(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-06-16
(45)【発行日】2023-06-26
(54)【発明の名称】ナビゲーションおよびポジショニング信号の保護された使用
(51)【国際特許分類】
H04W 64/00 20090101AFI20230619BHJP
G01S 5/10 20060101ALI20230619BHJP
H04W 12/037 20210101ALI20230619BHJP
H04W 12/0431 20210101ALI20230619BHJP
H04W 72/23 20230101ALI20230619BHJP
【FI】
H04W64/00
G01S5/10 Z
H04W12/037
H04W12/0431
H04W72/23
(21)【出願番号】P 2020556781
(86)(22)【出願日】2019-02-25
(86)【国際出願番号】 US2019019363
(87)【国際公開番号】W WO2019203928
(87)【国際公開日】2019-10-24
【審査請求日】2022-01-26
(32)【優先日】2018-04-16
(33)【優先権主張国・地域又は機関】US
(32)【優先日】2018-06-19
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】595020643
【氏名又は名称】クゥアルコム・インコーポレイテッド
【氏名又は名称原語表記】QUALCOMM INCORPORATED
(74)【代理人】
【識別番号】110003708
【氏名又は名称】弁理士法人鈴榮特許綜合事務所
(74)【代理人】
【識別番号】100108855
【氏名又は名称】蔵田 昌俊
(74)【代理人】
【識別番号】100158805
【氏名又は名称】井関 守三
(74)【代理人】
【識別番号】100112807
【氏名又は名称】岡田 貴志
(72)【発明者】
【氏名】オプスハウ、ギュトルム・リングスタッド
(72)【発明者】
【氏名】ポン、レイマン・ワイ
(72)【発明者】
【氏名】ウ、ジエ
(72)【発明者】
【氏名】フィッシャー、スベン
(72)【発明者】
【氏名】エッジ、スティーブン・ウィリアム
(72)【発明者】
【氏名】ブシャン、ナガ
【審査官】田畑 利幸
(56)【参考文献】
【文献】特表2012-530394(JP,A)
【文献】国際公開第2018/028787(WO,A1)
【文献】米国特許出願公開第2017/0366244(US,A1)
【文献】特表2019-528441(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H04W 4/00-99/00
G01S 5/00- 5/14
G01S 19/00-19/55
3GPP TSG RAN WG1-4
SA WG1-4
CT WG1,4
(57)【特許請求の範囲】
【請求項1】
ワイヤレス通信ネットワーク中の移動体デバイスを用いて基準信号を取得する方法において、
前記移動体デバイスにおいて、前記ワイヤレス通信ネットワーク中の複数の基地局に対する基地局情報を取得し、前記基地局情報は、前記複数の基地局の各基地局のロケーションと識別子とを含むことと、
前記移動体デバイスが認可されている場合に、前記移動体デバイスを用いて、前記複数の基地局のうちの基地局に対するシード情報を取得することと、
前記基地局に対する前記基地局情報と前記シード情報とに基づいて、コードの予め定められているセットから選択され、第1のポジショニング機会の間の前記基地局によるポジション測定信号のブロードキャストをエンコードするように指定された第1のコードを決定することと、
前記移動体デバイスを用いて、前記第1のコードを決定することに基づいて、前記ポジション測定信号の第1の測定を行うこととを含む方法。
【請求項2】
前記シード情報は、前記基地局によって後にブロードキャストされるワイヤレスポジショニング測定信号の少なくとも一部分のコードを決定できる時間を示しているタイムスタンプを含む請求項1記載の方法。
【請求項3】
前記シード情報を取得することは、前記基地局から前記シード情報を受信することを含み、前記シード情報は、初期状態情報を含み、前記第1のコードを決定することは、前記初期状態情報に基づいて、線形フィードバックシフトレジスタに値を入力することを含む請求項1記載の方法。
【請求項4】
前記第1のコードを決定することは、前記シード情報からのデータを方程式に入力することと、前記方程式から前記第1のコードを取得することとを含む請求項1記載の方法。
【請求項5】
前記基地局に対する前記基地局情報と前記シード情報とに基づいて、前記コードの予め定められているセットから選択され、第2のポジショニング機会の間の前記基地局による前記ポジション測定信号のブロードキャストのために指定された第2のコードを決定することと、
前記移動体デバイスを用いて、前記第2のコードを決定することに基づいて、前記ポジション測定信号の第2の測定を行うこととをさらに含み、前記第2のコードは、前記第1のコードと異なる請求項1記載の方法。
【請求項6】
前記第2のコードを決定することは、少なくとも1つの線形フィードバックシフトレジスタの値をある回数シフトすることを含み、前記基地局の識別に基づいて、前記少なくとも1つの線形フィードバックシフトレジスタの値をシフトする回数を決定することをさらに含み、または、前記移動体デバイスを用いて、複数のポジショニング機会のそれぞれに対して、前記少なくとも1つの線形フィードバックシフトレジスタの値をシフトする回数を決定することをさらに含み、前記少なくとも1つの線形フィードバックシフトレジスタの値をシフトする回数は、前記複数のポジショニング機会のうちの少なくとも2つのポジショニング機会に対して異なる請求項5記載の方法。
【請求項7】
デバイスにおいて、
ワイヤレス通信インターフェースと、
メモリと、
前記ワイヤレス通信インターフェースおよび前記メモリと通信可能に結合されている処理ユニットとを具備し、
前記処理ユニットは、
ワイヤレス通信ネットワーク中の複数の基地局に対する基地局情報を取得し、前記基地局情報は、前記複数の基地局の各基地局のロケーションと識別子とを含み、
前記デバイスが認可されている場合に、前記複数の基地局のうちの基地局に対するシード情報を取得し、
