(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-06-16
(45)【発行日】2023-06-26
(54)【発明の名称】アンジェルマン症候群アンチセンス治療
(51)【国際特許分類】
A61K 31/7088 20060101AFI20230619BHJP
A61K 48/00 20060101ALI20230619BHJP
A61P 25/00 20060101ALI20230619BHJP
A61P 25/08 20060101ALI20230619BHJP
A61P 25/18 20060101ALI20230619BHJP
A61P 25/20 20060101ALI20230619BHJP
A61P 25/28 20060101ALI20230619BHJP
A61P 43/00 20060101ALI20230619BHJP
C12N 15/113 20100101ALI20230619BHJP
【FI】
A61K31/7088
A61K48/00
A61P25/00
A61P25/08
A61P25/18
A61P25/20
A61P25/28
A61P43/00 105
A61P43/00 111
C12N15/113 Z ZNA
C12N15/113 130Z
(21)【出願番号】P 2020529238
(86)(22)【出願日】2018-11-30
(86)【国際出願番号】 US2018063416
(87)【国際公開番号】W WO2019109001
(87)【国際公開日】2019-06-06
【審査請求日】2021-11-29
(32)【優先日】2017-12-01
(33)【優先権主張国・地域又は機関】US
(32)【優先日】2018-05-24
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】507191005
【氏名又は名称】ザ テキサス エイ・アンド・エム ユニヴァーシティ システム
(74)【代理人】
【識別番号】110000659
【氏名又は名称】弁理士法人広江アソシエイツ特許事務所
(72)【発明者】
【氏名】ディンドット,スコット ビクター
【審査官】内藤 康彰
(56)【参考文献】
【文献】特表2015-529635(JP,A)
【文献】国際公開第2017/081223(WO,A1)
【文献】特開2011-256171(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
A61K 31/7088
C12N 15/113
A61P 25/28
A61P 25/00
A61P 25/08
A61P 25/20
A61P 25/18
A61P 43/00
A61K 48/00
JSTPlus/JMEDPlus/JST7580(JDreamIII)
CAplus/REGISTRY/MEDLINE/EMBASE/BIOSIS(STN)
(57)【特許請求の範囲】
【請求項1】
アンチセンスオリゴヌクレオチド、ならびに薬学的に許容される希釈剤、溶媒、担体、塩および/または賦形剤を含み、
前記オリゴヌクレオチドが、配列番号
2の核酸配列の連続した部分に
100%の相補性を有する
、17~20個のヌクレオチド長の連続したヌクレオチド配列を含む、薬学的組成物。
【請求項2】
前記オリゴヌクレオチドが、配列番号
9の核酸配列を含む、請求項1に記載の薬学的組成物。
【請求項3】
1つ以上の修飾されたヌクレオシドを含む、請求項1または2に記載の薬学的組成物。
【請求項4】
前記1つ以上の修飾されたヌクレオシドが、2’糖修飾されたヌクレオシドである、請求項3に記載の薬学的組成物。
【請求項5】
前記1つ以上の2’糖修飾されたヌクレオシドが、2’-O-アルキル-RNA、2’-O-メチル-RNA、2’-アルコキシ-RNA、2’-O-メトキシエチル-RNA、2’-アミノ-DNA、2’-フルオロ-DNA、アラビノ核酸(ANA)、2’-フルオロ-ANA、および
ロック核酸(LNA
)ヌクレオシドからなる群から独立して選択される、請求項4に記載の薬学的組成物。
【請求項6】
前記1つ以上の修飾されたヌクレオシドが、LNAヌクレオシドである、請求項5に記載の薬学的組成物。
【請求項7】
前記薬学的組成物が、少なくとも1つの修飾されたヌクレオシド間結合を含む、請求項1に記載の
薬学的組成物。
【請求項8】
前記連続したヌクレオチド配列内の前記ヌクレオシド間結合が、ホスホロチオエートヌクレオシド間結合である、請求項7に記載の薬学的組成物。
【請求項9】
前記オリゴヌクレオチドが、RNアーゼHをリクルートすることができる、請求項1に記載の薬学的組成物。
【請求項10】
前記オリゴヌクレオチドが、ギャップマーである、請求項9に記載の薬学的組成物。
【請求項11】
前記アンチセンスオリゴヌクレオチドが、配列番号67~115からなる群から選択される核酸配列を含む、請求項1に記載の薬学的組成物。
【請求項12】
前記アンチセンスオリゴヌクレオチドが、配列番号89の核酸配列を含む、請求項
11に記載の薬学的組成物。
【請求項13】
前記アンチセンスオリゴヌクレオチドが、配列番号365、371、372、373、374、375、376、377、378、379、380、381、382、および383からなる群から選択される
核酸配列を含む、請求項1に記載の薬学的組成物。
【請求項14】
前記アンチセンスオリゴヌクレオチドが、配列番号18~66からなる群から選択される核酸配列に対して相補的である、請求項1に記載の薬学的組成物。
【請求項15】
前記アンチセンスオリゴヌクレオチドが、配列番号40の核酸配列に対して相補的である、請求項
14に記載の薬学的組成物。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願の相互参照
本出願は、2017年12月1日に出願された米国仮出願第62/593,431号および2018年5月24日に出願された出願シリアル第62/676,034号の優先権を主張するものであり、これらは参照によりそれらのすべてが本明細書に組み込まれる。
【0002】
配列表
本出願は、2018年11月30日に作成された「922001-2020 Sequence Listing_ST25」という題名のASCII.txtファイルとして電子形態で提出された配列表を含む。配列表の内容は、そのすべてが本明細書に組み込まれる。
【背景技術】
【0003】
アンジェルマン症候群(AS)は、重度の知的障害および運動障害、てんかん、睡眠障害、ならびに異常に「幸せを感じる」気質に関連付けられる神経発達疾患である。ASを有する個人は、多くの場合、2~3歳で診断され、通常の寿命を有する。彼らは、生涯にわたって、生活に介護および医療ケアを必要とする。現在、ASを有する個人のための治療選択肢はほとんどなく、そのほとんどは、てんかん発作を治療するための抗てんかん薬を含む。
【0004】
アンジェルマン症候群は、母方から遺伝されたユビキチン-タンパク質リガーゼE3A(UBE3A)遺伝子の発現または機能に影響する変異により引き起こされる。大部分の遺伝子とは異なり、UBE3Aは、ゲノムインプリンティングを受けており、ゲノムインプリンティングとは、遺伝子の他方のアレルをオンにしたままで、一方のアレルをオフにするという、自然に発生する、まれな現象である。中枢神経系(CNS)のニューロンでは、父方UBE3Aアレルはオフになっているが、体内の他のすべての細胞型では、UBE3Aの両方のアレルがオンになっている。このため、ASは常に、母方から遺伝されたUBE3Aアレルに影響する変異により引き起こされる。
【0005】
父方UBE3Aアレルは、いくつかのタンパク質コーディングおよび非コーディング転写物を発現する長鎖RNA転写物の成分である、UBE3Aアンチセンス転写物(UBE3A-AS)によりオフになっている。UBE3A-ASは、父方アレルから、かつCNSのニューロンにおいてのみ発現され、これは、父方UBE3Aアレルの発現をオフとするのに十分および必須である。何故UBE3Aがニューロンにおいて刷り込みを受けるのかということは不明確であるが、父方染色体上にUBE3Aの不活性であるが機能的であるコピーが存在するために、それは、ASを有する個人を治療するために独特の機会を作り出す。現在までの研究は、父方UBE3Aアレルをオンにすることが、ASを治療するための実行可能な治療であることを示している。
【発明の概要】
【発明が解決しようとする課題】
【0006】
本明細書では、自身の安定性のために重要であるUBE3A-AS転写物の5’-末端にある領域が開示される。これらの知見に基づいて、アンチセンスオリゴヌクレオチド(ASO)が、UBE3A-ASの転写を終結し、父方UBE3Aアレルの発現を再活性化するために、この領域を標的とするために設計された。UBE3A-ASの5’-末端を標的とするこれらのASOは、UBE3A-ASの転写を終結し、かつ父方UBE3Aアレルをオンとすることができる。SNHG14は、UBE3A-ASを含む、いくつかの異なるRNAをコードする多シストロン性転写物である。
【課題を解決するための手段】
【0007】
したがって、本明細書では、UBE3Aアンチセンス転写物(UBE3A-AS)の5’-末端を表すと考えられている、SNORD115の3’-末端とSNORD109Bの5’-末端との間の標的エクソンに対して少なくとも98%(すなわち、98%、99%、または100%)の相補性を有する、10~30個のヌクレオチド長(すなわち、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、または30個)の連続したヌクレオチド配列を含有するASOが開示される。特に、標的エクソンは、ヒト染色体15ヒトゲノムアセンブリhg19上の25,511,577~25,516,681位に対応する、UBE3A-ASの5’-末端中であり得る。いくつかの実施形態では、標的核酸は、UBE3A-ASの5’-末端中に位置する5つのエクソンのうちの1つであり、これは、25,511,577~25,511,761(エクソン1)、25,512,059~25,512,191(エクソン2)、25,513,476~25,513,600(エクソン3)、25,514,752~25,514,880(エクソン4)、および25,516,565~25,516,681(エクソン5)位に対応し得る。したがって、標的核酸は、配列番号1、2、3、4、または5内の10~30個のヌクレオチドの連続した核酸配列であり得る。
【0008】
いくつかの実施形態では、標的配列は、UBE3A-ASエクソン1~5、UBE3A-ASエクソン5およびSNORD109Bエクソン1、および/またはSNORD109Bエクソン1~2を含むエクソン境界である。
【0009】
ASOを設計するための方法および戦略は、当該技術分野において知られている。いくつかの実施形態では、ASOは、ヒト対象の間で保存されている配列を標的するために設計される。いくつかの実施形態では、ASOは、霊長類対象の間で保存されている配列を標的するために設計される。
【0010】
オリゴヌクレオチドは、例えば、ギャップマー設計を有する、アンチセンスオリゴヌクレオチド(すなわち、当業者によって理解されているように、その標的核酸に対してアンチセンスである)であり得る。開示されたオリゴヌクレオチドは、UBE3A-AS転写物の分解、軽減、または除去により、ニューロンにおける父方UBE3A発現を誘導することができる。それは、SNORD109B snoRNAの上流部位にあるUBE3A-ASの5’-末端を標的とすることにより、これを行う。エクソン1~5を標的するように設計されたASOの実施例は、表1、2、3、4、または5において提供される。例えば、いくつかの実施形態では、ASOは、核酸配列、配列番号6、7、8、9、10、または11を含む。
【0011】
開示されたASOはまた、安定性、溶解性、活性、細胞分布、および/または細胞取込みを改善するために1つ以上の修飾を有することができる。例えば、開示されたASOは、1つ以上の糖修飾されたヌクレオシドおよび/または修飾されたヌクレオシド間結合を含有することができる。例えば、いくつかの実施形態では、オリゴヌクレオチドは、天然のホスホジエステルから、例えば、ヌクレアーゼ攻撃に対してより耐性のある結合へと修飾された1つ以上のヌクレオシド間結合を含む。いくつかの実施形態では、ASOは、天然に生じる核酸塩基とは異なるが、核酸ハイブリダイゼーション中に機能的である1つ以上の修飾された核酸塩基を含有する。
【0012】
いくつかの実施形態では、ASOは、DNAオリゴヌクレオチドである。いくつかの実施形態では、ASOは、RNAオリゴヌクレオチドである。さらなる他の実施形態では、ASOは、デオキシヌクレオチドおよびリボヌクレオチドの両方を含有する。例えば、ASOは、ギャップマー、ヘッドマー、またはテイルマーオリゴヌクレオチドであり得る。いくつかの実施形態では、ギャップマーの中心ブロックは、ヌクレアーゼ分解から内部ブロックを保護する修飾されたリボヌクレオチドのブロックに隣接される。例えば、ASOは、エキソヌクレアーゼに対する保護のための3’-および5’-末端にある3、4、または5個の修飾されたリボヌクレオチドモノマーと共に、標的RNAのRNアーゼH切断を活性化するために、7、8、9、10個、またはそれ以上の天然のDNAモノマーのストレッチを含有することができる。いくつかの場合では、修飾されたリボヌクレオチドは、2’-O-メチル(OMe)RNAヌクレオチド、2’-O-メトキシエチル(MOE)-修飾ヌクレオチド、または2’-ロック核酸(LNA)である。ギャップマーASOの実施例は、表7、11、および17において提供される。したがって、いくつかの実施形態では、開示されたASOは、配列番号362~392から選択された核酸配列を有する。
【0013】
本明細書で開示される1つ以上のASO、ならびに薬学的に許容される希釈剤、担体、塩、および/または賦形剤を含む薬学的組成物も開示される。
【0014】
父方UBE3Aの発現が抑制されている標的細胞におけるUBE3A発現のインビボまたはインビトロ誘導のための方法であって、1つ以上の開示されたASOまたは本明細書で開示される組成物を有効量で前述の細胞に投与することによる方法も開示される。
【0015】
UBE3Aのインビボ活性に関連する疾患、障害、または機能不全を治療または予防するための方法であって、治療的または予防的有効量の開示された1つ以上のASOを、アンジェルマン症候群などの疾患、障害、または機能不全を患っているか、またはその疑いのある対象へ投与することを含む方法も開示される。
【0016】
本発明の1つ以上の実施形態の詳細は、添付の図面および以下の詳細な説明において示される。本発明の他の特徴、目的、および利点は、説明および図面、ならびに特許請求の範囲から明らかとなる。例えば、当業者は、本明細書を読むことにより、本開示がUBE3Aの発現に影響を与えるための本明細書に記載されるような特定の配列の有用性を実証しており、そのような配列であるか、またはそれらを標的とする(例えば、相補的である)オリゴヌクレオチドフォーマットの有用性をさらに教示していることを認識するだろう。当業者は、本開示が任意の特定の作用機序に限定されないことを認識し、提供されるオリゴヌクレオチドは、それらが例えばRNアーゼH活性を含むアンチセンス機序を介して作用するかに関わらず、有用であり得、また、そのような配列であるか、またはそれらを標的とするオリゴヌクレオチドの他の治療的フォーマット(例えば、siRNA、shRNA、ヌクレアーゼgRNA等)もまた提供される。類似的に、当業者は、本明細書で記載されるような有用な配列を定義することにより、本発明はまた、そのような配列のための様々なフォーマット(例えば、それらが発現される(例えば、インビボ、インビトロ、またはその両方など)ベクターなどの核酸ベクターの一部として)も記載していることを認識するだろう。故に、当業者は、本開示を読むことにより、本明細書の「ASO」への参照が例示的であり、適切な核酸(例えば、オリゴヌクレオチド)が作用機序に関わらず利用され得ることを認識するだろう。当業者は、様々な機序のうちのいずれかを介して作用する核酸(例えば、オリゴヌクレオチド)の適切なフォーマットおよび構造(例えば、siRNA、shRNA、ヌクレアーゼgRNA等)に関する広範な文献を認識している。いくつかの実施形態では、提供される核酸は、1つ以上の機序的コンテキストにおいて有用であることが当該技術分野において知られているフォーマットおよび/または構造的特徴(例えば、RNアーゼH、RISC、Casなどの核酸指向ヌクレアーゼ等を含む)を組み込む。
