IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社日立産機システムの特許一覧

特許7297624インク、該インクの製造方法、および該インクを用いた温度インジケータ
<>
  • 特許-インク、該インクの製造方法、および該インクを用いた温度インジケータ 図1
  • 特許-インク、該インクの製造方法、および該インクを用いた温度インジケータ 図2
  • 特許-インク、該インクの製造方法、および該インクを用いた温度インジケータ 図3
  • 特許-インク、該インクの製造方法、および該インクを用いた温度インジケータ 図4
  • 特許-インク、該インクの製造方法、および該インクを用いた温度インジケータ 図5A
  • 特許-インク、該インクの製造方法、および該インクを用いた温度インジケータ 図5B
  • 特許-インク、該インクの製造方法、および該インクを用いた温度インジケータ 図6
  • 特許-インク、該インクの製造方法、および該インクを用いた温度インジケータ 図7
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-06-16
(45)【発行日】2023-06-26
(54)【発明の名称】インク、該インクの製造方法、および該インクを用いた温度インジケータ
(51)【国際特許分類】
   C09D 11/50 20140101AFI20230619BHJP
   C09D 11/38 20140101ALI20230619BHJP
   C09D 11/328 20140101ALI20230619BHJP
   G01K 11/16 20210101ALI20230619BHJP
【FI】
C09D11/50
C09D11/38
C09D11/328
G01K11/16
【請求項の数】 11
(21)【出願番号】P 2019173988
(22)【出願日】2019-09-25
(65)【公開番号】P2021050276
(43)【公開日】2021-04-01
【審査請求日】2021-11-16
(73)【特許権者】
【識別番号】502129933
【氏名又は名称】株式会社日立産機システム
(74)【代理人】
【識別番号】110000350
【氏名又は名称】ポレール弁理士法人
(72)【発明者】
【氏名】岡崎 暢一郎
(72)【発明者】
【氏名】森 俊介
(72)【発明者】
【氏名】會田 航平
(72)【発明者】
【氏名】坪内 繁貴
(72)【発明者】
【氏名】川崎 昌宏
(72)【発明者】
【氏名】荻野 雅彦
【審査官】小久保 敦規
(56)【参考文献】
【文献】特開2012-180412(JP,A)
【文献】中国特許出願公開第104087064(CN,A)
【文献】特開2001-271016(JP,A)
【文献】特開2003-176419(JP,A)
【文献】特開2001-247807(JP,A)
【文献】米国特許出願公開第2016/0376458(US,A1)
【文献】特開2019-127498(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
C09D 11/00-13/00
(57)【特許請求の範囲】
【請求項1】
インクジェットプリンティング用のインクであって、
前記インクは、温度検知水性インクであり、
ロイコ染料、顕色剤および消色剤を含む温度検知材料と、界面活性剤と含む温度検知粒子と、水系分散媒と、添加剤として導電剤とを含み、
前記インクの電気抵抗率が2000Ωcm以下であり、
前記温度検知粒子は、前記消色剤のマトリックス中に前記ロイコ染料および前記顕色剤が分散した前記温度検知材料の微粒子の周りを、前記界面活性剤が被覆しており、前記温度検知粒子の内部にも前記界面活性剤が存在している、ことを特徴とするインク。
【請求項2】
請求項1に記載のインクにおいて、
前記インクは、前記添加剤として水溶性樹脂バインダおよび/またはレベリング剤を更に含む、ことを特徴とするインク。
【請求項3】
請求項1又は請求項に記載のインクにおいて、
前記温度検知粒子の中位径が0.1μm以上100μm以下である、ことを特徴とするインク。
【請求項4】
請求項1乃至請求項3のいずれか一項に記載のインクにおいて、
前記インクは、pHが6以上8以下である、ことを特徴とするインク。
【請求項5】
請求項1乃至請求項のいずれか一項に記載のインクにおいて、
互いに異なる顕色開始温度を有する複数種の前記温度検知粒子を含み、
前記複数種の温度検知粒子のそれぞれは、所定の温度以下になると顕色する、ことを特徴とするインク。
【請求項6】
請求項1乃至請求項のいずれか一項に記載のインクにおいて、
互いに異なる顕色開始温度を有する複数種の前記温度検知粒子を含み、
前記複数種の温度検知粒子のそれぞれは、所定の温度以上になると顕色する、ことを特徴とするインク。
【請求項7】
請求項1乃至請求項のいずれか一項に記載のインクにおいて、
互いに異なる顕色開始温度を有する複数種の前記温度検知粒子を含み、
前記複数種の温度検知粒子は、所定の温度以下になると顕色する温度検知粒子と、所定の温度以上になると顕色する温度検知粒子との両方を含む、ことを特徴とするインク。
【請求項8】
ンクの製造方法であって、
前記インクは、ロイコ染料、顕色剤および消色剤を含む温度検知材料と、界面活性剤と含む温度検知粒子と、水系分散媒とを含むインクであり、
前記ロイコ染料と前記顕色剤と前記消色剤とを混合、溶融、固化させて前記温度検知材料を調製する温度検知材料調製工程と、
前記温度検知材料と前記界面活性剤の溶液とを加熱攪拌混合して温度検知材料/界面活性剤の乳濁液を用意する乳濁液用意工程と、
加熱した前記乳濁液と加熱した前記水系分散媒とを攪拌混合した後に、攪拌しながら室温まで冷却して温度検知粒子/水系分散媒の懸濁液を用意する懸濁液用意工程と、
を有することを特徴とするインクの製造方法。
【請求項9】
請求項に記載のインクの製造方法において、
前記懸濁液用意工程の後に、前記懸濁液に添加剤を混合する添加剤混合工程を更に有することを特徴とするインクの製造方法。
【請求項10】
請求項又は請求項に記載のインクの製造方法において、
前記温度検知材料調製工程は、前記温度検知材料を塊状から粒状にする粉砕プロセスを含むことを特徴とするインクの製造方法。
【請求項11】
印刷基材上にインクによるマーカーが印刷された温度インジケータであって、
前記インクが、請求項1乃至請求項のいずれか一項に記載のインクであることを特徴とする温度インジケータ。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、温度管理対象物の温度変化をチェックするための温度インジケータの技術に関し、特に温度インジケータにマーキングするための温度検知水性インク、該水性インクの製造方法、および該水性インクを用いた温度インジケータに関するものである。
【背景技術】
【0002】