前記基地局に対する前記基地局情報と前記シード情報とに基づいて、コードの予め定められているセットから選択され、第1のポジショニング機会の間の前記基地局によるポジション測定信号のブロードキャストをエンコードするように指定された第1のコードを決定し、
前記ワイヤレス通信インターフェースを使用して、前記第1のコードを決定することに基づいて、前記ポジション測定信号の第1の測定を行うように構成されているデバイス。
【請求項8】
前記処理ユニットは、前記シード情報から、前記基地局によって後にブロードキャストされるワイヤレスポジショニング測定信号の少なくとも一部分のコードを決定できる時間を示しているタイムスタンプを取得するように構成されている請求項7記載のデバイス。
【請求項9】
前記処理ユニットは、少なくとも部分的に、前記基地局から前記シード情報を受信することによって、前記シード情報を取得するように構成されている請求項7記載のデバイス。
【請求項10】
前記処理ユニットは、前記シード情報を使用して、初期状態情報を決定するように構成されており、前記処理ユニットは、前記初期状態情報に基づいて、少なくとも部分的に、線形フィードバックシフトレジスタに値を入力することによって、前記第1のコードを決定するように構成されており、および/または、前記処理ユニットは、少なくとも部分的に、前記シード情報からのデータを方程式に入力することと、前記方程式から前記第1のコードを取得することとによって、前記第1のコードを決定するように構成されている請求項7記載のデバイス。
【請求項11】
前記処理ユニットは、
前記基地局に対する前記基地局情報と前記シード情報とに基づいて、前記コードの予め定められているセットから選択され、第2のポジショニング機会の間の前記基地局による前記ポジション測定信号のブロードキャストのために指定された第2のコードを決定し、
前記ワイヤレス通信インターフェースを使用して、前記第2のコードを決定することに基づいて、前記ポジション測定信号の第2の測定を行うようにさらに構成されている請求項7記載のデバイス。
【請求項12】
前記処理ユニットは、少なくとも部分的に、少なくとも1つの線形フィードバックシフトレジスタの値をある回数シフトすることによって、前記第2のコードを決定するように構成されており、前記処理ユニットは、前記基地局の識別に基づいて、前記少なくとも1つの線形フィードバックシフトレジスタの値をシフトする回数を決定するようにさらに構成されており、または、前記処理ユニットは、複数のポジショニング機会のそれぞれに対して、前記少なくとも1つの線形フィードバックシフトレジスタの値をシフトする回数を決定するようにさらに構成されており、前記少なくとも1つの線形フィードバックシフトレジスタの値をシフトする回数は、前記複数のポジショニング機会のうちの少なくとも2つのポジショニング機会に対して異なる請求項11記載のデバイス。
【請求項13】
ワイヤレス通信ネットワークの基地局から基準信号をブロードキャストする方法において、
第1のポジショニング機会の間にポジション測定信号をブロードキャストし、前記ポジション測定信号は、コードの予め定められているセットの第1のコードでエンコードされることと、
第2のポジショニング機会の間に前記ポジション測定信号をブロードキャストし、前記ポジション測定信号は、前記コードの予め定められているセットの第2のコードでエンコードされることとを含み、
前記第1のコードおよび前記第2のコードは、前記基地局から認可された移動体デバイスに送信される前記基地局に対する基地局情報とシード情報に基づいて決定され、前記第2のコードは、前記第1のコードと異なる方法。
【請求項14】
基地局において、
ワイヤレス通信インターフェースと、
メモリと、
前記ワイヤレス通信インターフェースおよび前記メモリと通信可能に結合されている処理ユニットとを具備し、
前記処理ユニットは、
前記ワイヤレス通信インターフェースを使用して、第1のポジショニング機会の間にポジション測定信号をブロードキャストし、前記ポジション測定信号は、コードの予め定められているセットの第1のコードでエンコードされ、
前記ワイヤレス通信インターフェースを使用して、第2のポジショニング機会の間に前記ポジション測定信号をブロードキャストし、前記ポジション測定信号は、前記コードの予め定められているセットの第2のコードでエンコードされるように構成され、
前記第1のコードおよび前記第2のコードは、前記基地局から認可された移動体デバイスに送信される前記基地局に対する基地局情報とシード情報に基づいて決定され、前記第2のコードは、前記第1のコードと異なる
、基地局。
【請求項15】
少なくとも1つのコンピュータに、請求項1~6または13のいずれかに記載の方法のステップを実施させるための命令が組み込まれている非一時的コンピュータ読取可能媒体。
【発明の詳細な説明】
【分野】
【0001】
[0001]
ここで開示する主題事項は、電子デバイスに関連し、より具体的には、第5世代(5G)ワイヤレスネットワークを使用して移動体デバイスのロケーションをサポートするのに使用するための方法および装置に関連する。
【情報】
【0002】
[0002]
ワイヤレスネットワークにアクセスしている移動体デバイスのロケーションまたはポジションを取得することは、例えば、緊急呼び出し、パーソナルナビゲーション、アセット追跡、友人または家族メンバーの位置確認等を含む、多くの用途で有用であるかもしれない。既存のポジション方法は、衛星ビークル(SV)と、基地局およびアクセスポイントのようなワイヤレスネットワーク中の地上無線ソースとを含む、さまざまなデバイスから送信される無線信号を測定することに基づく方法を含んでいる。新たな第5世代(5G)ワイヤレスネットワークのための標準化は、さまざまなポジショニング方法に対するサポートを含むことが予想され、これは、ロングタームエボリューション(LTE(登録商標))ワイヤレスネットワークがポジション決定のためにポジショニング基準信号(PRS)および/またはセル特有基準信号(CRS)を現在利用しているのと同様の方法で、基地局によって送信される基準信号を利用するかもしれない。問題なことに、予測可能な方法でのこれらの信号の送信は、プロプライエタリな基地局情報(例えば、基地局IDおよびロケーションを決定すること)を容易に決定可能にするかもしれない。