【図面の簡単な説明】
【0017】
【
図1A-1D】ヒトおよびマウスにおけるPrader-Willi/アンジェルマン症候群(PWS/AS)刷り込み領域を示す。
図1Aは、ヒトPWS/AS刷り込み領域の参照配列の注釈を示す。
図1Bは、マウスにおけるPWS/AS刷り込みオルソロガス領域の参照配列の注釈を示す。
図1Cは、UBE3A-ASおよびUBE3Aの3’-末端を示す。
図1Dは、ヒト、マカク(カニクイザルマカク)、ブタ、ゾウ、マウス、およびラットの間のオルソロガス領域を示す鎖アラインメントを示す。標的領域は、非ヒト霊長類間では保存されているが、げっ歯類間では保存されていない。
図1Dはまた、領域のゲノム的進化速度プロファイリング(GERP)プロットも示す。正の値は、特定のDNA塩基での進化的制約を表す。
【
図2A-2E】マウスUbe3a-ASを標的とするASOの分析を示す。
図2Aは、マウスUbe3a-AS転写物およびマウス特異的ASOのおおよその位置の図である。ボックスおよび線はそれぞれ、エクソンおよびイントロンを表す。矢印は、転写の方向を表す。
図2Bは、父方Ube3aタンパク質レベルを測定するために使用されるUbe3aYFPレポーターアレルの図である。Ube3aYFPマウスモデルは、黄色蛍光タンパク質(YFP)を内因性Ube3a遺伝子座の3’-末端に標的させることにより産生された。Ube3a-ASの発現は、父方Ube3aYFPアレルの転写を阻害し、Ube3a-ASの損失は、父方Ube3aYFP発現を再活性化し、これは、抗YFP抗体を使用する免疫蛍光イメージングにより検出されることができる。
図2Cは、マウス初代海馬ニューロンにおけるASOを調べるための実験タイムラインの図である。マウス初代海馬ニューロンは、父方から遺伝されたUbe3aYFPアレルを有する新生児マウス(0DIV)から産生され、インビトロで7日(7DIV)後に治療された。治療の3日後(10DIV)、Ube3aYFPタンパク質レベルが個々の細胞において測定された。
図2Dは、ビヒクル(veh)、負対照ASO(ASO-C)、トポテカン(トポ)、ASO-B、およびASO1.1で治療された初代ニューロンにおける父方Ube3aYFPタンパク質を示す免疫蛍光画像を含む。
図2Eは、ビヒクル(veh、1%のDMSO;n=3)、対照ASO(ASO-C、15μM;n=3)、トポテカン(トポ、0.3μM;n=3)、ASO-B(1、5、15μM;n=3)、ASO-1.1(1、5、15μM)、ASO-1.2(1、5、15μM)、およびASO3.1(1、5、15μM)で治療された個々のニューロン細胞における父方Ube3aYFP平均強度レベルを示す。省略形:YFP、黄色蛍光タンパク質;Tx、治療;DIV、インビトロでの日数;n.s.、有意でない。エラーバーは、平均の標準誤差を表す。
【
図3A-3D】ヒトUBE3A-ASを標的とするASOの分析を示す。
図3Aは、ヒトUBE3A-ASおよびヒト特異的ASO(ASO1~6)のおおよその位置を示す図である。ASO-7は、UBE3A-ASのイントロンに位置する。ボックスおよび線はそれぞれ、エクソンおよびイントロンを表す。
図3Bは、カリオタイプに関して正常な個体からのヒトGABA作動性誘導多能性幹細胞(iPSC)由来ニューロンにおいてASOを調べるための実験タイムラインの図である。ヒトiPSC-由来ニューロンは、14DIV後に治療され、次いで、20DIVにて、RNA単離のために処理された。
図3Cおよび3Dは、対照ASO(ASO-C、10μM)、およびASO1~7(10μM)、およびトポテカン(トポ、1μM)で治療したiPSC-由来ニューロンにおけるUBE3A-AS(
図3C)およびUBE3A(
図3D)の相対的定常状態RNAレベル(ASO-Cに対して正規化された)を示す。省略形:Tx、治療;DIV、インビトロでの日にち。エラーバーは、平均の標準誤差を表す。
【
図4A-4I】GABA作動性iPSC-由来ニューロンにおけるヒトASO-4およびトポテカンの分析を示す。
図4A~4Fは、10ポイントの1/2log用量曲線のASO-4およびトポテカン(1nM、3nM、10nM、30nM、100nM、300nM、1μM、3μM、10μM、および30μM)で治療されたiPSC-由来ニューロンにおけるUBE3A-AS(
図4A)、SNORD116(
図4B)、IPW(
図4C)、SNORD115(
図4D)、SNORD109A/B(
図4E)、およびUBE3A(
図4F)定常状態RNAレベルの相対的発現(1nMに対して正規化された)を示す。
図4Gは、59DIVで治療されたGABA作動性iPSC-由来ニューロンにおけるASO-4を調べるための実験タイムラインの図である。
図4H~4Iは、ASO-C(10μM)およびASO-4(1、5、および10μM)で治療されたiPSC-由来ニューロンにおけるUBE3A-AS(
図4H)およびUBE3A(
図4I)定常状態RNAレベルの相対的発現(ASO-Cに対して正規化された)を示す。省略形:Tx、治療。エラーバーは、平均の標準誤差を表す。
【
図5A-5F】ヒトGABA作動性およびグルタミン酸作動性iPSC-由来ニューロンにおける最適化されたASOの分析を示す。
図5Aは、GABA作動性iPSC-由来ニューロンにおける最適化されたASOを調べるための実験タイムラインの図である。
図5Bは、ASO-3.1、ASO-3.2、ASO-4.1、ASO-4.2、ASO-4.3、ASO-4.4、ASO-6.1、ASO-4.I、およびASO-4.Sの5ポイントの1/2log用量曲線(30nM、100nM、300nM、1μM、3μM;n=6)で治療されたiPSC-由来ニューロンにおけるUBE3A-AS定常状態RNAレベルの(水対照に対して正規化された)相対的発現を示す。ASO-4.IおよびASO-4.Sは、2つの企業(ASO-4.I、Integrated DNA Technologies;ASO-4.S、Sigma-Aldrich)により製造されたASO-4を表す。
図5Cは、GABA作動性iPSC-由来ニューロンにおけるASO-4およびASO-6.1を調べるための実験タイムラインの図である。
図5Dは、ASO-4(ASO-4.IおよびASO-4.S)ならびにASO-6.1の10ポイントの1/2log用量曲線(1nM、3nM、10nM、30nM、100nM、300nM、1μM、3μM、10μM、および30μM;n=3)で治療されたiPSC-由来ニューロンにおけるUBE3A-ASおよびUBE3A定常状態RNAレベルの(1nMに対して正規化された)相対的発現を示す。
図5Eは、グルタミン酸作動性iPSC-由来ニューロンにおけるASO-4およびASO-6.1を調べるための実験タイムラインの図である。
図5Fは、ASO-4(ASO-4.IおよびASO-4.S)ならびにASO-6.1の10ポイントの1/2log用量曲線(1nM、3nM、10nM、30nM、100nM、300nM、1μM、3μM、10μM、および30uM;n=3)で治療されたiPSC-由来ニューロンにおけるUBE3A-ASおよびUBE3A定常状態RNAレベルの(水対照に対して正規化された)相対的発現を示す。エラーバーは、平均の標準誤差を表す。
【
図6A-6D】マウスPWS/AS刷り込み領域におけるASO標的領域の同定を示す。
図6Aは、マウス染色体7C上のオルソロガスPWS/AS刷り込み領域の参照配列の注釈を示す。
図6Bは、マウス脳からのRNA-配列決定(RNA-seq)データから産生された転写物アセンブリを示す。
図6Cは、Snord115宿主遺伝子転写物/Ube3a-ASの5’-末端のエクソン中に保持されたSnord115 snoRNAを示すASO標的領域を示す。アラインされたRNA-seq読み取りは、アセンブリ転写物の下に示される。エクソンおよびイントロンはそれぞれボックスおよび線で示される。
図6Dは、保持されたエクソンSnord115_ENSMUST00000101836(配列番号490)、Snord115_ENSMUST00000101936(配列番号491)、Snord115_ENSMUST00000104493(配列番号492)、Snord115_ENSMUST00000082443(配列番号493)、およびSnord115_ENSMUST00000104427(配列番号494)中のsnoRNAの配列アラインメントであり、保持されたsnoRNAが、機能的snoRNA形成のために必要とされる縮重ボックスを有することを示す。
【
図7A-7G】ヒトPWS/AS刷り込み領域におけるASO標的領域の同定を示す。
図7Aは、Prader-Willi/アンジェルマン症候群(PWS/AS)刷り込み領域の参照配列の注釈を示す。
図7Bは、ヒトPWS多シストロン性転写物のRNA-seqアセンブリを示す。
図7Cは、SNORD115-45を示し、これは、SNORD115宿主遺伝子転写物の3’-末端/UBE3A-ASの5’-末端にあるエクソン中に保持されている。成人ヒト脳から産生されたアラインされたRNA-seq読み取りは、L1ラインが転写されていることを示す。
図7Dは、SNORD115クラスター(SNORD115-39-48およびSNORD109B)の3’-末端の参照配列の注釈を示す。
図7Eは、SNORD115-44とSNORD115-45との間のL1ライン要素の位置を示す。
図7Fは、げっ歯類では軽減されているものの、SNORD115-45-48領域での保存を示す主要なクレードを表す有胎盤類の鎖アラインメントを示す。
図7Gは、SNORD115-44(機能的snoRNA)(配列番号495)、SNORD115-48(配列番号496)、SNORD115-45(配列番号497)、SNORD115-46(配列番号498)、およびSNORD115-47(配列番号499)に対する標的領域中のsnoRNAの配列アラインメントを示し、SNORD115-45(保持された)、SNORD115-46(部分的に保持された)、およびSNORD116-47が、機能的snoRNA形成のために必要とされる縮重ボックスを有することを示す。
【
図8A-8C】候補ASOの薬力学的分析を示す。
図8Aは、異なる骨格およびRNA修飾設計を有するASO-4およびASO-6.1の10ポイントの1/2log用量曲線(1nM、3nM、10nM、30nM、100nM、300nM、1μM、3μM、10μM、および30μM;n=2)で治療されたGABA作動性iPSC-由来ニューロンにおける正規化されたUBE3A-AS定常状態RNAレベルの近似用量応答曲線を示す。用量応答曲線は、4-パラメータロジスティック回帰モデル(Hill)を使用して近似される。グラフは、近似されたモデルおよび標準誤差を表す。Y軸は、相対的UBE3A-AS RNAレベルを表し、X軸は、ASOのlogモル(M)濃度を表す。
図8Bおよび8Cは、候補ASO間の関係を示し、3つのクラスターへとグループ分けする、近似用量応答曲線の階層的クラスター化の樹状および星状プロットである。
【
図9】アンジェルマン症候群iPSC-由来ニューロンにおけるASO-6.1.PO-1.OおよびASO-4.4.PS.Lの薬力学的分析を示す。ASO-6.1.PO-1.OおよびASO-4.4.PS.Lの10ポイントの1/2log用量曲線(1nM、3nM、10nM、30nM、100nM、300nM、1μM、3μM、10μM、および30μM;n=3)で治療されたアンジェルマン症候群iPSC-由来ニューロンにおける正規化されたUBE3A-AS定常状態RNAレベルの4-パラメータロジスティック回帰モデル(Hill)。
【
図10】ASO-6.1-PO-1.OおよびASO-4.4.PS.Lで治療されたアンジェルマン症候群iPSCニューロンにおけるPWS多シストロン性転写物によりコードされたRNAの発現分析を示す。ビヒクル(1%のH2O;n=3)、ASO-6.1.PO-1.O(30μM;n=3)、およびASO-4.4.PS.L(30μM;n=3)で治療されたAS iPSC-由来ニューロンにおけるSNURF、SNRPN、SNHG116、SNORD116 snoRNA、IPW、SNHG115、SNORD115 snoRNA、UBE3A-AS、およびUBE3Aの正規化された定常状態RNAレベルが示される。データは、ビヒクルに対するRNAの平均パーセンテージを表す。エラーバーは、平均の標準誤差を表す。アスタリスク(*)は、ビヒクルに対する、Dunnett多重比較検定を伴う一元ANOVAを使用する、統計的に有意な差異(p<0.05)を示す。
【
図11】カニクイザルマカクにおけるASO-6.1.PO-1.OおよびASO-4.4.PS.Lの薬力学的分析を示す。ビヒクル(0.9%の食塩水;n=5)、ASO-6.1.PO-1.O(10mg;n=3)、およびASO-4.4.PS.L(10mg;n=3)で治療したマカクCNS領域におけるUBE3A-ASの定常状態RNAレベルが示される。データは、ビヒクルに対するUBE3A-AS RNAの平均パーセンテージを表す。エラーバーは、平均の標準誤差を表す。アスタリスク(*)は、ビヒクルに対する、Dunnett多重比較検定を伴う一元ANOVAを使用する、統計的に有意な差異(p < 0.05)を示す。
【発明を実施するための形態】
【0018】
別名ユビキチン-タンパク質リガーゼE3Aアンチセンス転写物およびUBE3A-AS/Ube3a-ASとしても知られている、UBE3A-AS/Ube3a-AS転写物は、UBE3A遺伝子に対してアンチセンスDNA鎖上にある、UBE3A-AS転写物の転写により産生される転写物についての名称である。すべて大文字を用いた遺伝子名はヒト遺伝子(例えば、UBE3A)を示し、初めの文字のみ大文字を用いた遺伝子名はマウス遺伝子(例えば、Ube3a)を示すことに留意されたい。UBE3A-AS転写物は、SNURF-SNRPNをコードする大きな多シストロン性転写ユニット、オーファンC/Dボックス核小体低分子RNA(SNORD)のクラスター、およびいくつかの特徴付けられていない長鎖非コーディングRNAの部分として転写される。マウスおよびヒトの両方では、UBE3A/Ube3a遺伝子は、中枢神経系のニューロンにおいて刷り込みを受けており、それは、母方アレルからのみ発現される。UBE3A-AS/Ube3a-AS転写物は、父方UBE3A/Ube3aアレルの転写をサイレンシングするのに必須かつ十分であり、UBE3A-AS/Ube3a-ASの阻害は、父方UBE3A/Ube3aアレルの転写を再活性化する。母方から遺伝されたUBE3Aアレルの機能または発現に影響する変異は、アンジェルマン症候群(AS)を引き起こす。ASでは、父方アレルは、機能的であるが、後成的にサイレンシングされている。AS患者においてサイレンシングを止めると、父方UBE3Aアレルは、ニューロンにおける機能的UBE3Aの供給源となり得る。
【0019】