生鮮食品や、冷凍食品や、低温保存医薬品(例えば、ワクチン、バイオ医薬品)は、生産、輸送、保管、販売の流通過程の中で途切れることなく所定の温度範囲内に保つことが求められる。そのため、従来から、時間と温度とを連続的に記録可能なデータロガーを運送コンテナに搭載して、流通過程の温度を絶えず測定・記録する方法がしばしば採用されてきた。
【0003】
データロガーを利用する方法は、もしも製品に温度起因のダメージがあった場合に温度トラブルがいつ生じたのかを明らかにすることができるという利点がある。ただし、この方法は、多量の製品を一括管理するのに適しており、個々の製品を個別管理するのにはコストの観点で弱点がある。
【0004】
一方、製品を個別に温度管理する方法として、データロガーではなく温度インジケータを利用する方法がある。温度インジケータとは、あらかじめ設定された温度を上回るか下回るかした場合にマーカー部分が変色して周囲の温度変化を知ることができる部材である。温度インジケータは、データロガーほどの記録精度はないものの、製品個別に貼付けられることから個々の製品を個別管理するのに適している。変色するマーカー部分には、温度検知材料が用いられる。
【0005】
また、温度検知材料をインク状にする(すなわち、温度検知インクを用いる)ことにより、温度インジケータへのマーキング(例えば、文字、記号、一次元バーコード、二次元バーコード)として、種々の印刷法(例えば、グラビア印刷、スクリーン印刷、ディスペンサ、インクジェットプリンティング)を利用することができる。
【0006】
特許文献1には、電子供与性呈色性有機化合物、電子受容性化合物、および前記電子供与性呈色性有機化合物と前記電子受容性化合物との呈色反応をコントロールする反応媒体の均質相溶体からなる可逆熱変色性組成物を内包したマイクロカプセル顔料と、有機溶剤とから少なくともなる可逆熱変色性筆記用油性インキ組成物、が開示されている。
【0007】
特許文献2には、ロイコ染料、顕色剤及び消色剤を含む示温材と、マトリックス材料と、を含む温度検知材料であって、前記マトリックス材料は非極性材料であり、前記マトリックス材料の融点は前記示温材の融点よりも高く、前記マトリックス材料中に前記示温材が分散した相分離構造を形成していることを特徴とする温度検知材料、が開示されている。また、特許文献2には、当該温度検知材料と溶媒とを含む温度検知インク、が開示されている。
【先行技術文献】
【特許文献】
【0008】
【文献】特開2005-320485号公報
【文献】国際公開第2018/110200号
【発明の概要】
【発明が解決しようとする課題】
【0009】
前述したように、温度検知インクを用いることにより、温度インジケータへのマーキングとして種々の印刷法を利用することができる。ここで、温度インジケータの製造コストの観点からは、インクジェットプリンティングによるマーキングが好ましい。また、環境保護の観点からは、水性インクを用いることが好ましい。
【0010】
特許文献1に記載の技術は、油性インキ組成物に関するものであり、水性インクではないことが明らかである。一方、特許文献2は、水性インクの可能性を示唆している。しかしながら、特許文献2には、水性インク内の温度検知材料の分散性については具体的に開示されていない。
【0011】
言い換えると、温度検知材料のインク内分散性の確保・維持が容易な温度検知水性インク(言い換えると、安定性に優れる温度検知水性インク)が求められている。
【0012】
したがって、本発明の目的は、安定性に優れる温度検知水性インク、当該温度検知水性インクを製造する方法、および当該温度検知水性インクを用いた温度インジケータを提供することにある。
【課題を解決するための手段】
【0013】
(I)本発明の一態様は、温度検知粒子が水系分散媒中に分散したインクであって、
前記温度検知粒子は、ロイコ染料、顕色剤および消色剤を含む温度検知材料と、界面活性剤とを含むことを特徴とするインク、を提供するものである。
【0014】
(II)本発明の他の一態様は、上記のインクの製造方法であって、
前記ロイコ染料と前記顕色剤と前記消色剤とを混合、溶融、固化させて前記温度検知材料を調製する温度検知材料調製工程と、
前記温度検知材料と前記界面活性剤の溶液とを加熱攪拌混合して温度検知材料/界面活性剤の乳濁液を用意する乳濁液用意工程と、
加熱した前記乳濁液と加熱した前記水系分散媒とを攪拌混合した後に、攪拌しながら室温まで冷却して温度検知粒子/水系分散媒の懸濁液を用意する懸濁液用意工程と、
を有することを特徴とするインクの製造方法、を提供するものである。
【0015】
(III)本発明の更に他の一態様は、印刷基材上に所定のインクによるマーカーが印刷された温度インジケータであって、
前記所定のインクが、上記のインクであることを特徴とする温度インジケータ、を提供するものである。
【発明の効果】
【0016】
本発明によれば、安定性に優れる温度検知水性インク、当該温度検知水性インクを製造する方法、および当該温度検知水性インクを用いた温度インジケータを提供することができる。
【図面の簡単な説明】
【0017】
図1】温度検知材料およびその色変化の原理を示す模式図であり、(a)は消色状態を表し、(b)は顕色状態を表す。
図2】高温側検知タイプの温度検知材料の色変化の様子を示す模式図である。
図3】低温側検知タイプの温度検知材料の色変化の様子を示す模式図である。
図4】本発明に係る温度検知水性インクの構成例を示す模式図である。
図5A】温度検知粒子の一例を示す断面模式図である。
図5B】温度検知粒子の他の一例を示す断面模式図である。
図6】本発明に係る温度検知インクの製造方法の一例を示す工程図である。
図7】実施例1の温度検知水性インクを用いた温度インジケータにおける印刷文字の色変化の様子を示す写真である。
【発明を実施するための形態】
【0018】
本発明は、前述したインク(I)において、以下のような改良や変更を加えることができる。
(i)前記温度検知粒子は、前記消色剤のマトリックス中に前記ロイコ染料および前記顕色剤が分散した前記温度検知材料の微粒子の周りを、前記界面活性剤が被覆している。
(ii)前記温度検知粒子は、前記界面活性剤が該温度検知粒子の内部にも存在している。
(iii)前記温度検知粒子の中位径が0.1μm以上100μm以下である。
(iv)前記温度検知水性インクは添加剤を更に含む。
(v)前記添加剤は水溶性樹脂バインダ、導電剤および/またはレベリング剤である。
(vi)前記温度検知水性インクは、互いに異なる顕色開始温度を有する複数種の前記温度検知粒子を含み、前記複数種の温度検知粒子のそれぞれは、所定の温度以下になると顕色する低温側検知タイプの温度検知材料を含む温度検知粒子である。
(vii)前記温度検知水性インクは、互いに異なる顕色開始温度を有する複数種の前記温度検知粒子を含み、前記複数種の温度検知粒子のそれぞれは、所定の温度以上になると顕色する高温側検知タイプの温度検知材料を含む温度検知粒子である。
