IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-06-15
(45)【発行日】2023-06-23
(54)【発明の名称】免疫応答を強化するための複合物の調製方法
(51)【国際特許分類】
   A61K 31/7115 20060101AFI20230616BHJP
   A61P 37/04 20060101ALI20230616BHJP
   A61K 47/02 20060101ALI20230616BHJP
   A61K 47/26 20060101ALI20230616BHJP
   A61K 47/36 20060101ALI20230616BHJP
   A61K 47/24 20060101ALI20230616BHJP
   A61K 47/10 20170101ALI20230616BHJP
   A61K 39/39 20060101ALI20230616BHJP
   A61P 35/00 20060101ALI20230616BHJP
   A61P 31/12 20060101ALI20230616BHJP
   A61P 31/04 20060101ALI20230616BHJP
   A61P 31/10 20060101ALI20230616BHJP
   A61P 33/00 20060101ALI20230616BHJP
   A61P 29/00 20060101ALI20230616BHJP
   A61K 45/00 20060101ALI20230616BHJP
【FI】
A61K31/7115
A61P37/04
A61K47/02
A61K47/26
A61K47/36
A61K47/24
A61K47/10
A61K39/39
A61P35/00
A61P31/12
A61P31/04
A61P31/10
A61P33/00
A61P29/00
A61K45/00
【請求項の数】 28
(21)【出願番号】P 2020573468
(86)(22)【出願日】2019-06-28
(65)【公表番号】
(43)【公表日】2021-11-04
(86)【国際出願番号】 CN2019093607
(87)【国際公開番号】W WO2020001596
(87)【国際公開日】2020-01-02
【審査請求日】2021-02-26
(31)【優先権主張番号】201810698033.6
(32)【優先日】2018-06-29
(33)【優先権主張国・地域又は機関】CN
(31)【優先権主張番号】201810700708.6
(32)【優先日】2018-06-29
(33)【優先権主張国・地域又は機関】CN
(73)【特許権者】
【識別番号】520513255
【氏名又は名称】信福(北京)医▲薬▼科技有限公司
(74)【代理人】
【識別番号】100108453
【弁理士】
【氏名又は名称】村山 靖彦
(74)【代理人】
【識別番号】100110364
【弁理士】
【氏名又は名称】実広 信哉
(74)【代理人】
【識別番号】100133400
【弁理士】
【氏名又は名称】阿部 達彦
(72)【発明者】
【氏名】林 ▲海▼祥
(72)【発明者】
【氏名】▲劉▼ 芳
(72)【発明者】
【氏名】▲査▼ 力
【審査官】福山 則明
(56)【参考文献】
【文献】中国特許出願公開第107184973(CN,A)
【文献】中国特許出願公開第104434784(CN,A)
【文献】中国特許出願公開第103599071(CN,A)
【文献】中国特許出願公開第105396130(CN,A)
【文献】Use of Poly(I:C) Stabilized with Chitosan As a Vaccine-Adjuvant Against Viral Hemorrhagic Septicemia Virus Infection in Zebrafish,ZEBRAFISH,2015年,Vol. 12, No. 6,pp. 1-11
【文献】応用糖質科学,2014年,Vol. 4, No. 2,pp. 127-132
(58)【調査した分野】(Int.Cl.,DB名)
A61K 31/00-31/80
A61K 39/00-39/44
A61K 9/00- 9/72
A61K 47/00-47/69
JSTPlus/JMEDPlus/JST7580(JDreamIII)
(57)【特許請求の範囲】
【請求項1】
免疫応答を強化するための複合物の調製方法であって、
ポリイノシン酸-ポリシチジル酸、少なくとも1種のカチオン安定剤及び可溶性カルシウム塩を液体反応系中に接触させるステップを含み、
接触反応を行う前、前記ポリイノシン酸-ポリシチジル酸を80℃~99℃で70~120min加熱し、並びに、
前記カチオン安定剤は、分子量≦5kDaのキトサンオリゴ糖、又は前記キトサンオリゴ糖とポリエチレングリコールモノメチルエーテル、ポリエチレングリコール、ポリエチレンイミン、葉酸、及びガラクトースのうちの1種又は複数種とで形成されるグラフト物である、免疫応答を強化するための複合物の調製方法。
【請求項2】
前記カチオン安定剤は、前記キトサンオリゴ糖、前記キトサンオリゴ糖とポリエチレングリコールモノメチルエーテルのグラフト物、及び前記キトサンオリゴ糖とポリエチレングリコールモノメチルエーテルとポリエチレンイミンのグラフト物から選ばれる、請求項1に記載の方法。
【請求項3】
前記グラフト物の分子量は≦50kDaである、請求項1又は2に記載の方法。
【請求項4】
前記液体反応系中、前記ポリイノシン酸-ポリシチジル酸の濃度が0.1~10mg/mlであり、選択的に、前記液体反応系中、前記ポリイノシン酸-ポリシチジル酸の濃度が0.5~5mg/mlである、請求項1~3のいずれか1項に記載の方法。
【請求項5】
前記液体反応系中、前記カチオン安定剤の濃度が0.5~51.2mg/mlであり、選択的に、前記液体反応系中、前記カチオン安定剤の濃度が0.8~25.6mg/mlである、請求項1~4のいずれか1項に記載の方法。
【請求項6】
前記液体反応系中、前記可溶性カルシウム塩中、カルシウムイオンの濃度が0.1~1mMである、請求項1~5のいずれか1項に記載の方法。
【請求項7】
前記キトサンオリゴ糖の脱アセチル化度が70%以上である、請求項1~6のいずれか1項に記載の方法。
【請求項8】
前記可溶性カルシウム塩は、CaCl及び/又はCaNOから選ばれる、請求項1~7のいずれか1項に記載の方法。
【請求項9】
前記ポリイノシン酸-ポリシチジル酸は、ポリシチジル酸及びポリイノシン酸が塩基ペアリング反応を経て得られるものである、請求項1~8のいずれか1項に記載の方法。
【請求項10】
前記ポリシチジル酸、及びポリイノシン酸の分子量が2.3万ダルトンよりも大きく、選択的に、前記ポリシチジル酸の分子量の範囲が、6.6万ダルトン~66万ダルトンであり、選択的に、前記ポリイノシン酸の分子量の範囲が、6.6万ダルトン~66万ダルトンである、請求項9に記載の方法。
【請求項11】
前記塩基ペアリング反応は、40℃~50℃の温度で行われる、請求項9又は10に記載の方法。
【請求項12】
前記塩基ペアリング反応は、pH=6.8~7.6で行われる、請求項9~11のいずれか1項に記載の方法。
【請求項13】
接触反応を行う前、前記ポリイノシン酸-ポリシチジル酸を88℃~92℃で70~120min加熱する、請求項1~12のいずれか1項に記載の方法。
【請求項14】
前記液体反応系の温度は40℃~50℃である、請求項1~13のいずれか1項に記載の方法。
【請求項15】
前記グラフト物の調製方法は、
まず、カルボニルジイミダゾールを用いてポリエチレングリコールモノメチルエーテル、ポリエチレングリコール、ポリエチレンイミン、葉酸、及びガラクトースのうちの1種又は複数種を活性化させ、次に、活性化済みの産物を用いて、イオン液体[bmim]Cl中に前記キトサンオリゴ糖とグラフト反応を行うステップを含み、
選択的に、前記グラフト物は、キトサンオリゴ糖とポリエチレングリコールモノメチルエーテルのグラフト物であり、まず、カルボニルジイミダゾール(CDI)を用いてポリエチレングリコールモノメチルエーテル(MPEG)を活性化させ、次に、活性化済みのMPEGを用いて、イオン液体[bmim]Cl中にキトサンオリゴ糖(COS)とグラフト反応を行い、
選択的に、前記グラフト反応は、60℃~80℃、非酸化性雰囲気下で反応する、請求項1~14のいずれか1項に記載の方法。
【請求項16】
前記方法は、
架橋剤溶液を撹拌条件下で1滴ずつ、製造して得た複合物に加えて、反応系中にチンダル現象が現れることを観察すると、滴下を停止し、撹拌してナノ粒子を得るステップをさらに含み、
前記架橋剤は、トリポリリン酸ナトリウム、アルギン酸ナトリウム、フェニルボロン酸、及びカテコールのうちから選ばれる少なくとも1種であり、
選択的に、前記架橋剤溶液中には免疫細胞治療薬、抗体治療薬、化学薬物、粘膜免疫吸収又は粘膜粘着を促進する物質、免疫調整剤、抗原、パターン認識受容体のリガンド、及び薬学的に許容可能な塩又は賦形剤のうちの1種又は複数種がさらに含有され、
選択的に、前記方法は、前記複合物又は前記ナノ粒子を、免疫細胞治療薬、抗体治療薬、化学薬物、粘膜免疫吸収又は粘膜粘着を促進する物質、免疫調整剤、抗原、パターン認識受容体のリガンド、及び薬学的に許容可能な塩又は賦形剤のうちの1種又は複数種と共インキュベートするステップをさらに含み、
選択的に、前記抗原はすべてタンパク質又はポリペプチド抗原であり、
選択的に、前記抗原はすべて、腫瘍、ウイルス、細菌、真菌又は寄生虫抗原を含み、
選択的に、前記腫瘍は、骨、骨接合部、筋肉、肺、気管、咽頭、鼻、心臓、脾臓、動脈、静脈、血液、毛細血管、リンパ節、リンパ管、リンパ液、口腔、食道、胃、十二指腸、小腸、結腸、直腸、肛門、虫垂、肝臓、胆、膵臓、耳下腺、舌下腺、泌尿腎臓、尿管、膀胱、尿道、卵巣、卵管、子宮、膣、外陰部、陰嚢、精巣、輸精管、陰茎、眼、耳、鼻、舌、皮膚、脳、脳幹、延髄、脊髄、脳瘠液、神経、甲状腺、副甲状腺、副腎、下垂体、松果腺、膵島、胸腺、生殖腺、舌下腺、及び耳下腺のうちのいずれかが病変して生成した腫瘍を含み、
選択的に、前記細菌は、ブドウ球菌属、連鎖球菌属、リステリア菌属、エリジペロトリックス属、レニバクテリウム属、バシラス属、クロストリジウム属、マイコバクテリア属、放線菌属、ノカルディア属、コリネバクテリウム属、ロドコッカス属、炭疽菌、エリシペラス、破傷風菌、リステリア菌、気腫疽菌、結核菌、大腸菌、プロテウス、赤痢菌、肺炎桿菌、ブルセラ、ウェルシュ菌、インフルエンザ菌、パラインフルエンザ菌、モラクセラ・カタラーリス、アシネトバクター属、エルシニア属、レジオネラ・ニューモフィラ、百日咳菌、パラ百日咳菌、志賀赤痢菌属、パスツレラ属、コレラ菌、及びビブリオ・パラヘモリティカスのうちの1種又は複数種を含み、
選択的に、前記寄生虫は、消化管内寄生虫、腔内寄生虫、肝内寄生虫、肺寄生虫、脳組織寄生虫、血管内寄生虫、リンパ管内寄生虫、筋肉組織寄生虫、細胞内寄生虫、骨組織寄生虫、及び眼内寄生虫のうちの1種又は複数種を含み、
選択的に、前記ウイルスは、アデノウイルス(adeniviridae)、アレナウイルス(arenaviridae)、アストロウイルス(astroviridae)、ブニヤウイルス(bunyaviridae)、カリシウイルス(cliciviridae)、フラビウイルス(flaviviridae)、D型肝炎ウイルス(hepatitis delta virus)、肝炎ウイルス(hepeviridae)、モノネガウイルス(mononegavirales)、ニドウイルス(nidovirales)、小RNAウイルス(piconaviridae)、オルトミクソウイルス(orthomyxoviridae)、パピローマウイルス(papillomaviridae)、パルボウイルス(parvoviridae)、ポリオーマウイルス(polyomaviridae)、ポックスウイルス(poxviridae)、レオウイルス(reoviridae)、レトロウイルス(retroviridae)又はトガウイルス(togaviridae)のうちの1種又は複数種を含み、
選択的に、前記真菌は、コクシジオイデス・イミチス、コクシジオイデス・ポサダシ、アジェロミセス・カプスラーツス、ヒストプラズマ・ズボアジ、ロボ真菌、パラコクシジオイデス・ブラジリエンシス、ブラストマイセス・デルマチチジス、スポロトリックス・シェンキィ、ペニシリウム・マルネッフェイ、カンジダ・アルビカンス、カンジダ・グラブラタ、カンジダ・トロピカリス、カンジダ・ルシタニアエ、ニューモシスチス・カリニ、アスペルギルス、エクソフィアラ・ジャンセルメイ、フォンセカエア・ペドロソイ、フォンセカ・コンパクタ、フィアロフォラ・ベルコーサ、エクソフィアラ・デルマチチヂス、ジェオトリクム・カンディデュム、シュードアレシェリア・ボイジイ、クリプトコックス・ネオフォルマンス、トリコスポロン、リゾプス・オリーゼ、ムコール・インディカス、アブシディア・コリムビフェラ、ハリサシカビモドキ、藻菌類、コニディオボルス・コロナトゥス、コニディオボルス・インコングルス、エンテロシトゾーン・ビエヌーシ、脳炎性胞子虫、リノスポリジウム・セーベリ、無色菌糸、及び黒色菌糸のうちの1種又は複数種を含み、
選択的に、前記免疫細胞治療薬は、腫瘍浸潤リンパ球、樹枝状細胞、サイトカイン誘導キラー細胞、樹枝状細胞-サイトカイン誘導キラー細胞、ナチュラルキラー細胞、γδT細胞、CD3AK、CAR-T、及びTCR-Tのうちから選ばれる1種又は複数種であり、
選択的に、前記抗体治療薬は、抗PD1抗体、抗PDL1抗体、抗CTLA4抗体、及び抗CD抗原抗体から選ばれ、
選択的に、前記化学薬物は、アルキル化剤、抗代謝薬、抗腫瘍抗生物質、植物類抗腫瘍薬、ホルモン薬、及びその他の薬物のうちから選ばれる1種又は複数種であり、
前記その他の薬物は、L-アスパラギナーゼ、シスプラチン、カルボプラチン、オキサリプラチン、ダカルバジン、ヘキサメチルメラミン類薬物、又は上記薬物の誘導体から選ばれ、
選択的に、前記粘膜免疫吸収又は粘膜粘着を促進する物質は、アニオン界面活性剤、カチオン界面活性剤、両性イオン界面活性剤、非イオン界面活性剤、特殊界面活性剤、キレート化剤、粘着剤、ポリ乳酸-グリコール酸コポリマー、デキストラン、及び多糖類のうちから選ばれる1種又は複数種であり、
選択的に、前記免疫調整剤は、サイトカイン、ケモカイン、幹細胞成長因子、リンパ性毒素、造血因子、コロニー刺激因子(CSF)、インターフェロン、エリスロポエチン、トロンボポエチン、腫瘍壊死因子(TNF)、インターロイキン(IL)、顆粒球-コロニー刺激因子(G-CSF)、顆粒球マクロファージ-コロニー刺激因子(GM-CSF)、及び幹細胞成長因子のうちから選ばれる1種又は複数種であり、
選択的に、前記パターン認識受容体のリガンドは、TLR受容体のリガンド、RLR受容体のリガンド、CLR受容体のリガンド、及びNLR受容体のリガンドから選ばれる、請求項1~15のいずれか1項に記載の方法。
【請求項17】
請求項1~16のいずれか1項に記載の方法により調製された免疫応答を強化するための複合物の、抗体、ワクチン製剤又はワクチン組成物の調製における使用。
【請求項18】
免疫細胞活性強化のための医薬の調製のための請求項1~16のいずれか一項に記載の方法により調製された免疫応答を強化するための複合物の使用。
【請求項19】
腫瘍治療及び/又は予防のための医薬の調製のための請求項1~16のいずれか一項に記載の方法により調製された免疫応答を強化するための複合物の使用。
【請求項20】
抗ウイルス、抗細菌、抗真菌、抗寄生虫のための医薬の調製のための請求項1~16のいずれか一項に記載の方法により調製された免疫応答を強化するための複合物の使用。
【請求項21】
化学療法の副作用軽減のための医薬の調製のための請求項1~16のいずれか一項に記載の方法により調製された免疫応答を強化するための複合物の使用。
【請求項22】
抗疲労又は免疫力向上のための医薬の調製のための請求項1~16のいずれか一項に記載の方法により調製された免疫応答を強化するための複合物の使用。
【請求項23】
宿主疼痛緩和のための医薬の調製のための請求項1~16のいずれか一項に記載の方法により調製された免疫応答を強化するための複合物の使用。