UBE3A-ASをコードする多シストロン性転写ユニット(本明細書では以後、PTUと称される)は、約450,000塩基対の長さである。PTUの転写は、SNURF-SNRPN遺伝子座の上流エクソン(U-エクソン)で開始し、UBE3Aの5’-末端に向かって停止する。PTUは以下のように編制される(5’-3’):SNURF-SNRPN、SNORD107、SNORD64、SNORD109A、SNORD116(29コピー)、IPW、SNORD115(48コピー)、SNORD109B、およびUBE3A、これは、上流転写物の逆方向に配向している。多シストロン性転写物は、代替的スプライシングを受け、代替的3’-プロセシングに供される。SNURF-SNRPNは、2つのポリペプチドをコードする。SNORDは、宿主遺伝子転写物(SNHG14)のイントロン中にあり、スプライシングを受けたイントロンのエキソヌクレアーゼ脱分岐により産生される。UBE3A-ASは、UBE3A遺伝子に重複する転写物の3’-末端を表す。大部分のC/DボックスsnoRNAは、リボソーム生合成において役割を果たし、それらは、リボソームRNA(rRNA)の2’-O-メチル化を導く。しかし、PWS/AS領域に位置するsnoRNAは、既知のrRNAに対して相補的な任意の配列を欠失している。しかし、SNORD115 snoRNAは、セロトニン受容体2C pre-mRNAの代替的スプライシングを変化させることが見出された。
【0020】
本明細書では、UBE3A-AS転写物の5’-末端はその安定性のために重要であるという証拠が開示される。本明細書で開示されるように、UBE3A-ASの5’-末端を標的とするASOは、おそらくUBE3A-ASの転写を終結し、かつ父方UBE3Aアレルをオンとすることにより、UBE3A-ASレベルを減少させることができる。
【0021】
本明細書で使用される用語「オリゴヌクレオチド」は、それが当業者によって一般的に理解されているように、2つ以上の共有結合したヌクレオシを含む分子として定義される。このような共有結合したヌクレオシドはまた、核酸分子またはオリゴマーとしても参照され得る。オリゴヌクレオチドは、固相化学合成、続いて、精製により、実験室で一般的に作製される。オリゴヌクレオチドの配列を参照する場合、参照は、共有結合したヌクレオチドもしくはヌクレオシドの核酸塩基部分の配列もしくは順序、またはそれらの修飾に対してなされる。本明細書で開示されるオリゴヌクレオチドは、人工のもの、例えば、化学的に合成されたものである。本明細書で開示されるオリゴヌクレオチドはまた、1つ以上の修飾されたヌクレオシドまたはヌクレオチドも含み得る。
【0022】
本明細書で使用される用語「アンチセンスオリゴヌクレオチド」は、標的核酸に、特に、標的核酸上の連続した配列にハイブリダイズすることにより、標的遺伝子の発現を調整することができるオリゴヌクレオチドとして定義される。いくつかの実施形態では、本明細書で開示されたアンチセンスオリゴヌクレオチドは、一本鎖である。
【0023】
用語「連続したヌクレオチド配列」は、標的核酸に相補的であるオリゴヌクレオチドの領域を指す。この用語は、本明細書では、用語「連続した核酸塩基配列」および用語「オリゴヌクレオチドモチーフ配列」と互換的に使用される。いくつかの実施形態では、オリゴヌクレオチドのすべてのヌクレオチドは、連続したヌクレオチド配列中に存在する。いくつかの実施形態では、オリゴヌクレオチドは、連続したヌクレオチド配列を含み、場合により、連続したヌクレオチド配列に官能基を付着させるのに使用されることができる、さらなるヌクレオチド(複数可)、例えば、ヌクレオチドリンカー領域を含んでもよい。ヌクレオチドリンカー領域は、標的核酸に相補的であっても、なくてもよい。
【0024】
ヌクレオチドは、オリゴヌクレオチドおよびポリヌクレオチドのブロックを構築し、天然に生じるおよび非天然に生じるヌクレオチドの両方を含むことができる。天然では、DNAおよびRNAヌクレオチドなどのヌクレオチドは、リボース糖部分、核酸塩基部分、および1つ以上のホスフェート基(ヌクレオシドでは不在である)を含む。ヌクレオシドおよびヌクレオチドはまた、「ユニット」または「モノマー」として互換的に称されてもよい。
【0025】
本明細書で使用される用語「修飾されたヌクレオシド」または「ヌクレオシド修飾」は、糖部分または(核酸)塩基部分の1つ以上の修飾を導入することにより、等価なDNAまたはRNAヌクレオシドと比較して修飾されたヌクレオシドを指す。いくつかの実施形態では、修飾されたヌクレオシドは、修飾された糖部分を含む。修飾されたヌクレオシドという用語はまた、本明細書では、用語「ヌクレオシドアナログ」または修飾された「ユニット」または修飾された「モノマー」と互換的に使用されてもよい。
【0026】
用語「修飾されたヌクレオシド間結合」は、2つのヌクレオシドを共に共有結合するホスホジエステル(PO)結合または天然のリン酸結合以外の結合として当業者に一般的に理解されているように定義される。修飾されたヌクレオシド間結合を有するヌクレオチドは、「修飾されたヌクレオチド」とも呼ばれる。いくつかの実施形態では、修飾されたヌクレオシド間結合は、ホスホジエステル結合と比較してオリゴヌクレオチドのヌクレアーゼ耐性を増加する。天然に生じるオリゴヌクレオチドについては、ヌクレオシド間結合は、隣接ヌクレオシド間のホスホジエステル結合を作りだすホスフェート基を含む。修飾されたヌクレオシド間結合は、インビボ使用のためにオリゴヌクレオチドを安定化するのに特に有用であり、例えば、ギャップマーオリゴヌクレオチドのギャップ領域内、ならびに修飾されたヌクレオシドの領域中などの、本明細書で開示されたオリゴヌクレオチドのDNAまたはRNAヌクレオシドの領域でヌクレアーゼ切断に対して保護するように働くことができる。
【0027】
いくつかの実施形態では、オリゴヌクレオチドは、天然のホスホジエステルから、例えば、ヌクレアーゼ攻撃に対してより耐性のある結合へと修飾された1つ以上のヌクレオシド間結合を含む。ヌクレアーゼ耐性は、血清中のオリゴヌクレオチドをインキュベートすることにより、またはヌクレアーゼ耐性アッセイ[例えば、ヘビ毒ホスホジエステラーゼ(SVPD)]を使用することにより、決定されることができ、この両方は当該技術分野において周知である。オリゴヌクレオチドのヌクレアーゼ耐性を増強することができるヌクレオシド間結合は、ヌクレアーゼ耐性ヌクレオシド間結合として称される。
【0028】
いくつかの実施形態では、オリゴヌクレオチドまたはそれらの連続したヌクレオチド配列中のヌクレオシド間結合の少なくとも50%は修飾されており、オリゴヌクレオチドまたはそれらの連続したヌクレオチド配列中のヌクレオシド間結合の、例えば、少なくとも60%、例えば、少なくとも70%、例えば、少なくとも80%、または例えば、少なくとも90%が修飾されている。いくつかの実施形態では、オリゴヌクレオチドまたはそれらの連続したヌクレオチド配列のすべてのヌクレオシド間結合が修飾されている。
【0029】
いくつかの実施形態では、コンジュゲートなどのように、オリゴヌクレオチドを非ヌクレオチド官能基に結合させるヌクレオシド間結合はホスホジエステルであり得ることが認識されよう。いくつかの実施形態では、オリゴヌクレオチドを非ヌクレオチド官能基に結合させるヌクレオシド間結合は修飾されている。
【0030】
いくつかの実施形態では、オリゴヌクレオチドまたはそれらの連続したヌクレオチド配列のすべてのヌクレオシド間結合は、ヌクレアーゼ耐性ヌクレオシド間結合である。
【0031】
修飾されたヌクレオシド間結合は、例えば、ホスホロチオエート、ジホスホロチオエート、およびボラノホスフェートを含む群から選択され得る。いくつかの実施形態では、修飾されたヌクレオシド間結合は、本明細書で開示されるオリゴヌクレオチドのRNアーゼHリクルートメントと適合するものであり、例えば、ホスホロチオエート、ジホスホロチオエート、またはボラノホスフェートである。
【0032】
いくつかの実施形態では、ヌクレオシド間結合は、硫黄(S)を含み、例えば、ホスホロチオエートヌクレオシド間結合である。
【0033】
ホスホロチオエートヌクレオシド間結合は、ヌクレアーゼ耐性、有益な薬物動態学、および製造の容易さに起因して特に有用である。好ましい実施形態では、オリゴヌクレオチドまたはそれらの連続したヌクレオチド配列中のヌクレオシド間結合の少なくとも50%はホスホロチオエートであり、オリゴヌクレオチドまたはそれらの連続したヌクレオチド配列中のヌクレオシド間結合の、例えば、少なくとも60%、例えば、少なくとも70%、例えば、少なくとも80%、または例えば、少なくとも90%がホスホロチオエートである。いくつかの実施形態では、オリゴヌクレオチドまたはそれらの連続したヌクレオチド配列のすべてのヌクレオシド間結合がホスホロチオエートである。
【0034】
いくつかの実施形態では、オリゴヌクレオチドは、1つ以上の中性のヌクレオシド間結合、特に、ホスホトリエステル、メチルホスホナート、MMI、アミド-3、ホルムアセタールまたはチオホルムアセタールから選択されるヌクレオシド間結合を含む。さらなるヌクレオシド間結合は、WO2009/124238(参照により本明細書に組み込まれる)に開示されている。一実施形態では、ヌクレオシド間結合は、WO2007/031091(参照により本明細書に組み込まれる)に開示されているリンカーから選択される。
【0035】
ホスホロチオエート結合などのヌクレアーゼ耐性結合は、ギャップマーについては領域G、またはヘッドマーおよびテイルマーの非修飾ヌクレオシド領域などのように、標的核酸と二本鎖を形成するときにヌクレアーゼをリクルートすることができるオリゴヌクレオチド領域において特に有用である。しかし、ホスホロチオエート結合はまた、ギャップマーについての領域FおよびF’、またはヘッドマーおよびテイルマーの修飾されたヌクレオシド領域などのように、非ヌクレアーゼリクルート領域および/または親和性増強領域においても有用であり得る。
【0036】
しかし、設計領域の各々は、LNAなどの修飾されたヌクレオシドがヌクレアーゼ分解に対して結合を保護する領域において特に、ホスホジエステル結合などの、ホスホロチオエート以外のヌクレオシド間結合を含むことができる。1つまたは2つの結合などのホスホジエステル結合を、特に修飾されたヌクレオシドユニット(典型的には、非ヌクレアーゼリクルート領域中)の間またはそれに隣接して含ませることにより、オリゴヌクレオチドのバイオアベイラビリティおよび/または生体分布を修飾することができる。ホスホジエステル結合を有するオリゴヌクレオチドの教示について、WO2008/113832は、参照により本明細書に組み込まれる。
【0037】
いくつかの実施形態では、オリゴヌクレオチド中のすべてのヌクレオシド間結合は、ホスホロチオエートおよび/またはボラノホスフェート結合である。いくつかの実施形態では、オリゴヌクレオチド中のすべてのヌクレオシド間結合は、ホスホロチオエート結合である。
【0038】
核酸塩基という用語は、核酸ハイブリダイゼーションにおいて水素結合を形成する、ヌクレオシドおよびヌクレオチド中に存在する、プリン(例えば、アデニンおよびグアニン)ならびにピリミジン(例えば、ウラシル、チミン、およびシトシン)部分を含む。核酸塩基という用語は、天然に生じる核酸塩基とは異なり得るが、核酸ハイブリダイゼーションの間に機能的である修飾された核酸塩基も包含する。この文脈において、「核酸塩基」は、天然に生じる核酸塩基、例えば、アデニン、グアニン、シトシン、チミジン、ウラシル、キサンチン、およびヒポキサンチン、ならびに非天然に生じるバリアントの両方を指す。
【0039】
いくつかの実施形態では、核酸塩基部分は、プリンまたはピリミジンを、修飾されたプリンまたはピリミジン、例えば、置換されたプリンまたは置換されたピリミジンに変更することにより修飾されており、例えば、イソシトシン、シュードイソシトシン、5-メチル-シトシン、5-チオゾロ-シトシン、5-プロピニル-シトシン、5-プロピニル-ウラシル、5-ブロモウラシル5-チアゾロ-ウラシル、2-チオ-ウラシル、2’チオ-チミン、イノシン、ジアミノプリン、6-アミノプリン、2-アミノプリン、2,6-ジアミノプリン、および2-クロロ-6-アミノプリンから選択される核酸塩基である。
【0040】
核酸塩基部分は、対応する各核酸塩基についての文字コード、例えば、A、T、G、C、またはUにより示されることができ、ここで、各文字は、場合により、等価機能の修飾された核酸塩基を含むことができる。例えば、例示されるオリゴヌクレオチドでは、核酸塩基部分は、A、T、G、C、および5-メチルシトシン(5mC)から選択される。これらの修飾の組み合わせも使用され得る。例えば、5mCのLNAヌクレオシドが使用され得る。同様に、2’-ヒドロキシメチル(2’-OMe)5mCが使用され得る。
【0041】
用語「相補性」は、ヌクレオシド/ヌクレオチドのワトソン-クリック塩基対合についての能力を説明する。ワトソン-クリックの塩基対は、グアニン(G)-シトシン(C)およびアデニン(A)-チミン(T)/ウラシル(U)である。オリゴヌクレオチドは、修飾された核酸塩基、例えば、シトシンの代わりに使用されることが多い5-メチルシトシンを伴うヌクレオシドを含むことができ、したがって、相補性という用語は、非修飾の核酸塩基と修飾された核酸塩基との間のワトソン-クリック塩基対合を包含することが理解されよう。
【0042】
本明細書で使用される用語「相補性%」は、別の核酸分子(例えば、標的核酸)の特定の位置にある連続したヌクレオチド配列と特定の位置で相補的である(すなわち、ワトソン-クリック塩基対を形成する)、核酸分子(例えば、オリゴヌクレオチド)中の連続したヌクレオチド配列のヌクレオチドのパーセントでの数を指す。パーセンテージは、2つの配列間で対を形成するアラインされた塩基の数を計数し、オリゴヌクレオチド中のヌクレオチドの総数で割り、100を掛けることにより、算出される。このような比較では、(塩基対を形成する)アラインされていない核酸塩基/ヌクレオチドは、ミスマッチを呼ばれる。
【0043】
本明細書で使用される用語「ハイブリダイズしている」または「ハイブリダイズする」は、反対側の鎖上にある塩基対との間で水素結合を形成し、それにより二本鎖を形成する、2本の核酸鎖(例えば、オリゴヌクレオチドおよび標的核酸)として理解されるものである。2本の核酸鎖の間の結合の親和性は、ハイブリダイゼーションの強度である。それは多くの場合、オリゴヌクレオチドの半分が標的核酸と二本鎖を形成している温度として定義される融解温度(Tm)に関して記載される。生理的条件では、Tmは厳密には親和性に比例していない(MergnyおよびLacroix、2003、Oligonucleotides 13:515-537)。標準状態のGibbs自由エネルギーΔG°は、結合親和性のより正確な表示であり、反応の解離定数(Kd)に、ΔG°=-RTln(Kd)の式によって関連付けられ、式中、Rは気体定数であり、Tは絶対温度である。したがって、オリゴヌクレオチドと標的核酸との間の反応の非常に低いΔG°は、オリゴヌクレオチドと標的核酸との間の強いハイブリダイゼーションを反映している。ΔG°は、反応に関連付けられるエネルギーであり、ここで、水性濃度は1Mであり、pHは7であり、温度は37℃である。標的核酸に対するオリゴヌクレオチドのハイブリダイゼーションは、自発的反応であり、自発的反応については、ΔG°はゼロ未満である。ΔG°は、実験的に測定することができ、例えば、Hansenら、1965、Chem.Comm.36-38およびHoldgateら、2005、Drug Discov Todayに記載されているような等温滴定熱量測定(ITC)法により測定することができる。当業者は、ΔG°測定について市販装置が利用可能であることを知っているだろう。Sugimotoら、1995、Biochemistry 34:11211-11216およびMcTigueら、2004、Biochemistry 43:5388-5405により記載されている適切に誘導された熱力学的パラメータを使用する、SantaLucia、1998、Proc Natl Acad Sci USA.95:1460-1465により記載されているような最近傍モデルを使用することにより、ΔG°は数値的に推定することもできる。ハイブリダイゼーションによりその意図された核酸標的を調整する可能性を有するために、本明細書で開示されたオリゴヌクレオチドは、10~30個のヌクレオチド長であるオリゴヌクレオチドについて-10kcal未満の推定されたΔG°値を伴って、標的核酸とハイブリダイズする。いくつかの実施形態では、ハイブリダイゼーションの程度または強度は、標準状態のGibbs自由エネルギーΔG°により測定される。オリゴヌクレオチドは、-10kcalの範囲未満の、例えば、-15kcal未満の、例えば、-20kcal未満の、例えば、8~30個のヌクレオチド長であるオリゴヌクレオチドについては-25kcal未満の、推定されたΔG°値を伴って、標的核酸にハイブリダイズすることができる。いくつかの実施形態では、オリゴヌクレオチドは、-10~-60kcal、例えば、-12~-40、例えば、-15~-30kcalまたは-16~-27kcal、例えば、-18~-25kcalの推定されたΔG°値を伴って、標的核酸にはハイブリダイズする。