(viii)前記温度検知水性インクは、互いに異なる顕色開始温度を有する複数種の前記温度検知粒子を含み、前記複数種の温度検知粒子は、所定の温度以下になると顕色する低温側検知タイプの温度検知材料を含む温度検知粒子と、所定の温度以上になると顕色する高温側検知タイプの温度検知材料を含む温度検知粒子との両方を含む。
【0019】
本発明は、前述したインクの製造方法(II)において、以下のような改良や変更を加えることができる。
(ix)前記懸濁液用意工程の後に、前記懸濁液に添加剤を混合する添加剤混合工程を更に有する。
(x)前記温度検知材料調製工程は、前記温度検知材料を塊状から粒状にする粉砕プロセスを含む。
【0020】
以下、本発明の実施形態について図面を参照しながら、より具体的に説明する。本発明は、ここで取り挙げた実施形態に限定されるものではなく、その発明の技術的思想を逸脱しない範囲で公知技術と適宜組み合わせたり公知技術に基づいて改良したりすることが可能である。なお、同義の物質や工程(差異が小さい場合を含む)に対しては、同じ符号を付すことがある。
【0021】
[温度検知材料およびその色変化]
はじめに、本発明で用いる温度検知材料およびその色変化について、簡単に説明する。図1は、温度検知材料およびその色変化の原理を示す模式図であり、(a)は消色状態を表し、(b)は顕色状態を表す。
【0022】
温度検知材料4は、温度変化(昇温/降温)により色濃度が可逆的に変化する材料であり、図1に示すように、電子供与性化合物であるロイコ染料1、電子受容性化合物である顕色剤2、および変色の温度範囲を制御するための消色剤3を含む。消色剤3中で、ロイコ染料1と顕色剤2とが分離して分散した状態が消色状態であり(図1(a)参照)、消色剤3が結晶化すると共にロイコ染料1と顕色剤2とが結合した状態が顕色状態となる(図1(b)参照)。
【0023】
つぎに、図2~3を用いて温度検知材料4の温度と色変化との関係を簡単に説明する。図2は、高温側検知タイプの温度検知材料の色変化の様子を示す模式図であり、図3は、低温側検知タイプの温度検知材料の色変化の様子を示す模式図である。図2~3において、縦軸は色濃度、横軸は温度であり、Taは顕色開始温度、Tdは消色開始温度である。
【0024】
高温側検知タイプの温度検知材料4では、消色剤3として結晶化しにくい材料を用いることが好ましい。高温側検知タイプの温度検知材料4は、溶融状態(ロイコ染料1と顕色剤2とが分離した消色状態)である温度Mから顕色開始温度Ta以下に急冷させた場合、消色剤3が非晶質状態で固化し、ロイコ染料1と顕色剤2とが分離した状態(すなわち消色状態)で凍結される。
【0025】
図2に示したように、この凍結状態から徐々に昇温していくと、顕色開始温度Taで消色剤3が結晶化し始め、結晶化のための分子の再配列に伴ってロイコ染料1と顕色剤2とが結合して顕色する。顕色状態は、消色剤3が結晶化している間は維持される。更に温度が上昇すると、消色開始温度Tdで消色剤3の結晶が溶融し始め、ロイコ染料1と顕色剤2とが分離して消色する。すなわち、色濃度変化は温度変化に対してヒステリシスを示す。
【0026】
このような色変化の性質を利用すると、顕色開始温度Taが温度管理対象物の管理上限温度となるように調製した高温側検知タイプの温度検知材料4を用いることによって、色変化の有無(顕色の有無)から温度管理対象物の温度が管理上限温度に達したか否かを検知することができる。
【0027】
一方、低温側検知タイプの温度検知材料4では、消色剤3として固化しにくい材料(過冷却液相を維持し易い材料)を用いることが好ましい。低温側検知タイプの温度検知材料4は、溶融状態である温度Mからゆっくり冷却した場合、消色剤3が過冷却液相となって消色状態(ロイコ染料1と顕色剤2とが分離した状態)を維持する。
【0028】
図3に示したように、この過冷却液相状態から更に冷却していくと、顕色開始温度Taで消色剤3が結晶化し始め、結晶化のための分子の再配列に伴ってロイコ染料1と顕色剤2とが結合して顕色する。その後、温度が上昇したとしても、消色剤3が結晶化している間は顕色状態が維持される。更に温度が上昇すると、消色開始温度Tdで消色剤3の結晶が溶融し始め、ロイコ染料1と顕色剤2とが分離して消色する。すなわち、色濃度変化は温度変化に対してヒステリシスを示す。
【0029】
このような色変化の性質を利用すると、顕色開始温度Taが温度管理対象物の管理下限温度となるように調製した低温側検知タイプの温度検知材料4を用いることによって、色変化の有無(顕色の有無)から温度管理対象物の温度が管理下限温度に達したか否かを検知することができる。
【0030】
[温度検知水性インク]
つぎに、本発明の一実施形態に係る温度検知水性インクについて説明する。
【0031】
図4は、温度検知水性インクの構成例を示す模式図である。図4に示したように、温度検知水性インク100は、水系分散媒20と、水系分散媒中に分散した温度検知粒子10および/または11とを含み、温度検知粒子10,11が、ロイコ染料1、顕色剤2および消色剤3を含む温度検知材料4と、界面活性剤5とを含むものである。温度検知水性インク100は、用途に応じて要求される諸特性を満たすために、各種添加剤(例えば、水溶性樹脂バインダ30や他の添加剤40)を更に含んでもよい。
【0032】
印刷容易性および印刷品質の観点から、温度検知水性インク100中の温度検知粒子10,11の含有率は、5質量%以上20質量%以下が好ましい。インク中の温度検知粒子の含有率を5質量%以上とすることで、印字物の発色性が高くなり印字物の視認性が向上する。インク中の温度検知粒子の含有率を20質量%以下とすることにより、温度検知粒子の凝集を抑制できる。インクジェットプリンティングの場合は、5質量%以上10質量%以下がより好ましい。
【0033】
また、温度検知水性インク100中の水溶性樹脂バインダ30の含有率は、1質量%以上30質量%以下が好ましく、1質量%以上15質量%以下がより好ましい。インク中の水溶性樹脂バインダの含有率を1質量%以上とすることにより、印刷物の耐擦性が向上し、印刷物の剥離を抑制できる。インク中の水溶性樹脂バインダの含有率を30質量%以下とすることにより、インク粘度の上昇を抑制し、より安定した印刷を可能とする。
【0034】
温度検知水性インク100は、1つの顕色開始温度Ta(所定の温度以上になると顕色する、または所定の温度以下になると顕色する)に限定されるものではなく、複数の顕色開始温度Taを示すように互いに異なる顕色開始温度Taを有する複数種の温度検知粒子10,11を含んでもよい。言い換えると、本発明の温度検知水性インク100は、温度検知粒子10,11のそれぞれが界面活性剤5で被覆されて独立していることから、複数種の温度検知粒子を混合しても化学的に相互干渉しない(互いに異なる顕色開始温度Taを示す)という利点がある。
【0035】