【概要】
【0003】
[0003]
ここで説明する実施形態は、周期的に送信される基準信号のある特性をプロプライエタリにして、信号の無認可の検出および利用を防ぐのを助けることによって、これらのおよび他の懸念事項に対処する。より具体的には、基地局は、基準信号が送信される時間をおよび/または信号をエンコードするコードを調節することができる。これらの調節は、方程式またはアルゴリズムに基づいていてもよく、方程式またはアルゴリズムは、必要に応じて特定の移動体デバイスと共有できる。
【0004】
[0004]
説明にしたがうと、ワイヤレス通信ネットワーク中の移動体デバイスを用いて基準信号を取得する例示的な方法は、移動体デバイスにおいて、ワイヤレス通信ネットワーク中の複数の基地局に対する基地局情報を取得し、基地局情報は、複数の基地局の各基地局のロケーションと識別子とを含むことを含んでいる。方法は、移動体デバイスを用いて、複数の基地局のうちの基地局に対するシード情報を取得することと、基地局に対する基地局情報とシード情報とに基づいて、一連の連続するシンボルを有する第1のリソースブロックから選択され、第1のポジショニング機会の間の基地局によるポジション測定信号の送信に対して指定された第1のシンボル、または、コードの予め定められているセットから選択され、第1のポジショニング機会の間の基地局によるポジション測定信号の送信をエンコードするように指定された第1のコード、のいずれか、または、両方を決定することをさらに含んでいる。方法は、移動体デバイスを用いて、第1のシンボルまたは第1のコードのいずれかまたは両方を決定することに基づいて、ポジション測定信号の第1の測定を行うことも含んでいる。
【0005】
[0005]
方法の実施形態は、以下の特徴のうちの1つ以上を含んでいてもよい。シード情報は、基地局によって後に送信されるワイヤレスポジショニング測定信号の少なくとも一部分の、シンボル期間、コード、または、両方を決定できる時間を示しているタイムスタンプを含んでいてもよい。シード情報を取得することは、基地局からシード情報を受信することを含んでいてもよい。シード情報は、初期状態情報を含んでいてもよい。第1のシンボルまたは第1のコードのいずれかまたは両方を決定することは、初期状態情報に基づいて、線形フィードバックシフトレジスタに値を入力することを含んでいてもよい。第1のシンボルまたは第1のコードのいずれかまたは両方を決定することは、シード情報からのデータを方程式に入力することと、方程式から第1のシンボルまたは第1のコードのいずれかまたは両方を取得することとを含んでいてもよい。方法は、基地局に対する基地局情報とシード情報とに基づいて、一連の連続するシンボルを有する第2のリソースブロックから選択され、第2のポジショニング機会の間の基地局によるポジション測定信号の送信のために指定された第2のシンボル、または、コードの予め定められているセットから選択され、第2のポジショニング機会の間の基地局によるポジション測定信号の送信のために指定された第2のコード、のいずれか、または、両方を決定することと、移動体デバイスを用いて、第2のシンボルまたは第2のコードのいずれかまたは両方を決定することに基づいて、ポジション測定信号の第2の測定を行うこととをさらに含んでいてもよい。第2のリソースブロック内の第2のシンボルのポジションは、第1のリソースブロック内の第1のシンボルのポジションと異なっていてもよい。第2のコードは、第1のコードと異なっていてもよい。第2のコードを決定することは、少なくとも1つの線形フィードバックシフトレジスタの値を回数シフトすることを含んでいてもよい。方法は、基地局の識別に基づいて、少なくとも1つの線形フィードバックシフトレジスタの値をシフトする回数を決定することをさらに含んでいてもよい。方法は、移動体デバイスを用いて、複数のポジショニング機会のそれぞれに対して、少なくとも1つの線形フィードバックシフトレジスタの値をシフトする回数を決定することをさらに含んでいてもよく、少なくとも1つの線形フィードバックシフトレジスタの値をシフトする回数は、複数のポジショニング機会のうちの少なくとも2つのポジショニング機会に対して異なる。
【0006】
[0006]
説明にしたがうと、例示的なデバイスは、ワイヤレス通信インターフェースと、メモリと、ワイヤレス通信インターフェースおよびメモリと通信可能に結合されている処理ユニットとを備えている。処理ユニットは、ワイヤレス通信ネットワーク中の複数の基地局に対する基地局情報を取得するように構成されており、基地局情報は、複数の基地局の各基地局のロケーションと識別子とを含んでいる。処理ユニットは、複数の基地局のうちの基地局に対するシード情報を取得し、基地局に対する基地局情報とシード情報とに基づいて、一連の連続するシンボルを有する第1のリソースブロックから選択され、第1のポジショニング機会の間の基地局によるポジション測定信号の送信に対して指定された第1のシンボル、または、コードの予め定められているセットから選択され、第1のポジショニング機会の間の基地局によるポジション測定信号の送信をエンコードするように指定された第1のコード、のいずれか、または、両方を決定するようにさらに構成されている。処理ユニットはまた、ワイヤレス通信インターフェースを使用して、第1のシンボルまたは第1のコードのいずれかまたは両方を決定することに基づいて、ポジション測定信号の第1の測定を行うように構成されている。
【0007】
[0007]