【0044】
いくつかの実施形態では、開示されたオリゴヌクレオチドは、標的核酸分子中に存在する標的配列と相補的であるか、またはそれにハイブリダイズする、少なくとも8ヌクレオチドの連続したヌクレオチド配列を含む。連続したヌクレオチド配列(およびしたがって標的配列)は、少なくとも8個の連続したヌクレオチド、例えば、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、または30個の連続したヌクレオチド、例えば、12~25個の、例えば、14~18個の連続したヌクレオチドから構成される。
【0045】
いくつかの実施形態では、開示されたオリゴヌクレオチドは、標的核酸配列を阻害、変異、または欠失する機能的核酸、例えば、siRNA、shRNA、またはヌクレアーゼgRNAである。
【0046】
本明細書で使用される用語「発現の調整」は、オリゴヌクレオチドの投与前のUBE3Aの量と比較されたときにUBE3A RNA/タンパク質の量を変更するオリゴヌクレオチドの能力についての包括的な用語として理解されるものである。代替的には、発現の調整は、開示されたオリゴヌクレオチドが投与されない対照実験を参照することにより決定され得る。オリゴヌクレオチドにより影響を受ける調整は、すなわち、SNORD115-45 snoRNAの下流にあるUBE3A-ASの5’-末端を標的することにより、父方UBE3A-AS転写物の抑制を軽減する、除去する、予防する、弱める、低下する、または終結するその能力に関連する。調整は、例えば、UBE3A-ASにより影響を受ける阻害性機序の除去または遮断により、父方UBE3Aの発現を復活させる、増大する、または増強するオリゴヌクレオチドの能力として可視化することもできる。
【0047】
開示されたオリゴヌクレオチドは、修飾された糖部分、すなわち、DNAおよびRNA中で見出されるリボース糖部分と比較したときに糖部分の修飾を有する1つ以上のヌクレオシドを含んでもよい。リボース糖部分の修飾を有する数多くのヌクレオシドは、主に、親和性および/またはヌクレアーゼ耐性などのオリゴヌクレオチドの特定の特性を改善する目的で作製される。そのような修飾は、例えば、ヘキソース環(HNA)もしくは二環での置換によりリボース環構造が修飾されたもの、リボース環(LNA)上のC2およびC4炭素環のビラジカル結合を典型的に有するもの、またはC2炭素とC3炭素との間の結合を典型的に欠失している連結されていないリボース環(例えば、UNA)を含む。他の糖修飾されたヌクレオシドは、例えば、ビシクロヘキソースヌクレオシド(WO2011/017521)または三環式ヌクレオシド(WO2013/154798)を含む。修飾されたヌクレオシドはまた、例えば、ペプチド核酸(PNA)またはモルホリノ核酸の場合のように、糖部分が非糖部分で置換されたヌクレオシドを含む。
【0048】
糖修飾はまた、リボース環上の置換基を、DNAおよびRNAヌクレオシドで天然に見出される水素または2’-OH基以外の基へ変更することによりなされる修飾も含む。置換は、例えば、2’、3’、4’または5’位で導入されてもよい。修飾された糖部分を有するヌクレオシドはまた、2’置換されたヌクレオシドなどの2’修飾されたヌクレオシドも含む。実際、2’置換されたヌクレオシドの開発に対して多くの関心が集中されて、数多くの2’置換されたヌクレオシドが、オリゴヌクレオチドに組み込まれた場合に増強されたヌクレオシド耐性および増強された親和性などの有益な特性を有することが見出された。
【0049】
2’糖修飾されたヌクレオシドは、2’位でHもしくは-OH以外の置換基を有するヌクレオシド(2’置換されたヌクレオシド)であり、または2’連結されたビラジカルを含み、2’置換されたヌクレオシドおよびLNA(2’-4’ビラジカル結合した)ヌクレオシドを含む。例えば、2’修飾された糖は、オリゴヌクレオチドに対して増強された結合親和性および/または増大したヌクレアーゼ耐性を提供することができる。2’置換された修飾されたヌクレオシドの例は、2’-O-アルキル-RNA、2’-O-メチル-RNA(O-Me)、2’-アルコキシ-RNA、2’-O-メトキシエチル-RNA(MOE)、2’-アミノ-DNA、2’-フルオロ-RNA、および2’-フルオロ-ANA(F-ANA)である。さらなる例については、Freier & Altmann;Nucl.Acid Res.、1997、25、4429-4443およびUhlmann;Curr.Opinion in Drug Development、2000、3(2)、293-213;ならびにDeleaveyおよびDamha、Chemistry and Biology 2012、19、937を参照されたい。
【0050】
ロック核酸(LNA)ヌクレオシドは、ヌクレオチドのリボース糖環のC2’とC4’との間にリンカー基(ビラジカルまたは結合と称される)を含む修飾されたヌクレオシドである。これらのヌクレオシドは、文献中では、ブリッジ核酸または二環式核酸(BNA)とも呼ばれる。
【0051】
ヌクレアーゼ介在分解は、そのような配列と二本鎖を形成するときに相補的ヌクレオチド配列の分解を介在することができるオリゴヌクレオチドを指す。
【0052】
いくつかの実施形態では、オリゴヌクレオチドは、標的核酸のヌクレアーゼ介在分解を介して機能してもよく、ここで、開示されたオリゴヌクレオチドは、ヌクレアーゼ、特に、エンドヌクレアーゼ、好ましくは、エンドリボヌクレアーゼ(RNアーゼ)、例えば、RNアーゼHをリクルートすることができる。ヌクレアーゼ介在機序を介して作用するオリゴヌクレオチド設計の例は、少なくとも5~6個のDNAヌクレオシドの領域を典型的に含み、親和性増強ヌクレオシドが片側または両側に隣接しているオリゴヌクレオチド、例えば、ギャップマー、ヘッドマー、およびテイルマーである。
【0053】
本明細書で使用される用語「ギャップマー」は、1つ以上の親和性増強修飾ヌクレオシド(フランク)が5’および3’で隣接している、RNアーゼHリクルートオリゴヌクレオチドの領域(ギャップ)を含む、アンチセンスオリゴヌクレオチドを指す。様々なギャップマー設計が本明細書で記載される。ヘッドマーおよびテイルマーは、RNアーゼHをリクルートすることができるオリゴヌクレオチドであり、ここでは、フランクの一方が欠失しており、すなわち、オリゴヌクレオチドの末端の一方のみが親和性増強修飾ヌクレオシドを含む。ヘッドマーについては、3’フランクが欠失しており(すなわち、5’フランクが親和性増強修飾ヌクレオシドを含む)、テイルマーについては、5’フランクが欠失している(すなわち、3’フランクが親和性増強修飾ヌクレオシドを含む)。
【0054】
1つ以上の非ヌクレオチド部分に対する開示されたオリゴヌクレオチドのコンジュゲーションは、例えば、オリゴヌクレオチドの活性、細胞分布、細胞取込み、または安定性に影響を与えることにより、オリゴヌクレオチドの薬理学を改善することができる。いくつかの実施形態では、コンジュゲート部分は、オリゴヌクレオチドの細胞分布、バイオアベイラビリティ、代謝、排泄、浸透、および/または細胞取込みを改善することにより、オリゴヌクレオチドの薬物動態学的特性を修飾または増強する。特に、コンジュゲートは、オリゴヌクレオチドを特定の器官、組織、または細胞型に標的化してもよく、それにより、その器官、組織、または細胞型におけるオリゴヌクレオチドの効果を増強することができる。同時に、コンジュゲートは、非標的細胞型、組織、または器官におけるオリゴヌクレオチドの活性、例えば、非標的細胞型、組織、または器官におけるオフターゲット活性または活性を軽減するように役割を果たすことができる。WO93/07883およびWO2013/033230は、適切なコンジュゲート部分を提供し、これらは参照により本明細書に組み込まれる。WO2012/143379は、トランスフェリン受容体に対して親和性を有する抗体断片に対するコンジュゲーションにより、血液脳関門を超えて薬物を送達する方法を提供し、これは参照により本明細書に組み込まれる。
【0055】
いくつかの実施形態では、非ヌクレオチド部分(コンジュゲート部分)は、炭水化物、細胞表面受容体リガンド、薬剤物質、ホルモン、親油性物質、ポリマー、タンパク質、ペプチド、毒素(例えば、細菌の毒素)、ビタミン、ウイルスタンパク質(例えば、カプシド)、またはそれらの組み合わせからなる群から選択される。いくつかの実施形態では、非ヌクレオチド部分は、抗体または抗体断片、例えば、血液脳関門を超えての送達を促進する抗体または抗体断片、特に、トランスフェリン受容体を標的とする抗体または抗体断片。
【0056】
用語「対象」は、投与または治療の標的である任意の個体を指す。対象は、脊椎動物、例えば、哺乳類であり得る。故に、対象は、ヒトまたは動物患者であり得る。用語「患者」は、臨床者、例えば、医師の治療を受けている対象を指す。
【0057】
用語「治療的有効」は、疾患または障害の1つ以上の原因または症状を改善するのに十分な量の、使用される組成物の量を指す。そのような改善は、軽減または変更のみを必要とし、排除は必ずしも必要としない。
【0058】
用語「薬学的に許容される」は、健全な医学的判断の範囲内にあり、合理的な利益/危険性の比に応じて、過度の毒性、炎症、アレルギー反応、または他の問題もしくは合併症を伴うことなく、ヒトおよび動物の組織に接触させての使用に適切である、化合物、材料、組成物、および/または剤形を指す。
【0059】
用語「治療」は、疾患、病理学的状態、または障害を治す、緩和する、安定化させる、または予防することを意図した、患者の医学的管理を指す。この用語は、積極的な治療、すなわち、疾患、病理学的状態、または障害の改善に向けて具体的に管理された治療を含み、また、対症的な治療、すなわち、疾患、病理学的状態、または障害の原因の除去に向けて管理された治療も含む。加えて、この用語は、一時緩和治療、すなわち、疾患、病理学的状態、または障害を治すのではなく症状を緩和するために設計された治療;予防的治療、すなわち、関連する疾患、病理学的状態、または障害の発症を最小限にするか、または部分的もしくは完全に阻害するように管理された治療;および支持的治療、すなわち、関連する疾患、病理学的状態、または障害の改善に向けて管理された別の特異的な治療を補足するために利用される治療を含む。
【0060】
用語「阻害する」は、当業者が認識するように、特定の時点で評価されることができる、活性、応答、状態、疾患、または他の生理学的パラメータにおける減少を指し、そのようなものとして、いくつかの実施形態では、阻害は、開始の遅延、または頻度の減少であり得るか、またはそれらを含み得る。いくつかの実施形態では、阻害は、活性、応答、状態、または疾患の完全な除去を含むことができるが、これらに限定されない。これはまた、例えば、天然または対照レベルと比較したときに、活性、応答、状態、または疾患における10%の減少を含み得る。故に、減少は、天然または対照レベルと比較したときに、10、20、30、40、50、60、70、80、90、100%、または任意の量の減少であり得る。
【0061】
アンチセンスオリゴヌクレオチド(ASO)は、SNORD115宿主遺伝子転写物(AF400500)の5’-末端にあるエクソンを標的するために設計され、これは、SNORD115-46、SNORD115-47、SNORD115-48、およびSNORD109B snoRNAを包含し、UBE3Aアンチセンス転写物(UBE3A-AS)の5’-末端を表すと考えられる。特に、標的核酸は、ヒト染色体15ヒトゲノムアセンブリhg19上の25,511,577~25,516,681位に対応する、UBE3A-ASの5’-末端であり得る。いくつかの実施形態では、標的核酸は、UBE3A-ASの5’-末端中に位置する5つのエクソンのうちの1つであり、これは、25,511,577~25,511,761(エクソン1)、25,512,059~25,512,191(エクソン2)、25,513,476~25,513,600(エクソン3)、25,514,752~25,514,880(エクソン4)、および25,516,565~25,516,681(エクソン5)位に対応し得る。
【0062】
したがって、 いくつかの実施形態では、標的核酸は、 ATGATGATATGGAAGAAAAGCACTCTTTGGCCTGTTGTGACTGGGACAGTTGACAGCACCCAGGTGTCCTTTAATGAAAATGCTCTTGACACCAATGCATCCTAGCATCACAGCTTCAGGAAGCCTTCTCAAGTGTGCATGGGGAGTACTATGTCTTTCATCAATAATGAAATCTTCTGATTTG(エクソン1、配列番号1)である。
【0063】
いくつかの実施形態では、標的核酸は、 TAAGACATGCTGCCAAGAGATGTGCCATTCTATTATAAAAGATCAGTAGCTTCCTTTACCGACGTGTATATTCTATCTAGAACATTGAGCTATGGAAGACTCCCACCTAAGGGAATTAGTTTTACACCTTCAG(エクソン2、配列番号2)である。
【0064】
いくつかの実施形態では、標的核酸は、 ATAAAGACTGCTGAGAAGAGCACCCTCTGGTGTTGTCACAGAGGCAAGTGCTACCGCACAGGCATGCTGCAGTGAATTTAACTGATCCTCTGTCCCTGCAACCGTTGTTTAAGGATGCTATTCTG(エクソン3、配列番号3)である。
【0065】
いくつかの実施形態では、標的核酸は、AAAAGACTGTGGAGGAAGAAAACCCTTTACCCTGTTGTTCAGGGAGAAACTGACACCACTCAACTGCCTGGCACTGAAAATGTGGCATCCAGTCCACTTTACCATCAGTGTTTAAGGAAACCATCTCTG(エクソン4、配列番号4)である。
【0066】
いくつかの実施形態では、標的核酸は、 ATAAGGATGACTGAGGAAGAGTACTCTTTGGCTTGTTGACACCAGCACAGCTGACACACCCAGATATCTGTTTGGTCTCCTGTGAACTTTCAACCAGGATTTAAGGATGCCACTCTG(エクソン5、配列番号5)である。
【0067】
いくつかの実施形態では、開示されたASOは、核酸配列TAGAGGTGAAGGCCAGGCAC(ASO-1、配列番号6)を有する。
【0068】
いくつかの実施形態では、ASOは、核酸配列GTACTCTTCCTCAGTCATCC (ASO-2、配列番号7)を有する。
【0069】
いくつかの実施形態では、開示されたASOは、核酸配列TGTCAGTTTCTCCCTGAACA(ASO-3、配列番号8)を有する。
【0070】
いくつかの実施形態では、開示されたASOは、核酸配列TAGAATGGCACATCTCTTGG(ASO-4、配列番号9)を有する。
【0071】
いくつかの実施形態では、開示されたASOは、核酸配列GTTTTCTTCCTCCACAGTCT(ASO-6、配列番号10)を有する。
【0072】
いくつかの実施形態では、開示されたASOは、核酸配列CTGGTGTCAACAAGCCAAAG(ASO-7、配列番号11)を有する。
【0073】