例えば、所定の温度以上になると顕色する高温側検知タイプの温度検知材料4を含む温度検知粒子を2種類以上含ませると、2以上の温度を検知することができ、高温側の温度検知分解能が向上する。同様に、所定の温度以下になると顕色する低温側検知タイプの温度検知材料4を含む温度検知粒子を2種類以上含ませると、低温側の温度検知分解能が向上する。また、高温側検知タイプの温度検知材料4を含む温度検知粒子と、低温側検知タイプの温度検知材料4を含む温度検知粒子との両方を含ませると、上限温度と下限温度との両方を管理することができる。
【0036】
なお、界面活性剤は、必ずしも温度検知粒子の表面を完全に覆っている必要はない。本発明において、「被覆」とは、温度検知粒子の表面の大部分(例えば、全表面の60%以上)を界面活性剤が取り囲んでいること言うものとする。
【0037】
また、温度検知粒子10,11は水系分散媒20中に均等に分散していることが最も望ましいが、温度検知粒子10,11同士がある程度凝集した状態で分散していてもよい。言い換えると、本発明の温度検知水性インク100は、温度検知粒子同士10,11がある程度凝集した状態で水系分散媒20中に分散していることを含むものとする。
【0038】
(温度検知粒子)
図5Aは、温度検知粒子の一例を示す断面模式図であり、図5Bは、温度検知粒子の他の一例を示す断面模式図である。なお、図5Aおよび図5Bは共に消色状態を示している。図5Aに示したように、温度検知粒子10は、消色剤3のマトリックス中にロイコ染料1および顕色剤2が分散した温度検知材料4の微粒子の周りを、界面活性剤5が被覆している。
【0039】
また、図5Bに示したように、温度検知粒子11では、界面活性剤5が、温度検知材料4の微粒子の周りに加えて、温度検知粒子の内部にも存在している。温度検知粒子11は、後述する温度検知水性インク100の製造において、温度検知材料4が微粒子を形成する過程で界面活性剤5を巻き込む、および/または複数個の微細な温度検知粒子10が凝集/合体することによって得られると考えられる。
【0040】
温度検知材料4の微粒子の周りを界面活性剤5が被覆することにより、温度検知水性インク100に調製した際に、温度検知材料4に対する水溶性樹脂バインダ30や添加剤40からの望まない影響(例えば、望まない化学反応)を抑制することが可能になる。
【0041】
各種印刷法/印刷装置との適合性の観点や、インクの保存安定性の観点から、温度検知粒子10,11の粒径/粒度分布を調整することが好ましい。温度検知粒子10,11の粒径/粒度分布は、例えば粒度分布測定装置により測定することが可能であり、中位径(メジアン径、D50とも言う)で0.1μm以上100μm以下が好ましく、0.1μm以上10μm以下がより好ましい。インクジェットプリンティングの場合は、ノズルのつまりを抑制するために中位径で0.1μm以上2μm以下が更に好ましい。
【0042】
(ロイコ染料)
温度検知材料4を構成するロイコ染料1は、電子供与性化合物であって、感圧複写紙用や感熱記録紙用の染料として公知のものを利用できる。例えば、トリフェニルメタンフタリド系、フルオラン系、フェノチアジン系、インドリルフタリド系、ロイコオーラミン系、スピロピラン系、ローダミンラクタム系、トリフェニルメタン系、トリアゼン系、スピロフタランキサンテン系、ナフトラクタム系、アゾメチン系のロイコ染料が挙げられる。
【0043】
より具体的な例としては、9-(N-エチル-N-イソペンチルアミノ)スピロ[ベンゾ[a]キサンテン-12,3’-フタリド]、2-メチル-6-(Np-トリル-N-エチルアミノ)-フルオラン6-(ジエチルアミノ)-2-[(3-トリフルオロメチル)アニリノ]キサンテン-9-スピロ-3’-フタリド、3,3-ビス(p-ジエチルアミノフェニル)-6-ジメチルアミノフタリド、2’-アニリノ-6’-(ジブチルアミノ)-3’-メチルスピロ[フタリド-3,9’-キサンテン]、3-(4-ジエチルアミノ-2-メチルフェニル)-3-(1-エチル-2-メチルインドール-3-イル)-4-アザフタリド、1-エチル-8-[N-エチル-N-(4-メチルフェニル)アミノ]-2,2,4-トリメチル-1,2-ジヒドロスピロ[11H-クロメノ[2,3-g]キノリン-11,3’-フタリド]、が挙げられる。
【0044】
2種以上のロイコ染料1を組合せて用いてもよい。
【0045】
(顕色剤)
温度検知材料4を構成する顕色剤2は、電子供与性のロイコ染料1と結合することでロイコ染料1の化学構造を変化させて呈色させるものであり、感圧複写紙用や感熱記録紙用の顕色剤として公知のものを利用できる。また、感圧複写紙用や感熱記録紙用の顕色剤に限定されるものではなく、顕色剤2は、電子受容体でありロイコ染料1を変色させることができる化合物であればよい。
【0046】
例えば、カルボン酸誘導体の金属塩、サリチル酸金属塩、サリチル酸金属塩、スルホン酸類、スルホン酸塩類、リン酸類、リン酸金属塩類、酸性リン酸エステル類、酸性リン酸エステル金属塩類、亜リン酸類、亜リン酸金属塩類を好適に用いることができる。ロイコ染料1や後述する消色剤3に対する相溶性が高いものが特に好ましい。
【0047】
より具体的な例としては、4-ヒドロキシ安息香酸ベンジル、2,2’-ビフェノール、1,1-ビス(3-シクロヘキシル-4-ヒドロキシフェニル)シクロヘキサン、2,2-ビス(3-シクロヘキシル-4-ヒドロキシフェニル)プロパン、ビスフェノールA、ビスフェノールF、ビス(4-ヒドロキシフェニル)スルフィド、パラオキシ安息香酸エステル、没食子酸エステル、等のフェノール類や1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシ-3-メチルフェニル)シクロヘキサン、α,α,α’-トリス(4-ヒドロキシフェニル)-1-エチル-4-イソプロピルベンゼン、が挙げられる。
【0048】
2種以上の顕色剤2を組合せて用いてもよい。複数種の顕色剤2を組合せることにより、ロイコ染料1の顕色時の色濃度を調整できる。ロイコ染料1に対する顕色剤2の混合比率は、所望する色濃度に応じて適宜選択できる。例えば、1重量部のロイコ染料に対して、0.1~100重量部程度の顕色剤2を混合すればよい。
【0049】
(消色剤)
温度検知材料4を構成する消色剤3は、ロイコ染料1と顕色剤2との結合を解離させることが可能な化合物であり、ロイコ染料1と顕色剤2との顕色温度を制御できる化合物でもある。一般的に、ロイコ染料1と顕色剤2とが結合して呈色した状態の温度範囲では、消色剤3は結晶化した固相状態になっている。一方、消色剤3が溶融した液相状態では、ロイコ染料1と顕色剤2との結合を解離させる機能を発揮して消色状態となる。そのため、消色剤3の状態変化温度が顕色温度の制御に対して重要になる。
【0050】