デバイスの実施形態は、以下の特徴のうちの1つ以上をさらに含んでいてもよい。処理ユニットは、シード情報から、基地局によって後に送信されるワイヤレスポジショニング測定信号の少なくとも一部分の、シンボル期間、コード、または、両方を決定できる時間を示しているタイムスタンプを取得するように構成されていてもよい。処理ユニットは、少なくとも部分的に、基地局からシード情報を受信することによって、シード情報を取得するように構成されていてもよい。処理ユニットは、シード情報を使用して、初期状態情報を決定するように構成されていてもよい。処理ユニットは、初期状態情報に基づいて、少なくとも部分的に、線形フィードバックシフトレジスタに値を入力することによって、第1のシンボルまたは第1のコードのいずれかまたは両方を決定するように構成されていてもよい。処理ユニットは、少なくとも部分的に、シード情報からのデータを方程式に入力することと、方程式から第1のシンボルまたは第1のコードのいずれかまたは両方を取得することとによって、第1のシンボルまたは第1のコードのいずれかまたは両方を決定するように構成されていてもよい。処理ユニットは、基地局に対する基地局情報とシード情報とに基づいて、一連の連続するシンボルを有する第2のリソースブロックから選択され、第2のポジショニング機会の間の基地局によるポジション測定信号の送信のために指定された第2のシンボル、または、コードの予め定められているセットから選択され、第2のポジショニング機会の間の基地局によるポジション測定信号の送信のために指定された第2のコード、のいずれか、または、両方を決定し、ワイヤレス通信インターフェースを使用して、第2のシンボルまたは第2のコードのいずれかまたは両方を決定することに基づいて、ポジション測定信号の第2の測定を行うようにさらに構成されていてもよい。処理ユニットは、少なくとも部分的に、少なくとも1つの線形フィードバックシフトレジスタの値を回数シフトすることによって、第2のコードを決定するように構成されていてもよい。処理ユニットは、基地局の識別に基づいて、少なくとも1つの線形フィードバックシフトレジスタの値をシフトする回数を決定するようにさらに構成されていてもよい。処理ユニットは、複数のポジショニング機会のそれぞれに対して、少なくとも1つの線形フィードバックシフトレジスタの値をシフトする回数を決定するようにさらに構成され、少なくとも1つの線形フィードバックシフトレジスタの値をシフトする回数は、複数のポジショニング機会のうちの少なくとも2つのポジショニング機会に対して異なる。
【0008】
[0008]
説明にしたがうと、例示的な移動体デバイスは、ワイヤレス通信ネットワーク中の複数の基地局に対する基地局情報を取得し、基地局情報は、複数の基地局の各基地局のロケーションと識別子とを含む手段を備えている。移動体デバイスは、複数の基地局のうちの基地局に対するシード情報を取得する手段と、基地局に対する基地局情報とシード情報とに基づいて、一連の連続するシンボルを有する第1のリソースブロックから選択され、第1のポジショニング機会の間の基地局によるポジション測定信号の送信に対して指定された第1のシンボル、または、コードの予め定められているセットから選択され、第1のポジショニング機会の間の基地局によるポジション測定信号の送信をエンコードするように指定された第1のコード、のいずれか、または、両方を決定する手段とをさらに備えていてもよい。移動体デバイスは、第1のシンボルまたは第1のコードのいずれかまたは両方を決定することに基づいて、ポジション測定信号の第1の測定を行う手段をさらに備えていてもよい。
【0009】
[0009]
移動体デバイスの実施形態は、以下の特徴のうちの1つ以上を含んでいてもよい。シード情報を取得する手段は、基地局からシード情報を受信する手段を備えていてもよい。第1のシンボルまたは第1のコードのいずれかまたは両方を決定する手段は、初期状態情報に基づいて、線形フィードバックシフトレジスタに値を入力する手段を備えていてもよい。第1のシンボルまたは第1のコードのいずれかまたは両方を決定する手段は、シード情報からのデータを方程式に入力し、方程式から第1のシンボルまたは第1のコードのいずれかまたは両方を取得する手段を備えていてもよい。移動体デバイスは、基地局に対する基地局情報とシード情報とに基づいて、一連の連続するシンボルを有する第2のリソースブロックから選択され、第2のポジショニング機会の間の基地局によるポジション測定信号の送信のために指定された第2のシンボル、または、コードの予め定められているセットから選択され、第2のポジショニング機会の間の基地局によるポジション測定信号の送信のために指定された第2のコード、のいずれか、または、両方を決定する手段と、移動体デバイスを用いて、第2のシンボルまたは第2のコードのいずれかまたは両方を決定することに基づいて、ポジション測定信号の第2の測定を行う手段とをさらに備えていてもよい。第2のコードを決定する手段は、少なくとも1つの線形フィードバックシフトレジスタの値を回数シフトする手段をさらに備えていてもよい。移動体デバイスは、基地局の識別に基づいて、少なくとも1つの線形フィードバックシフトレジスタの値をシフトする回数を決定する手段をさらに備えていてもよい。移動体デバイスは、複数のポジショニング機会のそれぞれに対して、少なくとも1つの線形フィードバックシフトレジスタの値をシフトする回数を決定する手段をさらに備え、少なくとも1つの線形フィードバックシフトレジスタの値をシフトする回数は、複数のポジショニング機会のうちの少なくとも2つのポジショニング機会に対して異なる。
【0010】
[0010]
本説明にしたがうと、例示的な非一時的コンピュータ読取可能媒体は、ワイヤレス通信ネットワーク中の移動体デバイスに基準信号を取得させる組み込まれている命令を有する。命令は、ワイヤレス通信ネットワーク中の複数の基地局に対する基地局情報を取得し、基地局情報は、複数の基地局の各基地局のロケーションと識別子とを含み、複数の基地局のうちの基地局に対するシード情報を取得し、基地局に対する基地局情報とシード情報とに基づいて、一連の連続するシンボルを有する第1のリソースブロックから選択され、第1のポジショニング機会の間の基地局によるポジション測定信号の送信に対して指定された第1のシンボル、または、コードの予め定められているセットから選択され、第1のポジショニング機会の間の基地局によるポジション測定信号の送信をエンコードするように指定された第1のコード、のいずれか、または、両方を決定するためのコンピュータコードを含んでいる。命令は、第1のシンボルまたは第1のコードのいずれかまたは両方を決定することに基づいて、ポジション測定信号の第1の測定を行うためのコンピュータコードも含んでいる。
【0011】
[0011]
説明にしたがうと、ワイヤレス通信ネットワークの基地局から基準信号を送信する例示的な方法は、第1のポジショニング機会の間にポジション測定信号を送信し、ポジション測定信号は、一連の連続するシンボルを有する第1のリソースブロックの第1のシンボルの間に送信され、ポジション測定信号は、コードの予め定められているセットの第1のコードでエンコードされることを含んでいる。方法は、第2のポジショニング機会の間にポジション測定信号を送信し、ポジション測定信号は、一連の連続するシンボルを有する第2のリソースブロックの第2のシンボルの間に送信され、ポジション測定信号は、コードの予め定められているセットの第2のコードでエンコードされることを含んでいる。さらに、第2のシンボルは、第2のリソースブロック内で、第1のリソースブロック内の第1のシンボルの順序と異なる順序を有し、または、第2のコードは、第1のコードと異なり、または、両方である。