【請求項24】
抗原に対する宿主の免疫応答の促進のための医薬の調製のための請求項1~16のいずれか一項に記載の方法により調製された免疫応答を強化するための複合物の使用。
【請求項25】
抗原に対する宿主体内の免疫応答進の方法であって、
前記方法は、請求項1~16のいずれか1項に記載の方法により調製された免疫応答を強化するための複合物、又は請求項1~16のいずれか1項に記載の方法により調製された免疫応答を強化するための複合物及び少なくとも1種の抗原を含むワクチン組成物、又は請求項1~16のいずれか1項に記載の方法により調製された免疫応答を強化するための複合物を含む薬物組成物を該宿主に与えるステップを含み、
前記薬物組成物は、免疫細胞治療薬、抗体治療薬、化学薬物、粘膜免疫吸収又は粘膜粘着を促進する物質、免疫調整剤、病原体抗原、パターン認識受容体のリガンド、及び薬学的に許容可能な賦形剤のうちの1種又は複数種をさらに含み、
前記宿主がヒトでない、方法。
【請求項26】
宿主の免疫細胞活性の調整強化のための方法であって、
前記方法は、請求項1~16のいずれか1項に記載の方法により調製された免疫応答を強化するための複合物、又は請求項1~16のいずれか1項に記載の方法により調製された免疫応答を強化するための複合物及び少なくとも1種の抗原を含むワクチン組成物、又は請求項1~16のいずれか1項に記載の方法により調製された免疫応答を強化するための複合物を含む薬物組成物を該宿主に与えるステップを含み、
前記薬物組成物は、免疫細胞治療薬、抗体治療薬、化学薬物、粘膜免疫吸収又は粘膜粘着を促進する物質、免疫調整剤、病原体抗原、パターン認識受容体のリガンド、及び薬学的に許容可能な賦形剤のうちの1種又は複数種をさらに含み、
前記宿主がヒトでない、方法。
【請求項27】
宿主の疲労低減補助の方法であって、
前記方法は、請求項1~16のいずれか1項に記載の方法により調製された免疫応答を強化するための複合物、又は請求項1~16のいずれか1項に記載の方法により調製された免疫応答を強化するための複合物及び少なくとも1種の抗原を含むワクチン組成物、又は請求項1~16のいずれか1項に記載の方法により調製された免疫応答を強化するための複合物を含む薬物組成物を該宿主に与えるステップを含み、
前記薬物組成物は、免疫細胞治療薬、抗体治療薬、化学薬物、粘膜免疫吸収又は粘膜粘着を促進する物質、免疫調整剤、病原体抗原、パターン認識受容体のリガンド、及び薬学的に許容可能な賦形剤のうちの1種又は複数種をさらに含み、
前記宿主がヒトでない、方法。
【請求項28】
宿主疼痛軽減のための方法であって、
前記方法は、請求項1~16のいずれか1項に記載の方法により調製された免疫応答を強化するための複合物、又は請求項1~16のいずれか1項に記載の方法により調製された免疫応答を強化するための複合物及び少なくとも1種の抗原を含むワクチン組成物、又は請求項1~16のいずれか1項に記載の方法により調製された免疫応答を強化するための複合物を含む薬物組成物を該宿主に与えるステップを含み、
前記薬物組成物は、免疫細胞治療薬、抗体治療薬、化学薬物、粘膜免疫吸収又は粘膜粘着を促進する物質、免疫調整剤、病原体抗原、パターン認識受容体のリガンド、及び薬学的に許容可能な賦形剤のうちの1種又は複数種をさらに含み、
前記宿主がヒトでない、方法。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願の相互参照
本出願は、2018年06月29日に中国特許庁に提出された、出願番号が201810698033.6、名称が「免疫応答を強化するための複合物の調製方法」である中国特許出願、及び2018年06月29日に中国特許局に提出された、出願番号が201810700708.6、名称が「免疫応答を強化するための複合物」である中国特許出願の優先権を主張しており、その全内容が援用により本出願に組み込まれている。
【0002】
本開示は、生物医学の分野に関し、具体的には、免疫応答を強化するための複合物の調製方法に関する。
【背景技術】
【0003】
二本鎖RNA(dsRNA)アジュバントは、現在、一般的には、PIC(polyriboinosinic-polyribocytoidylic acid)、PICLC(PIC with poly-L-lysine and carboxymethylcellulose)、PIC12U(PIC with uridylic acid in specific interval、商品名Ampligen)、及びPICKCa((PIC-kanamycin-CaCl)を含むと考えられており、複数種のパターン認識受容体(PRRs)のリガンドであり、一方、免疫反応を強化させ、他方、免疫タイプを変えることにより、予防的ワクチンが治療的ワクチンとなることを可能にする。
【0004】
PIC(ポリイノシン)は、前世紀60年代に米国のメルク社により開発されたものである。ハツカネズミにおいて、PICはIFN-αインデューサであり、抗ウイルス活性を有する。PICは、ハツカネズミの鼻腔及び肺を致命的な感染から保護することができる。しかしながら、PICに対する霊長類動物及びヒト血清ヌクレアーゼの分解のため、PIC構造の安定性を低減させ、極めて少量のIFN-αだけを産生し、抗腫瘍活性も有さない。
【0005】
PICLC(ポリイノシン+リジン+カルボキシメチルセルロース)は、Levy HBらが前世紀70年代に開発されたものであり、即ち、PICとポリリジン(PolyL-lysine、相対分子質量27 000)とカルボキシメチルセルロース(CMC、相対分子質量700 000)とのコンジュゲートであり、相対分子質量を大きく増大しており、PICよりも霊長目動物のヌクレアーゼによる加水分解を5-10倍抵抗することができ、且つ、猿体内で顕著なインターフェロン(15)を産生する。PICLCについての予備臨床研究から明らかなように、治療用量だけで中度から重度の反応を引き起こし、熱が出ること(100%)、筋肉痛(50%)、低血圧(50%)、白血球の大幅な減少などがある。これは、分子量が大きいと毒性が大きいという誤解の原因となる。
【0006】
PIC12Uは前世紀70年代半ばに米国のジョンズホプキンス大学で開発されたものであり、PIC鎖の一定の位置にウラシルヌクレオチドを挿入したものである。効力がPICと類似するものの、毒性が比較的少ない。2012年8月にHemispherx生物薬品公司は、さらなるオリジナルの臨床研究資料を提出したが、安全性及び有効性についての資料が不足することにより、米国食品医薬品局(FDA)により承認されていない。
【0007】
PICKCaは、抗生物質であるカナマイシンを含有し、カナマイシンは耳毒性を有し、且つワクチン中の含有量が国立薬局方により規定された基準を超える。
【0008】
このことからわかるように、単なるPICは、ヒトを含む霊長類以上の動物に利用できず、一方、PIC12Uは、効果が低いことにより米国FDAにより承認されておらず、実際には、PICLCは極めて高い副作用を有する。
【0009】
以上に鑑み、特に本開示を提案している。
【発明の概要】
【発明が解決しようとする課題】
【0010】
本開示は、新規複合物に関し、且つ該複合物の調製、応用などの点について研究する。
【0011】
発明者の以前の研究では、PIC、カナマイシン、塩化カルシウムを採用してワクチンアジュバント(商品名はピカアジュバント又はPIKAアジュバントと呼ばれる)を調製している。カナマイシンを使用することは、それに含有する4個のアミノ基がPIC中のリン酸基と結合してその構造を安定化させるためであり、しかし、該商品は抗生物質を含有するのでワクチンにおける応用が制限されてしまう。
【0012】
さらに、発明者は、カナマイシンの代わりとしてキトサン(塩酸塩)を使用しても、同様にカチオン安定剤の作用を果たせることを見出したが、しかしながら、キトサン(塩酸塩)の分子量が大きく、人体により吸収されにくく、このため、満足のいく薬効を取得しにくい。
【課題を解決するための手段】
【0013】
したがって、本開示は、免疫応答を強化するための複合物を提供する。該複合物は、少なくとも以下の成分から適切な条件下で調製して得る:ポリイノシン、少なくとも1種のカチオン安定剤及び可溶性カルシウム塩。
【0014】
該複合物は、少なくとも以下の成分から適切な条件下で調製して得る:ポリイノシン、少なくとも1種のカチオン安定剤及び可溶性カルシウム塩又は/及びマンガン塩。
【0015】
ここで、前記カチオン安定剤は、分子量≦5kDaの水溶性非抗生物質アミノ化合物、又は前記水溶性非抗生物質アミノ化合物とポリエチレングリコールモノメチルエーテル、ポリエチレングリコール、ポリエチレンイミン、葉酸、及びガラクトースのうちの1種又は複数種とで形成されるグラフト物である。
【発明の効果】
【0016】
従来技術に比べて、該複合物は、粘度及び分子質量が適当であり、簡便に製薬でき、化学的性質が安定的であり、長期間保管しても分解しにくく、安全に使用でき、該化合物は単独で使用するだけで、生体の非特異的免疫反応を顕著に向上させ、疾患を予防・治療する目的を達成させることができ、他の薬物と併用すると、より良好な抗腫瘍、抗ウイルス及び抗(スーパー)バクテリアの機能・効果を有し、患者により吸収されやすい。
【図面の簡単な説明】
【0017】
本開示の具体的な実施形態又は従来技術の技術案をより明確に説明するために、以下、具体的な実施形態又は従来技術の記述中に使用を必要とする図面について簡単な説明を行うが、明らかなように、以下の記述における図面は、本開示のいくつかの実施形態であり、当業者であれば、創造的な努力を必要とせずに、これらの図面に基づいて他の図面を取得することができる。
図1】パミカ複合物の構造模式図である。A:PolyI:C-COS-Ca2+の複合物の構造模式図;B:抗原(Ag)+複合物粒子の構造模式図;C:PolyI:C-COS-Ca2++Agの複合物の構造模式図。
図2】異なる時間加熱された後のPICの分子量電気泳動図である。
図3】本開示の一実施例におけるパミカ複合物の酵素分解曲線である。
図4】本開示の一実施例におけるパミカ複合物の融解曲線である。
図5】本開示の一実施例における240-260nmでの各物質の走査吸収スペクトルである。
図6】本開示の一実施例におけるPIC-COS-CaCl複合物の透過型電子顕微鏡像であり、scale bar=500nmである。
図7】本開示の一実施例におけるPIC-COS-CaCl複合物の透過型電子顕微鏡像であり、scale bar=200nmである。
図8】本開示の一実施例におけるPIC-COS-g-MPEG-CaCl複合物の透過型電子顕微鏡像であり、scale bar=200nmである。
図9】本開示の一実施例におけるPIC-COS-g-MPEG-CaCl複合物の透過型電子顕微鏡像であり、scale bar=100nmである。
図10】本開示の一実施例におけるPIC-COS-CaCl複合物とTPPで形成されるナノ粒子の透過型電子顕微鏡像であり、scale bar=1000nmである。
図11】本開示の一実施例におけるPIC-COS-CaCl複合物とTPPで形成されるナノ粒子の透過型電子顕微鏡像であり、scale bar=200nmである。
図12】本開示の一実施例においてアルミニウムアジュバント/rHBsAg(CHO)、ADV20/rHBsAg(CHO)、パミカ/rHBsAg(CHO)をそれぞれ用いてハツカネズミを免疫してから21日後、Elisa法により検出したマウス血清中のIgG抗体の検出図である。
図13】本開示の一実施例においてアルミニウムアジュバント/rHBsAg(CHO)、ADV20/rHBsAg(CHO)、パミカ/rHBsAg(CHO)をそれぞれ用いてハツカネズミを免疫してから21日後の体液免疫の状況であり、縦座標は足蹠腫脹:増加したミリ数(footpad swealling:mm increase)である。
図14】本開示の一実施例におけるパミカ複合物及び完全フロイントアジュバントの、MYO抗原対応抗体の調製における効果の比較である。
図15】本開示の一実施例におけるパミカ複合物及び完全フロイントアジュバントの、MYO抗原対応抗体の調製における効果の比較である。
図16】本開示の一実施例におけるパミカ群によるマクロファージ貪食機能刺激の実験例の画像である。
図17】本開示の一実施例におけるPBS対照群のマクロファージ貪食機能刺激なしの実験例の画像である。
図18】異なる薬物による処理の場合の腫瘍体積の変化曲線である。図18~21は本開示の一実施例におけるパミカ粘膜免疫製剤の、担癌ハツカネズミLL2肺癌モデルに対する抗癌作用の実験結果である。
図19】異なる薬物による処理の場合の腫瘍重量(投与後14日の溶媒対照群の腫瘍体積は2201.09±68.01mmに達し、投与後の14日目に実験は終了する)。
図20】A:溶媒対照、点鼻、2日に1回;B:シスプラチン(5mg/kg)、尾静脈注射、1週間に1回;C:Pamica-1(即ちパミカ)、200μg/匹、点鼻、2日に1回;D:Pamica-1、200μg/匹、点鼻(接種直後投与)、2日に1回;E:Pamica-1、150μg/匹、点鼻、2日に1回;F:Pamica-1、200μg/匹、筋肉内注射、2日に1回;G:Pamica-1+シスプラチン、200μg/匹+5mg/kg、点鼻+尾静脈注射、2日に1回+1週間に1回;scale bar=1cmである。
図21】マウス由来PD-1抗体の腫瘍抑制率である。
図22】腫瘍体積の変化曲線である。図22~35は、本開示の一実施例において4T1-lucマウス乳腺上皮内癌モデルに対するパミカの生体内抗腫瘍効果である。
図23】マウスの体重の変化曲線である。
図24】異なる薬物による処理の、腫瘍重量に対する影響である。
図25】異なる薬物の影響を受けた腫瘍の写真である。
図26】異なる薬物による処理の、脾臓重量に対する影響である。
図27】異なる薬物の影響を受けた肺の正面の写真である。
図28】異なる薬物の影響を受けた肺の裏面の写真である。
図29】パミカ7日前群マウスの生物発光である。図29~35は、小動物イメージャーに表示された腫瘍部位、及び転移性病巣の生物発光強度の写真である。
図30】パミカ0日目群マウスの生物発光である。
図31】溶媒群マウスの生物発光である。
図32】200μg/匹パミカ点鼻群マウスの生物発光である。
図33】300μg/匹パミカ点鼻群マウスの生物発光である。
図34】200μg/匹パミカ筋肉内注射群マウスの生物発光である。
図35】300μg/匹パミカ筋肉内注射群マウスの生物発光である。
【発明を実施するための形態】
【0018】
本開示は、後で本開示のいくつかの実施態様の記述及びそれに含まれる実施例の詳細な内容からより容易に理解できる。
【0019】
さらに本開示を叙述する前に、本開示は前記特定実施態様に制限されることはなく、これらの実施態様は必然的にさまざまであるためであることを理解すべきである。また、本明細書に使用されている用語は特定実施態様を説明するために過ぎず、制限するものとして機能するのではなく、本開示の範囲が添付の請求項にのみ制限されるためであることも理解すべきである。
【0020】
用語の定義
本開示の詳細な内容を記述する前に、本明細書に使用されている複数の用語を理解すべきである。
【0021】
「パミカ」という用語は、一般的には、ポリイノシン、カチオン安定剤及び可溶性カルシウム塩(カルシウムイオン)を用いて調製して得る複合物を指し、該複合物の特定の物理及び免疫原性と無関係である。
【0022】
「ポリイノシン」はポリイノシン酸、ポリイノシン酸ポリシチジル酸、ポリイノシン酸シチジル酸、ポリイノシン酸-ポリシチジル酸、PIC又はPolyI:Cとも呼ばれる。
【0023】
本明細書で使用されている「免疫応答強化」という用語は、抗原物質に対する宿主の免疫反応を誘導又は強化する、もしくは免疫細胞の機能を強化する、又は免疫細胞による炎症性因子又はサイトカインの放出を促進する、又は病原性物質に対する宿主の抵抗力を向上させることを指す。
【0024】
「免疫反応誘導」という用語は1つの免疫反応を刺激、開始又は誘導することを指す。
【0025】
「免疫反応強化(potentiating)」とは、既存の1つの免疫反応が改善、助長、補充、拡大、促進、増加又は延長されることを指す。