消色剤3としては、ロイコ染料1の化学構造を変化させない(すなわち、顕色させない)材料であり、ロイコ染料1と顕色剤2との結合を解離させることができる(ロイコ染料1と顕色剤2との結合力よりも、顕色剤2と消色剤3との結合力の方が大きい)材料が使用される。例えば、ヒドロキシ化合物、エステル化合物、グリセロール化合物、アセテート化合物、ペルオキシ化合物、カルボニル化合物、芳香族化合物、脂肪族化合物、ハロゲン化合物、アミノ化合物、イミノ化合物、N-オキシド化合物、ヒドロキシアミン化合物、ニトロ化合物、アゾ化合物、ジアゾ化合物、アジ化合物、エーテル化合物、油脂化合物、糖化合物、ペプチド化合物、核酸化合物、アルカロイド化合物、ステロイド化合物が挙げられる。
【0051】
エステル化合物の具体例としては、ミリスチン酸イソプロピル、セバシン酸ジエチル、アジピン酸ジメチル、デカン酸デシル、フェニルマロン酸ジエチル、フタル酸ジイソブチル、クエン酸トリエチル、フタル酸ベンジルブチル、ニコチン酸メチル、フェニル酢酸2-フェニルエチル、けい皮酸ベンジル、アセト酢酸メチル、こはく酸ジメチル、セバシン酸ジメチル、モノオレイン、ステアリン酸エチル、パルミチン酸メチル、フタル酸ジ-n-オクチル、安息香酸ベンジル、ジエチレングリコールジベンゾアート、プロピオン酸2-フェニルエチル、ステアリン酸ブチル、ミリスチン酸メチル、アントラニル酸メチル、パルミチン酸イソプロピル、4-フルオロ安息香酸エチル、2-ブロモプロピオン酸エチル、トリステアリン、1,3-ジブロモ酪酸エチル、アジピン酸ジメチル、2-パルミチン酸エチル、テレフタル酸ジエチル、ステアリン酸フェニル、アラキジン酸メチル、4-クロロ安息香酸メチル、ドデカン二酸ジメチル、ホルムアミノマロン酸ジエチル、ペンタデカン酸メチル、アラキジン酸エチル、ベンジル酸エチル、フタル酸ジシクロヘキシル、4-アミノ安息香酸イソブチル、4-ヒドロキシ安息香酸ブチル、フマル酸モノエチル、ベンジル酸メチル、フタル酸ジフェニル、安息香酸フェニル、3-ニトロ安息香酸メチル、3-ヒドロキシ-2-ナフトエ酸メチル、くえん酸トリメチル、4-アミノ安息香酸エチル、4-ニトロ安息香酸メチル、安息香酸2-ナフチル、フマル酸ジメチル、アジフェニン塩酸塩、4-ヒドロキシ安息香酸エチル、酪酸ビニル、4-ヨード安息香酸メチル、没食子酸プロピル、1,4-ジアセトキシベンゼン、アリルマロン酸ジエチル、ブロモマロン酸ジエチル、エトキシメチレンマロン酸ジエチル、エチルマロン酸ジエチル、フマル酸ジエチル、マレイン酸ジエチル、マロン酸ジエチル、フタル酸ジエチル、安息香酸エチル、4-(ジメチルアミノ)安息香酸エチル、ニコチン酸エチル、ラウリン酸ベンジル、酢酸ベンジル、フェニル酢酸メチル、酢酸フェニル、こはく酸ジエチル、トリブチリン、メチルマロン酸ジエチル、しゅう酸ジメチル、マロン酸ジベンジル、マレイン酸ジメチル、テレフタルアルデヒド酸メチル、フタル酸ジアリル、ブロモ酢酸ベンジル、フェニルプロピオル酸メチル、安息香酸イソブチル、セバシン酸ジブチル、アジピン酸ジエチル、テレフタル酸ジエチル、フタル酸ジプロピル、アジピン酸ジイソプロピル ソルビタントリステアレート、ソルビタンモノステアレート、ステアリン酸アミド、モノステアリン酸グリセロール、ジステアリン酸グリセロール、アクリル酸ステアリル、フタル酸ジベンジル、ニトロテレフタル酸ジメチル、クマリン-3-カルボン酸エチル、p-ベンジルオキシ安息香酸ベンジル、4-クロロ-3-ニトロ安息香酸メチル、テレフタル酸ジメチル、4-アミノ-2-メトキシ安息香酸メチル、5-アミノイソフタル酸ジメチル、が挙げられる。
【0052】
グリセロール化合物の具体例としては、トリカプリン、トリパルミチン、エチレングリコールジベンゾアート、トリオレイン、が挙げられる。アセテート化合物の具体例としては、4-ジアセトキシブタン、1,1-エタンジオールジアセタート、ベンザルジアセタート、1,4-ジアセトキシブタン、ジエチレングリコールジアセタート、ビタミンK4、2,5-ジアセトキシトルエン、1,1-エタンジオールジアセタート、が挙げられる。芳香族化合物の具体例としては、酢酸m-トリル、1,2-ジアセトキシベンゼン、バレタマートブロミド、が挙げられる。アミノ化合物の具体例としては、アントラニル酸エチル、4-アミノ安息香酸ブチル、が挙げられる。イミノ化合物の具体例としては、N-メチルアントラニル酸メチルが挙げられる。ニトロ化合物の具体例としては、4-ニトロ安息香酸エチルが挙げられる。
【0053】
ステロイド化合物の具体例としては、コレステロール、コレステリルブロミド、β-エストラジオール、メチルアンドロステンジオール、プレグネノロン、安息香酸コレステロール、酢酸コレステロール、リノール酸コレステロール、パルミチン酸コレステロール、ステアリン酸コレステロール、オレイン酸コレステロール、3-クロロコレステン、ヒドロけい皮酸コレステロール、ラウリン酸コレステロール、酪酸コレステロール、ぎ酸コレステロール、ヘプタン酸コレステロール、ヘキサン酸コレステロール、ミリスチン酸コレステロール、プロピオン酸コレステロール、フェニル酢酸コレステロール、クロロぎ酸コレステロール、2,4-ジクロロ安息香酸コレステロール、ココレステロールオレイルカルボナート、コレステロールアミルカルボナート、コレステロール n-オクチルカルボナート、エストロン、エチニルエストラジオール、エストリオール、安息香酸エストラジオール、α-エストラジオール、17-ヘプタン酸β-エストラジオール、2-メトキシ-β-エストラジオール、アンドロステロン、アビラテロン、デヒドロエピアンドロステロン、デヒドロエピアンドロステロンアセタート、エチステロン、17β-ヒドロキシ-17-メチルアンドロスタ-1,4-ジエン-3-オン、メチルアンドロステンジオール、16-デヒドロプレグネノロンアセタート、11α-ヒドロキシプロゲステロン、17α-ヒドロキシプロゲステロンカプロアート、17α-ヒドロキシプロゲステロンアセタート、酢酸メゲストロール酢酸コルチゾン、コルチゾン、コルテキソロン、デオキシコルチコステロンアセタート、ヒドロコルチゾン、6α-メチルプレドニゾロン、プレドニゾロン、プレドニゾン、β-コレスタノール、コレステロール-5α,6α-エポキシド、ジオスゲニン、エルゴステロール、β-シトステロール、スチグマステロール、β-シトステロールアセタート、が挙げられる。
【0054】
2種以上の消色剤3を組合せて用いてもよい。複数種の消色剤3を組合せることにより、変色温度や変色するのに要する時間を調整できる。
【0055】
(界面活性剤)
温度検知粒子10,11を構成する界面活性剤5は、温度検知材料4を水系分散媒20中に分散させるためのものであり、種々のイオン性界面活性剤(陰イオン性、陽イオン性、両性)および種々の非イオン性界面活性剤を利用することができる。
【0056】
陰イオン性界面活性剤の例としては、親水基がカルボン酸塩、スルホン酸塩、硫酸エステル型、りん酸エステル型から構成されるものが挙げられる。陽イオン性界面活性剤の例としては、親水基がアミン塩、ピリジニウム塩、ベンジルハライド塩から構成されるものが挙げられる。両性界面活性剤の例としては、親水基がカルボン酸塩、スルホン酸塩、硫酸エステル型、りん酸エステル型から構成されるものが挙げられる。を用いることが可能である。