【0012】
[0012]
説明にしたがうと、例示的な基地局は、ワイヤレス通信インターフェースと、メモリと、ワイヤレス通信インターフェースおよびメモリと通信可能に結合されている処理ユニットとを備えている。処理ユニットは、ワイヤレス通信インターフェースを使用して、第1のポジショニング機会の間にポジション測定信号を送信し、ポジション測定信号は、一連の連続するシンボルを有する第1のリソースブロックの第1のシンボルの間に送信され、ポジション測定信号は、コードの予め定められているセットの第1のコードでエンコードされるように構成されている。処理ユニットは、ワイヤレス通信インターフェースを使用して、第2のポジショニング機会の間にポジション測定信号を送信し、ポジション測定信号は、一連の連続するシンボルを有する第2のリソースブロックの第2のシンボルの間に送信され、ポジション測定信号は、コードの予め定められているセットの第2のコードでエンコードされるように構成されている。さらに、第2のシンボルは、第2のリソースブロック内で、第1のリソースブロック内の第1のシンボルの順序と異なる順序を有し、または、第2のコードは、第1のコードと異なり、または、両方である。
【0013】
[0013]
説明にしたがうと、例示的なデバイスは、第1のポジショニング機会の間にポジション測定信号を送信し、ポジション測定信号は、一連の連続するシンボルを有する第1のリソースブロックの第1のシンボルの間に送信され、ポジション測定信号は、コードの予め定められているセットの第1のコードでエンコードされる手段を備えている。デバイスはまた、第2のポジショニング機会の間にポジション測定信号を送信し、ポジション測定信号は、一連の連続するシンボルを有する第2のリソースブロックの第2のシンボルの間に送信され、ポジション測定信号は、コードの予め定められているセットの第2のコードでエンコードされる手段を備えている。さらに、第2のシンボルは、第2のリソースブロック内で、第1のリソースブロック内の第1のシンボルの順序と異なる順序を有し、または、第2のコードは、第1のコードと異なり、または、両方である。
【0014】
[0014]
説明にしたがうと、例示的な非一時的コンピュータ読取可能媒体は、ワイヤレス通信ネットワークの基地局に、基準信号を送信させる組み込まれている命令を有する。命令は、第1のポジショニング機会の間にポジション測定信号を送信し、ポジション測定信号は、一連の連続するシンボルを有する第1のリソースブロックの第1のシンボルの間に送信され、ポジション測定信号は、コードの予め定められているセットの第1のコードでエンコードされるためのコンピュータコードを含んでいる。命令は、第2のポジショニング機会の間にポジション測定信号を送信し、ポジション測定信号は、一連の連続するシンボルを有する第2のリソースブロックの第2のシンボルの間に送信され、ポジション測定信号は、コードの予め定められているセットの第2のコードでエンコードされるためのコンピュータコードをさらに含んでいる。第2のシンボルは、第2のリソースブロック内で、第1のリソースブロック内の第1のシンボルの順序と異なる順序を有し、または、第2のコードは、第1のコードと異なり、または、両方である。
【図面の簡単な説明】
【0015】
[0015]
非限定的で非網羅的な態様を、以下の図を参照して説明する。
【
図1】[0016]
図1は、実施形態にしたがう、5Gネットワークを利用して、ユーザ機器(UE)に対するポジションを決定してもよい通信システムのダイヤグラムである。
【
図2】[0017]
図2は、5Gにおいて使用されるフレーム/サブフレーム構造と類似しているかもしれない、PRSポジショニング機会を有するLTEサブフレームシーケンスの構造の図である。
【
図3A】[0018]
図3Aは、さまざまな実施形態において、シンボルホッピングがどのように実現されるかの図である。
【
図3B】
図3Bは、さまざまな実施形態において、シンボルホッピングがどのように実現でされるかの図である。
【
図3C】
図3Cは、さまざまな実施形態において、シンボルホッピングがどのように実現されるかの図である。
【
図4】[0019]
図4は、実施形態にしたがう、ロケーションサーバと、UEと、基地局との間の対話を図示するスイムレーンダイヤグラムである。
【
図5】[0020]
図5は、実施形態にしたがう、ワイヤレス通信ネットワーク中の移動体デバイスを用いて基準信号を取得する方法を図示するフローダイヤグラムである。
【
図6】[0021]
図6は、実施形態にしたがう、ワイヤレス通信ネットワークの基地局から基準信号を送信する方法を図示するフローダイヤグラムである。
【
図7】[0022]
図7は、UEの実施形態である。
【
図8】[0023]
図8は、通信ネットワークサーバの実施形態である。
【
図9】[0024]
図9は、基地局の実施形態である。
【0016】
[0025]
さまざまな図における同様の参照番号およびシンボルは、ある特定の例示的なインプリメンテーションにしたがう、同様の要素を示している。加えて、要素の複数のインスタンスは、ハイフンを伴う要素に対する第1の数および第2の数にしたがうことによって示されているかもしれない。例えば、要素110の複数のインスタンスは、110-1、110-2、110-3等として示されているかもしれない。第1の数のみを使用してこのような要素を指すとき、要素の任意のインスタンスが理解されるべきである(例えば、前の例における要素110は、要素110-1、110-2、および、110-3を指している)。
【詳細な説明】
【0017】
[0026]