【0026】
「免疫反応強化」という表現方式又は類似する表現方式の意味は、以前の免疫反応状態に比べて、免疫反応が向上、改善又は上昇することであり、宿主にとって有利であり、前記以前の免疫反応状態は、たとえば本開示の免疫原組成物を与える前の免疫反応状態である。
【0027】
「個体」という用語は、ここで、「宿主」、「主体」及び「動物」と交換して使用され、ヒト及びすべての畜養(たとえば家畜やペット)や野生の動物及び禽鳥を含み、それは、牛、馬、乳牛、豚、ヒツジ、ヤギ、ラット、マウス、犬、猫、ウサギ、ラクダ、ロバ、鹿、貂、鶏、カモ、ガチョウ、七面鳥、及び軍鶏等を非限定的に含む。
【0028】
「抗体」という用語は、ポリクローナル抗体、モノクローナル抗体、及びこれらの抗体の抗原化合物結合断片を含み、Fab、F(ab’)、Fd、Fv、scFv、二重特異性抗体、抗体最小認識単位、及びこれらの抗体と断片の一本鎖誘導体を含む。抗体のタイプは、IgG1、IgG2、IgG3、IgG4、IgA、IgM、IgE、及びIgDを選択できる。さらに、「抗体」という用語は天然に発生する抗体及び非天然に発生する抗体を含み、たとえばキメラ型(chimeric)、二機能型(bifunctional)、ヒト化(humanized)抗体、及び関連する合成異性体形態(isoforms)を含む。「抗体」という用語は「免疫球タンパク質」と交換して使用され得る。
【0029】
本明細書で使用されているように、「抗原化合物」という用語は、適切な場合に、免疫系により識別可能な(たとえば抗体に結合される、又は加工されることにより、細胞免疫反応を誘導する)任意の物質を指す。
【0030】
本明細書で使用されているように、「抗原」は、細胞、細胞抽出物、タンパク質、リポタンパク質、糖タンパク質、核タンパク質、ポリペプチド、ペプチド、多糖、多糖抱合体、多糖のペプチドシミュレータ、脂肪、糖脂質、糖類、ウイルス、ウイルス抽出物、細菌、細菌抽出物、真菌、真菌抽出物、多細胞生物たとえば寄生虫、及びアレルゲンを含むが、これらに制限されない。抗原は、外因性(たとえば、該抗原を与えられる個体以外の他の由来、たとえば1つの異なる物種に由来する)又は内因性(たとえば、宿主の体内、たとえば体の疾患因子、癌抗原、ウイルス感染細胞により産生する抗原などに由来する)であってもよい。抗原は、天然型(たとえば天然に産生する)、合成型又は組換え型であってもよい。抗原は細胞抽出物、完全な細胞及び精製抗原を含み、ここで、「精製」という用語は、該抗原が、抗原が通常存在する環境及び/又は粗抽出物(たとえば抗原の培養形式)よりも豊富な形態を示すことを指す。
【0031】
本明細書で使用されている「ワクチン組成物」という用語は、2つ又はより複数種の物質(たとえば抗原及びアジュバント)からなる組み合わせを指し、これらの物質が宿主に与えられるときに、共同で免疫反応を惹起する。
【0032】
「ポリペプチド」、「ペプチド」、「オリゴペプチド」及び「タンパク質」などの用語は、本明細書において交換して使用可能であり、これらの意味は、任意の長さのアミノ酸ポリマーの形式であり、該ポリマー形式は、コード及び非コード性アミノ酸、化学又は生化学的に修飾された又は誘導されたアミノ酸及び修飾ペプチド主鎖を有するポリペプチドを含むことができる。
【0033】
「免疫反応」という用語は、脊椎動物個体の免疫系の、抗原性又は免疫原性化合物に対する任意の反応を指す。典型的な免疫反応は、局所的及び全身的な細胞及び体液免疫反応を含むが、これらに制限されず、たとえば、CD8+CTLsの抗原特異的誘導作用を含める細胞毒性Tリンパ球(CTL)反応、T-細胞増殖反応とサイトカイン放出作用を含めるヘルパーT-細胞反応、及び抗体反応を含めるB-細胞免疫反応を含む。
【0034】
ここに使用される「アジュバント」という用語は、抗原化合物に対する宿主の免疫反応を増加又は変化する任意の物質又は物質の混合物を指す。
【0035】
本明細書で使用されている「治療」という用語は、一般的には、所望の薬理及び/又は生理学的効果を得ることを指す。該効果は、疾患又は他の症状を完全及び/又は部分的に防止するという点から見ると、予防的なのものに属してもよく、及び/又は該効果は、疾患及び/又は疾患により引き起こされる悪い効果を完全及び/又は部分的に安定化又は治癒するという点から見ると、治療的なものに属してもよい。本明細書で使用されている「治療」という用語は、個体(特に哺乳動物個体、より特にヒト)体内の疾患に対する任意の処理をカバーし、且つ(a)疾患に罹患する傾向の可能性があるが、疾患に罹患したと診断されていない個体に疾患又は症状が発生することを予防すること、(b)疾患の症状を抑え、たとえば該疾患症状の進行を阻止し、又は疾患の症状を緩和させ、たとえば該疾患又は症状を解消すること、(c)疾患感染性物質により産生する産物のレベル(たとえば毒素、抗原等)を低下させること、及び(d)疾患感染性物質に対する不利な生理学的反応(たとえば熱が出ること、組織浮腫等)を低下させることを含む。
【0036】
「薬学的に許容可能な塩」の化学物とは、該塩が薬用として許容可能であり、且つ親化合物の所望の薬理学的活性を有することを意味する。これらの塩は、以下を含む。(1)塩を合成する酸、たとえば塩酸、臭化水素酸、硫酸、硝酸、リン酸等の無機酸と共同で形成する塩;又は、たとえば酢酸、プロピオン酸、カプロン酸、シクロペンタンプロパン酸、グリコール酸、ピルビン酸、乳酸、マロン酸、コハク酸、リンゴ酸、マレイン酸、フマル酸、酒石酸、クエン酸、安息香酸、3-(4-ヒドロキシベンゾイル)安息香酸、桂皮酸、マンデル酸、メタンスルホン酸、エタンスルホン酸、1,2-エタンジスルホン酸、2-ヒドロキシエタンスルホン酸、ベンゼンスルホン酸、4-クロロベンゼンスルホン酸、2-ナフタレンスルホン酸、4-トルエンスルホン酸、カンファースルホン酸、グルコヘプトン酸、4,4′-メチレンビス-(3-ヒドロキシ-2-エン-1-カルボン酸)、3-フェニルプロピオン酸、トリメチル酢酸、第三級ブチル乳酸、ラウリル硫酸、グルコン酸、グルタミン酸、ヒドロキシナフトエ酸、サリチル酸、ステアリン酸、ムコン酸などの有機酸等と共同で形成する塩;又は、(2)親化合物に存在する酸性質子がたとえばアルカリ金属の金属イオン、アルカリ土類の金属イオン又はアルミニウムイオンなどの金属イオンで置換される、又はたとえばエタノールアミン、ジエタノールアミン、トリエタノールアミン、トロメタミン(tromethamine)、メチルグルカミン(N-methylglucamine)等が配位した有機アルカリであるときに、形成される塩。
【0037】
本開示の例示的な実施態様
本開示の一局面は、免疫応答を強化するための組み合わせ製品に関し、それは、ポリイノシン、少なくとも1種のカチオン安定剤及び可溶性カルシウム塩を含み、
前記カチオン安定剤は、分子量≦5kDaの水溶性非抗生物質アミノ化合物、又は前記水溶性非抗生物質アミノ化合物とポリエチレングリコールモノメチルエーテル、ポリエチレングリコール、ポリエチレンイミン、葉酸、及びガラクトースのうちの1種又は複数種とで形成されるグラフト物である。
【0038】
1つの重要な利点は、パミカを単独で使用するだけで、生体の非特異的免疫反応を強化させることができ、さらに特異的体液免疫反応及び細胞免疫反応を効果的に引き起こすことができ、それにより保護免疫力を高め、抗原物質と併用すると、より良好な効果を達成できることにある。
【0039】
1つの重要な利点は、パミカが『中国薬局方』2015版四部「1141異常毒性の検査法」に合格でき、人体に安全に応用できることにある。未加熱処理の分子量のPICで調製される複合物(たとえばポリイノシン-アミノ化合物-塩化カルシウムアジュバント又はポリイノシン-アミノ化合物-塩化カルシウムアジュバントワクチン)は異常毒性の検出に合格できない。
【0040】
1つの重要な利点は、パミカがより優れた化学及び/又は物理学的安定性を有し、このためより簡便に保存できることにある。
【0041】
1つの重要な利点は、パミカがシグナル伝達経路を介して腫瘍細胞アポトーシスを促進することができ、免疫細胞を刺激して複数種のサイトカインを発現させ、且つ腫瘍細胞の微小環境を変化させ、免疫細胞が腫瘍細胞、ウイルス、細菌などの病原性物質を攻撃するようにすることもできることにある。
【0042】
1つの重要な利点は、パミカが宿主により吸収されやすく、又は宿主細胞により貪食されやすいことにある。さらに、抗原をより多く細胞に組み込むことで、タンパク質及びポリペプチドにより引き起こされる免疫応答を強化することができる。
【0043】
1つの重要な利点は、癌痛患者に対してパミカの鎮痛効果が顕著であることにある。
【0044】
1つの重要な利点は、パミカがHPV感染者のウイルス力価を強陽性から陰性にすることができることにある。
【0045】
1つの重要な利点は、不活性化ワクチンに対してパミカ+ブルセラの保護効果が極めて良好であることにある。
【0046】
なお、パミカは、単なる組成物ではなく、本開示の明細書の記載によれば、それは、新規構造の複合物である。
【0047】
いくつかの実施形態では、前記カチオン安定剤の分子量は、また、4kDa、4.5kDa、3kDa、3.5kDa、2.5kDa、2kDa、1.5kDa、1kDa、500Da、400Da、300Da、200Da、及び100Daを選択してもよい。
【0048】
いくつかの実施形態では、前記水溶性非抗生物質アミノ化合物は、キトサンオリゴ糖、キトオリゴ糖、グルコサミン、カチオン性リポソーム、DEAE-グルカン、ポリアクリルアミド、ポリアミン、テトラアミノフルベン、及びポリエチレンイミンのうちから選ばれる1種又は複数種である。
【0049】
いくつかの実施形態では、前記カチオン安定剤は、キトサンオリゴ糖とポリエチレングリコールモノメチルエーテルのグラフト物(COS-g-MPEG)、キトサン塩酸塩とポリエチレングリコールのグラフト物(PEG-g-CS)、葉酸とキトサン塩酸塩のグラフト物(FA-g-CS)、ガラクトースとポリエチレングリコールとポリエチレンイミンのグラフト物(GAL-g-PEG-g-PEI)、キトサンオリゴ糖とポリエチレングリコールモノメチルエーテルとポリエチレンイミンのグラフト物(COS-g-MPEG-g-PEI)、キトサンとポリエチレングリコールモノメチルエーテルとポリエチレンイミンのグラフト物(CS-g-PEG-g-PEI)、ポリエチレングリコールとポリエチレンイミンのグラフト物(PEI-g-PEG)、キトサンオリゴ糖とポリエチレンイミンのグラフト物(PEI-g-COS)、キトサン塩酸塩とポリエチレンイミンのグラフト物(PEI-g-CS)、キトサンオリゴ糖とポリエチレングリコールのグラフト物(COS-g-PEG)、及びキトサンオリゴ糖とポリエチレングリコールとポリエチレンイミンのグラフト物(COS-g-PEG-g-PEI)から選ばれる。
【0050】
いくつかの実施形態では、前記カチオン安定剤は、キトサンオリゴ糖(COS)、キトサンオリゴ糖とポリエチレングリコールモノメチルエーテルのグラフト物(COS-g-MPEG)、及びキトサンオリゴ糖とポリエチレングリコールモノメチルエーテルとポリエチレンイミンのグラフト物(COS-g-MPEG-g-PEI)から選ばれる。
【0051】
いくつかの実施形態では、前記グラフト物の分子量は≦50kDaである。
【0052】
いくつかの実施形態では、前記グラフト物の分子量は、また、45kDa、40kDa、35kDa、30kDa、25kDa、20kDa、15kDa、10kDa、9kDa、8kDa、7kDa、8kDa、5kDa、4kDa、3kDa、2kDa、1kDa、500Da、400Da、300Da、200Da、及び100Daを選択してもよい。
【0053】
いくつかの実施形態では、前記キトサンオリゴ糖の脱アセチル化度は≧70%であり、また80%、85%、90%又は95%、好ましくは90%~100%を選択してもよい。
【0054】
いくつかの実施形態では、キトサンオリゴ糖は、モノマー分子量が161、重合度が2-20であり、使用される分子量の範囲が322-3220である。
【0055】
いくつかの実施形態では、キトサンオリゴ糖、キトオリゴ糖、及びグルコサミンの分子量は≦3200である。
【0056】
いくつかの実施形態では、ポリエチレングリコールモノメチルエーテル、ポリエチレングリコール、及びポリエチレンイミンの分子量は≦40000であり、また30000、20000、15000、10000、8000、6000、4000、2000、1500、1000又は500を選択してもよい。
【0057】
いくつかの実施形態では、前記可溶性カルシウム塩はCaCl及び/又はCaNOから選ばれる。
【0058】
いくつかの実施形態では、前記ポリイノシンの分子量は100bp~3000bpである。
【0059】
いくつかの実施形態では、前記ポリイノシンの分子量は100bp~1500bpである。
【0060】
いくつかの実施形態では、前記組み合わせ製品は、pH調整剤、トリポリリン酸ナトリウム、アルギン酸ナトリウム、フェニルボロン酸、カテコール、緩衝塩/試薬及び水のうちの1種又は複数種をさらに含む。
【0061】
いくつかの実施形態では、前記組み合わせ製品中の各成分は単独して包装し、
いくつかの実施形態では、前記組み合わせ製品中の少なくとも2種の成分は混合して一体に包装し、たとえば陽イオンと水及び/又は緩衝塩は一体に包装し、
いくつかの実施形態では、ポリイノシンは、その原料の形式、たとえばイノシン酸(PI)及びシチジル酸(PC)で包装する。
【0062】
本開示の一局面によれば、本開示は、また、免疫応答を強化するための複合物に関し、それは、前記のような組み合わせ製品中の試薬から調製して得る。
【0063】
いくつかの実施形態では、前記調製は溶液系にて行われ、且つ前記試薬中、前記ポリイノシンの濃度が0.1~10mg/mlであり、
ポリイノシンの濃度はグラフトの方式により溶解度を高めることができ、理論的には、より高濃度になることが可能であり、
いくつかの実施形態では、前記調製は溶液系にて行われ、且つ前記試薬中、前記ポリイノシンの濃度が0.5~5mg/mlであり、また1mg/ml、2mg/ml、3mg/ml、4mg/ml、5mg/ml、6mg/ml、6.4mg/ml、7mg/ml、8mg/ml又は9mg/mlを選択してもよい。
【0064】
いくつかの実施形態では、前記調製は溶液系にて行われ、且つ前記試薬中、前記カチオン安定剤の濃度が0.5~51.2mg/mlであり、
いくつかの実施形態では、前記カチオン安定剤の濃度が0.8~25.6mg/mlであり、また1mg/ml、2mg/ml、3mg/ml、4mg/ml、5mg/ml、10mg/ml、15mg/ml又は20mg/mlを選択してもよい。
【0065】
いくつかの実施形態では、前記調製は溶液系にて行われ、且つ前記試薬中、前記ポリイノシンと前記カチオン安定剤との質量比が1:0.8~25.6であり、また、1:6.4又は1:12.8を選択してもよい。
【0066】
いくつかの実施形態では、前記調製は溶液系にて行われ、且つ前記試薬中、前記可溶性カルシウム塩中のカルシウムイオンの濃度が0.1~1mMであり、また0.2mM、0.3mM、0.4mM、0.5mM、0.6mM、0.7mM、0.8mM又は0.9mMを選択してもよい。
【0067】
いくつかの実施形態では、前記複合物は溶液中に保存している。
前記溶液は、好ましくは緩衝溶液である。
【0068】
いくつかの実施形態では、前記溶液はpH=5.0~7.2である。
【0069】
いくつかの実施形態では、前記溶液はpH=5.9~6.9であり、また6.0、6.2、6.4、6.8、7.0、7.2、7.4、7.6又は7.8を選択してもよい。
【0070】
本開示の一局面によれば、本開示は、また、前記のような複合物の、免疫アジュバントとしての非治療的用途に関する。
【0071】
本開示の一局面によれば、本開示は、また、前記のような複合物の、抗体、ワクチン製剤又はワクチン組成物調製用の用途、又はワクチン補助材料又はワクチンアジュバント調製用の用途に関する。
【0072】
本開示の一局面によれば、本開示は、また、ワクチン組成物に関し、それは、前記のような複合物及び少なくとも1種の抗原を含有する。