SNORD115領域の3’-末端の標的エクソン1であり得るさらなるASOは、以下の表1で提供される。SNORD115の3’-末端の標的エクソン2であり得る例示的なASOは、以下の表2で提供される。SNORD115の3’-末端の標的エクソン3であり得る例示的なASOは、以下の表3で提供される。SNORD115の3’-末端の標的エクソン4であり得る例示的なASOは、以下の表4で提供される。SNORD115の3’-末端の標的エクソン5であり得る例示的なASOは、以下の表5で提供される。
【表1】
【表2】
【表3】
【表4】
【表5】
【0074】
開示されたオリゴヌクレオチドは、父方UBE3Aの発現、特に、ニューロン細胞における父方発現されたUBE3Aの誘導または上方制御の調整をすることができる。調整は、UBE3A-ASの5’-末端にハイブリダイズすることにより成し遂げられる。ある実施形態では、本明細書で開示されたオリゴヌクレオチドは、-10kcal未満のΔG°、例えば、-10~-60kcal、例えば、-12~-40、例えば、-15~-30kcalまたは-16~-27kcal、例えば、-18~-25kcalのΔG°を伴って、配列番号1の標的核酸の下位配列にハイブリダイズする。
【0075】
いくつかの実施形態では、開示されたオリゴヌクレオチドは、食塩水または非標的オリゴヌクレオチドで治療されたニューロン細胞におけるUBE3Aの発現レベルと比較して少なくとも20%だけ、より好ましくは、食塩水または非標的オリゴヌクレオチドで治療されたニューロン細胞におけるUBE3Aの発現レベルと比較して少なくとも30%、35%、40%、45%、50%、55%、60%、80%、100%、120%、150%、160%、170%、180%、190%、200%、210%、220%、230%、240%または250%だけ、UBE3Aの発現を増大することができる。いくつかの実施形態では、開示されたオリゴヌクレオチドは、食塩水または非標的オリゴヌクレオチドで治療されたニューロン細胞におけるSNORD1115-45の下流のSNHG14転写物のレベルと比較して少なくとも20%だけ、より好ましくは、食塩水または非標的オリゴヌクレオチドで治療されたニューロン細胞におけるSNORD1115-45の下流のSNHG14転写物のレベルと比較して少なくとも30%、40%、50%、60%、70%、80%、90%、または95%だけ、SNORD115-45の下流のSNHG14転写物のレベルを軽減することができる。
【0076】
開示されたオリゴヌクレオチドによる標的調整は、オリゴヌクレオチドの連続したヌクレオチド配列と標的核酸との間のハイブリダイゼーションによって駆動される。いくつかの実施形態では、開示されたオリゴヌクレオチドは、オリゴヌクレオチドと標的核酸との間のミスマッチを含む。ミスマッチにも関わらず、標的核酸に対するハイブリダイゼーションはなお、UBE3A発現の所望の調整を示すのに十分であり得る。ミスマッチから生じた軽減された結合親和性は、好都合にも、オリゴヌクレオチド配列内に存在するLNAを含む2’修飾されたヌクレオシドなどを標的するための結合親和性を増大することができる、オリゴヌクレオチド中の増大した数のヌクレオチドおよび/または増大した数の修飾されたヌクレオシドによって埋め合わされる。
【0077】
開示されたアンチセンスオリゴヌクレオチドは、本明細書で開示されるUBE3A-ASの5’-末端中に位置する5つのエクソンのうちの1つに対して少なくとも90%の相補性、例えば、少なくとも91%、例えば、少なくとも92%、例えば、少なくとも93%、例えば、少なくとも94%、例えば、少なくとも95%、例えば、少なくとも96%、例えば、少なくとも97%、例えば、少なくとも98%、または100%の相補性を有する、10~30個のヌクレオチド長の連続したヌクレオチド配列を有することができる。
【0078】
オリゴヌクレオチド設計は、オリゴヌクレオチド配列中のヌクレオシド糖修飾のパターンを指す。開示されたアンチセンスオリゴヌクレオチドは、糖修飾されたヌクレオシドを含み、DNA、RNA、またはアラビノ核酸(ANA)ヌクレオシドを含んでもよい。いくつかの実施形態では、オリゴヌクレオチドは、糖修飾されたヌクレオシドおよびDNAヌクレオシドを含む。いくつかの実施形態では、オリゴヌクレオチドは、糖修飾されたヌクレオシドおよびRNAヌクレオシドを含む。いくつかの実施形態では、オリゴヌクレオチドは、糖修飾されたヌクレオシドおよびANAヌクレオシドを含む。
【0079】
いくつかの実施形態では、オリゴヌクレオチドは、少なくとも1個の修飾されたヌクレオシド、例えば、少なくとも2個、少なくとも3個、少なくとも4個、少なくとも5個、少なくとも6個、少なくとも7個、少なくとも8個、少なくとも9個、少なくとも10個、少なくとも11個、少なくとも12個、少なくとも13個、少なくとも14個、少なくとも15個、または少なくとも16個の修飾されたヌクレオシドを含む。一実施形態では、オリゴヌクレオチドは、1~10個の修飾されたヌクレオシド、例えば、2~9個の修飾されたヌクレオシド、例えば、3~8個の修飾されたヌクレオシド、例えば、4~7個の修飾されたヌクレオシド、例えば、6または7個の修飾されたヌクレオシドを含む。
【0080】
いくつかの実施形態では、オリゴヌクレオチドは、少なくとも1つの修飾されたヌクレオシド間結合を含む。いくつかの実施形態では、連続したヌクレオチド配列内のヌクレオシド間結合は、ホスホロチオエートまたはボラノホスフェートヌクレオシド間結合である。
【0081】
いくつかの実施形態では、開示されたアンチセンスオリゴヌクレオチドは、1つ以上の糖修飾されたヌクレオシド、例えば、2’糖修飾されたヌクレオシドを含む。好ましくは、開示されたアンチセンスオリゴヌクレオチドは、1つ以上のLNAヌクレオシドまたは2’糖修飾されたヌクレオシドを含み、ここで、2’位は、-F;-CF3、-CN、-N3、-NO、-NO2、-O-(C1-C10アルキル)、-S-(C1-C10アルキル)、-NH-(C1-C10アルキル)、または-N(C1-C10アルキル)2;-O-(C2-C10アルケニル)、-S-(C2-C10アルケニル)、-NH-(C2-C10アルケニル)、または-N(C2-C10アルケニル)2;-O-(C2-C10アルキニル)、-S-(C2-C10アルキニル)、-NH-(C2-C10アルキニル)、-N(C2-C10アルキニル)2、-O--(C1-C10アルキレン)-O--(C1-C10アルキル)、-O-(C1-C10アルキレン)-NH-(C1-C10アルキル)、-O-(C1-C10アルキレン)-NH(C1-C10アルキル)2、-NH-(C1-C10アルキレン)-O-(C1-C10アルキル)、および-N(C1-C10アルキル)-(C1-C10アルキレン)-O-(C1-C10アルキル)からなる群から独立して選択された置換基によって置換されている。
【0082】
いくつかの実施形態では、開示されたオリゴヌクレオチドは、少なくとも1個のLNAユニット、例えば、1、2、3、4、5、6、7、または8個のLNAユニット、例えば、2~6個のLNAユニット、例えば、3~7個のLNAユニット、4~8個のLNAユニット、または3、4、5、6もしくは7個のLNAユニットを含む。いくつかの実施形態では、すべての修飾されたヌクレオシドは、LNAヌクレオシドである。いくつかの実施形態では、LNAは、-L-の2’-4’ビラジカル結合を含み、式中、-L-は、-O-CH2-であり、-CH2-は場合により置換されている。いくつかの実施形態では、LNAは、-L-の2’-4’ビラジカル結合を含み、式中、-L-は、-O-CH2-である。いくつかの実施形態では、LNAは、-L-の2’-4’ビラジカル結合を含み、式中、-L-は、-O-CH(Et)-である。さらなる一実施形態では、オリゴヌクレオチドは、ベータ-D-オキシ-LNAと、以下のLNAユニット:ベータ-Dもしくはアルファ-L配置のいずれかであるチオ-LNA、アミノ-LNA、オキシ-LNA、および/またはENA、またはそれらの組み合わせのうちの1つ以上との両方を含み得る。さらなる一実施形態では、すべてのLNAシトシンユニットは、5-メチル-シトシンである。いくつかの実施形態では、オリゴヌクレオチドまたは連続したヌクレオチド配列は、ヌクレオチド配列の5’末端に少なくとも1つのLNAユニット、および3’末端に少なくとも2つのLNAユニットを有する。
【0083】
いくつかの実施形態では、開示されたオリゴヌクレオチドは、RNアーゼHをリクルートすることができる。いくつかの実施形態では、オリゴヌクレオチドは、本明細書では単に「ギャップマー」とも称される、ギャップマー設計または構造を有する。ギャップマー構造では、オリゴヌクレオチドは、’5->3’の方向に少なくとも3つの別個の構造的領域、5’-フランク、ギャップ、および3’-フランク、F-G-F’を含む。この設計では、フランキング領域FおよびF’(ウイング領域とも呼ばれる)は、UBE3A-AS標的核酸に相補的である修飾されたヌクレオシドの連続したストレッチを含み、一方で、ギャップ領域、Gは、オリゴヌクレオチドが標的核酸と二本鎖を形成するときにヌクレアーゼ、好ましくは、エンドヌクレアーゼ、例えば、RNアーゼ、例えば、RNアーゼHをリクルートすることができるヌクレオチドの連続したストレッチを含む。ヌクレアーゼ、特に、RNアーゼHをリクルートすることができるヌクレオシドは、DNA、アルファ-L-オキシ-LNA、2’-フルオロ-ANAおよびUNAからなる群から選択され得る。領域Gの5’および3’末端に隣接する領域FおよびF’は、好ましくは、非ヌクレアーゼリクルートヌクレオシド(3’エンド構造を伴うヌクレオシド)、より好ましくは、1つ以上の親和性増強修飾ヌクレオシドを含む。いくつかの実施形態では、3’フランクは、少なくとも1つのLNAヌクレオシド、好ましくは、少なくとも2つのLNAヌクレオシドを含む。いくつかの実施形態では、5’フランクは、少なくとも1つのLNAヌクレオシドを含む。いくつかの実施形態では、5’および3’フランキング領域の両方は、LNAヌクレオシドを含む。いくつかの実施形態では、フランキング領域中のすべてのヌクレオシドは、LNAヌクレオシドである。他の実施形態では、フランキング領域は、LNAヌクレオシドおよび他のヌクレオシド(混合フランク)の両方、例えば、DNAヌクレオシドおよび/または非-LNA修飾ヌクレオシド、例えば、2’置換されたヌクレオシドを含み得る。この場合では、ギャップは、親和性増強修飾ヌクレオシド、好ましくは、LNA、例えば、ベータ-D-オキシ-LNAが5’および3’末端で隣接している少なくとも5個のRNアーゼHリクルートヌクレオシド(2’エンド構造を伴うヌクレオシド、好ましくは、DNA)の連続した配列として定義される。結果として、ギャップ領域に隣接した5’フランキング領域および3’フランキング領域のヌクレオシドは、修飾されたヌクレオシド、好ましくは、非ヌクレアーゼリクルートヌクレオシドである。フランクがDNAを含む混合フランクを伴うオリゴヌクレオチドでは、5’および3’ヌクレオシドは、修飾されたヌクレオシドである。
【0084】
開示されたオリゴヌクレオチドを製造するための方法は知られている。いくつかの場合では、方法はホスホロアミダイト化学を使用する(例えば、Caruthersら、1987、Methods in Enzymology vol.154、pages 287-313を参照されたい)。さらなる一実施形態では、方法は、連続したヌクレオチド配列をコンジュゲート部分(リガンド)と反応させることをさらに含む。
【0085】
いくつかの実施形態では、キラル原子を含む1つ以上の修飾されたヌクレオシド間結合での立体化学の制御を提供するオリゴヌクレオチド方法論が利用される。例えば、これらの方法論について参照により組み込まれる、WO2010/064146、WO2014/012081、WO2015/107425、WO2016/079183、WO2016/079181、WO2016/096938、WO2017/194498、およびWO2018/177825を参照されたい。
【0086】
当業者は、本開示により提供される有用な核酸が本明細書で記載されるオリゴヌクレオチドの配列を保存および/または発現するものを含むことを認識するだろう。いくつかの実施形態では、そのような核酸は、細胞(例えば、微生物細胞、例えば、生産のための、および/または哺乳類細胞、例えば、治療のための)への送達、および/または細胞における複製および/または発現のために適切なベクターであってもよく、またはそれを含んでもよい。当業者は、様々な技術を認識している(例えば、ポリメラーゼ連鎖反応によるなどの増幅、制限消化によるなどの切断、例えば、ギャップ修復によるなどのインビトロまたはインビボのいずれかでのライゲーションによるなどの結合、のうちの1つ以上を利用するなどの組換え核酸技術)。
【0087】
前述したオリゴヌクレオチドおよび/またはオリゴヌクレオチドコンジュゲートのいずれか、および薬学的に許容される希釈剤、担体、塩および/または賦形剤を含む薬学的組成物も開示される。薬学的に許容される希釈剤は、リン酸緩衝化食塩水(PBS)を含み、薬学的に許容される塩は、ナトリウムおよびカリウム塩を含むがこれらに限定されない。いくつかの実施形態では、希釈剤は、人工脳脊髄液(aCSF)である。
【0088】
開示されたオリゴヌクレオチドは、薬学的組成物または製剤の調整のための薬学的に許容される活性または不活性物質と混合されてもよい。薬学的組成物の製剤化のための組成物および方法は、投与経路、疾患の程度、または投与される用量を含むがこれらに限定されない多数の基準に依存する。
【0089】
当業者は、オリゴヌクレオチド療法などの核酸療法の貯蔵および/または投与のために有用な様々な製剤化ストラテジーを認識している。例えば、Pushpendraら、「Nucleic Acids as Therapeutics」、From Nucleic Acid Sequences to Molecular Medicines、ed. ErdmannおよびBarciszewski、Springer-Verlag、2012;Juliano 「Delivery of Therapeutic Oligonucleotides」 Nuc.Acids.Res.44:6518、2016などを参照されたい。
【0090】
いくつかの実施形態では、オリゴヌクレオチドは、プロドラッグとして製剤化される。特に、オリゴヌクレオチドコンジュゲートに関しては、プロドラッグが作用部位、例えば、標的細胞に送達されると、コンジュゲート部分は、オリゴヌクレオチドから切断され得る。
【0091】
疾患を治療または予防するための方法であって、治療的または予防的有効量の本明細書で開示されるオリゴヌクレオチド、オリゴヌクレオチドコンジュゲート、または薬学的組成物を、疾患を患っているか、またはその疑いのある対象へ投与することを含む方法も開示される。
【0092】
本明細書で参照されるような障害の治療用医薬の製造のための、または本明細書で参照されるような障害の治療方法のための開示されたオリゴヌクレオチドの使用も開示される。
【0093】
開示された薬学的組成物は、局所的(例えば、皮膚、吸入、眼、または耳へ)、または経腸(例えば、経口的に、もしくは胃腸管を介して)、または非経口的(例えば、静脈内、皮下、筋内、脳内、脳室内、もしくは髄腔内)投与により投与されてもよい。いくつかの実施形態では、開示された薬学的組成物は、静脈内、動脈内、皮下、腹腔内、または筋内注射もしくは注入、髄腔内もしくは頭蓋内、例えば、脳内もしくは脳室内への投与を含む非経口経路により投与される。いくつかの実施形態では、オリゴヌクレオチドは、脳内または脳室内注射により投与される。別の実施形態では、活性のあるオリゴヌクレオチドまたはオリゴヌクレオチドコンジュゲートが、髄腔内に投与される。いくつかの実施形態では、薬学的組成物は、小脳延髄槽内(intracisternae magna)注射により投与される。
【0094】
