号リソースインジケータ
SRS サウンディング参照信号
TCP 送信制御プロトコル
TFRE 時間/周波数リソース要素
TPC 送信電力制御
TPMI 送信プリコーダマトリクスインジケータ
TRI 送信ランクインジケータ
TRP 送受信ポイント
TS 技術仕様書
UE ユーザ機器
UL アップリンク
UMTS ユニバーサル移動体通信システム
USB ユニバーサルシリアルバス
UTRAN ユニバーサル地上無線アクセスネットワーク
V2I 路車間
V2V 車車間
V2X ビークルトゥエブリシング
VMM 仮想マシンモニタ
VNE 仮想ネットワーク要素
VNF 仮想ネットワーク機能
VoIP ボイスオーバーインターネットプロトコル
WAN 広域ネットワーク
WCDMA 広帯域符号分割多重アクセス
WD 無線デバイス
WiMax ワールドワイド・インターオペラビリティ・フォー・マイクロウェーブ・アクセス
WLAN ワイドローカルエリアネットワーク
【0183】
当業者であれば、本開示の実施形態に対する改善および修正を認識するであろう。かかる改善および修正は全て、本明細書に開示する概念の範囲内と見なされる。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16