【0073】
いくつかの実施形態では、前記抗原は、ウイルス、細菌、タンパク質、ポリペプチド、多糖、核酸又は小分子-タンパク質結合物である。
【0074】
いくつかの実施形態では、前記ワクチン組成物は、たとえば弱毒化ワクチン(たとえばウイルス又は細菌の弱毒化ワクチン)、不活性化ワクチン(たとえばウイルス又は細菌の不活性化ワクチン)、タンパク質ワクチン、多糖ワクチン、タンパク質サブユニットワクチン、キメラベクターワクチン、DNAワクチン、RNAワクチン、ポリペプチドワクチン又は小分子-タンパク質結合物ワクチンである。
【0075】
本開示の一局面によれば、本開示は、また、前記のような複合物の、免疫細胞活性調整における応用に関し、前記応用は生体内又は生体外で行われる。
【0076】
いくつかの実施形態では、前記免疫細胞活性調整は、具体的には、免疫細胞活性強化である。
【0077】
いくつかの実施形態では、前記免疫細胞は、マクロファージ、リンパ球、及び樹枝状細胞から選ばれる。
【0078】
いくつかの実施形態では、前記免疫細胞活性調整強化は、前記免疫細胞による炎症性因子の放出を促進することである。
【0079】
いくつかの実施形態では、前記炎症性因子は、IL-2、IL-6、IL-12p40、IL-18、IL-22、IFN-α、IFN-γ及びTNF-αを含む。
【0080】
いくつかの実施形態では、前記炎症性因子は、IFN-γ及びTNF-αを含む。
【0081】
本開示の一局面によれば、本開示は、また、前記のような複合物の、腫瘍治療及び/又は予防、抗ウイルス、抗細菌、抗真菌、抗寄生虫、化学療法の副作用軽減、抗疲労又は免疫力向上、宿主疼痛緩和、抗原に対する宿主の免疫反応の促進のための薬物の調製における応用に関する。
【0082】
いくつかの実施形態では、前記薬物は、注射投与剤型、呼吸器投与剤型、点鼻剤、皮膚投与剤型、粘膜投与剤型又は腔道投与剤型である。
【0083】
いくつかの実施形態では、注射投与剤型は、たとえば、注射剤(静脈注射、筋肉内注射、皮下注射、及び皮内注射の複数種の注射経路を含む)から選ばれる。
【0084】
いくつかの実施形態では、呼吸器投与剤型は、たとえば、噴霧剤、エアロゾル剤、及び粉末噴霧剤等から選ばれる。
【0085】
いくつかの実施形態では、皮膚投与剤型は、たとえば、外用溶液剤、洗剤、塗り剤、軟膏剤、硬膏剤、ペースト剤、及び貼付剤等から選ばれ、投与後、局所的な作用を果たす、又は経皮的に吸収されて全身的な作用を発揮できる。
【0086】
いくつかの実施形態では、粘膜投与剤型は、たとえば点眼剤、点鼻剤、眼用軟膏剤、含嗽剤、及び舌下錠剤等から選ばれ、粘膜投与は、局所的な作用を果たすか、又は粘膜を介して吸収されて全身的な作用を発揮できる。腔道投与剤型:たとえば座剤、及びエアロゾル剤等が挙げられ、直腸、膣、尿道、鼻腔、耳管等に用いられ、腔道投与は、局所的な作用を果たす、又は吸収されて全身的な作用を発揮できる。
【0087】
いくつかの実施形態では、前記抗原は、腫瘍、ウイルス、細菌、真菌又は寄生虫抗原を含む。
【0088】
いくつかの実施形態では、前記宿主は哺乳動物である。
【0089】
いくつかの実施形態では、前記宿主は霊長類動物である。
【0090】
いくつかの実施形態では、前記宿主はヒトである。
【0091】
いくつかの実施形態では、前記抗原がウイルス、細菌、真菌又は寄生虫抗原である場合、前記薬物の1ドースあたりの薬物含有量が1~8mgである。
【0092】
いくつかの実施形態では、前記抗原が腫瘍抗原である場合、前記薬物の1ドースあたりの薬物含有量が1~10mgである。
【0093】
本開示の一局面によれば、本開示は、また、薬物組成物に関し、前記薬物組成物は前記のような複合物を含み、前記薬物組成物は、免疫細胞治療薬、抗体治療薬、化学薬物、粘膜免疫吸収又は粘膜粘着を促進する物質、免疫調整剤、病原体抗原、パターン認識受容体のリガンド、及び薬学的に許容可能な賦形剤のうちの1種又は複数種をさらに含む。
【0094】
いくつかの実施形態では、前記免疫細胞治療薬は、腫瘍浸潤リンパ球(tumor infiltrating lymphocyte,TIL)、樹枝状細胞(dendritic cells,DC)、サイトカイン誘導キラー細胞(cytokine induced killer,CIK)、樹枝状細胞-サイトカイン誘導キラー細胞(DC-CIK)、ナチュラルキラー細胞(natural killer cell、NK)、γδT細胞、CD3AK、CAR-T、及びTCR-Tのうちから選ばれる1種又は複数種である。
【0095】
いくつかの実施形態では、前記抗体治療薬は、抗PD1抗体、抗PDL1抗体、抗CTLA4抗体、及び抗CD抗原抗体から選ばれる。
【0096】
いくつかの実施形態では、前記化学薬物は、アルキル化剤、抗代謝薬、抗腫瘍抗生物質、植物類抗腫瘍薬、ホルモン薬、およびその他の薬物のうちから選ばれる1種又は複数種であり、
ここで前記その他の薬物は、L-アスパラギナーゼ、シスプラチン、カルボプラチン、オキサリプラチン、ダカルバジン、ヘキサメチルメラミン類薬物、又は上記薬物の誘導体から選ばれる。
【0097】
いくつかの実施形態では、前記アルキル化剤は、シクロホスファミド、ブスルファン、ダカルバジン、シスプラチン、メクロレタミン、メルファラン、ニトロソウレア、及び上記薬物の誘導体から選ばれ、
いくつかの実施形態では、前記抗代謝薬は、5-フルオロウラシル、メトトレキサート、シタラビン、アンシタビン、ヒドロキシ尿素、及び上記薬物の誘導体から選ばれ、
いくつかの実施形態では、前記抗腫瘍抗生物質は、アクチノマイシン、マイトマイシン、ビリルビン、アドリアマイシン、ダウノマイシン、ダクチノマイシン、ブレオマイシン、及び上記薬物の誘導体から選ばれ、
いくつかの実施形態では、前記ホルモン薬は、性ホルモン、グルココルチコイド、及び上記薬物の誘導体から選ばれる。
【0098】
いくつかの実施形態では、前記粘膜免疫吸収又は粘膜粘着を促進する物質は、アニオン界面活性剤(たとえばカルボン酸塩類、スルホン酸塩類、硫酸エステル類、及びリン酸エステル類等)、カチオン界面活性剤(たとえばアミン塩類、四級アンモニウム塩類、複素環類、及びオニウム塩類等)、両性イオン界面活性剤(たとえばカルボン酸塩型、スルホン酸塩型、リン酸エステル型、ベタイン型、イミダゾリン型、及びアミノ酸型等)、非イオン界面活性剤(たとえば、アルキルポリグリコシド型、ポリオキシエチレン型、ポリオール型、アルカノールアミド型、及びブロックポリエーテル型)、特殊界面活性剤(たとえばフッ素含有型、シリコン含有型、ホウ素含有型、及び高分子型等)、キレート化剤(たとえば、ポリリン酸塩、アミノカルボン酸、1,3-ジオン、ヒドロキシカルボン酸、及びポリアミン等)、粘着剤[水溶型粘着剤(たとえば、澱粉、デキストリン、ポリビニルアルコール、及びカルボキシメチルセルロース等)、ホットメルト型粘着剤(たとえばポリウレタン、ポリスチレン、ポリアクリレート、及びエチレン-酢酸ビニルコポリマー等)、溶剤型粘着剤(たとえばシェラック、及びブチルゴム等)、乳液型粘着剤(たとえば酢酸ビニル樹脂、アクリル樹脂、及び塩化ゴム等)、無溶剤液体粘着剤(たとえばエポキシ樹脂等)]、ポリ乳酸-グリコール酸コポリマー、デキストラン、及び多糖類のうちから選ばれる1種又は複数種である。
【0099】
いくつかの実施形態では、前記免疫調整剤は、サイトカイン、ケモカイン、幹細胞成長因子、リンパ性毒素、造血因子、コロニー刺激因子(CSF)、インターフェロン、エリスロポエチン、トロンボポエチン、腫瘍壊死因子(TNF)、インターロイキン(IL)、顆粒球-コロニー刺激因子(G-CSF)、顆粒球マクロファージ-コロニー刺激因子(GM-CSF)、及び幹細胞成長因子のうちから選ばれる1種又は複数種である。
【0100】
いくつかの実施形態では、前記病原体抗原は、腫瘍、ウイルス、細菌、真菌又は寄生虫抗原から選ばれる。
【0101】
いくつかの実施形態では、前記腫瘍は、骨、骨接合部、筋肉、肺、気管、咽頭、鼻、心臓、脾臓、動脈、静脈、血液、毛細血管、リンパ節、リンパ管、リンパ液、口腔、咽頭、食道、胃、十二指腸、小腸、結腸、直腸、肛門、虫垂、肝臓、胆、膵臓、耳下腺、舌下腺、泌尿腎臓、尿管、膀胱、尿道、卵巣、卵管、子宮、膣、外陰部、陰嚢、精巣、輸精管、陰茎、眼、耳、鼻、舌、皮膚、脳、脳幹、延髄、脊髄、脳瘠液、神経、甲状腺、副甲状腺、副腎、下垂体、松果腺、膵島、胸腺、生殖腺、舌下腺、及び耳下腺のうちのいずれかが病変して生成した腫瘍を含む。
【0102】
いくつかの実施形態では、前記細菌は、ブドウ球菌属、連鎖球菌属、リステリア菌属、エリジペロトリックス属、レニバクテリウム属、バシラス属、クロストリジウム属、マイコバクテリア属、放線菌属、ノカルディア属、コリネバクテリウム属、ロドコッカス属、炭疽菌、エリシペラス、破傷風菌、リステリア菌、気腫疽菌、結核菌、大腸菌、プロテウス、赤痢菌、肺炎桿菌、ブルセラ、ウェルシュ菌、インフルエンザ菌、パラインフルエンザ菌、モラクセラ・カタラーリス、アシネトバクター属、エルシニア属、レジオネラ・ニューモフィラ、百日咳菌、パラ百日咳菌、志賀赤痢菌属、パスツレラ属、コレラ菌、及びビブリオ・パラヘモリティカスのうちの1種又は複数種を含む。
【0103】
いくつかの実施形態では、前記寄生虫は、消化管内寄生虫(たとえば回虫、カギムシ、サナダムシ、赤痢アメーバやランブル鞭毛虫等)、腔内寄生虫(たとえば膣トリコモナス)、肝内寄生虫(たとえば肝吸虫、エキノコックス)、肺寄生虫(たとえばウェステルマン肺吸虫)、脳組織寄生虫(たとえば有鉤嚢虫、トキソプラズマ)、血管内寄生虫(たとえば住血吸虫)、リンパ管内寄生虫(たとえば糸状虫)、筋肉組織寄生虫(たとえば旋毛虫幼虫)、細細胞内寄生虫(たとえばマラリア原虫、リーシュマニア原虫)、骨組織寄生虫(たとえば包虫;皮膚寄生虫、たとえばヒゼンダニ、ニキビダニ)、及び眼内寄生虫(たとえばテラジア種、有鉤嚢尾虫)のうちの1種又は複数種を含む。
【0104】
いくつかの実施形態では、前記ウイルスは、アデノウイルス(adeniviridae)、アレナウイルス(arenaviridae)、アストロウイルス(astroviridae)、ブニヤウイルス(bunyaviridae)、カリシウイルス(cliciviridae)、フラビウイルス(flaviviridae)、D型肝炎ウイルス(hepatitis delta virus)、肝炎ウイルス(hepeviridae)、モノネガウイルス(mononegavirales)、ニドウイルス(nidovirales)、小RNAウイルス(piconaviridae)、オルトミクソウイルス(orthomyxoviridae)、パピローマウイルス(papillomaviridae)、パルボウイルス(parvoviridae)、ポリオーマウイルス(polyomaviridae)、ポックスウイルス(poxviridae)、レオウイルス(reoviridae)、レトロウイルス(retroviridae)又はトガウイルス(togaviridae)のうちの1種又は複数種を含む。
【0105】
いくつかの実施形態では、前記ウイルスは、ヒトパピローマウイルス(Human papillomavirus)である。
【0106】
いくつかの実施形態では、前記真菌は、コクシジオイデス・イミチス、コクシジオイデス・ポサダシ、アジェロミセス・カプスラーツス、ヒストプラズマ・ズボアジ、ロボ真菌、パラコクシジオイデス・ブラジリエンシス、ブラストマイセス・デルマチチジス、スポロトリックス・シェンキィ、ペニシリウム・マルネッフェイ、カンジダ・アルビカンス、カンジダ・グラブラタ、カンジダ・トロピカリス、カンジダ・ルシタニアエ、ニューモシスチス・カリニ、アスペルギルス、エクソフィアラ・ジャンセルメイ、フォンセカエア・ペドロソイ、フォンセカ・コンパクタ、フィアロフォラ・ベルコーサ、エクソフィアラ・デルマチチヂス、ジェオトリクム・カンディデュム、シュードアレシェリア・ボイジイ、クリプトコックス・ネオフォルマンス、トリコスポロン、リゾプス・オリーゼ、ムコール・インディカス、アブシディア・コリムビフェラ、ハリサシカビモドキ、藻菌類、コニディオボルス・コロナトゥス、コニディオボルス・インコングルス、エンテロシトゾーン・ビエヌーシ、脳炎性胞子虫、リノスポリジウム・セーベリ、無色菌糸、及び黒色菌糸のうちの1種又は複数種を含む。
【0107】
いくつかの実施形態では、前記パターン認識受容体のリガンドは、TLR受容体のリガンド、RLR受容体のリガンド、CLR受容体のリガンド、及びNLR受容体のリガンドから選ばれる。
【0108】
いくつかの実施形態では、TLR受容体と組み合わせるリガンドは、たとえば、ペプチドグリカン、ジグリカン、マンノビオース、リポペプチド、糖脂質、非定型リポ多糖、血清アミロイド、CPG DNA、dsRNA、ssRNA、LPS、PGN、飽和脂肪酸、リポタイコ酸、レジスチン、ラクトフェリン、表面活性タンパク質、フラジェリン、ヒアルロン酸、RNA関連抗原、及びProfilin様分子等がある。
【0109】
いくつかの実施形態では、RLR受容体と組み合わせるリガンドは、たとえば、RNA、PIC、PICLC、及びPIC12u等がある。
【0110】
いくつかの実施形態では、CLR受容体と組み合わせるリガンドは、たとえば、真菌細胞壁表面でのマンノーズ、及びβ-グルカン等がある。
【0111】
いくつかの実施形態では、NLR受容体と組み合わせるリガンドは、たとえば、MDP、及びMesθ DAP等がある。
【0112】
本開示の一局面によれば、本開示は、また、免疫応答を強化するための複合物の調製方法をさらに開示し、
ポリイノシン、少なくとも1種のカチオン安定剤及び可溶性カルシウム塩を液体反応系中に接触させることを含み、
前記カチオン安定剤は、分子量≦5kDaの水溶性非抗生物質アミノ化合物、又は前記水溶性非抗生物質アミノ化合物とポリエチレングリコールモノメチルエーテル、ポリエチレングリコール、ポリエチレンイミン、葉酸、及びガラクトースのうちの1種又は複数種とで形成されるグラフト物である。
【0113】
いくつかの実施形態では、前記ポリイノシンは、ポリシチジル酸及びポリイノシン酸が塩基ペアリング反応を経て得られるものである。
【0114】
いくつかの実施形態では、前記ポリシチジル酸、及びポリイノシン酸の分子量が、2.3万ダルトンよりも大きい。
【0115】
いくつかの実施形態では、前記ポリシチジル酸の分子量の範囲が、6.6万ダルトン~66万ダルトンである。
【0116】
いくつかの実施形態では、前記ポリイノシン酸の分子量の範囲が、6.6万ダルトン~66万ダルトンである。
【0117】
いくつかの実施形態では、前記塩基ペアリング反応は、40℃~50℃の温度で行われ、また41℃、42℃、43℃、44℃、45℃、46℃、47℃、48℃又は49℃を選択してもよい。
【0118】
いくつかの実施形態では、前記塩基ペアリング反応はpH=6.8~7.6で行われ、また7.0、7.2、又は7.4を選択してもよい。
【0119】
いくつかの実施形態では、接触反応を行う前、前記ポリイノシンを80℃~99℃で70~120min加熱し、
いくつかの実施形態では、温度は、また82℃、84℃、86℃、88℃、90℃、92℃、94℃、96℃又は98℃を選択してもよく、
いくつかの実施形態では、加熱時間は、また、80min、90min、100min又は110minを選択してもよい。
【0120】
いくつかの実施形態では、前記液体反応系の温度は40℃~50℃であり、また41℃、42℃、43℃、44℃、45℃、46℃、47℃、48℃又は49℃を選択してもよい。
【0121】
いくつかの実施形態では、前記グラフト物の調製方法は、
まず、カルボニルジイミダゾールを用いてポリエチレングリコールモノメチルエーテル、ポリエチレングリコール、ポリエチレンイミン、葉酸、及びガラクトースのうちの1種又は複数種を活性化させ、次に、活性化済みの産物を用いて、イオン液体[bmim]Cl中に前記水溶性非抗生物質アミノ化合物とグラフト反応を行うことを含む。
【0122】
いくつかの実施形態では、前記グラフト物は、キトサンオリゴ糖とポリエチレングリコールモノメチルエーテルのグラフト物であり、まず、カルボニルジイミダゾール(CDI)を用いてポリエチレングリコールモノメチルエーテル(MPEG)を活性化させ、次に、活性化済みのMPEGを用いて、イオン液体[bmim]Cl中にキトサンオリゴ糖(COS)とグラフト反応を行う。