いくつかの実施形態では、本明細書で記載される薬学的組成物を用いるAS療法は、ASを患っているか、またはその疑いのある対象(複数可)に投与される。いくつかの実施形態では、対象は、母方UBE3A遺伝子における欠損に関連した遺伝的特徴を有すると決定されている。いくつかの実施形態では、AS関連の遺伝的特徴は、母方欠失であるか、またはそれを含む。いくつかの実施形態では、AS関連の遺伝的特徴は、片親性ダイソミーであるか、またはそれを含む。いくつかの実施形態では、AS関連の遺伝的特徴は、UBE3A変異であるか、またはそれを含む。いくつかの実施形態では、AS関連の遺伝的特徴は、刷り込み欠損であるか、またはそれを含む。
【0095】
いくつかの実施形態では、対象は、ASに関連付けられている1つ以上の発達履歴および/またはラボ的知見特徴、例えば、以下のもののうちの1つ以上を有すると決定されている:
(i)正常な頭囲を有し、かつ大きな先天性異常がない、正常な出生前および出生時履歴;
(ii)新生児および/または乳児の時期の授乳時に困難がある;
(iii)6~12月齢までに発達遅延のエビデンスがみられ、時に、躯幹の低緊張状態に関連付けられる;
(iv)不安定な四肢の動き、および/または笑いの増大;
(v)発達は遅延されるが、進展する(技能の喪失はない);
(vi)正常な代謝、血液、および化学的ラボ的プロファイル;
(vii)MRIまたはCTを使用して評価された場合に構造的に正常な脳(軽度の皮質萎縮または髄鞘形成異常を有することがある)。
【0096】
代替的または追加的に、いくつかの実施形態では、対象は、ASに一貫して関連付けられる1つ以上の臨床的特徴、例えば、以下のもののうちの1つ以上を示すことが決定されている:
(i)発達の遅延、機能的に重大である;
(ii)運動またはバランス障害、通常は、歩行失調および/または四肢の振戦運動。いくつかの実施形態では、そのような運動障害は軽度であり得る。いくつかの実施形態では、そのような運動障害は、明らかな運動失調として現れないが、例えば、前傾、不安定さ、不器用さ、または素早くぎくしゃくした動きであるか、またはそれらを含み得る;
(iii)独特な挙動:笑い/笑顔の頻度が増えること;明らかに幸せな様子;簡単に興奮する性格、多くの場合、高揚して手を羽ばたかせたり手を振ったりする運動を伴う;多動的挙動の任意の組み合わせ
(iv)言語障害、例えば、言葉の使用を欠いているか、または最小限である;代替的または追加的に、感受性および非言語的コミュニケーションスキルは言語スキルに比べて高い。
【0097】
代替的または追加的に、いくつかの実施形態では、対象は、ASに頻繁に(例えば、時間の約80%)関連付けられる1つ以上の臨床的特徴、例えば、以下のもののうちの1つ以上を示すことが決定されている:
(i)頭囲の成長が、遅延され、不釣り合いなものであり、通常は、結果として、2歳までに小脳症を生じる(正常なOFCの≦2S.D.)。いくつかの実施形態では、小脳症は、15q11.2-q13欠失を伴う人においてより顕著である;
(ii)てんかん発作、通常は、3歳までに発症する。いくつかの実施形態では、てんかん発作の重症度は、年齢に従って減少し得るが、それにも関わらず、いくつかの実施形態では、てんかん発作障害は、大人になっても継続する。
(iv)当該技術分野において知られているような特徴的なパターンを伴う異常なEEG。いくつかの実施形態では、EEGの異常さは、人生の初めの2年で生じ、臨床的特徴に先行することがあり、臨床的なてんかん発作事象に相関しないこともある。
【0098】
代替的または追加的に、いくつかの実施形態では、対象は、ASに時折(例えば、時間の約20%~80%)関連付けられる1つ以上の臨床的特徴、例えば、以下のもののうちの1つ以上を示すことが決定されている:
(i)平らな後頭部
(ii)後頭動脈溝
(iii)舌を突き出している
(iv)舌を押し出す;吸い込み/飲み込み障害
(v)乳児期の授乳における問題および/または躯幹の低緊張状態
(vi)上顎前突
(vii)広く開いた口、広く隙間の空いた歯
(viii)頻繁によだれを垂らす
(ix)過剰な噛む/口の動きの挙動
(x)斜視
(xi)色素不足の皮膚、薄い色の髪の毛および眼の色、いくつかの実施形態では、家族と比較して決定され、典型的には欠失の場合においてのみ見られる。
(xii)過剰な四肢下部の深部腱反射
(xiii)特に歩行運動中の、高揚した湾曲した腕の位置
(xiv)回内または外反した足首を伴うすそ広がりな足どり
(xv)熱に対する感受性の増大
(xvi)異常な睡眠覚醒サイクル、および睡眠の必要性の減少
(xvii)水に対する興味/水に魅惑されること;特定の紙およびプラスチックなどのカサカサ音のなる物品に対して魅惑されること
(xviii)食べ物に関連した異常な挙動
(xix)肥満(年齢の高い小児において)
(xx)脊柱側湾症
(xxi)便秘
【0099】
いくつかの実施形態では、本明細書で記載されるような核酸療法(例えば、ASOなどのオリゴヌクレオチド療法)を用いるASの治療のための療法レジメンは、本明細書で記載されるようなオリゴヌクレオチドを含むおよび/または送達する薬学的組成物の1つ以上の用量の投与であるか、それを含む。
【0100】
いくつかの実施形態では、提供される療法レジメンが実施される対象は、例えば、1つ以上の他の核酸療法(例えば、UBE3A-ASを標的とする1つ以上の他のオリゴヌクレオチド)を含む1つ以上の他のAS療法を受けているか、または以前に受けた。例えば、WO2014004572A3、US9617539B2、US20170362592A1、およびEP2864479B1を参照されたい。
【0101】
いくつかの実施形態では、提供される療法レジメンが実施される対象は、1回以上のてんかん発作を以前に患ったか、または患っており、および/または抗てんかん発作療法を受けているか、または以前に受けた。例えば。いくつかの実施形態では、対象は、1つ以上のバルプル酸、クロナゼパム、フェノバルビタール、トピラマート、カルバマゼピン、ラモトリジン、レベチラセタム、フェニトイン、ゾニサミド、エトサクシミド、ガバペンチン、フェルバマート(felbatame)、オキシカルバゼピン、トランキセン(tranxene)、ACTS、ニトラゼパム、プレガバリン、ミソリン、ビガバトリンなどを以前に受けたか、または受けていてもよい。いくつかの特定の実施形態では、対象は、1つ以上のバルプル酸、クロナゼパム、フェノバルビタール、トピラマート、カルバマゼピン、ラモトリジン、および/またはレベチラセタムを以前に受けたか、または受けていてもよい。
【0102】
代替的または追加的に、いくつかの実施形態では、対象は、例えば、ケトン食療法、低血糖指数療法等などの食事療法を以前に受けたか、または受けていてもよい。
【0103】
さらになお代替的または追加的に、いくつかの実施形態では、対象は、迷走神経刺激因子を用いる治療を以前に受けたか、または受けていてもよい。
【0104】
本開示を読む当業者には明らかであるように、提供される治療方法は、本明細書に記載されるようなオリゴヌクレオチドおよびさらなる療法(例えば、代替的なオリゴヌクレオチドおよび/または抗てんかん療法および/または1つ以上の他の療法介入)の一方または両方を実施することを含み、その結果、対象は、組み合わせ療法(例えば、それらに同時に曝露される、例えば、重複した投与を介するなど)を受けることになる。髄腔内投与用の投与形態である医薬の製造のための本明細書で開示されたオリゴヌクレオチドの使用も開示される。
【0105】
脳内または脳室内投与用の投与形態である医薬の製造のための本明細書で開示されたオリゴヌクレオチドの使用も開示される。
【0106】
脳室内投与用の投与形態である医薬の製造のための本明細書で開示されたオリゴヌクレオチドの使用も開示される。
【0107】
いくつかの実施形態では、本明細書で開示されるオリゴヌクレオチドは、別の治療薬との組み合わせ治療において使用される。治療薬は、例えば、抗けいれん薬であり得る。
【0108】
本発明の多数の実施形態が記載されている。それにも関わらず、本発明の精神および範囲から逸脱することなく、様々な修飾がなされてもよいことが理解されよう。したがって、他の実施形態は、以下の特許請求の範囲の範囲内である。
【実施例】
【0109】
実施例1:
結果
マウスおよびヒトCNSのRNA-配列決定分析は、UBE3A-ASの安定性および/または転写のために重要であると考えられている領域を同定した。領域のさらなる分析は、マウスとヒトとの間の低レベルの配列保存を示した(
図1A~1D)。
【0110】
これらの知見に基づいて、Ube3a-AS転写物における特定領域を標的とするために、マウス特異的ASOが設計された(表6および
図2A)。この領域を標的とするASOが父方Ube3aアレルの発現を再活性化するかどうかを試験するために、初代海馬ニューロンの培養液をUbe3aYFPレポーターマウスモデルから産生し(Ube3a+/YFP;
図2B)、インビトロでの7日目(DIV)にて、対照ASO[ASO-C(10uM、n=3)]、Ube3a-ASを標的とする3つのASO[ASO-1.1、ASO-1.2、ASO-3.1(1μM、5μM、および15μM、n=3)]、ならびにASO-B(1μM、5μM、および15μM、n=3)]で治療した。正対照として、ニューロンは、トポテカン[トポ(300nM、n=3)]で治療され、負はビヒクル対照[Veh(1%、n=3);
図2C]であった。治療の3日後(10DIV)、免疫蛍光イメージングを使用して、個々の細胞中の父方Ube3aYFPタンパク質レベルが定量された。対照(ASO-CおよびVeh)と比較して、各治療は実質的に父方Ube3aYFPタンパク質レベルを増大し、ASO-1.1(15μM)、ASO-3.1(15μM)、およびトポテカン治療(
図2Dおよび2E)では同様のレベルが成し遂げられた
【0111】
次いで、この領域を標的とするために、ヒト特異的ASOが設計され、これは、ヒトの非多形的領域ならびにマカク(アカゲザルおよびカニクイザル)で保存されている領域(100%)を標的とする4つのASOを含んだ(表7および
図3A)。ヒト誘導多能性幹細胞(iPSC)神経前駆細胞は、14DIVの間にGABA作動性ニューロンに分化し、次いで、対照ASO[ASO-C(10μM、n=3)]、トポテカン[トポ(1μM、n=2)]、ならびにUBE3A-ASを標的とする6つのASO[ASO-1、ASO-2、ASO-3、ASO-4、ASO-5、およびASO-6(10μM、n=3)]で治療された。さらに、SNORD109Bの下流のイントロン領域を標的とするASOが含まれた(ASO-7)。治療の6日後(20DIV)、RNAをニューロンから単離し、UBE3A-ASおよびUBE3Aの定常状態RNAレベルを対照治療に対して推定した(
図3B)。ASO-7を除き、各ASOは有意にUBE3A-AS RNAレベルを減少し、ASO-2およびASO-4は最大の効果を有した(表8および
図3C)。各ASOでの治療後に、UBE3A RNAレベルも増大した(
図3D)。
【0112】
UBE3A-AS RNAレベルに対する効果を考慮して、ASO-4の効力もさらに調べられた。GABA作動性iPSC-由来ニューロンは、14DIVにて、10ポイントの1/2log用量曲線のASO-4、および正対照として、および治療間の比較のためにトポテカンで治療された[1nM、3nM、10nM、30nM、100nM、300nM、1μM、3μM、10μM、および30μM(ASO-4、n=6;トポテカン、n=2)]。20DIVにて、UBE3A-ASの定常状態RNAレベルが測定され、用量応答曲線を近似して、IC50およびE最大(すなわち、最大UBE3A-AS阻害)を推定した(表9および
図4A)。用量応答曲線のASO-4およびトポテカンは有意に異なり(並列試験:F(3,145)=11.2、p<0.0001)、故に、相対的効力は推定されなかった。等価試験は、ASO-4およびトポテカンのIC50およびE最大が等価でなかったことを示した[ASO-4/トポテカンIC50比:=1.2(信頼下限=1.1;信頼上限=1.3);E最大比=-4.1(信頼下限=-12.9;信頼上限=4.8)]。
【0113】
次いで、ASO-4標的領域の上流に位置するSNORD116、IPW、SNORD115、およびSNORD109A RNAについて、ASO-4およびトポテカンの効果を調べた(
図1Aを参照されたい)。SNORD116を除き、ASO-4は、IPW、SNORD115、およびSNORD109A/BのRNAレベルに対して有意な効果を有したが、用量依存性の様式ではなかった。対照的に、トポテカンは、SNORD116、IPW、SNORD115、およびSNORD109A/B RNAレベルに対して有意な効果を示し、これは用量依存性であった(表10および
図4B-4E)。より高い濃度のトポテカン(3μM、10μM、および30μM;
図4F)を除き、ASO-4およびトポテカンの両方は、用量依存性の様式で総UBE3A RNAレベルを増大した。
【0114】
iPSC-由来ニューロンの分化のより遅い時点において、ASO-4の効力がさらに調べられた。GABA作動性iPSC-由来ニューロンは、59DIVにおいて対照ASO[ASO-C、10μM(n=3)]およびASO-4[1uM、5μM、および10μM(n=3)]で治療され、UBE3A-ASおよびUBE3Aの定常状態RNAレベルは上記したように測定された(
図4G)。より速い時点におけるASO-4で治療したニューロンとは異なり、UBE3AおよびUBE3A-ASのRNAレベルは、高度に逆比例していた(
図4Hおよび4I)。例えば、UBE3A-AS RNAレベルに対するASO-4(10μM)の効果は、14および59DIVで治療したニューロン間で同様であった[20DIV:UBE3A-AS:↓87%(95%信頼区間(CI):80~95%);65DIV:↓81%(95% CI:74~88%)]が、UBE3A RNAレベルに対するASO-4の効果は実質的に59DIVで治療したニューロンで増大していた[20DIV:↑30%(95%CI:16~44%);65DIV:↑86%(95%CI:59%~113%)]。
【0115】
次いで、ASO-4(ASO-4.1、ASO-4.2、ASO-4.3、およびASO-4.4)の標的配列ならびに他の2つの標的領域、ASO-3(ASO-3.1およびASO-3.2)およびASO-6(ASO-6.1)(表11)を最適化するために、UBE3A-ASの5’-末端を標的とするさらなるASOが設計された。さらに、比較目的のために、2つの異なる販売元においてASO-4が製造された(ASO-4.S、Sigma;ASO-4.I、Integrated DNA Technologies)。ヒトiPSC-由来ニューロン(GABA作動性)は、14DIVにて、5ポイントの1/2log用量曲線のASO-3.1、ASO-3.2、ASO-4.S、ASO-4.I、ASO-4.1、ASO-4.2、ASO-4.3、ASO-4.4、およびASO-6.1[30nM、100nM、300nM、1μM(n=6)]で治療された。20DIVにて、各ASOのIC50およびE最大が上記されたように推定された(
図5A-Bおよび表12)。用量応答曲線はASO間で同様であり(並列試験:F(16,513)=1.6、p=0.06)、ASO-4およびASO-6.1は最高の相対的効力を有した(表13)。有意な差はASO-4.SとASO-4.Iとの間で観察されなかった。
【0116】
iPSC-由来ニューロンの分化のより遅い時点において、ASO-4およびASO-6.1の効力がさらに調べられた。GABA作動性iPSC-由来ニューロンは、29DIVにて、10ポイントの1/2log用量曲線のASO-4およびASO-6で治療された[1nM、3nM、10nM、30nM、100nM、300nM、1μM、3μM、10μM、および30μM(n=3)]。35DIVにて、各ASOのIC50およびE最大が上記されたように推定された(