【0057】
また、非イオン性界面活性剤の例としては、親水基がエステル、エチレンオキシド、エーテル、アミンアミド、ソルビトールから構成されるものが挙げられる。
【0058】
(水系分散媒)
本発明の温度検知水性インク100は、温度検知材料の顕色/消色特性への影響を抑制するため、液性としてpH(potential of hydrogen)が6以上8以下に調整されていることが好ましい。温度検知水性インク100が適切な液性に調整されるかぎり水系分散媒20に特段の限定はなく、純水であってもよいし、pH変動を抑制するための水溶液(例えば、緩衝溶液)であってもよい。
【0059】
(添加剤)
(1)水溶性樹脂バインダ
温度検知水性インク100は、粘性の調整ならびに温度インジケータ基材への温度検知粒子10,11の固着を助けるため、水溶性樹脂バインダ30を含むことが好ましい。水溶性樹脂バインダ30としては、例えば、アクリル樹脂、ウレタン樹脂、フェノール樹脂、ポリエステル、ポリエチレンオキサイド、スチレン・マレイン酸、ポリビニルアルコール、ポリアクリルアミド、を好適に用いることができる。温度検知水性インク100中の水溶性樹脂バインダ30の含有率は、1質量%以上30質量%以下が好ましく、1質量%以上15質量%以下がより好ましい。
【0060】
(2)導電剤
温度検知水性インクを帯電制御式インクジェットプリンタに適用する場合、印刷制御性の観点から、インクの電気抵抗率を2000Ωcm以下に調整することが望ましい。本発明の温度検知水性インク100は、電気抵抗率を調整するために、他の添加剤40として導電剤を含んでもよい。
【0061】
ここで用いる導電剤は、水系分散媒20に溶解する必要があることから、水溶性の塩が好ましく、例えば、硝酸塩、過塩素酸塩、テトラフェニルホウ酸塩、アンモニウムイオンの塩を好適に利用できる。より具体的な例としては、硝酸リチウム、硝酸ナトリウム、硝酸アンモニウム、過塩素酸リチウム、過塩素酸ナトリウム、過塩素酸アンモニウム、テトラフェニルホウ酸リチウム、テトラフェニルホウ酸ナトリウム、テトラフェニルホウ酸アンモニウム、が挙げられる。
【0062】
(3)レベリング剤
本発明の温度検知水性インク100は、印刷品質を調整するために、他の添加剤40としてレベリング剤を含んでもよい。
【0063】
(温度検知水性インクの製造方法)
つぎに、本発明に係る温度検知水性インク100の製造方法について説明する。
【0064】
図6は、本発明に係る温度検知インクの製造方法の一例を示す工程図である。図6に示したように、まず、所望の顕色開始温度Taおよび消色開始温度Tdとなるようにロイコ染料と顕色剤と消色剤とを混合、溶融、固化させて温度検知材料4を調製する温度検知材料調製工程(S1)を行う。溶融は、150~250℃の温度範囲で行うことが好ましい。
【0065】
調整した温度検知材料4は、塊状のままで次工程に利用することもできるが、塊状のものを粉砕して粒状にしてもよい。当該粉砕プロセスは必須のプロセスではないが、次工程をスムーズに進行させる観点で好ましい。温度検知材料調製工程S1は、粉砕プロセスを含めるものとする。
【0066】
つぎに、温度検知材料4と界面活性剤5の溶液とを加熱攪拌混合して温度検知材料/界面活性剤の乳濁液6を用意する乳濁液用意工程(S2)を行う。「温度検知材料:界面活性剤」の質量比率は、「1:1」~「1:5」が好ましく、加熱攪拌混合は、温度検知材料4が液滴となる温度範囲(例えば、80~100℃)で行うことが好ましい。また、攪拌速度によって温度検知材料4の液滴のサイズを調整することができる。言い換えると、温度検知材料4の液滴のサイズ(後の温度検知粒子10,11のサイズ)を制御するために、攪拌速度を制御する。
【0067】
つぎに、温度検知材料4が液滴となる温度範囲に加熱した乳濁液6と該温度範囲に加熱した水系分散媒20とを攪拌混合した後に、攪拌しながら室温まで冷却して温度検知粒子/水系分散媒の懸濁液7を用意する懸濁液用意工程(S3)を行う。水系分散媒20は、前述したように、pHが6~8に調整されていることが好ましく、純水であってもよいし緩衝溶液であってもよい。水系分散媒20の混合量は、「乳濁液:水系分散媒」の質量比率が「1:5」~「1:10」となるようにすることが好ましい。乳濁液6と水系分散媒20との混合方法は、乳濁液6に水系分散媒20を注入してもよいし、水系分散媒20に乳濁液6を注入してもよい。
【0068】
懸濁液用意工程S3において、乳濁液6と水系分散媒20とを混合すると、温度検知材料4が疎水性であることから、温度検知材料4の液滴の周りを界面活性剤5が被覆したかたちで水系分散媒20中に分散した状態の乳濁液になる。この乳濁液を冷却すると、温度検知材料4の液滴が固化し、温度検知粒子10,11が水系分散媒20中に分散した状態の懸濁液7が得られる。
【0069】
つぎに、懸濁液7に各種添加剤(水溶性樹脂バインダ30、導電剤および/またはレベリング剤)を混合する添加剤混合工程(S4)を行う。添加剤混合工程S4は、必須の工程ではないが、インクとしての印刷制御性や印刷品質を調整する観点から、行うことが好ましい。これにより、温度検知水性インク100が完成する。
【0070】
なお、図6中には示していないが、互いに異なる顕色開始温度を有する複数種の温度検知粒子を含む温度検知水性インクを製造する場合には、別々に用意した懸濁液7または温度検知水性インク100を適宜混合すればよい。
【0071】
以下、実施例および比較例により本発明をさらに具体的に説明する。なお、本発明はこれらの実施例に限定されるものではない。
【0072】
[実験1]
(実施例1の作製)
ロイコ染料として2’-アニリノ-6’-(N-エチル-N-イソペンチルアミノ)-3’-メチルスピロ[フタリド-3,9’-[9H]キサンテン](山田化学工業株式会社製、S-205)を用いた。顕色剤として没食子酸オクチル(東京化成工業株式会社製)を用いた。消色剤としては、p-トルイル酸メチル(東京化成工業株式会社製)とフェニル酢酸2-フェニルエチル(東京化成工業株式会社製)とを質量比「9:1」で混合したものを用いた。
【0073】
ロイコ染料:顕色剤:消色剤を質量比「3:3:100」で混合し、190℃で溶融攪拌した後、固化させて塊状の温度検知材料を調整した。得られた塊を乳鉢で手動粉砕して粒状の温度検知材料を用意した(温度検知材料調製工程S1)。この温度検知材料は、室温(25℃)に維持されている環境では消色(無色)状態であるが、一旦4℃以下に冷却すると黒色に顕色する温度検知材料である。
【0074】
用意した温度検知材料0.5 gと界面活性剤(花王株式会社製、デモール(登録商標)EP)2 gとを秤量し、マグネチックスターラを用いて加熱攪拌混合して(95℃、600 rpm、10分間)温度検知材料/界面活性剤の乳濁液を用意した(乳濁液用意工程S2)。
【0075】