【0123】
いくつかの実施形態では、前記グラフト反応は、60℃~80℃、非酸化性雰囲気下で反応する。
【0124】
いくつかの実施形態では、前記方法は、
架橋剤溶液を撹拌条件下で1滴ずつ、製造して得た複合物に加えて、反応系中にチンダル現象が現れることを観察すると、滴下を停止し、撹拌してナノ粒子を得ることをさらに含み、
前記架橋剤は、トリポリリン酸ナトリウム、アルギン酸ナトリウム、フェニルボロン酸、及びカテコールのうちから選ばれる少なくとも1種である。
【0125】
いくつかの実施形態では、前記架橋剤溶液中に(病原体)抗原が含有される。
【0126】
いくつかの実施形態では、前記方法は、前記複合物又は前記ナノ粒子を抗原と共インキュベートすることをさらに含む。
【0127】
いくつかの実施形態では、前記抗原はタンパク質又はポリペプチド抗原である。
【0128】
本開示の一局面によれば、本開示は、また、抗原に対する宿主体内の免疫反応促進、又は宿主免疫細胞活性の調整強化、又は宿主疲労軽減補助、又は宿主疼痛軽減のための方法に関し、該方法は、前記のような複合物、又は前記のようなワクチン組成物、又は前記のような薬物組成物を該宿主に与えることを含む。
【0129】
いくつかの実施形態では、該宿主は、伝染病に罹患しており、且つ該抗原化合物を与えられることにより免疫反応を惹起され、それにより、該伝染病を引き起こす病原体に抵抗する。
【0130】
いくつかの実施形態では、前記投与は、非経口注射、筋肉内注射、腹腔内注射、静脈注射、皮下注射、局所的投与、経皮投与又は皮内投与により行われる。
【0131】
いくつかの実施形態では、該宿主は、手術、化学療法や放射線療法又は免疫療法が失敗した、又は医療機関により治療を放棄されている腫瘍患者、ウイルス感染患者、細菌感染患者、寄生虫感染患者又は鼻炎患者である。
【0132】
いくつかの実施形態では、前記方法は、手術、放射線療法、化学療法及び各種の免疫療法と併用することができ、又はウイルス感染患者、細菌感染患者、及び寄生虫感染患者の場合、従来の治療法と併用することもできる。
【0133】
いくつかの実施形態では、前記疼痛は、微生物又は寄生虫感染により引き起こされる疼痛、癌により引き起こされる疼痛患者又は神経的な原因により引き起こされる疼痛である。
【0134】
いくつかの実施形態では、前記抗原がウイルス、細菌、真菌又は寄生虫抗原である場合、前記薬物は1回あたり1~8mg/kg投与され、好ましくは、毎日又は1日又は2日又は3日おきに1回投与され、
前記抗原が腫瘍抗原である場合、前記薬物は、1回あたり1~10mg/kg投与され、好ましくは、投与周期は、少なくとも360日、又は少なくとも180日、又は少なくとも60日、又は少なくとも30日である。
【0135】
本開示は、本開示に記載の方法により調製された、免疫応答を強化させるための複合物を提供する。
【0136】
本開示は、本開示に記載の方法により調製された、免疫応答を強化させるための複合物の、抗体、ワクチン製剤又はワクチン組成物の調製、免疫細胞活性強化、腫瘍治療及び/又は予防、抗ウイルス、抗細菌、抗真菌、抗寄生虫、化学療法の副作用軽減、抗疲労又は免疫力向上、宿主疼痛緩和、抗原に対する宿主の免疫反応の促進における応用を提供する。
【0137】
以下、実施例と組み合わせて本開示の実施態様を詳細に記述するが、当業者が理解できるように、以下の実施例は本開示を説明することにのみ用いられ、本開示の範囲を制限するものとみなすべきではない。実施例において、具体的な条件が明記されていない場合、一般的な条件又はメーカーにより推薦される条件に従って行う。使用する試薬又は器具は、製造者が明記されていない場合、すべて市販品として一般的な製品を得ることができる。
【0138】
実施例1 パミカの調製
一、パミカ複合物の調製
1、PBS溶液(pH7.2)の調製
1.1 塩化ナトリウム溶液(0.85%、1500ml)の調製:塩化ナトリウム12.75gを秤量し、2000mlメスシリンダーに入れて、水を注入することにより1500mlに定容した。
1.2 リン酸水素二ナトリウム溶液(0.006mol/L、500ml)の調製:リン酸水素二ナトリウム0.006×0.5×141.96=0.4259gを秤量し、500mlメスフラスコに入れて、0.85%生理食塩水を用いて500mlに定容した。
1.3 リン酸二水素ナトリウム溶液(0.006mol/L、500ml)の調製:リン酸二水素ナトリウム0.006×0.5×137.99=0.4140gを秤量し、500mlメスフラスコに入れて、0.85%生理食塩水を用いて500mlに定容した。
1.4 pH値が7.2のPBS溶液の調製:「1.2液」273.6ml+「1.3液」126.4mlを取った。
2、PIC液(2.0mg/ml、100ml)の調製
2.1 PI 2.0mg/ml*100ml*[1.04/(1.04+1)]/91.5%/(1-2.7%)=114.5mgを秤取して、250ml三角フラスコに入れ、50mlのPBS溶液を加えて溶解し、且つ40-60℃水浴を用いて平衡化した。
2.2 PC 2.0mg/ml*100ml*[1/(1.04+1)]/90.4%/(1-4.2%)=113.2mgを秤取して、250ml三角フラスコに入れ、50mlのPBS溶液を加えて溶解し、且つ40-60℃水浴を用いて平衡化した。
2.3 PIC液の調製:50mlのPI溶液を50mlのPC溶液に注入して、且つ45℃水浴で30分間反応させた。
2.4 80-99℃でPIC液について分子量加熱を15~300分間行った。
3、塩化カルシウム溶液(0.16mol/L、25ml)の調製
CaCl.2HO(MW:147.02)0.5881gを秤取して、100ml三角フラスコに入れ、約25mlの注射用水を加えて溶解し、且つ定容した。
4、COS-g-MPEGの調製
ここでCOS-g-MPEGグラフト物の調製方法は以下のとおりである。キトサンオリゴ糖グラフトポリエチレングリコールモノメチルエーテル(COS-g-MPEG)グラフトコポリマーを調製し、これを補助材料として抗癌薬を調製した。
原理:カルボニルジイミダゾール(CDI)カップリング法を用いてCOS-g-MPEGを調製した。まず、カルボニルジイミダゾールを用いてポリエチレングリコールモノメチルエーテル(MPEG)を活性化させ、活性化MPEGを調製し、次に、活性化MPEGとキトサンオリゴ糖(COS)を用いてイオン液体中に反応させ、COS-g-MPEGコポリマーを合成し、具体的な反応ステップは、以下の3つのステップを含む。
4.1 イオン液体1-ブチル-3-メチルイミダゾールクロリド塩([BMIM]Cl)の調製
1-メチルイミダゾールとクロロブタンとを反応させて、イオン液体[BMIM]Clを調製し、合成反応の方程式は以下のとおりである。
【化1】
4.2 ポリエチレングリコールモノメチルエーテル(MPEG、分子量1000)の活性化
CDIを用いてMPEGを活性化させ、合成反応の方程式は以下のとおりである。
【化2】
4.3 COS-g-MPEGコポリマーの合成
活性化MPEGとCOSをイオン液体中にグラフト重合し、合成反応の方程式は以下のとおりである。
【化3】
4.4 器具及び試薬
メチルイミダゾール、クロロブタン、トルエン、ポリエチレングリコールモノメチルエーテル、カルボニルジイミダゾール、無水エーテル、4A分子篩(2-3mm)、ジメチルスルホキシド、1,4-ジオキサン、キトサンオリゴ糖、集熱式恒温磁気加熱撹拌器(DF-101S型)、電子天びん、電気加熱送風乾燥箱、循環水式真空ポンプ、自動三重効用純水蒸留器、真空乾燥箱、凍結乾燥機、ガラス器具用エアフロードライヤー、単相コンデンサスターターモーター、ロータリーベーン真空ポンプ、6連式マグネチックスターラー、セルロース透析バッグ、すぐに使える透析バッグ45-2000RC膜、三口フラスコ(500mL、1000mL)、ガラス栓、磁気ビーズ、使い捨て紙コップ、500mLビーカー、2Lビーカー、使い捨てスポイト、薬匙、試薬瓶、乾燥器等。
4.5 準備
4.5.1蒸留水の調製
SZ-97A自動三重効用純水蒸留器を用いて三回蒸留水を調製した。
4.5.2 ガラス器皿の洗浄
三口フラスコ、ガラス栓、培養皿、磁気ビーズなどをまず水道水で洗い、次に、三回蒸留水でリンスし、最後に、ガラス器具用エアフロードライヤーに入れてベークした。
4.5.3 溶媒の乾燥:適量の分子篩を取って捨てビーカー中に入れ、適量のジメチルスルホキシド、1,4-ジオキサン、無水エーテルを取ってビーカーに入れ、水を除去した。
4.5.4 無水エーテルを冷凍しておく。
4.6. 操作(各ステップの注意事項):
4.6.1 イオン液体の調製
(1)1-メチルイミダゾール100g、クロロブタン148.5mLをそれぞれ取り、500mLの三口フラスコに順次加え、凝縮管を取り付けて、アルゴンガスを30min投入し、磁気撹拌して、油浴で80℃に加熱し、24h反応させた。
(2)反応終了後、取り出して、室温に冷却し、-18℃の冷蔵庫に入れて2h冷凍し、溶液の層状化が見られると、上層の液体(主にクロロブタンを除去する)を捨てた。
(3)80℃の送風乾燥箱に入れて、固体が完全に融解すると、熱いうちに適量のトルエンを加えて、振るってトルエンと溶液を十分に混合し、室温に冷却し、冷蔵庫に入れて冷凍し、取り出して、上層の液体(1-メチルイミダゾール、クロロブタンをトルエンに溶解して、トルエン、1-メチルイミダゾール、クロロブタンを除去する)を捨てた。
(4)さらにステップ(3)を2回繰り返して、未反応のクロロブタンを完全に除去した。
(5)サンプルを真空乾燥箱に入れ、90℃に加熱し、完全に融解した後、90℃で8h真空乾燥させ(トルエン除去)、取り出して室温まで放冷し、次に乾燥器に入れて使用に備えた。
4.6.2 MPEGの活性化
(1)ジメチルスルホキシド10mL、1,4-ジオキサン20mLを取って500mL三口フラスコに入れ、磁気撹拌し、MPEG 20gを加えて、MPEGが完全に融解すると、CDI 3.24gを加え、水浴で37℃に加熱して18h反応させた。
(2)反応完了後、氷水浴、磁気撹拌の条件下で、サンプルを予冷された無水エーテルに加えて、ラップフィルムでビーカー口を覆い、サンプルを冷蔵庫に30min放置した。
(3)30min後取り出して、上層の溶液を捨てて、沈殿物に予冷された無水エーテルを加え、30min磁気撹拌して、冷蔵庫に30min放置した。
(4)さらにステップ(3)を2回繰り返して、未反応のCDIを洗浄により十分に除去した。
(5)上層の溶液を捨てて、40℃の送風乾燥箱に6h放置し、エチルエーテルを予備除去した。
(6)40℃の真空乾燥箱に入れて2.5h真空乾燥し、エチルエーテルを十分に除去し、取り出して室温まで放冷した後、さらに乾燥器に入れて使用に備えた。
4.6.3 COS-g-MPEGの調製
(1)イオン液体を80℃の送風乾燥箱で融解した。
(2)イオン液体105gを秤取して三口フラスコに入れ、油浴で70℃に加熱し、アルゴンガスを導入して、COS 9gを緩やかに加え、COSが完全に溶解すると、活性化MPEG 6gを加え、磁気撹拌して、すべての原料の添加が完了した後、アルゴンガス保護下で6h反応させ、反応完了後、反応瓶を室温に冷却した。
(3)まず、クリップを用いて透析バッグの一方側を挟み、適量の蒸留水を加えて3回洗浄し、且つ透析バッグが水を漏らすか否かを検査し、その後、反応瓶中のサンプルを透析バッグ(分画分子量は2000である)に入れて72時間透析し、蒸留水の使用量について透析バッグを超えるのが好ましい。一日目に2~3hおきに水を1回交換し、それ以降、12hおきに水を1回交換した。
(4)透析完了後、溶液を1000mL三口フラスコに加え、且つ水浴鍋に置き、減圧蒸留装置を取り付けて、蒸留温度を室温から25℃、30℃、35℃、40℃、45℃、50℃、55℃、60℃に勾配昇温し、50mL程度が残されるまで蒸留すると、蒸留装置を取り外し、熱いうちに、サンプルを使い捨てビーカーに注入して、使い捨て手袋を用いてカップ開口部をカバーし、-18℃の冷蔵庫に入れて8時間以上冷凍した。
(5)凍結乾燥機で30min予冷し、冷凍温度は-52℃に達する。サンプルを粉砕して、培養皿に敷き、予冷された凍結乾燥機に入れて、-52℃で30h凍結乾燥させた。冷凍完了後、装置を停止して、サンプルを取り出し、重量を量り、試薬袋に入れて、乾燥器に入れて保存した。
(6) 赤外線分析:適量のサンプルを取り、臭化カリウムを用いて打錠し、走査範囲を400~4000cm-1として、サンプルの赤外線スペクトルを測定した。
5、COS-g-MPEGのPBS液の調製
5.1 5.12%:0.128gのCOS-g-MPEGを秤取して5ml遠心分離管に入れ、PBS液を加えて溶解し、且つ2.5mlに定容した。
5.2 2.56%:5.12%液1.2ml+PBS液1.2ml;
5.3 1.28%:2.56%液1.2ml+PBS液1.2ml;
5.4 0.64%:1.28%液1.2ml+PBS液1.2ml;
5.5 0.32%:0.64%液1.2ml+PBS液1.2ml;
5.6 0.16%:0.32%液1.2ml+PBS液1.2ml;
6、PIC、COS-g-MPEG及び塩化カルシウム溶液のパミカ溶液の調製
6.1 PIC液1.0mlを取って45℃の水浴鍋に入れ、5.1 1.0mlを滴下し、次に塩化カルシウム溶液0.005mlを滴下してその最終濃度を0.0004mol/Lとした。
6.2 PIC液1.0mlを取って45℃水浴鍋に入れ、5.2 1.0mlを滴下し、次に塩化カルシウム溶液0.005mlを滴下してその最終濃度を0.0004mol/Lとした。
6.3 PIC液1.0mlを取って45℃水浴鍋に入れ、5.3 1.0mlを滴下し、次に塩化カルシウム溶液0.005mlを滴下してその最終濃度を0.0004mol/Lとした。
6.4 PIC液1.0mlを取って45℃水浴鍋に入れ、5.4 1.0mlを滴下し、次に塩化カルシウム溶液0.005mlを滴下してその最終濃度を0.0004mol/Lとした。
6.5 PIC液1.0mlを取って45℃水浴鍋に入れ、5.5 1.0mlを滴下し、次に塩化カルシウム溶液0.005mlを滴下してその最終濃度を0.0004mol/Lとした。
6.6 PIC液1.0mlを取って45℃水浴鍋に入れ、5.6 1.0mlを滴下し、次に塩化カルシウム溶液0.005mlを滴下してその最終濃度を0.0004mol/Lとした。
7、結果
MPEG、PEG、PEIなどはすべて良好な水溶性を有し、且つ多くの有機物成分と良好な相溶性を有する。本実施例では、MPEGを例に、MPEGとカチオン安定剤(たとえばキトサンオリゴ糖)のグラフト物及びPICを用いて調製し、相容性が顕著に向上し、理論的には、PEGなどのグラフトキトサンなどのカチオン安定剤及びPICを用いて調製しても、相容性が向上し、カチオン安定剤上にPEGがグラフトされると、グラフト物自体にもPEGの特性を備える。
【表1】
試験結果から明らかなように、PIC:COS-g-MPEGは、1:25.6mgでも透明溶液であるが、増色効果の結果から明らかなように、グラフト物が多いほど好ましいわけではなく、また、我々は2018-05-07に調製されたサンプル6.1、6.、6.3、6.4、6.5、6.6を室温で放置し、2018-05-14に観察したところ、6.6のサンプルにフレーク状析出物が現れて、再溶解ができないことを見出した。総合的に考慮すると、我々は、パミカ処方中のPIC及びCOS-g-MPEGの処方を1:6.4mgの範囲内に制限する。
二、パミカナノ粒子の調製
薬用基準を満たすトリポリリン酸ナトリウム(TPP)を購入し、適切な割合でPIC-COS-g-MPEG-CaCl複合物を恒温磁気撹拌器にて一定の回転数で等速撹拌し、異なる濃度のTPP水溶液を1滴ずつ滴下し、顕著な乳光が観察されると、すぐに停止し、反応を30分間維持し、イオン架橋自己組織化によりナノ粒子を形成し、高速遠心分離を経て、粒径が1000nm未満のものを取得した。且つ各種の検定をしたところ、合格する。
三、ポリペプチド又はタンパク質抗原ナノ粒子