図5C~Dおよび表14)。用量応答曲線のASO-4およびASO-6.1は同様ではなかった(並列試験:F(3,172)=22.7、p<0.0001)。等価試験は、ASO-4およびASO-6.1が等価な効力を有したが、異なるE最大値を有したことを示し[ASO-6.1/ASO-4比:IC50=1.03(信頼下限=1.0;信頼上限=1.1);E最大=-1.3(信頼下限=-2.6;信頼上限=-0.08)]、ASO-6.1はUBE3A-ASレベルの最大の阻害を有した。UBE3A RNAレベルに対するASO-4およびASO-6.1の効果は同様であり、各治療は用量依存性の様式でRNAレベルを増大した(
図5D)。
【0117】
ASO-4およびASO-6.1は、グルタミン酸作動性iPSC-由来ニューロンにおいても調べられた。グルタミン酸作動性iPSC-由来ニューロンは、14DIVにて、10ポイントの1/2log用量曲線のASO-4およびASO-6.1で治療された[1nM、3nM、10nM、30nM、100nM、300nM、1μM、3μM、10μM、および30μM(n=3)]。20DIVにて、各ASOのIC50およびE最大が上記されたように推定された(
図5E-Fおよび表15)。用量応答曲線のASO-4およびASO-6.1は同様であり、有意に異ならず(並列試験:F(3,165)=1.9、p=0.1)、ASO-6.1は最高の相対的効力を有した(表16)。期待されたように、ASO-4およびASO-6.1は、用量依存性の様式でUBE3A RNAレベルを増大したが(
図5F)、各濃度について治療に帰することができなかった高い程度の変動が存在した(R2=0.17)。
【0118】
結論
ASのための療法の開発に向けて、マウスおよびヒトニューロンにおいて、特定領域を標的とするASOがUbe3a-AS/UBE3A-ASを阻害し、父方Ube3a/UBE3Aアレルの発現を再活性化するかを決定するために、実験が実施された。まとめると、知見は、マウスおよびヒトニューロンにおけるこの領域を標的とするASOは強力なアンチセンス活性を有し、Ube3a/UBE3Aの刷り込みを反転させることを示す。
【0119】
Ube3a-ASを標的する3つのASOのうちの2つ(ASO-1.1およびASO-3.1)は、マウスニューロンにおいて父方Ube3aアレルの発現を、最適濃度のトポテカン(300nM)により成し遂げられたものと同様のレベルまで再活性化した。
【0120】
同様に、ヒト特異的ASOの各々は、ヒトiPSC-由来ニューロンにおけるUBE3A-ASの定常状態RNAレベルを有意に減少し、より高い濃度のASO-4およびASO-6.1はほぼ完全にUBE3A-ASの発現を廃止した。ASO-4およびASO-6.1標的領域がヒトとマカクとの間で100%保存されていることを考慮すると、これらのASOの効力は、カニクイザルまたはアカゲザルマカクのいずれかにおいてインビボで調べることができる。トポテカンとは異なり、ASO-4は、上流SNORD116、IPW、SNORD115、またはSNORD109A/B RNAに対して、あるとしても小さな効果を有し、これは、ASOが標的領域またはその下流での転写を終結するという考えと一致する。
【0121】
低濃度(3nM)のASO-4およびASO-6.1は、UBE3A-AS RNAレベルを有意に減少するが、より高い濃度(≧100nM)のASOはUBE3A RNAレベルを増大するために必須ではない。これは、UBE3A-ASがUBE3Aの転写を阻害するために必要とされる特定の閾値、またはUBE3A-ASの不活性化が父方UBE3Aの再活性化を導く時間のずれ、またはUBE3A RNAレベルを定量するために使用されるアッセイの感受性を反映してもよい。
【0122】
まとめると、知見は、UBE3A-ASにおける候補領域を標的とするASOが、ニューロンにおけるUBE3Aの刷り込みをほとんど完全に廃止し、将来の臨床開発のために少なくとも2つのASOを明らかにしていることを示唆している。
【0123】
異なるRNA修飾[2’-ヒドロキシメチル(2’-OMe)、2’-メトキシ-エチル 2’-MOE、およびロック核酸(LNA)]、および骨格[ホスホロチオエート(PS)およびホスホジエステル(PO)]から構成されるASO-4およびASO-6.1の誘導体も設計された(表17)。
【表6】
【表7】
【表8】
【表9】
【表10】
【表11】
【表12】
【表13】
【表14】
【表15】
【表16】
【表17】
【0124】
材料および方法
アンチセンスオリゴヌクレオチド設計
アンチセンスオリゴヌクレオチド(ASO)は、Soligo(核酸の統計的折り畳みおよび調節性RNAの研究のためのソフトウェア)を使用して設計された。簡単に言うと、最も低い結合部位分断エネルギーおよび自由結合エネルギーを伴う候補ASO(20~18mer)が、各標的配列について同定され、次いで、増大した効果を有するモチーフについて検査した。Soligoにより作製された標的配列の予測された最も低い自由エネルギー質量中心二次構造内のアクセシビリティに基づいて、ASOはさらにフィルターにかけられた。いくつかの場合では、RNAfoldおよびMfoldにより作製された最も低い自由エネルギー構造を使用して、二次構造モデルが比較された。
【0125】
ヒトASOは、以下の基準を使用してフィルターにかけられた:1)標的配列は、多形性であった[dbSNP138、dbSNP150、および1000ゲノムフェーズ3統合バリアント細胞(SNV、INDEL、およびSV)];2)標的配列は、アカゲザルおよびカニクイザルマカクで100%保存されていなかった;3)標的配列は、保持されたSnord115/SNORD115 snoRNA(エクソンあたり)の上流に位置した。次いで、残存するASOを、自由エネルギー(<=-8kcal/mol)、標的部位ヌクレオチドについての平均非対合確率、結合部位分断エネルギー(低>高)、二次構造内の位置(Ensembl質量中心)、および高い/低い効果に関連する配列モチーフの存在/不在によりランク付けした。
【0126】
マウス初代海馬ニューロン
海馬ニューロンの初代培養液は、Ube3am+/pYFPの雄と野生型C57BL/6J雌を交配することによるP0-P1子マウス(Ube3am+/p+およびUbe3am+/pYFP)から産生された。遺伝子型は、以前に記載された方法を使用して決定された。簡単に言うと、海馬ニューロンは、ポリ-D-リジン(152028、Thermo Fisher Scientific)およびラミニン(23017-01、Thermo Fisher Scientific)をコーティングした96ウェルオプティカルボトムプレートにて、B27(Invitrogen)およびペニシリン/ストレプトマイシン(Invitrogen)を補足した神経基礎A培地(Invitrogen、San Diego、CA)中で培養した。培養液は使用時まで5%のCO2中、37℃で維持された。
【0127】
マウスニューロンイメージング
マウス初代海馬ニューロンは、10DIV(治療の3日後)に、4%のパラホルムアルデヒドを用いて固定された。次いで、培養液は、1XPBSで2回洗浄され、PBS中の4%のパラホルムアルデヒドで15分間固定され、次いで、1XPBS中で3回洗浄された。細胞は、5%のヤギまたはロバ血清を加えたPBS(T-PBS)中の0.3%のトリトン-X100中で、1~2時間、室温で穏やかに攪拌しながらブロッキングされた。細胞は、抗-GFP[Novus Biologicals、NB 600-308(ウサギ)]および抗-NeuN(Millipore、05-557(mouse)]抗体と共に24時間、4℃で穏やかに攪拌しながらインキュベートされた。細胞は、0.1%のTween 20 1XPBS中で各々15分間ずつ3回洗浄され、次いで、抗ウサギ488(Jackson ImmunoResearch、111-545-144)および抗マウスCy3(Jackson ImmunoResearch、115-165-166)二次抗体と共に24時間4℃で暗所にてインキュベートされた。次いで、細胞は、0.1%のTween20 1XPBS中で各々15分間ずつ4回洗浄された。3回目の洗浄において1:1000の希釈でHoechst染色(Thermo Fisher Scientific)を使用して、核が標識された。
【0128】
Cytation 5およびGen5 Image+ソフトウェア(BioTek、Winooski、VT)を使用して、プレートが画像化された。簡単に言うと、4Xの対立倒立を使用して、自動画像ステッチのために重複タイルを伴う5x4の自動焦点画像を獲得することにより、各ウェルのモンタージュ画像を作製した。使用されたフィルターは、DAPI(377,477)、GFP(469,525)、およびRFP(531,593)であった。露光時間およびゲインは、負および正対照を使用して、各プレートについて調整された。GFPおよびRFPフィルターについて使用したのと同じ焦点高さを用いて、自動焦点を各ウェルについて核(Hoechst染色、DAPI)に対して実施した。Gen5 Image+ソフトウェアにより画像を共にステッチした。
【0129】
IN Cell Developer 6.0(GE Healthcare Life Sciences、Pittsburgh、PA)を使用して、単一細胞の画像分析を実施した。簡単に言うと、核(Hoechst染色、DAPI)または成熟ニューロン(NeuN、RFP)のいずれかについて、獲得画像において無作為に選択された細胞のサイズおよび強度に基づいて包含および排除パラメータを最適化することにより、個々のトラックマスクを作製した。次いで、GFPの平均および中央強度値を、選択されたマスクの境界内で獲得し、各細胞内のUbe3aYFPについての強度値を産生した。
【0130】
ヒト誘導多能性幹細胞由来ニューロン
GABA作動性およびグルタミン酸作動性誘導多能性幹細胞(iPSC)由来神経前駆細胞(NRC-100-010-001およびGNC-301-030-001、Cellular Dynamics International、Madison WI)を、製造元のプロトコルに従ってニューロンに分化させた。簡単に言うと、神経前駆細胞は解凍され、化学的に画定された培地中で再懸濁され、ポリ-D-リジンおよびラミニンでコーティングされた滅菌培養プレートへ添加された。プレーティングの24時間後に培地を交換し、次いで、培地の半分をその後3~5日毎に交換した。
【0131】
RNA単離
培養されたiPSC-由来ニューロンについて、Cell-to-CTキット(Thermo Fisher Scientific)を55μlのライセート容積にて使用して、RNA単離およびcDNA合成を実施した。
【0132】
RNAレベルの分析
標的転写物の定常状態RNAレベルは、TaqMan定量的リバース-転写PCR(qRT-PCR)アッセイを使用して測定された。全反応容積は、10uLであり、2μlのcDNA、1Xの遺伝子発現マスターミックス(4369016、Thermo Fisher Scientific、Waltham、MA)、および1XのTaqManプライマーアッセイ(Thermo Fisher Scientific)を含んだ。サイクリング条件は、50℃で2分間、95℃で10分間、ならびに95℃で15秒間および60℃で1分間の40サイクルであり、各サイクルの60℃での工程において読み取りが行われた。反応は、BIO-RAD T1000 CFX96サーモサイクラー(Bio-Rad Laboratories、Hercules CA)において実行され、内部対照(PPIA、Hs99999904_m1、Thermo Fisher Scientific)および標的[UBE3A-AS、Hs01372957_m1;SNORD116-11、Hs04275268_gH;SNORD115、Hs04275288_gH;IPW、Hs03455409_s1;SNORD109A/B、AP47WVR(Thermo Fisher Scientific);UBE3A:フォワードATATGTGGAAGCCGGAATCT(配列番号500);リバース:CCCAGAACTCCCTAATCAGAA(配列番号501);およびプローブ:ATGACGGTGGCTATACCAGG(配列番号502)]反応を共に実施した。データを取り出し、BIORAD CFX Maestroソフトウェア(Bio-Rad Laboratories)で分析した。内部対照Cq値≧30を有する試料をフィルター分けした。データの品質を視覚的に調査して、技術的および/またはプレートレプリケートの間の不一致を同定した。推測統計および記述統計のための測定は、ΔΔCq値(2-ΔΔCq=2-(Cq[標的]-Cq[内部対照])-(Cq[標的]-Cq[内部対照]))からなる。
【0133】
実施例2:ASO標的領域の同定
マウス組織および細胞から産生されたRNA-配列決定データの分析は、Snord115クラスターの3’-末端とUbe3aアンチセンス(Ube3a-AS)転写物の5’-末端との間に位置する領域を明らかにし、これは、Snord115宿主遺伝子転写物のプロセシングおよびUbe3a-ASの転写のために重要であると考えられている遺伝要素を含有している(
図6A~6D)。ヒト組織から産生されたRNA-配列決定データの分析は、SNORD115クラスターの3’末端とSNORD109Bとの間に位置する領域を明らかにし(
図7A~7G)、これは、マウスにおいて観察されたものと同様の要素を含んだ;しかし、この領域の比較分析は、ヒトとげっ歯類との間には配列保存がほとんどないか、または全く存在しないことを示した。
【0134】
材料および方法
RNA-配列決定
RNAは、Qiagen RNAeasy Plus(74136、Qiagen、Hilden、Germany)を使用して単離された。RNA濃度は、Qubit蛍光定量(Thermo Fisher Scientific)を使用して決定され、RNA品質は、4200 Agilent TapeStation(Agilent、Santa Clara、CA)を使用して評価された。RNA-配列決定ライブラリーは、Illumina TruSeq Stranded Total RNAキット(20020597、Illumina、Inc.、San Diego、CA)を製造元のプロトコルに従って使用して産生された。75塩基対の対になった末端配列決定は、Texas A&M Institute for Genome Sciences and Society Genomics coreにおいて、NextSeq 500(Illumina、San Diego、CA)を使用して実施された。生の配列決定読み取りは、CASAVAを使用して処理された。得られたFASTQ配列は、FASTQCを使用して調べられた。
【0135】
FASTQ配列は、Hisat2(バージョン2.1.0)を以下の設定で使用してヒト参照アセンブリ(hg19)に対してアラインされた:--fr。次いで、アラインされたSAM配列をバイナリー(binary)BAM配列に変換し、インデックスを付け、Samtoolsを使用してソーティングした。個々の試料からのBAMファイルを合成し、Samtoolsを使用してインデックスを付けた。アラインされた配列は、Samtoolsのビューコマンドを使用してフィルター分けされ、非独自的にアラインされた読み取りを除いた(品質>1)。
【0136】
転写物アセンブリは、以下のオプションでStringtie(バージョン1.3.4.d)を使用して合成した試料から産生された:(stranded)--rf-f0-j2。gffread (GFF utilities、Johns Hopkins University、Center for Computational Biology)を使用して、単一のエクソン転写物は、アセンブリされた転写物から排除された。
【0137】
実施例3:リードASOの同定
ASO-4およびASO-6.1標的配列を標的とし、かつ異なる骨格設計およびRNA修飾からなる18個のASOが、潜在的なリードASOを同定するために設計された(表17)。正常なiPSC由来ニューロン(GABA作動性)は、10ポイントの1/2log用量曲線の各ASOで治療され、IC50およびE最大値を比較された。神経前駆細胞は18DIVでニューロンに分化し、次いで、10ポイントの1/2log用量応答ASO[1nM、3nM、10nM、30nM、100nM、300nM、1μM、3μM、10μM、および30μM(n=2)]で治療された。24DIVにて、UBE3A-ASの定常状態RNAレベルが測定され、上記したように用量応答曲線が近似された(