ユーザ機器(UE)のロケーションを決定するためのいくつかの例示的な技術がここに提示され、技術は、UE(例えば、移動体デバイスまたは移動局)、ロケーションサーバ(LS)、基地局、および/または、他のデバイスにおいて実現してもよい。これらの技術は、第3世代パートナーシッププロジェクト(3GPP(登録商標))、オープンモバイルアライアンス(OMA)、3GPPロングタームエボリューション(LTE)ポジショニングプロトコル(LPP)および/またはOMA LPP拡張(LPPe)、Wi-Fi(登録商標)、グローバルナビゲーション衛星システム(GNSS)、ならびに、これらに類するものを含む、さまざまなテクノロジーおよび/または標準規格を利用するさまざまな用途において利用できる。
【0018】
[0027]
ユーザ機器(UE)は、移動体電話機、スマートフォン、タブレットまたは他の移動体コンピュータ、ポータブルゲームデバイス、パーソナルメディアプレーヤ、パーソナルナビゲーションデバイス、ウェアラブルデバイス、車載デバイス、あるいは、他の電子デバイスのような移動体デバイスを含んでいてもよい。UEのポジション決定は、(例えば、UEによって実行されるナビゲーションアプリケーションを介した)ナビゲーションの間、緊急応答(例えば、E911)等を含む、多種多様なシナリオにおいて、UEおよび/または、他のエンティティにとって有用であることがある。UEのポジショニングは、衛星ベースの手段(例えば、グローバルポジショニングシステム(GPS))または地上手段によって行われてもよい。
【0019】
[0028]
セルラネットワークにおけるUEの地上ポジショニングに対して、アドバンストフォワードリンク三辺測量(AFLT)および観測到達時間差(OTDOA)のような技術は、しばしば、「UE支援」モードで動作し、基地局によって送信される基準信号(例えば、PRS、CRS等)の測定がUEによってなされ、その後、ロケーションサーバに提供される。次いで、ロケーションサーバは、測定と基地局の既知のロケーションとに基づいて、UEのポジションを計算する。これらの技術は、UE自体よりもむしろ、ロケーションサーバがUEのポジションを計算することを要求することから、これらのポジショニング技術は、車またはセル電話機ナビゲーションのような用途では頻繁に使用されず、これらは、代わりに、典型的には衛星ベースのポジショニングに依存する。
【0020】
[0029]
セルラネットワークを使用するポジショニングの広範な採用に対する1つの障害は、UEによる(典型的には、基地局アルマナック(BSA)として呼ばれるものに記憶される)基地局の既知のロケーションへのアクセスである。BSAの暗号化された形態をUEに提供できて、基準信号の測定に基づいてそれら自体のロケーションを決定するためにUEが使用できるようにしたとしても、基地局によるこれらの信号の送信は、この情報をクラウドソーシングまたはウォードライビングに潜在的にアクセス可能にし、本質的に、フィールド内観測に基づいてBSAを発生させることを可能にする。
【0021】
[0030]
ここで説明する実施形態は、周期的に送信される基準信号のある特性をプロプライエタリにすることによって、これらのおよび他の懸念事項に対処する。より具体的には、基地局は、基準信号が送信される時間および/または信号をエンコードするコードを調節することができる。これらの調節は、必要に応じて、認可されたUEと共有できる方程式またはアルゴリズムに基づいていてもよい。したがって、実施形態にしたがうと、方程式またはアルゴリズムは、暗号化され、認可されたUEと(BSAとともに)共有することができる一方で、認可されていないUEによるウォードライビングまたはクラウドソーシングからBSAを導出することは、はるかに困難になるであろう。さらに、方程式またはアルゴリズムを望まれるように更新させて、BSA情報が確実に保護されたままにすることを助けることができる。さらに、5Gワイヤレスネットワークのための基準信号が依然として定義されていることから、5G標準規格は、これらの信号がこのような保護をネイティブに含むことを可能にするかもしれない。
【0022】
[0031]
ここで説明する実施形態は、5Gセルラネットワークにおいて「ポジション測定信号」を利用するが、実施形態はこのように限定されないことに留意されたい。ここで説明する実施形態は、(PRS、CRS、追跡基準信号(TRS)等のような既存の基準信号を含む)他の基準信号および他の通信ネットワークに適用してもよい。当業者は、ここで説明するものを超えるさまざまな用途を理解するであろう。
【0023】
[0032]
図1は、実施形態にしたがう、基地局によるポジション測定信号の送信に基づくポジショニング方法(例えば、OTDOA)を使用し、5Gネットワークを利用して、UE105のポジションを決定するかもしれない通信システム100のダイヤグラムである。ここで、通信システム100は、UE105と、次世代(NG)無線アクセスネットワーク(RAN)(NG-RAN)135および5Gコアネットワーク(5GC)140を含む5Gネットワークとを含み、これらは、UEポジショニングを提供するとともに、UE105にデータおよび音声通信を提供してもよい。5Gネットワークは、新たな無線(NR)ネットワークとして呼ばれることがあり、NG-RAN135は、5G RANまたはNR RANとして呼ばれることがあり、5GC140は、NGコアネットワーク(NGC)として呼ばれることがある。NG-RANおよび5GCの標準化は、3GPPで進行中である。したがって、NG-RAN135および5GC140は、3GPPからの5Gサポートに対する現在または将来の標準規格に適合してもよい。通信システム100は、GNSS衛星ビークル(SV)190からの情報をさらに利用してもよい。通信システム100の追加のコンポーネントについて以下で説明する。通信システム100は、追加または代替のコンポーネントを含んでいてもよいことが理解されるだろう。
【0024】
[0033]
図1は、さまざまなコンポーネントの一般化された図のみを提供し、これらのいずれかまたはすべてを適宜利用してもよく、これらのそれぞれを必要に応じて複製してもよいことに留意されたい。具体的には、1つのUE105のみが図示されているが、多くのUE(例えば、数百、数千、数百万等)が通信システム100を利用してもよいことが理解されるだろう。同様に、通信システム100は、より多い(または、より少ない)数のSV190、gNB110、ng-eNB114、アクセスおよびモビリティ管理機能(AMF)115、外部クライアント130、および/または、他のコンポーネントを含んでいてもよい。通信システム100中のさまざまなコンポーネントを接続する図示した接続は、追加の(中間)コンポーネント、直接または間接の物理的および/またはワイヤレス接続、ならびに/あるいは、追加のネットワークを含んでいてもよい、データおよびシグナリング接続を含んでいる。さらに、コンポーネントは、所望の機能性に依存して、再構成し、組み合わせ、分離し、置換し、および/または、省略してもよい。