態様1:ポリペプチド又はタンパク質抗原を上記ナノ粒子の形成過程に加えた。各成分がPEG-COSグラフト物又はCOS基質中に入り、ポリペプチド又はタンパク質抗原がTPP含有水相に入って結合される。ここで各成分を必ず適切な割合にし、且つ一定のpH環境下で、磁気ボールで撹拌して結合し、複合物及びナノ粒子を形成する。
態様2:ポリペプチド又はタンパク質抗原を上記予め形成された複合物及びナノ粒子とインキュベートし、ポリペプチド又はタンパク質抗原を複合物及びナノ粒子の表面に結合させ、ポリペプチド又はポリペプチド又はタンパク質抗原を上記複合物及びナノ粒子と一定の割合で混合し、5分間磁気撹拌し、室温で1時間放置し、グリセリン基質下、20000rcf、4℃で2時間超速遠心分離して取得した。
態様1/態様2の複合物及びナノ粒子については、各検定に合格する必要がある。
四、パミカの製剤形式
上記複合物/グラフト物含有複合物/複合物ナノ粒子/ポリペプチド又はタンパク質抗原ナノ粒子を無菌で適切な/合格する包材に包装し、注射、噴霧剤又はエアロゾル剤などの各種の剤型を調製し、各種の製品検定をしたところ合格すると、製品を調製した。
上記複合物/グラフト物含有複合物/複合物ナノ粒子/ポリペプチド又はタンパク質抗原ナノ粒子を無菌で適切な/合格する包材に包装し、膏剤を調製した。
噴霧剤に調製した実施例:上記方法によりパミカを調製し、その溶液を噴霧剤瓶に包装し、20瓶を取り、それぞれ薬液の噴霧モード検出及び霧滴分布のデータ検出を行った。
噴霧モードを下記表に示す。
【表2】
霧滴分布を下記表に示す。
【表3】
【0139】
実施例2 パミカとPEIとの組み合わせによる溶解度増加試験
「パミカとPEGとの組み合わせ」の調製方法(即ち実施例1)を参照して調製し、パミカ中のCOS使用量を増加すると沈殿が現れ、その投与の均一性に影響するが、PEIを添加すると、沈殿の出現を回避でき、且つCOSの使用量を増加すると、その免疫効果をさらに強化させる。
【表4】
試験から、パミカは、PEIと組み合わせると、PIC中のCOS溶解度が1.6mg/mlから6.4mg/mlに向上し、少なくとも4倍向上したことが明らかになる。
CN105396130A特許出願文献には、「ポリイノシン-アミノ化合物-塩化カルシウムアジュバント及びポリイノシン-アミノ化合物-塩化カルシウムアジュバントを含有するワクチン」が開示されており、且つ非抗生物質アミノ化合物は選択的にキトサンであることが開示されている。
本比較例では、実施例1におけるキトサンオリゴ糖を水溶性キトサン(キトサン塩酸塩、略語CS)に代え、それにより、投与均一性の点についての両方の影響を比較し、結果を下記表に示す。
【表5】
研究したところ、水溶性キトサンを添加することにより、調製過程に沈殿が現れて、且つ揺動により分散させないことを引き起こし、その投与均一性に影響し、一方、キトサンオリゴ糖を用いると上記問題を解決できる。さらに、キトサングラフトPEG又は水溶性キトサンはともに小分子量キトサンオリゴ糖に分解されて初めて人体により容易に吸収することができ、一方、キトサンオリゴ糖は直接吸収可能であることを見出した。
【0140】
実施例3 PIC加熱及び分子量検出
実施例1の調製方法により、PIC液を調製し、PIC液260mlを取って20ml/本、合計13本個包装し、恒温水浴鍋の温度が80-99℃に上昇すると(好ましくは90℃)、サンプル12本を入れ、入れた後、計時し始めてそれぞれ10分間(バンド3)、20分間(バンド4)、30分間(バンド5)、40分間(バンド6)、50分間(バンド7)、60分間(バンド9)、70分間(バンド10)、80分間(バンド11)、90分間(バンド12)、100分間(バンド13)、110分間(バンド14)、及び120分間(バンド15)持続し、1回あたり1本取り出した。未加熱のサンプルはバンド2であった。
70-120分間(好ましくは加熱時間120分間)加熱したPICで調製された複合物(パミカ)及びそのワクチンを取り、『中国薬局方』2015版四部「1141異常毒性検査法」によれば、これらは、すべてマウス及びモルモット異常毒性検出に合格し、パミカを調製するために使用されるPICは、90℃で少なくとも70分間加熱して初めて製品の調製に用いるべきであり、好ましくは90℃で、加熱時間は120分間である。未加熱PIC(バンド2)及び60分間(バンド9)加熱したものを選択して調製された複合物及びそのワクチンは、モルモット異常毒性検出に合格できなかった。結果を図2に示し、対照バンド1:下から上へそれぞれ100bp、300bp、500bp、750bp、1000bp、1500bp、2000bp、3000bp、5000bpであった。対照バンド8:下から上へそれぞれ100bp、200bp、300bp、400bp、500bp、600bp、700bp、800bp、900bp、1000bpであった。
【0141】
実施例4 パミカ複合物の酵素分解試験
方法:本開示の実施例1の調製方法によりパミカ複合物を調製し、調製完了後、パミカ複合物及びポリイノシン注射液(ポリイノシン-カナマイシン-塩化カルシウム)のそれぞれのサンプルをそれぞれ0.04mg/mlに希釈し、13個の10ml管を取り、管ごとに5mlのサンプル希釈液を加え、さらに管ごとにsigmaのRNA酵素(商品番号R4642)25μgをそれぞれ加えて、37℃水浴鍋に放置し、5minおきに1本取り出して、248nmでのOD値を測定し、曲線を描画した。
結果を図3に示す。
【0142】
実施例5 本開示のパミカ複合物が新規構造の複合物であること
(一)融解曲線のピーク値の測定
方法:本開示のパミカ複合物及びポリイノシン注射液のそれぞれのサンプルを0.04mg/mlに希釈し、250ml試薬瓶に移し、水浴鍋に置き、水浴鍋を持続的に昇温した。5℃おきに、3mlを取って石英キュベットに入れて、248nmでのOD値を測定し、曲線を描画した。
結果を図4に示す。
試験の測定結果から明らかなように、本開示のパミカ複合物(PIC-カチオン安定剤-塩化カルシウム)の融解曲線のピーク値は85℃であり、ポリイノシン注射液(PIC-カナマイシン-塩化カルシウム)の融解曲線のピーク値は80℃であり、これは、本開示のパミカ複合物が新規複合物であることを示した。
(二)吸収ピーク走査
実施例1の調製方法により、PI溶液、PC溶液、PIC溶液、PIC-COS溶液、PIC-COS-CaCl溶液をそれぞれ調製し、PBS緩衝液を用いて上記サンプルをそれぞれ0.04mg/mlに希釈し、紫外線を用いてそれらの走査吸収スペクトルをそれぞれ測定し、図5の結果から、240-260nmで現れるピークが降順で順次PI、PC、PIC、PIC-COS、PIC-COS-CaClであり、ここでPIC-COSとPIC-COS-CaClピークが重なることを示し、これは、本開示のパミカ複合物(PIC-COS-CaCl)が新規構造の複合物であることを示した。
【0143】
実施例6 PIC、COS及び塩化カルシウムで形成された一部のナノ粒子
実施例1の方法によりパミカを調製し、ここでカチオン安定剤はCOSを用い、金属カチオンは塩化カルシウムを用いた。透過型電子顕微鏡写真(図6図7)から分かるように、パミカ溶液中にナノ粒子が形成されており、そのほとんどは球状であり、粒径が50nm程度であり、比較的均一であり、少数は角形であり、辺長が100nmを超える。
【0144】
実施例7 PIC、COS-g-MPEG及び塩化カルシウムで形成された一部のナノ粒子
実施例1の方法によりパミカを調製し、ここでカチオン安定剤はCOS-g-MPEGを用い、金属カチオンは塩化カルシウムを用いた。透過型電子顕微鏡写真(図8図9)から分かるように、パミカ溶液中にナノ粒子が形成されており、そのほとんどは角形であり、辺長が100nmを超え、少数は球状である。
【0145】
実施例8 PIC、COS、TPP及び塩化カルシウムで形成された一部のナノ粒子
COSをリン酸塩緩衝溶液に溶解し、実施例1の方法によりPICのTPP溶液を調製し、PICのTPP溶液を撹拌下でCOS溶液に緩やかに滴下し、次に、塩化カルシウム溶液を滴下した。透過型電子顕微鏡写真(図10図11)からわかるように、形成されたナノ粒子は紡錘状である。
実施例5~8から、驚くべきことに、パミカ複合物溶液中に2種の状態の物質を同時に含有しており、1種はナノ粒子(電子顕微鏡結果)であり、もう1種は非ナノ粒子(実施例3の電気泳動結果)溶液であることを見出すことができた。
ナノ粒子の利点は、エンドサイトーシス作用を介さずに細胞膜を直接透過して、細胞内に入り、効き目が早いことであり、非ナノ粒子溶液は、エンドサイトーシスを介してしか細胞内に入られず、ナノ粒子よりも効き目が遅い。パミカは、エンドサイトーシスを介するモード、細胞に直接入るモードという2種のモードで効果を発揮できる。さらに、より重要なことは、ナノ粒子の構造では、パミカを保護し、それをヒトを含める霊長類以上の体内の血清中の核糖ヌクレアーゼによるPICの分解から守ることで、抗ウイルス・抗腫瘍の突破を達成させて、より大きな効果を取得することを期待することである。これらの効果により、パミカは、ヒトやマウスの抗癌効果のいずれに関しても、目立った効果を取得した。
【0146】
実験例 パミカ複合物の免疫効果に対する評価
下記実験例では、特に言及がない場合、パミカはすべて実施例1により調製されたPIC、COS及び塩化カルシウム溶液のパミカ溶液を指す。
【0147】
実験例1 組換えB型肝炎ワクチン[rHBsAg(CHO)]におけるパミカ複合物の免疫効果の評価
材料:rHBsAg(CHO):20μg/ml、パミカアジュバント:1mg/ml、ADV20アジュバント400μg/ml、水酸化アルミニウムアジュバント:10mg/ml、生理食塩水
アルミニウムアジュバント/rHBsAg(CHO):アルミニウムアジュバント0.07ml+rHBsAg(CHO)0.5ml+生理食塩水0.43ml
ADV20(サイトカインアジュバント)/rHBsAg(CHO):ADV20 0.25ml+rHBsAg(CHO)0.5ml+生理食塩水0.25mlパミカアジュバント/rHBsAg(CHO):パミカアジュバント0.5ml+rHBsAg(CHO)0.5ml
方法:アルミニウムアジュバント/rHBsAg(CHO)、ADV20(サイトカインアジュバント)/rHBsAg(CHO)、パミカ/rHBsAg(CHO)をそれぞれ用いて、0、14日目に筋肉を介してハツカネズミを0.1mlで免疫し、21日目に、細胞免疫及び体液免疫の状況を検出した。
結果:本開示のパミカ複合物は、免疫効果が目立ち、特にELISA抗体及び細胞免疫のいずれも大幅に向上し、アルミニウムアジュバント及びADV20(サイトカインアジュバント)よりも明らかに優れており、パミカは、将来性が期待できる免疫アジュバントであり、詳細については図12及び図13を参照する。
【0148】
実験例2 不活性化ブルセラ抗原におけるパミカ複合物の免疫効果の評価
方法:PBS、ポリイノシン注射液+不活性化ブルセラ抗原、本開示のパミカ複合物+不活性化ブルセラ抗原をそれぞれ用いてマウスを免疫し、0日目に1回免疫し、免疫してから45日後、ブルセラ強毒株を用いてハツカネズミを攻撃し、毒株攻撃15日後、ネズミを殺してマウス脾臓を摘出し、且つ脾臓のブルセラを3日間培養して計数し、本開示のパミカ複合物+不活性化ブルセラ抗原の保護効力を評価した。
【表6】
結果:本開示のパミカ複合物は、免疫効果が目立ち、不活性化ブルセラ抗原の開発に関しては一定の将来性があり、本開示のパミカ複合物+不活性化ブルセラ抗原は、空白対照群の細菌分離数とは3.03個のlogほどの差を持ち、ポリイノシン注射液+不活性化ブルセラ抗原に比べて、分離数が1.35の差を持ち、パミカ複合物の不活性化ブルセラの保護効果が目立つ。
【0149】
実験例3 パミカ複合物及びMYO抗原(ヒトミオグロビン)の、抗体調製における応用
材料:MYO抗原(ヒトミオグロビン)、濃度1mg/ml
本開示のパミカ複合物、濃度1mg/ml
完全フロイントアジュバント(CFA、Sigma)
方法:2.3-2.5kgのウサギを準備し、免疫前に陰性血を採取して血清を分離し対照とし、腹背部の皮下の複数の部位にそれぞれ異なるサンプルを注射した後、血清を分離して抗体検出を行った。ここで抗原+アジュバントは0.5ml+0.5mlで調製し、1回あたりの免疫用量は1mlであった。
結果
(1)本開示のパミカ複合物+MYO抗原、完全フロイントアジュバント+MYO抗原をそれぞれ用いてカイウサギを免疫し、7日おきに1回免疫注射した。完全フロイントアジュバントによる免疫を2回(10日)追加すると、ELTSAによる抗体力価は13000であり、完全フロイントアジュバントによる免疫を3回(18日)追加すると、ELTSAによる抗体力価は39000であり、完全フロイントアジュバントによる免疫を6回(3ヵ月)追加すると、ELTSAによる抗体力価は25000であり、本開示のパミカ複合物による免疫を2回(10日)追加すると、ELTSAによる抗体力価は45000であり、3回(18日)免疫すると、ELTSAによる抗体力価は51000であり、6回(3ヵ月)免疫すると、ELTSAによる抗体力価は36000であり、パミカアジュバントは、MYO抗原の初期では、抗体力価が高く、持続性が良好であり、これは、本開示のパミカ複合物が、MYO抗原に対しては、免疫アジュバントゴールドスタンダードを有する完全フロイントアジュバントよりも顕著に優れ、詳細については図14を参照する。
(2)本開示のパミカ複合物と完全フロイントアジュバントを組み合わせてMYO抗原に関してカイウサギを2回免疫する場合(0日目に1回免疫、14日目に1回免疫)、ELISAによる抗体力価(免疫後35日)は、完全フロイントアジュバントでは10000、本開示のパミカ複合物では60000、本開示のパミカ複合物+完全フロイントアジュバントでは160000(図15)であった。
完全フロイントアジュバント+抗原、パミカアジュバント+完全フロイントアジュバント+抗原、パミカアジュバント+抗原でカイウサギを免疫して産生した抗体をそれぞれ用いてキットを調製した。臨床検証を経たところ、完全フロイントアジュバント又は完全フロイントアジュバント+パミカアジュバント抗原群を用いて産生した抗体は臨床サンプルとマッチングしておらず、臨床検査に合格できず、パミカアジュバント抗原を用いて産生した抗体だけは臨床検査に合格でき、これは、中国国内のヒトミオグロビンラテックス比濁キットに使用される抗体原料の供給に対するオランダDako社の独占を完全に破り、中国国内の製品が完全フロイントアジュバントを使用することにより一般的に存在する、免疫力効が低く、エピトープ多様性が不足し、臨床サンプルを効果的に検出できないという深刻な状況を解決する。
下表は、パミカアジュバント+抗原群で産生した抗体を用いて調製したキットと、オランダDako社により提供される抗体で調製した、臨床に使用されているキットとの比較である。
【表7】
【0150】
実験例4 狂犬病ワクチン抗原におけるパミカ複合物のNIH効力の評価
名称:狂犬病ワクチン抗原における本開示のパミカ複合物のNIH効力の評価
方法:本開示のパミカ複合物(1mg/ml)+抗原、ポリイノシン注射液(1mg/ml)+抗原、PBS+抗原、及び抗原をそれぞれ用いて、0日目にマウスを免疫し、14日目に毒株で攻撃し、28日後、効力を測定した。
結果:下記表に示す。
【表8】
結果からわかるように、
a 本開示のパミカ複合物+CTN株狂犬病ワクチン抗原は、保護効果が単純なCTN株狂犬病ワクチン抗原の3.6倍であり、且つ抗原を1/5節約した。
b 本開示のパミカ複合物+CTN株狂犬病ワクチン抗原は、保護効果がポリイノシン注射液+CTN株狂犬病ワクチン抗原の1.8倍であり、効果が目立った。
【0151】
実験例5 パミカ複合物によるマウスの複数種のサイトカインの産生誘導
方法:本開示のパミカ複合物、ポリイノシン注射液をそれぞれ用いてマウスを免疫し、免疫後1時間、2時間、5時間にそれぞれマウスの眼球を摘出して血を滅菌2ml遠心分離管に採取し、室温で30分間放置し、3500回転で5分間遠心分離し、上清を1つの新しい遠心分離管に吸い取り、血清を-20℃で冷凍保存した。
結果:本開示のパミカ複合物により誘導されたTNF-α、IFN-γサイトカインは、産量がポリイノシン注射液よりも顕著に優れ、得られたデータはすべて幾何平均値であり、具体的な結果を下記表に示す。