図8Aおよび表18)。用量応答曲線は有意に異なった(並列試験:F(51,606)=7.86;p<0.0001;R2=0.90)ので、相対的効力は推定されなかった。近似曲線の階層的なクラスター化は、ASOの3クラスターを明らかにし、クラスター1が9つの最も強力なASOを表した(
図8Bおよび8C)。クラスター1の分析は、ASOが同様の曲線を有し(並列試験:F(24,299)=1.01;p=0.5;R2=0.93)、ASO-4.4.PS.Lが他のASOと比べて少なくとも3倍強力であることを示した(表19)。しかし、さらなる分析は、ASO-4.4.PS.L、ASO-6.1.PS.M、およびASO-6.1.PO-1.Mが等価なIC50値を有するが、他のASOは若干効力が少ないことを示した(表20)。相対的効力および内部選択基準に基づいて、ASO-4.4.PS.LおよびASO-6.1.PO-1.Oがさらに調査された。
【表18】
【表19】
【表20】
【0138】
材料および方法
方法は、別記されない限り、実施例2で記載されたものと同様であった。
【0139】
実施例4:アンジェルマン症候群iPSCニューロンにおけるASO-6.1-PO-1.OおよびASO-4.4.PS.Lの薬力学的分析
次いで、ASO-6.1.PS.OおよびASO-4.4.PS.Lの効力が、15q11-q13領域の母方由来欠失を有するアンジェルマン症候群患者からのiPSC由来ニューロンにおいて調べられた。誘導多能性幹細胞は、ニューロンに分化し、次いで、10ポイントの1/2log用量曲線のASO-6.1.PO-1.OおよびASO-4.4.PS.L[1nM、3nM、10nM、30nM、100nM、300nM、1μM、3μM、10μM、および30μM(n=3)]で治療された。治療の6日後に、UBE3A-ASの定常状態RNAレベルが測定され、用量応答曲線が上記したように近似された(
図9A)。用量応答曲線は、ASO間で同様であったが(並列試験:F(3,132)=1.07、p=0.4、R2=0.82)、ASO-4.4.PS.L(437nM)はASO-6.1.PO-1.O(1.22uM)よりもおよそ2.7倍だけより強力であった。IC50値は等価であった[ASO-6.1.PO-1.O/ASO-4.4.PS.L IC50比:=0.96(信頼下限=0.9;信頼上限=1.0)]。E最大値は同様であった(30μM:ASO-4.4.PS.L=0.01±0.0007;ASO-6.1.PO-1.O=0.05±0.004)が、信頼区間[ASO-6.1.PO-1.O/ASO-4.4.PS.L E最大比:=-9.1(信頼下限=-224;信頼上限=205)]に起因して等価であるとは見なされなかった。
【0140】
材料および方法
方法は、別記されない限り、実施例2で記載されたものと同様であった。
【0141】
アンジェルマン症候群誘導多能性幹細胞由来ニューロン
アンジェルマン症候群iPS細胞(AG1-0 iPSCs)(ECN001、Kerafast、Boston、MA)は、ヒト胚性幹細胞培地[DMEM/F12(11330-057、Gibco Biosciences、Dublin、Ireland)、20%のノックアウト血清リプレイスメント(10828-028、Thermo Fisher Scientific)、1Xの非必須アミノ酸、2mMのL-グルタミン、7μl/mLの2-メルカプトエタノール、および4μg/mLの基礎線維芽細胞成長因子]中で、照射マウス胚性線維芽細胞と共培養された。初回継代では、PluriSTEMヒトES/iPS培地(SCM130、Millipore Sigma、Burlington、MA)についての製品マニュアルに従って、AG1-0細胞が継代され、この培地は、フィーダーフリーであり、細胞を解離するためにDispaseII(SCM133、Millipore Sigma)を利用する。Matrigel(商標)hESC適格性マトリックス(354277、Corning BD Biosciences、Corning、NY)を細胞外マトリックスとして使用した。第2の継代では、マトリックスは、ビクロネクチン(CC130、Millipore Sigma)に変更された。続く継代の間、分化した細胞がコロニーのおよそ<5%を表すまで、分化の領域は手動で除去された。4回の続く継代の後、AG1-0細胞は、細胞外マトリックスとしてビクロネクチンを欠いているMillipore ES/iPS神経新生キット(SCR603、SCM110、およびSCM111)を使用して、分化された。初回継代はEZ-LiFT(SCM139、Millipore Sigma)を用いて実施され、高品質のiPS細胞を得た。神経前駆細胞をステージゼロ(P0)で凍結し、その後、分化のために解凍した。分化は、ポリ-D-リジン(10μg/mL)およびラミニン[10μg/mL(23017-015、Gibco)でコーティングされた滅菌培養プレートにて、分化培地(SCM111)中、分化の10日間において実施された。いくつかの場合では、細胞は、セルラーダイナミクス維持培地(NRM-100-121-001、Cellular Dynamics International、Madison、WI)中で分化された。
【0142】
実施例5:ASO-6.1-PO-1.O、およびASO-4.4.PS.Lで処理したアンジェルマン症候群iPSCニューロンにおけるPWS多シストロン性転写物の発現分析
ASO-4.4.PS.LおよびASO-6.1.PO-1.Oが、PWS多シストロン性転写物によりコードされるRNA転写物のレベルに影響を与えるかを決定するために、RNA-配列決定が、各ASOで治療されたAS iPS細胞において実施され、SNURF、SNRPN、SNORD116宿主遺伝子転写物(SNHG116)、SNORD116 snoRNA、IPW、SNORD115宿主遺伝子転写物(SNHG115)、SNORD115 snoRNA、およびUBE3A-ASの定常状態RNAレベルが定量化された。UBE3A定常状態RNAレベルも測定された。アンジェルマン症候群iPS細胞は上記したようにニューロンへと分化し、次いで、ビヒクル(1%のH2O、n=3)、ASO-4.4.PS.L(30uμM、n=3)およびASO-6.1.PO-1.O(30μM、n=3)で治療された。治療の6日後、培養液から単離された総RNA(rRNA枯渇した)に対して、RNA RNA-配列決定が実施された。SNHG116、SNHG115、およびUBE3A-AS転写物の注釈を作製するために、トランスクリプトームが、ビヒクルRNA-seqデータからアセンブリされ、次いで、参照遺伝子注釈へと組み込まれた。ビヒクルに対して、SNURF、SNRPN、SNHG116、SNORD116 snoRNA、およびSNORD115 snoRNAの定常状態RNAレベルは同様であり、有意に異ならなかった。ASO-6.1.PO-1.Oではなく、ASO-4.4.PS.Lは、IPWレベル(1.5倍)を減少したが、効果は有意ではなかった。ASO-6.1.PO-1.OおよびASO-4.4.PS.Lは、SNHG115およびUBE3A-AS RNAレベルを有意に減少した。ASO-6.1.PO-1.OおよびASO-4.4.PS.Lは、SNHG115レベルに対して同様の効果を有した;しかし、ASO-4.4.PS.Lは、ASO-6.1.PO-1.O(ASO-4.4.PS.L:-6.1倍変化;ASO-6.1.PO-1.O:-2.8倍変化)よりも、UBE3A-AS RNAレベルに対してはるかに大きな効果を有した。ASO治療は、UBE3A RNAレベルをおよそ1.2倍増大したが、効果は有意ではなかった(
図10および表21)。
【表21】
【0143】
材料および方法
方法は、別記されない限り、実施例4で記載されたものと同様であった。
【0144】
PWS RNAの示差的発現分析
RefSeq遺伝子注釈の正規化されたFPKM(100万あたり1000あたりの断片)値は、デフォルト設定および以下のオプションを用いるCuffnormを使用して推定される:-u。各遺伝子注釈のFPKM値は、各試料についてアウトプットファイルから決定され、記述および推測統計のために使用された。
【0145】
実施例6:カニクイザルマカクにおけるASO-6.1-PO-1.OおよびASO-4.4.PS.Lの薬力学的分析
ASO-4およびASO-6標的領域は、いくつかの非ヒト霊長類(NHP)種にわたって保存されており、故に、大型動物モデルにおける安全性および効率性の研究の両方が可能となる。中枢神経系(CNS)におけるASO-4.4.PS.LおよびASO-6.1.PO-1.Oの効能を調べるために、ASOが、髄腔内腰部穿刺によりカニクイザルマカクへ送達された。動物は、ビヒクル(0.9%の食塩水、n=5)、ASO-6.1.PO-1.O(10mg、n=3)、およびASO.4.4.PS.L(10mg、n=3)の単回ボーラス注射を投与された。治療の28日後、中枢神経(CNS)組織が収集され、UBE3A-ASの定常状態RNAレベルが測定された。総じて、ASO-4.4.PS.Lは、ASO-6.1.PO-1.Oよりも、UBE3A-AS RNAレベルに対してより大きな効果を有した(表22)。ASO-4.4.PS.Lは、大部分のCNS領域においてUBE3A-AS RNAを減少し、側頭葉、一次運動皮質、脳橋、髄、海馬、淡蒼球、前頭皮質(放射冠)、前頭前野、および脊髄腰部において大きな効果を有した。同様に、ASO-6.1.PO-1.Oは、大部分のCNS領域においてUBE3A-AS RNAレベルを減少し、大きな効果は、脳橋、動眼神経核、および脊髄腰部において観察された(
図11および表23)。
【表22】
【表23】
【0146】
材料および方法
ASOの投与
NHP研究は、Northern Biomedical Research and Charles River Laboratoriesにて、Institutional Animal Care and Use Committeesの各制度により認可されたプロトコルを使用して実施された。2~4kgの体重の雄および雌カニクイザルマカク(Macaca fascicularis)を麻酔し、単回1mL用量のASOまたはビヒクルを髄腔内腰部穿刺により投与した。ビヒクル対照品目(0.9%の塩化ナトリウム)中に凍結乾燥したASOを溶解させることにより、投与用溶液を調製し、0.2μmのフィルターを介して濾過した。CNSおよび脊髄試料を回収し、CNSを4mmの冠状スライスに切片化した。組織試料を即時凍結し、RNA単離まで-80℃で貯蔵した。
【0147】
RNA単離
4mmの組織パンチを目的の各領域から採取し、そのおよそ半分はRNA単離のために使用した。RNA単離は、Qiagen RNeasyプラスミニキット(74136、Qiagen)を使用して実施され、組織崩壊および溶解は、TissueLyser II中の5mmのステンレススチールビーズを用いて実施された。RNAは、2容積の30μlの水中に溶離され、全溶離容積は60μlとなった。RNAは、QubitおよびRNA XRアッセイ(Q33224、Thermo Fisher Scientific)を用いて定量化された。cDNAは、高性能RNA-to-cDNAキット(4387406、Thermo Fisher Scientific)を全反応容積50μlで使用して、2μgのインプットRNAから合成された。
【0148】
組織におけるUBE3A-AS RNAレベルの分析
カニクイザルマカクのUBE3A-AS RNAレベルは、SYBR緑色定量的リバース-転写PCR(qRT-PCR)を使用して推定された。全反応容積は、10μlであり、2μlのcDNA、1XのPowerUp SYBRグリーンマスターミックス(A25741、Thermo Fisher Scientific)、および500nMの各プライマー(フォワードおよびリバース)を含んだ。サイクリング条件は、50℃で2分間、95℃で2分間、ならびに95℃で15秒間および60℃で1分間の40サイクルであり、各サイクルの60℃での工程において読み取りが行われた。反応は、BIO-RAD T1000 CFX96サーモサイクラーで実行され、内部対照(PPIA、フォワード:GTCTCCTTCGAGCTGTTTGC (配列番号503);リバース:CCTTTCTCTCCAGTGCTCAGA (配列番号504))および標的(UBE3A-AS、フォワード:CCTGTGAACTTTCAACCAGGA (配列番号505);リバース:GGATCAGACTCCAGGCCTTC(配列番号506))反応が別々に実施された。データが回収され、初期分析がBIORAD CFX Maestroソフトウェアを用いて実施され、深層統計分析は、ExcelおよびJMPを用いて実施された。
【0149】
実施例7:スプライスされたUBE3A-AS転写物のエクソン境界を標的とするASO
いくつかの実施形態では、標的配列は、UBE3A-ASエクソン1~5およびSNORD109Bエクソン1~2を含むエクソン境界である。標的配列は、各エクソン(隣接エクソンの5’および3’-末端を表す19個のヌクレオチド)のエクソンの境界を中心として配置する38個のヌクレオチド(各エクソンの19個のヌクレオチド)からなる。セグメント1~2、2~3、3~4、5~6、7~8、9~10、および11~12を含むエクソン境界を伴う、12セグメントの配列が存在した。染色体コーディネートは表24に提供される。スプライスされたエクソン(|、エクソンのジャンクション)および介入エクソンの配列([])を示す単一の合成されたジャンクション配列が作製された。エクソンのジャンクションを標的とするASO(20-、19、および18-mer)は、表25に提供される。
【0150】
合成されたジャンクション配列
AATGAAATCTTCTGATTTG|TAAGACATGCTGCCAAGAG[]ATTAGTTTTACACCTTCAG|GATAAAGACTGCTGAGAAG[]GTTTAAGGATGCTATTCTG|AAAAGACTGTGGAGGAAGA[]TTAAGGAAACCATCTCTGG|GATAAGGATGACTGAGGAA[]ATTTAAGGATGCCACTCTG|GTTAAAAGCTGAAACAACT[]GAAACTTCAGGGAAAAGAG|AAGGCCTGGAATCTGATCC(配列番号489)。
|=3’-5’ エクソンのジャンクション
[]=介入エクソンの配列
【表24】
【表25】
【0151】
実施例8:UBE3a-ASエクソン1~5を標的とするsiRNA、shRNA、およびCRISPRガイド
上記するように、いくつかの実施形態では、開示されたオリゴヌクレオチドは、標的核酸配列を阻害、変異、または欠失する機能的核酸、例えば、siRNA、shRNA、またはヌクレアーゼgRNAである。
【0152】
UBE3a-ASエクソン1~5を標的とするsiRNAの実施例は、表26において提供される。UBE3a-ASエクソン1~5を標的とするshRNAの実施例は、表27において提供される。UBE3a-ASエクソン1~5を標的とするgRNAの実施例は、表28において提供される。
【表26】
【表27】
【表28】
【0153】
別に定義されない限り、本明細書で使用されるすべての技術用語および科学用語は、開示された本発明が属する技術分野の当業者によって一般的に理解されているものと同じ意味を有する。本明細書で引用された刊行物およびそれらが引用した材料は、参照により本明細書に具体的に組み込まれる。
【0154】
当業者であれば、単に慣用的な実験手法を使用することで、本明細書で記載された特定の実施形態に対する多くの均等物を認識し、または、それらを確認することができるだろう。このような均等物は、以下の特許請求の範囲により包含されることが意図される。
【配列表】