【0025】
[0034]
UE105は、デバイス、移動体デバイス、ワイヤレスデバイス、移動体端末、端末、移動局(MS)、セキュアユーザプレーンロケーション(SUPL)可能端末(SET)、または、他の何らかの名前を備え、ならびに/あるいは、これらとして呼ばれることがある。さらに、上述のように、UE105は、セル電話機、スマートフォン、ラップトップ、タブレット、パーソナルデジタルアシスタント(PDA)、追跡デバイス、ナビゲーションデバイス、インターネットオブシングス(IoT)デバイス、ウェアラブルデバイス、組み込みモデム、自動車または他の車両コンピューティングデバイス、あるいは、他の何らかのポータブルまたは移動可能デバイスを含む、さまざまなデバイスのいずれかに対応していてもよい。典型的には、必ずしもそうではないが、UE105は、移動体通信のためのグローバルシステム(GSM(登録商標))、コード分割多元接続(CDMA)、広帯域CDMA(WCDMA(登録商標))、ロングタームエボリューション(LTE)、高レートパケットデータ(HRPD)、IEEE802.11Wi-Fi(Wi-Fiとしても呼ばれる)、Bluetooth(登録商標)(BT)、マイクロ波アクセスのための世界相互運用(WiMAX)、(例えば、NG-RAN135および5GC140を使用する)5G新たな無線(NR)等を使用するような、1つ以上の無線アクセステクノロジー(RAT)を使用して、ワイヤレス通信をサポートしてもよい。UE105はまた、例えば、デジタル加入者線(DSL)またはパケットケーブルを使用して、他のネットワーク(例えば、インターネット)に接続していてもよいワイヤレスローカルエリアネットワーク(WLAN)を使用して、ワイヤレス通信をサポートしてもよい。これらのRATのうちの1つ以上の使用は、(例えば、
図1中に示されていない5GC140の要素を介して、または、場合によってはゲートウェイモバイルロケーションセンター(GMLC)125を介して)UE105が外部クライアント130と通信することを可能にしてもよく、および/または、(例えば、GMLC125を介して)外部クライアント130がUE105に関するロケーション情報を受信することを可能にしてもよい。
【0026】
[0035]
UE105は、単一のエンティティを構成してもよく、あるいは、オーディオ、ビデオおよび/またはデータI/Oデバイスおよび/または身体センサ、ならびに、別個のワイヤラインまたはワイヤレスモデムを、ユーザが用いるかもしれないパーソナルエリアネットワークにおいてのような、複数のエンティティを構成してもよい。UE105のロケーションの推定は、ロケーション、ロケーション推定、ロケーション決定、決定、ポジション、ポジション推定またはポジション決定として呼ばれることがあり、地理的であってもよく、したがって、高度成分(例えば、平均海水面を越える高さ、地表面を越える高さまたは地表面より低い深さ、フロアレベルまたは地下レベル)を含んでいてもよく、または、含んでいなくてもよい、UE105に対するロケーション座標(例えば、緯度および経度)を提供する。代替的に、UE105のロケーションは、都市ロケーションとして(例えば、郵便の住所、あるいは、特定の部屋またはフロアのような、建物中の何らかのポイントまたは小さなエリアの指定として)表されてもよい。UE105のロケーションはまた、UE105が何らかの確率または信頼性レベル(例えば、67%、95%等)で位置付けられると予想される(地理的または都市形態のいずれかで定義される)エリアまたはボリュームとして表されてもよい。UE105のロケーションはさらに、相対ロケーションであってもよく、相対ロケーションは、例えば、地理的に、都市用語的に、あるいは、マップ、フロアプランまたは建物プラン上に示された、ポイント、エリア、または、ボリュームを参照することによって定義されているかもしれない、既知のロケーションにおける何らかの原点に対して定義された、距離および方向または相対X、Y(およびZ)座標を含んでいる。ここに含まれる説明において、ロケーションという用語の使用は、別段の指示がない限り、これらの変形のいずれかを含んでいてもよい。
【0027】
[0036]
NG-RAN135中の基地局は、より典型的にはgNBとして呼ばれるNRノードBを備えていてもよい。
図1では、3つのgNB:gNB110-1、110-2、および、110-3が示されており、これらは、ここでは集合的かつ総称的にgNB110として呼ばれる。しかしながら、典型的なNG RAN135は、数十、数百、または、数千ものgNB110を備えることができる。NG-RAN135中のgNB110のペアは、互いに接続されていてもよい(
図1中には図示せず)。5Gネットワークへのアクセスは、UE105とgNB110のうちの1つ以上との間のワイヤレス通信を介してUE105に提供され、これは、5G(NRとしても呼ばれる)を使用してUE105の代わりに5GC140へのワイヤレス通信アクセスを提供してもよい。
図1では、UE105に対する担当gNBはgNB110-1であると仮定されているが、他のgNB(例えば、gNB110-2および/またはgNB110-3)は、UE105が別のロケーションに移動する場合、担当gNBとして機能してもよく、または、2次的なgNBとして機能して、追加のスループットおよび帯域幅をUE105に提供してもよい。
【0028】
[0037]
図1中に示されるNG-RAN135中の基地局(BS)はまた、または、代わりに、ng-eNB114としても呼ばれる次世代進化型ノードBを含んでいてもよい。Ng-eNB114は、例えば、直接的に、または、他のgNB110および/または他のng-eNBを介して間接的に、NG-RAN135中の1つ以上のgNB110に接続されていてもよい(
図1中に図示せず)。ng-eNB114は、LTEワイヤレスアクセスおよび/または進化型LTE(eLTE)ワイヤレスアクセスをUE105に提供してもよい。