【表9】
結論:TNF-αは、腫瘍細胞を死滅・抑制し、中性顆粒球貪食を促進し、感染に抵抗することができ、腫瘍細胞の死亡を直接引き起こしうる1種類のサイトカインであり、IFN-γは、ウイルス感染に対する細胞の耐性発生を誘導することができ、これは、ウイルス遺伝子転写又はウイルスタンパク質成分の翻訳を干渉することにより、ウイルス感染を阻止又は制限し、現在最も主要な抗ウイルス感染及び抗腫瘍のサイトカインである。
マウスがパミカの誘導により産生したTNF-α、およびIFN-γサイトカインのレベルはいずれポリイノシン注射液よりも高く、これは、本開示のパミカ複合物の誘導により産生したTNF-α及びIFN-γが、腫瘍細胞の共同殺滅及び抗感染の能力がより高いことを示す。
【0152】
実験例6 異常毒性検査
1、本開示のパミカ複合物のマウス試験法
1.1 試験方法
サンプル注射:18~22gの健全SPF昆明マウスを、5匹/サンプルとし、0.5ml/匹で腹腔注射しながら、18~22gの健全マウス5匹を秤取して空白対照とした。
1.2 判定基準
各匹のマウスに試験品0.5mlを腹腔注射して、7日間観察した。観察期間の間に、マウスがすべて健全に生存し、且つ異常反応がなく、期間が切れると、各匹のマウスの体重が増加すると、試験品を合格と判定した。上記要件に合致しないと、10匹のマウスを用いて再度試験することができ、判定基準は前記と同じであった。
1.3 結果
【表10-1】
【表10-2】
2 本開示のパミカ複合物のモルモット試験法
2.1 試験方法
サンプル注射:250~350gの健全SPFグレードHartelyモルモットを、2匹/サンプルとし、5ml/匹で腹腔注射しながら、250~350gの健全モルモットを2匹秤取して空白対照とした。
2.2. 判定基準
各匹のモルモットに試験品5mlを腹腔注射して、7日間観察した。観察期間の間に、モルモットがすべて健全に生存し、且つ異常反応がなく、期間が切れると、各匹のモルモットの体重が増加すると、試験品を合格と判定した。上記要件に合致しないと、4匹のモルモットを用いて再度試験することができ、判定基準は前記と同じであった。
2.3. 試験結果
【表11-1】
【表11-2】
【表11-3】
【表11-4】
3 本開示のパミカ複合物+狂犬病ワクチン精製抗原のモルモット試験法
3.1 試験方法
サンプル注射:250~350gの健全SPFグレードHartelyモルモットを、2匹/サンプルとし、5ml/匹で腹腔注射しながら、250~350gの健全モルモットを2匹秤取して空白対照とした。
3.2. 判定基準
各匹のモルモットに試験品5mlを腹腔注射して、7日間観察した。観察期間の間に、モルモットがすべて健全に生存し、且つ異常反応がなく、期間が切れると、各匹のモルモットの体重が増加すると、試験品を合格と判定した。上記要件に合致しないと、4匹のモルモットを用いて再度試験することができ、判定基準は前記と同じであった。
3.3. 試験結果
【表12-1】
【表12-2】
4 本開示のパミカ複合物+B型肝炎ワクチン抗原のモルモット試験法
4.1 試験方法
サンプル注射:250~350gの健全SPFグレードHartelyモルモットを、2匹/サンプルとし、5ml/匹で腹腔注射しながら、250~350gの健全モルモットを2匹秤取して空白対照とした。
4.2. 判定基準
各匹のモルモットに試験品5mlを腹腔注射して、7日間観察した。観察期間の間に、モルモットがすべて健全に生存し、且つ異常反応がなく、期間が切れると、各匹のモルモットの体重が増加すると、試験品を合格と判定した。上記要件に合致しないと、4匹のモルモットを用いて再度試験することができ、判定基準は前記と同じであった。
4.3. 試験結果
【表13】
概要分析
PIC(二本鎖核酸)は、一定の温度に加熱されるとねじれを解き、温度が徐々に下がるにつれて、2本の一本鎖がさらに水素結合をもってペアリングして、二本鎖に回復し、加熱は、PICの分子量を低下させて、その毒性を低下させることができ、PICは加熱せず又は加熱時間が不十分である場合に調製すると、このような方法で調製された複合物自体は毒性が極めて高く、このような複合物で調製されたワクチンも毒性が極めて高く、このため、応用が極めて困難である。
【0153】
実験例7 一部の進行癌患者及び感染治療におけるパミカ複合物の応用
【表14-1】
【表14-2】
【表14-3】
【表14-4】
【表14-5】
【表14-6】
【表14-7】
複数の進行癌病例から、本品は、注射投与経路に加えて、鼻腔噴霧を介して投与してもよく転移性癌に対して効果が顕著であることが見られる。
(1)安全性が良好であり、顕著な副作用が見られておらず、パミカ免疫製剤は非細胞毒性薬物である。
(2)放射線・化学療法の副作用を低減させ、白細胞数及び血清タンパク質の含有量を向上させることができる。
(3)臨床的効果が明らかである:疼痛が低減し、摂食量を増加し、体力を増加し、精神的に悲観的な状態から楽観的になり、全生存期間がすでに数月延長しており、13ヵ月延長する病例がある。
(4)転移性癌の体積縮小が顕著であり、1/3-1/2の腫瘍縮小を示す病例がある。
【0154】
実験例8 安定性検出
本開示のパミカ複合物は、生産完了後、遮光下、室内に保管し、6ヵ月おきにサンプルを1回検出した。
【表15】
結果:サンプルを室温(北京では、8-9月の室温はすべて30℃を超える)で6ヵ月内保管したところ、製品の検出指標には顕著な変化が発生しておらず、このことから、製品が比較的安定しており、1mg/mlのパミカを調製すると、少なくとも12ヵ月の安定性を達成でき、3mg/mlのパミカを調製すると、少なくとも9ヵ月の安定性を達成できることを示す。該製品は、pHが比較的安定しており、放置のまま3年以内に、pHには大きな変化がない。本開示のパミカは、細菌内毒素が<10EU/mlであり、一方、ポリイノシン注射液は、細菌内毒素が100EU/mlよりも大きく、細菌内毒素がグラム陰性菌の細胞壁成分であり、細菌が死亡し又は自己消化すると、内毒素を放出することは本分野の公知技術である。したがって、細菌内毒素は自然界に広く存在している。たとえば、水道水中に含まれる内毒素の量が1~100EU/mlである。内毒素が消化管を介して人体に入ると害を発生させないが、内毒素が注射などの方式により血液に入ると、さまざまな疾患を引き起こす。少量の内毒素が血液に入った後、肝臓クッパー細胞により不活性化され、生体の損害を引き起こすことはない。大量の内毒素が血液に入ると、発熱反応である「熱原反応」を引き起こす。したがって、生物製品類、注射用薬剤、化学薬品類、放射性薬物、抗生物質類、ワクチン類、透析液等の製剤及び医療器具類(たとえば使い捨て注射器、埋め込み可能な生体材料)は使用する前に細菌内毒素検出試験に合格する必要がある。
【0155】
実験例9 パミカによるマクロファージ貪食機能促進の測定
場所:中国医学科学院薬物研究所
方法:マクロファージの収集:20~25gのSPFグレード昆明ハツカネズミを6匹準備して、2群にランダムに分け、1群あたり3匹とした。0日目にパミカ及びPBSで免疫し、各匹のマウスに200μL点鼻し、2時間後、各匹のマウスに5.0%鶏赤血球の0.85%生理食塩水懸濁液をさらに腹腔注射し、4時間後、各群のマウスごとにそれぞれハツカネズミ3匹を頸椎脱臼により死亡させた。消毒後、皮膚を切り開き、且つHanks緩衝液を腹膜注射し、各匹に2.5mLを注射し、マウスの腹部を軽く揉んで、Hanks緩衝液で十分に腹腔内のマクロファージを濯いだ。その後、腹膜の中央部位で1つの小孔を開き、5mLピペットを用いて腹腔内の液体を約2mL吸い取り、試験管中に投入した。
滴下済みスライドガラス:試験管から腹腔洗液を無菌で吸いだし、スライドガラス上に滴下し、滴下済みスライドガラスを水平にしてウェットガーゼ上に置き、37℃恒温インキュベータに入れて半時間インキュベーションし、このとき、大量のマクロファージがスライドガラス上に粘着しており、0.85%生理食塩水を用いてスライドガラス上の貪食されていない鶏赤血球及び他の組織細胞をリンスして除去し、冷たい空気で風乾した。
標本の固定化及び染色:標本をメタノールで5分間固定化し、ライトギムザ染色液で染色した。ギムザ染色法により行い、使用されるPBS緩衝液のpHを6.5に調整し、冷たい空気で風乾した後、油浸レンズで観察して且つ計算した。
貪食百分率:赤血球を貪食するマクロファージ総数÷マクロファージ総数×100%。
貪食指数:マクロファージにより貪食される赤血球総数÷赤血球を貪食するマクロファージ総数×100%(油浸レンズ下で100個のマクロファージを観察し、各マクロファージにより貪食される赤血球数を記録し、これらの和を求めて100で割って、得た数値は貪食指数となる)。
結果:PBS対照群では、貪食百分率は12%であり、貪食指数は0.11であり、パミカ群では、貪食百分率は66%であり、貪食指数は1.2であり、これは、パミカが高いマクロファージ貪食機能刺激の作用を有することを示し、以下の図16には、マクロファージは赤血球を貪食し、図17には、青色マクロファージ(矢印に示される)は赤血球を貪食していない。
【0156】
実験例10 インフルエンザハツカネズミに対する、パミカ点鼻剤の粘膜免疫製剤単独での保護試験
インフルエンザウイルス:アジアA型ネズミ肺適応株FM1、中国予防医学科学院ウイルス病予防・治療研究所から購入。
リバビリン:陽性対照薬、瀋陽延風薬廠から購入。
ハツカネズミ:昆明種、8~10gのものは、FM1ウイルス継代に用い、14~20gのものは下記本実験に用いた。
インフルエンザウイルスFM1株ウイルスネズミ肺懸濁液を、5LD50/匹でハツカネズミに点鼻することにより致死性肺炎を引き起こす可能性があり、試験時にまず感染させて、次に投与し、下記表に従って群分けして試験した。
【表16】
該実験結果から明らかなように、ハツカネズミ保護試験において、本開示単独の点鼻剤は、粘膜免疫経路を介した非特異的な抗インフルエンザ効果が、公知の抗ウイルス薬であるリバビリンよりも優れ、統計学的に分析したところ、明らかな抗インフルエンザウイルス効果を有した。
【0157】
実験例11 パミカ粘膜免疫製剤(点鼻剤)とインフルエンザワクチンとの組み合わせの鼻腔粘膜免疫、皮下注射免疫、及び完全フロイントアジュバントの、体液抗体IgA及びインフルエンザウイルスの繁殖力価に対する影響の比較
実験態様は以下のとおりである。
インフルエンザウイルス:アジアA型ネズミ肺適応株FM1、中国予防医学科学院ウイルス病予防・治療研究所から購入。
インフルエンザワクチン:インフルエンザウイルススプリットワクチン 華蘭生物製品有限公司
完全フロイントアジュバント:上海偉進生物科技有限公司
本開示の粘膜免疫アジュバント:信福(北京)医薬科技有限公司
ハツカネズミ:昆明種、8~10gのものはFM1ウイルス継代に用い、14~20gのものは下記本実験に用いた。
完全フロイントアジュバントインフルエンザワクチン:遠心分離管内に、均一にボルテックス混合しながらワクチンと完全フロイントアジュバントとを等体積で加えて、油中水型エマルジョンとした。
本開示とインフルエンザワクチンとを組み合わせた点鼻剤:インフルエンザワクチンと本開示の粘膜免疫アジュバントとを等量で混合して水溶媒とした。
インフルエンザワクチン:インフルエンザワクチンとPBSとを等量で混合して水溶媒とした。
免疫方法
皮下注射免疫:0日目、28日目に0.1ml/匹の皮下注射によりハツカネズミを免疫し、42日目に、一部のハツカネズミから採血して血清を分離し、抗体力価を検出し、別の一部のハツカネズミを、インフルエンザウイルスFM1株ウイルスネズミ肺懸濁液5LD50/点鼻により感染させ、感染後5日目に、肺組織のウイルス力価を検出した。
鼻腔免疫:点鼻法により0日目、28日目にハツカネズミを0.1ml/匹で免疫し、42日目に、一部のハツカネズミを採血して血清を分離し、抗体力価を検出し、別の一部のハツカネズミを、インフルエンザウイルスFM1株ウイルスネズミ肺懸濁液5LD50/点鼻により感染させ、感染後5日目に、肺組織のウイルス力価を検出した。
各群の実験結果を下記表に示す。
粘膜免疫製剤とインフルエンザワクチンとの組み合わせの点鼻法による抗インフルエンザ試験
【表17】
完全フロイントアジュバントは、生体細胞免疫促進を検出するゴールドスタンダードであり、試験結果から明らかなように、本開示の粘膜免疫製剤とインフルエンザワクチンとの組み合わせで皮下免疫して産生する抗体は、完全フロイントアジュバントインフルエンザワクチンよりも10倍低いが、完全フロイントアジュバントインフルエンザワクチンよりもインフルエンザウイルス力価を31.6倍低下させ、特に、ハツカネズミ鼻腔粘膜免疫によれば、本開示の粘膜免疫製剤と抗原とを結合した点鼻剤は、単純なインフルエンザワクチン抗体よりも31.6倍高く、インフルエンザウイルス力価を3100倍余り低下させ、極めて明らかな効果を有した。
【0158】
実験例12 パミカはCIK細胞エフェクターターゲット実験の初期テストに対して明確な効果を有すること
北京京蒙高科乾細胞技術有限公司により検出したところ、本開示は、CIK細胞エフェクターターゲット実験に対して明確な効果を有する。
試料番号:JSCIK2016042614;検出日付:2016.04.26;報告日付:2016.04.28。
操作手順:一般的なCIK細胞エフェクターターゲット実験に従って培養及び分析を行い、実験方法は、たとえば(荘捷ら、樹枝状細胞とCIK細胞を共培養して誘発したDCCIK細胞群の、腫瘍に対する死滅作用、細胞生物学雑誌、2007,29;237-240)に示される。
ターゲット細胞:A549 エフェクター細胞:培養JSCIK2016042614
結論:蛍光顕微鏡とマイクロプレートリーダーによる検出方法及び実験自体の誤差を考慮して、JSCIK2016042614細胞死滅能力を総合的に分析したところ、1:10の死滅効果は中であった(ターゲットエフェクター比が1:10である場合、ターゲット細胞A549に対する死滅率は51.4%であった)。
【0159】
実験例13 担癌ハツカネズミLL2肺癌モデルに対するパミカ粘膜免疫製剤の抗癌作用
LL2ハツカネズミ腫瘍移植モデルを用いて、鼻腔噴霧によりパミカの抗腫瘍効果を検出したところ、該モデルでは、腫瘍細胞が迅速に成長し、接種後14日目に腫瘍体積がすでに2201.9±68.01mmに達し、ここまで実験を終了し、ここで、陽性対照シスプラチンは、腫瘍縮小が最も好ましく、パミカ筋肉内注射群がそれに次いで、ただし、パミカ鼻腔噴霧は、0.1mg/匹ハツカネズミを除く。残りの0.2mg/匹の各鼻腔噴霧群は、溶媒陰性対照群よりもP<0.0001であり、有意差を有した。特に、従来の資料では、同じハツカネズミモデルにおいて、ネズミモデルPD1はほぼ効果がなかった。解釈すべきのは、シスプラチン群では、細胞分裂が非常に迅速である該モデルにおいてその効力をより発揮しやすく、総合的に考慮すると、新しい抗癌メカニズムに基づくこのような担癌ハツカネズミモデルへのパミカ効果が注目されることである。また、該モデルでは、ハツカネズミに対する副作用が発現されなかった。
実験の群分けを下記表に示す。
【表18】
具体的な実験結果を図18~21に示す。
本回の実験では、細胞の腫瘍形成率が高く、溶媒対照群の腫瘍が迅速に成長し、実験終了時に、腫瘍体積が2201.09±68.01mmに達し、陽性対照群のシスプラチンは顕著な腫瘍抑制効果を示し、これは、本回の実験が成功し、結果が確実であることを示した。
試験結果から示すように、マウス肺癌LL2細胞C57BL/6マウス腫瘍移植モデルに対する本回の研究では、パミカ、150μg/匹の群を除き、残りの群は、点鼻でも筋肉内投与でも、顕著な腫瘍成長抑制作用を示し、統計学的測定から、極めて有意的な差を有し、P<0.0001であり、また、担癌マウスに対して顕著な毒性や副作用がないことが示される。
輝源生物社の以前のデータから示されるように、マウス由来のPD-1抗体は、LL2モデルにおいて薬効が低く(腫瘍抑制率は10%未満であった)、同様に免疫系に作用するパミカとしては、示す効果がPD-1抗体よりも優れた。通常、PD-1抗体の抗腫瘍薬効が、腫瘍細胞PD-L1の発現レベルにより決まるか、もしくはmutation load、マイクロサテライト不安定性(MSI-H)もしくはミスマッチ修復欠陥(dMMR)に関連し、さらにその薬物の効果に影響すると考えられている。免疫アジュバント類のパミカとして示す腫瘍抑制効果は、免疫検査点の範囲よりも広く、極めて巨大な開発将来性を示した。