つぎに、95℃の乳濁液と95℃に加熱したリン酸緩衝水溶液(濃度0.1 mol/L、pH=7.0、20 g)とを攪拌混合した(95℃、600 rpm、10分間)。その後、攪拌しながら室温まで冷却して温度検知粒子/水系分散媒の懸濁液を用意した(懸濁液用意工程S3)。
【0076】
懸濁液用意工程S3において、乳濁液とリン酸緩衝水溶液(水系分散媒)とを攪拌混合すると、温度検知材料は、疎水性であることから界面エネルギーを極小化するために球状液滴になろうとし、該液滴の周りを界面活性剤が被覆したかたちでリン酸緩衝水溶液中に分散した状態の乳濁液になる。その乳濁液を冷却すると、温度検知材料の液滴が固化して球状の温度検知粒子がリン酸緩衝水溶液中に分散した状態の懸濁液となる。
【0077】
得られた懸濁液の温度検知粒子の粒度分布を、粒度分布測定装置(ベックマン・コールター株式会社製、型式LS-230)を用いて測定したところ、中位径が約1μmであることを確認した。
【0078】
つぎに、得られた懸濁液に水溶性樹脂バインダを混合して、実施例1の温度検知水性インクを作製した(添加剤混合工程S4)。水溶性樹脂バインダとしてはポリビニルアルコール(PVA)を用い、温度検知水性インク中の水溶性樹脂バインダの含有率が5質量%となるように混合した。
【0079】
(実施例1の評価)
実施例1の温度検知水性インクを用いて温度インジケータを作製し、印刷性および温度検知性の確認実験を行った。印刷装置として市販のDOD(Drop On Demand)方式のインクジェットプリンタを用い、印刷基材としては市販のアート紙を用いた。作製した温度インジケータに対して温度変化試験(25℃で10分間保持後、4℃に冷却)を行い、印刷文字の色変化を目視で確認した。25℃保持の時に無色で、4℃に冷却した時に顕色して印刷文字を識別できた場合を「合格」と評価し、それ以外を「不合格」と評価した。
【0080】
図7は、実施例1の温度検知水性インクを用いた温度インジケータにおける印刷文字の色変化の様子を示す写真である。図7に示したように、25℃保持では無色で印刷文字を識別できないが、4℃冷却では顕色して印刷文字を識別できる。すなわち、実施例1は「合格」と評価される。実施例1の温度検知水性インクの成分および評価結果を、後述する表1にまとめる。
【0081】
[実験2]
(比較例1の作製と評価)
実施例1と同様にして、粒状の温度検知材料を用意した。その後、ジェットミルを用いて粒状の温度検知材料を粉砕し、粉末状の温度検知材料を用意した。得られた粉末状の温度検知材料の粒度分布を、粒度分布測定装置を用いて測定したところ、中位径が約2μmであることを確認した。
【0082】
つぎに、95℃に加熱したリン酸緩衝水溶液(濃度0.1 mol/L、pH=7.0、22 g)に粉末状の温度検知材料0.5 gを投入、攪拌混合して(95℃、600 rpm、20分間)乳濁液を形成した後、攪拌しながら室温まで冷却して温度検知粒子/水系分散媒の懸濁液を用意した。
【0083】
つぎに、得られた懸濁液に水溶性樹脂バインダを混合して、比較例1の温度検知水性インクを作製した。水溶性樹脂バインダとしてはポリビニルアルコールを用い、温度検知水性インク中の水溶性樹脂バインダの含有率が5質量%となるように混合した。
【0084】
つぎに、比較例1の温度検知水性インクを用いて実施例1と同様にして温度インジケータを作製した。作製した温度インジケータに対して実施例1と同様の温度変化試験(25℃で10分間保持後、4℃に冷却)を行った。その結果、25℃保持および4℃冷却ともに無色状態であり、印刷文字について温度変化による明瞭な消色、顕色の変化が見られなかった。すなわち、比較例1は「不合格」と評価された。比較例1の温度検知水性インクの成分および評価結果を、表1に併記する。
【0085】
温度検知粒子自体の健全性をチェックするために、比較例1の温度検知水性インクを印刷基材上に筆塗りした後、実施例1と同様の温度変化試験(25℃で10分間保持後、4℃に冷却)を行った。その結果、25℃保持および4℃冷却ともに無色状態であったが、印刷基材上に温度検知粒子が塗布されていることは確認した。
【0086】
温度変化に対して顕色しなかった要因を考察すると、ジェトミルによる物理粉砕プロセスにより、温度検知粒子自体が劣化した可能性が考えられる。
【0087】
[実験3]
(実施例2の作製と評価)
添加剤混合工程S4において、温度検知水性インク中の導電剤の含有率が5質量%となるように硝酸リチウムを混合したこと以外は実施例1と同様にして、実施例2の温度検知水性インクを作製した。
【0088】
つぎに、実施例2の温度検知水性インクを用いて温度インジケータを作製した。印刷装置として市販の帯電制御方式のインクジェットプリンタを用い、印刷基材としては市販のアート紙を用いた。作製した温度インジケータに対して実施例1と同様の温度変化試験(25℃で10分間保持後、4℃に冷却)を行った。その結果、実施例2は「合格」と評価された。実施例2の温度検知水性インクの成分および評価結果を、表1に併記する。
【0089】
[実験4]
(実施例3,4の作製と評価)
乳濁液用意工程S2において、界面活性剤として花王株式会社製のデモール(登録商標)NLを使用した以外は実施例1と同様にして、実施例3の温度検知水性インクを作製し、界面活性剤として花王株式会社製のデモール(登録商標)NLを使用した以外は実施例2と同様にして、実施例4の温度検知水性インクを作製した。
【0090】
実施例3の温度検知水性インクを用いて実施例1と同様にして温度インジケータを作製し、実施例4の温度検知水性インクを用いて実施例2と同様にして温度インジケータを作製した。
【0091】
作製した温度インジケータに対して実施例1と同様の温度変化試験(25℃で10分間保持後、4℃に冷却)を行い、印刷文字の色変化を目視で確認した。その結果、実施例3,4ともに「合格」と評価された。実施例3,4の温度検知水性インクの成分および評価結果を、表1に併記する。
【0092】
[実験5]
(実施例5,6の作製と評価)
ロイコ染料として3,3-ビス(p-ジメチルアミノフェニル)-6-ジメチルアミノフタリド(山田化学工業株式会社製、クリスタルバイオレットラクトン:CVL)を用い、顕色剤として没食子酸オクチルを用い、消色剤としてビタミンK4(東京化成工業株式会社製)を用いた。
【0093】
温度検知材料調製工程S1として、ロイコ染料:顕色剤:消色剤を質量比「2:2:100」で混合し、180℃で溶融攪拌した後、固化させて塊状の温度検知材料を調整した。得られた塊を乳鉢で手動粉砕して粒状の温度検知材料を用意した。この温度検知材料は、25℃に維持されている環境では無色状態であるが、一旦40℃以上に加熱すると青色に顕色する温度検知材料である。
【0094】
つぎに、乳濁液用意工程S2として、温度検知材料0.5 gと界面活性剤(花王株式会社製、デモール(登録商標)EP)2.5 gとを秤量し、マグネチックスターラを用いて加熱攪拌混合して(95℃、600 rpm、10分間)温度検知材料/界面活性剤の乳濁液を用意した。
【0095】
つぎに、懸濁液用意工程S3として、95℃の乳濁液と95℃に加熱したリン酸緩衝水溶液(濃度0.1 mol/L、pH=7.0、20 g)とを攪拌混合した(95℃、600 rpm、10分間)。その後、攪拌しながら室温まで冷却して温度検知粒子/水系分散媒の懸濁液を用意した。得られた懸濁液の温度検知粒子の粒度分布を、粒度分布測定装置を用いて測定したところ、中位径が約1.5μmであることを確認した。
【0096】
つぎに、添加剤混合工程S4において、実施例1と同様にして実施例5の温度検知水性インクを作製し、実施例2と同様にして実施例6の温度検知水性インクを作製した。
【0097】
実施例5の温度検知水性インクを用いて実施例1と同様にして温度インジケータを作製し、実施例6の温度検知水性インクを用いて実施例2と同様にして温度インジケータを作製した。
【0098】
作製した温度インジケータに対して温度変化試験(25℃で10分間保持後、40℃に加熱)を行い、印刷文字の色変化を目視で確認した。25℃保持の時に無色で、40℃に加熱した時に顕色して印刷文字を識別できた場合を「合格」と評価し、それ以外を「不合格」と評価した。その結果、実施例5,6ともに「合格」と評価された。実施例5,6の温度検知水性インクの成分および評価結果を、表1に併記する。
【0099】
[実験6]
(実施例7,8の作製と評価)
乳濁液用意工程S2において、界面活性剤として花王株式会社製のデモール(登録商標)NLを使用した以外は実施例5と同様にして、実施例7の温度検知水性インクを作製し、界面活性剤として花王株式会社製のデモールNLを使用した以外は実施例2と同様にして、実施例8の温度検知水性インクを作製した。
【0100】
実施例7の温度検知水性インクを用いて実施例1と同様にして温度インジケータを作製し、実施例8の温度検知水性インクを用いて実施例2と同様にして温度インジケータを作製した。
【0101】
作製した温度インジケータに対して実施例5と同様の温度変化試験(25℃で10分間保持後、40℃に加熱)を行い、印刷文字の色変化を目視で確認した。その結果、実施例7,8ともに「合格」と評価された。実施例7,8の温度検知水性インクの成分および評価結果を、表1に併記する。
【0102】
[実験7]
(実施例9,10の作製と評価)
消色剤としてビタミンK4(東京化成工業株式会社製)と没食子酸プロピル(東京化成工業株式会社製)とを質量比「1:1」で混合したものを用いたこと以外は、実施例5と同様にして粒状の温度検知材料を用意した。この温度検知材料は、25℃に維持されている環境では無色状態であるが、一旦50℃以上に加熱すると青色に顕色する温度検知材料である。
【0103】
つぎに、乳濁液用意工程S2および懸濁液用意工程S3において、実施例5と同様にして温度検知粒子/水系分散媒の懸濁液を用意した。得られた懸濁液の温度検知粒子の粒度分布を、粒度分布測定装置を用いて測定したところ、中位径が約1.5μmであることを確認した。
【0104】
つぎに、添加剤混合工程S4において、実施例1と同様にして実施例9の温度検知水性インクを作製し、実施例2と同様にして実施例10の温度検知水性インクを作製した。
【0105】
実施例9の温度検知水性インクを用いて実施例1と同様にして温度インジケータを作製し、実施例10の温度検知水性インクを用いて実施例2と同様にして温度インジケータを作製した。
【0106】
作製した温度インジケータに対して温度変化試験(25℃で10分間保持後、50℃に加熱)を行い、印刷文字の色変化を目視で確認した。25℃保持の時に無色で、50℃に加熱した時に顕色して印刷文字を識別できた場合を「合格」と評価し、それ以外を「不合格」と評価した。その結果、実施例9,10ともに「合格」と評価された。実施例9,10の温度検知水性インクの成分および評価結果を、表1に併記する。
【0107】
[実験8]
(実施例11,12の作製と評価)
乳濁液用意工程S2において、界面活性剤として花王株式会社製のデモール(登録商標)NLを使用した以外は実施例5と同様にして、実施例11の温度検知水性インクを作製し、界面活性剤として花王株式会社製のデモールNLを使用した以外は実施例2と同様にして、実施例12の温度検知水性インクを作製した。
【0108】
実施例11の温度検知水性インクを用いて実施例1と同様にして温度インジケータを作製し、実施例12の温度検知水性インクを用いて実施例2と同様にして温度インジケータを作製した。
【0109】
作製した温度インジケータに対して実施例9と同様の温度変化試験(25℃で10分間保持後、50℃に加熱)を行い、印刷文字の色変化を目視で確認した。その結果、実施例11,12ともに「合格」と評価された。実施例11,12の温度検知水性インクの成分および評価結果を、表1に併記する。
【0110】
[実験9]
(実施例13,14の作製と評価)
実施例1の温度検知水性インクと実施例9の温度検知水性インクとを質量比「1:1」で混合して実施例13の温度検知水性インクを調整した。また、実施例4の温度検知水性インクと実施例12の温度検知水性インクとを質量比「1:1」で混合して実施例14の温度検知水性インクを調整した。
【0111】
実施例13、14の温度検知水性インクは、それぞれ2種類の温度検知材料が含まれることから、25℃に維持されている環境では無色状態であるが、一旦4℃以下に冷却すると黒色に顕色し、一旦50℃以上に加熱すると青色に顕色する温度検知水性インクとなる。
【0112】
実施例13の温度検知水性インクを用いて実施例1と同様にして温度インジケータを作製し、実施例14の温度検知水性インクを用いて実施例2と同様にして温度インジケータを作製した。
【0113】
作製した温度インジケータに対して温度変化試験(25℃で10分間保持、4℃に冷却、その後50℃に加熱)を行い、印刷文字の色変化を目視で確認した。25℃保持の時に無色で、4℃に冷却した時および50℃に加熱した時に顕色して印刷文字を識別できた場合を「合格」と評価し、それ以外を「不合格」と評価した。その結果、実施例13,14は「合格」と評価された。実施例13,14の温度検知水性インクの成分および評価結果を、表1に併記する。
【0114】
【表1】
【0115】
上述した実施形態や実施例は、本発明の理解を助けるために説明したものであり、本発明は、記載した具体的な構成のみに限定されるものではない。例えば、実施形態の構成の一部を当業者の技術常識の構成に置き換えることが可能であり、また、実施形態の構成に当業者の技術常識の構成を加えることも可能である。すなわち、本発明は、本明細書の実施形態や実施例の構成の一部について、発明の技術的思想を逸脱しない範囲で、削除・他の構成による置換・他の構成の追加をすることが可能である。
【符号の説明】
【0116】
1…ロイコ染料、2…顕色剤、3…消色剤、4…温度検知材料、5…界面活性剤、
10,11…温度検知粒子、20…水系分散媒、30…水溶性樹脂バインダ、40…他の添加剤、
100…温度検知水性インク。
図1
図2
図3
図4
図5A
図5B
図6
図7