【0160】
実験例14 4T1-lucマウス乳腺上皮内癌モデルに対するパミカの生体内抗腫瘍効果の研究
本回の薬力学的実験には、溶媒群、PD1群、6つのパミカ治療群、パミカ-PD1同時投与群の合計9群が設置されている。ここで、溶媒群は、接種16日後、点鼻によりPBS溶液を66.7μL/匹、2日ごとに1回投与するものであり、PD1群は、接種16日後、PD1溶液を100μg/匹、1週間に1回腹腔注射投与するものであり、6つのパミカ治療群は、それぞれ、接種7日前、点鼻によりパミカを200μg/匹、2日に1回投与するもの、接種当日に、点鼻によりパミカを200μg/匹、2日に1回投与するもの、接種16日後、点鼻によりパミカを200μg/匹、2日に1回投与するもの、接種16日後、点鼻によりパミカを300μg/匹、2日に1回投与するもの、接種16日後、筋肉内注射によりパミカを200μg/匹、2日に1回投与するもの、接種16日後、筋肉内注射によりパミカを300μg/匹、2日に1回投与するものであり、パミカ-PD1同時投与群は、接種16日後、点鼻によりパミカを200μg/匹、2日に1回投与し、且つ接種16日後、PD1溶液を100μg/匹、1週間に1回腹腔注射投与するものである。実験には、雌Balb/cマウスを使用し、3日ごとに腫瘍体積を1回測定し、2日ごとに体重を1回量る。溶媒対照群の平均腫瘍体積が2000mmを超えるときに実験を終了し、小動物ライブイメージャーで腫瘍生物発光の状況を測定し、最後に、各群のマウスの臓器を取ってHE染色を行った。
薬力学的試験の結果から示すように、7日前群及び0日目群は、腫瘍成長及び転移の抑制能力が比較的低く、2つのパミカ筋肉内注射群は、腫瘍成長及び転移に対する抑制作用が、2つのパミカ点鼻群よりも高く、200μg/匹パミカ点鼻群を除き、300μg/匹パミカ点鼻群、200μg/匹パミカ筋肉内注射群、及び300μg/匹パミカ筋肉内注射群は、すべて腫瘍成長及び転移を明らかに抑制できた。実験終了時、200μg/匹パミカ点鼻群及び300μg/匹パミカ点鼻群の腫瘍抑制率はそれぞれ25%、及び35%であった。200μg/匹パミカ筋肉内注射群及び300μg/匹パミカ筋肉内注射群の腫瘍抑制率は、それぞれ56%、及び61%であった。
以上の結果から、パミカは、4T1乳癌に対して良好な腫瘍成長及び転移抑制作用を有することを示した。
以下、実験手順及び実験結果を具体的に検討する。
1.実験方法
1.1 4T1-lucマウス乳腺上皮内癌腫瘍モデルの構築
雌Balb/cマウスを取り、対数増殖期にある4T1-luc乳癌細胞を選択して、1×10個/0.2mL/匹の数量でBalb/cマウスの第4乳腺パッド下に接種し、同所性担癌マウスモデルを構築した。ノギスを用いて腫瘍塊の体積を動的に計測した。腫瘍体積の計算式:V=0.5×L×D2(ここで、Vは腫瘍体積、Lは腫瘍長径、Dは腫瘍短径である)。
1.2 投与時間の設定
接種7日前にパミカを点鼻投与する群(略語7日前群):腫瘍接種7日前に、10匹のマウスをランダムに選択し、表1に従って投与し始めた。
接種0日目にパミカを点鼻投与する群(略語0日目群):腫瘍接種当日に、10匹のマウスをランダムに選択し、表1に従って投与し始めた。
溶媒群:腫瘍体積が80mm程度成長し、即ち、腫瘍接種後16日目に、表1に従って投与し始めた。
PD1群:腫瘍体積が80mm程度成長し、即ち、腫瘍接種後16日目に、表1に従って投与し始めた。
200μg/匹パミカ点鼻群:腫瘍体積が80mm程度成長し、即ち、腫瘍接種後16日目に、表1に従って投与し始めた。
300μg/匹パミカ点鼻群:腫瘍体積が80mm程度成長し、即ち、腫瘍接種後16日目に、表1に従って投与し始めた。
200μg/匹パミカ筋肉内注射群:腫瘍体積が80mm程度成長し、即ち、腫瘍接種後16日目に、表1に従って投与し始めた。
300μg/匹パミカ筋肉内注射群:腫瘍体積が80mm程度成長し、即ち、腫瘍接種後16日目に、表1に従って投与し始めた。
【表19】
表1 実験の投与用量及び群分け
1.3 実験終点
投与後30日目に、腫瘍体積が2000mmを超えるため、実験全体を終了した。
1.4観察指標
3日ごとに腫瘍体積を1回計測し、2日ごとに体重を1回秤量した。実験終点時に心臓、肝臓、脾臓、肺、腎臓、腫瘍を剥離し、ここで、心臓、肝臓、脾臓、腎臓を4%中性ホルムアルデヒドで固定化した後、パラフィン切片にして、且つHE染色分析を行い、腫瘍について写真を取って且つ重量を量り、肺を、Bouin’s固定液で16h固定化し、その後、50%アルコールで2h浸漬した後、写真を取り、4%中性ホルムアルデヒドで固定化した後、パラフィン切片にして、且つHE染色分析を行った。
1.5 小動物ライブイメージャー
投与終点時に、腹腔注射により濃度100μLの30mg/mLのフルオレセイン基質Luciferinを与えて、イソフルランを用いてマウスを麻酔し、17min後、マウスを小動物ライブイメージャーに固定して生物発光の状況を観察した。画像収集パラメータは以下のとおりである。収集時間 0.2秒;Bin値 4;F値 2。画像処理ソフトウェア:Living Imagesoftware(version 4.3.1;Caliper Life Sciences Inc.)。
2 統計学的分析
実験データはすべて「平均値±標準偏差」で表され、データ分析には、SPSS Statistics 19(version 4.0.100.1124;SPSS Inc.,IBM Company,USA)ソフトウェアが採用された。データ比較には、一元配置分散分析ANOVAが採用され、群間有意差にはt検定が採用された:*p<0.05;**p<0.01;***p<0.001。
3. 実験結果及び検討
3.1 腫瘍体積
腫瘍体積の変化曲線を図22に示す。
【表20】
図22及び表2から分かるように、7日前群及び0日目群は、腫瘍抑制効果が比較的低く、2つの筋肉内注射群は、腫瘍抑制効果が2つの点鼻群よりも優れ、具体的な結果を以下に示す。
パミカ7日前群及び0日目群は、後期では、一定の腫瘍抑制作用を有し、前期では、ほぼ腫瘍抑制効果がなく、これは、早めて投与する、もしくはすぐに投与する場合、顕著な腫瘍死滅効果がないことを示し、別の角度からパミカは腫瘍治療ワクチンであり、予防ワクチンではないことを示す。実験終了時、7日前群及び0日目群の腫瘍抑制率は、それぞれ36%及び26%であった。
PD1群は、12日目の腫瘍体積に関して、溶媒群に比べて、すべて有意差(**p<0.01)を有し、これは、PD1が4T1マウス乳癌に対して一定の抑制作用を有することを示す。
PD1-パミカ同時投与群の各治療群は、投与後20日に、ほとんどのマウスがすでに死亡しており、したがって、後期の測定には、2群ともにデータなしであった。ここで、同時投与群は、6、12、18日目の腫瘍体積が、溶媒群に比べて、すべて有意差を有した(それぞれ*p<0.05、**p<0.01、***p<0.001)。
200μg/匹パミカ点鼻群は、投与前期では、抑制効果が比較的顕著であり、投与後期では、腫瘍抑制効果が徐々に弱まり、6日目及び12日目の腫瘍体積が、溶媒群に比べて、すべて有意差(**p<0.01)を有し、300μg/匹パミカ点鼻群は、18日目を除き、残りの時間での腫瘍体積が、溶媒群に比べて、すべて有意差を有した。これは、点鼻投与が有効であり、且つ腫瘍抑制作用が用量依存性を呈することを示す。実験終了時、200μg/匹パミカ点鼻群及び300μg/匹パミカ点鼻群の腫瘍抑制率は、それぞれ25%及び35%であった。
パミカの2つの筋肉内注射用量群は、投与過程にわたって腫瘍抑制効果が類似しており、且つ溶媒群に比べて、すべて有意差を有し、且つ、2つの筋肉内注射群は、腫瘍抑制効果が2つの点鼻群よりも良好であった。実験終了時、200μg/匹パミカ筋肉内注射群及び300μg/匹パミカ筋肉内注射群の腫瘍抑制率は、それぞれ56%及び61%であった。
3.2 体重
マウス体重の変化曲線を図23に示す。
【表21】
図23及び表3から分かるように、PD1及び同時投与群のマウスは、いずれの体重も有効測定時間内に溶媒群に比べて有意差を有さず、これは、その副作用が比較的小さいことを提示した。7日前群、0日目群、200μg/匹パミカ点鼻群、及び300μg/匹パミカ点鼻群は、投与後期を除き、残りの時間での体重がすべて溶媒群よりも顕著に低かった。200μg/匹パミカ筋肉内注射群は、投与期間にわたって、溶媒群に比べて、有意差を有さなかった。300μg/匹パミカ筋肉内注射群は、投与中期では、体重が溶媒群よりも低く、投与前期及び後期では、溶媒群に比べて、いずれも有意差を有さなかった。
以上の結果から、筋肉内注射投は、マウスの体重に対する影響が比較的小さく、副作用が比較的小さく、点鼻投与は、マウスに対して一定の副作用を有することを示す。
3.3 腫瘍重量、脾臓重量及び腫瘍写真
図24及び図25から見られるように、7日前群、及び0日目群の腫瘍重量は、対照群に比べて、有意差がなく、2つのパミカ筋肉内注射群は、腫瘍成長に対する抑制作用が2つのパミカ点鼻群よりも高く、200μg/匹パミカ点鼻群を除き、300μg/匹パミカ点鼻群、200μg/匹パミカ筋肉内注射群、及び300μg/匹パミカ筋肉内注射群は、すべて、腫瘍成長を明らかに抑制することができ、溶媒群に比べて、統計学的有意差を有した(それぞれ*p<0.05、**p<0.01、***p<0.001)。
脾臓は、生体の最大の免疫器官であり、全身のリンパ組織の全量の25%を占め、大量のリンパ球及びマクロファージを含有し、生体細胞免疫及び体液免疫のセンターである。図26から見られるように、200μg/匹パミカ筋肉内注射群、及び300μg/匹パミカ筋肉内注射群の脾臓重量はすべて溶媒群よりも明らかに高く、統計学的有意差を有し(それぞれ**p<0.01、*p<0.05)、これは、筋肉内注射群の免疫反応が比較的強い可能性があることを示す。
3.4 肺写真
図27及び図28から見られるように、溶媒群、7日前群、0日目群のいずれも、肺組織の表面に比較的多くの白色腫瘍結節があり、これは、7日前群及び0日目群には、4T1肺転移抑制作用がほぼないことを示す。200μg/匹パミカ点鼻群及び300μg/匹パミカ点鼻群は、肺組織の表面における結節が比較的少なく、200μg/匹パミカ筋肉内注射群及び300μg/匹パミカ筋肉内注射群は、肺組織の表面における結節が最も少なく、これは、この2つの点鼻群及び2つの筋肉内注射群がすべて4T1肺転移を効果的に抑制でき、且つ筋肉内注射群の4T1肺転移抑制能力が点鼻群よりも強いことを示す。
3.5 小動物イメージャー
図29図35から見られるように、溶媒群、7日前群、0日目群は、腫瘍部位及び転移性病巣の生物発光強度が比較的高く、200μg/匹パミカ点鼻群、及び300μg/匹パミカ点鼻群は、腫瘍部位及び転移性病巣の生物発光強度が弱まり、200μg/匹パミカ筋肉内注射群、及び300μg/匹パミカ筋肉内注射群は、腫瘍部位及び転移性病巣の生物発光強度が最も弱く、これは、筋肉内注射群の4T1乳癌成長及び転移の抑制能力が点鼻群よりも高いことを示し、上記結果と一致した。
4. 結論
本回の実験では、我々は、4T1-lucマウス乳腺上皮内癌モデルの作成に成功し、腫瘍成長が迅速であり、実験終了時、腫瘍体積が2000mmを超える。
試験結果から示すように、マウス乳癌4T1-luc細胞Balb/cマウス同所性腫瘍モデルに対する本回の研究では、PD1及び同時投与群マウスは、PD1の原因のため、大量のマウスが死亡して、一部の実験データだけを取得することを引き起こす以外、残りの各群は、すべて一定の時間で、一定の腫瘍抑制作用を有した。7日前群、0日目群、及び200μg/匹パミカ点鼻群は、腫瘍抑制作用が顕著ではなく、200μg/匹パミカ点鼻群、200μg/匹パミカ筋肉内注射群、及び300μg/匹パミカ筋肉内注射群は、すべて顕著な腫瘍抑制作用を示した。
【0161】
実験例15 ヒトパピローマウイルス(HPV)感染患者の治療におけるパミカの応用
【表22】
【0162】
実験例16 乳癌治療におけるパミカの応用
1、陽性対照薬
PD1、パクリタキセル注射液
4T1マウス乳腺上皮内癌担持動物モデルの構築
雌BALB/cマウスを取り、対数増殖期にある4T1-luc乳癌細胞を選択し、1×10cells/0.2mL/匹の数量でBALB/cマウスの第4乳腺パッド下に接種し、同所性担癌マウスモデルを構築した。ノギスを用いて腫瘍塊の体積を動的に計測した。腫瘍体積の計算式:V=0.5×L×D2(ここで、Vは腫瘍体積、Lは腫瘍長径、Dは腫瘍短径である)
3、4T1乳腺上皮内癌の成長及び自発転移に対する影響
3.1 群設置及び投与態様
1)PBS群:腫瘍接種数日後、PBSを、100μL/匹で点鼻投与し、1日おきに1回投与した。
2)PD1群:腫瘍接種数日後、PD1を、100μg/匹で腹腔投与し、1週間に1回投与した。
3)パクリタキセル群:腫瘍接種数日後、パクリタキセルを10mg/kg、1週間に1回尾静脈注射投与した。
4)パミカ点鼻群:腫瘍接種数日後、パミカを、100μL(0.3mg)/匹で点鼻投与し、1日おきに1回投与し、投与当日の午前に50μL点鼻し、午後に50μL点鼻した。
5)パミカ筋肉内注射群:腫瘍接種数日後、パミカを100μL(0.3mg)/匹で筋肉内注射投与し、1日おきに1回投与した。
6)同時投与群:腫瘍接種数日後、PD1を(100μg/匹、1週間に1回)腹腔投与し、且つ、パミカを(100μL/匹、1日おきに1回投与)点鼻した。
7)同時投与群:腫瘍接種数日後、パクリタキセルを(10mg/kg、1週間に1回投与)尾静脈注射し、且つパミカを(100μL/匹、1日おきに1回投与)点鼻した。
3.2 各群の動物数:15匹/群(各群に5匹多い)。
3.3 終了実験時点:実際の状況(マウスが死亡する、もしくは投与群と対照群との差が有意である)に応じて、実験を早めて終了する可能性がある。
3.4 実験態様
同所性4T1-luc乳癌モデルを作成し、小動物ライブイメージャーを用いて早期検出を行って群分けし、6.1項における群設置及び投与態様に従って投与した。腫瘍体積(3日に1回測定)、体重変化(3日に1回測定)、腫瘍重量(終点検出)、脾臓重量(終点検出)、TUNEL染色(終点検出)を検出し、肺をBouin’s固定液で固定化した後、写真を取り、各組織器官を中性ホルムアルデヒドで固定化した後、H&E染色(終点検出)を行い、且つ小動物ライブイメージャーを用いて、異なる時点及び最終時点での同所性腫瘍及び転移部位の生物発光強度を観察した。各群間の同所性腫瘍の成長及び転移の抑制作用の強さを総合的に比較した。
実験から、パミカは、乳癌腫瘍体積縮小、腫瘍重量、脾臓重量制御、腫瘍細胞アポトーシス促進などの点のいずれに関しても、顕著な効果を有することが証明されている。
最後に、なお、以上の各実施例は、本開示の技術案を説明するだけに使用され、それを制限するものではなく、前述各実施例を参照して本開示を詳細に説明したが、当業者が理解すべきことは、それは、依然として前述各実施例に記載の技術案を修正したり、ここの一部もしくは全部の技術的特徴に対して等同置換を行ったりすることができ、一方、これらの修正もしくは置換は、対応する技術案の趣旨が本開示の各実施例の技術案の範囲を逸脱するようにすることがない。
【産業上の利用可能性】
【0163】
本開示の複合物は、粘度及び分子質量が適当であり、簡便に製薬でき、化学的性質が安定的であり、長期間保管しても分解しにくく、安全に使用でき、該化合物は単独で使用するだけで、生体の非特異的免疫反応を顕著に向上させ、疾患を予防・治療する目的を達成させることができ、他の薬物と併用すると、より良好な抗腫瘍、抗ウイルス及び抗(スーパー)バクテリアの機能・効果を有し、患者により吸収されやすい。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17
図18
図19
図20
図21
図22
図23
図24
図25
図26
図27
図28
図29
図30
図31
図32
図33
図34
図35