図1中のいくつかのgNB110(例えば、gNB110-2)および/またはng-eNB114は、基準信号(例えば、ここで説明するポジショニング測定信号)を送信して、および/または、支援データをブロードキャストして、UE105のポジショニングを支援するかもしれないが、UE105からまたは他のUEから信号を受信しないかもしれない、ポジショニングのみのビーコンとして機能するように構成されていてもよい。ただ1つのng-eNB114が
図1中に示されているが、以下の説明は、複数のng-eNB114の存在を仮定することがあることに留意されたい。
【0029】
[0038]
留意したように、
図1は、5G通信プロトコルにしたがって通信するように構成されているノードを描いているが、例えば、LPPプロトコルまたはIEEE802.11xプロトコルのような、他の通信プロトコルにしたがって通信するように構成されているノードを使用してもよい。例えば、LTEワイヤレスアクセスをUE105に提供する進化型パケットシステム(EPS)では、RANは、進化型ユニバーサル移動体電気通信システム(UMTS)地上無線アクセスネットワーク(E-UTRAN)を備えていてもよく、これは、LTEワイヤレスアクセスをサポートする進化型ノードB(eNB)を備える基地局を構成してもよい。EPSのためのコアネットワークは、進化型パケットコア(EPC)を備えていてもよい。次いで、EPSは、E-UTRANプラスEPCを備えていてもよく、E-UTRANは、NG-RAN135に対応し、EPCは、
図1中の5GC140に対応する。UE105ポジショニングのサポートのためのここで説明するポジション測定信号は、このような他のネットワークに適用可能であってもよい。
【0030】
[0039]
gNB110およびng-eNB114は、AMF115と通信することができ、AMF115は、ポジショニング機能性のために、ロケーション管理機能(LMF)120と通信する。AMF115は、セル変更およびハンドオーバーを含む、UE105のモビリティをサポートしてもよく、UE105へのシグナリング接続、ならびに、場合によっては、UE105に対するデータおよび音声ベアラをサポートすることに関与してもよい。LMF120は、UE105がNG-RAN135にアクセスするとき、UE105のポジショニングをサポートしてもよく、(ここで説明するポジショニング測定信号を利用することができる)観測到着時間差(OTDOA)等のようなポジション方法をサポートしてもよい。LMF120はまた、例えば、AMF115またはGMLC125から受信した、UE105に対するロケーションサービス要求を処理してもよい。LMF120は、AMF115および/またはGMLC125に接続されていてもよい。いくつかの実施形態では、(UE105のロケーションの導出を含む)ポジショニング機能性の少なくとも一部分は、(例えば、gNB110およびng-eNB114のようなワイヤレスノードによって送信されたポジション測定信号に対してUE105によって取得された信号測定と、例えば、LMF120によってUE105に提供された支援データとを使用して)UE105において実行されてもよいことに留意されたい。
【0031】
[0040]
ゲートウェイモバイルロケーションセンター(GMLC)125は、外部クライアント130から受信したUE105に対するロケーション要求をサポートしてもよく、AMF115によってLMF120に転送するために、このようなロケーション要求をAMF115に転送してもよく、または、ロケーション要求をLMF120に直接転送してもよい。(例えば、UE105に対するロケーション推定を含む)LMF120からのロケーション応答は、同様に、直接またはAMF115を介してのいずれかでGMLC125に返されてもよく、次いで、GMLC125は、(例えば、ロケーション推定を含む)ロケーション応答を外部クライアント130に返してもよい。GMLC125は、
図1ではAMF115およびLMF120の両方に接続されて示されているが、いくつかのインプリメンテーションでは、これらの接続のうちの1つのみが5GC140によってサポートされていてもよい。
【0032】
[0041]
述べたように、通信システム100は5Gテクノロジーに関連して説明されているが、(例えば、音声、データ、ポジショニング、および、他の機能性を実現するために)UE105のような移動体デバイスをサポートし、移動体デバイスと対話するのに使用されるGSM、WCDMA、LTE等のような他の通信テクノロジーをサポートするように、通信システム100を実現してもよい。いくつかのこのような実施形態では、5GC140は、異なるエアインターフェースを制御するように構成されていてもよい。例えば、いくつかの実施形態では、5GC140は、5GC140中の非3GPPインターワーキング機能(N3IWF、
図1中には図示せず)を使用して、WLANに接続されていてもよい。例えば、WLANは、UE105のためにIEEE802.11Wi-Fiアクセスをサポートしてもよく、1つ以上のWi-Fi APを備えていてもよい。ここで、N3IWFは、WLANに、および、AMF115のような5GC140中の他の要素に接続していてもよい。他の何らかの実施形態では、NG-RAN135および5GC140の両方が、他のRANおよび他のコアネットワークによって置き換えられてもよい。例えば、EPSでは、NG-RAN135は、eNBを含むE-UTRANによって置き換えられてもよく、5GC140は、AMF115の代わりにモビリティ管理エンティティ(MME)と、LMF120の代わりに進化型サービングモバイルロケーションセンター(E-SMLC)と、GMLC125と同様であってもよいGMLCとを含む、EPCによって置き換えられてもよい。このようなEPSでは、E-SMLCは、E-UTRAN中のeNBにロケーション情報を送り、および、E-UTRAN中のeNBからロケーション情報を受け取ってもよく、UE105のポジショニングをサポートしていてもよい。これらの他の実施形態では、UE105のポジショニングは、gNB110、ng-eNB114、AMF115、および、LMF120に対してここで説明する機能性および手順が、いくつかのケースでは、代わりに、eNB、Wi-Fi AP、MME、および、E-SMLCのような他のネットワーク要素に適用されるかもしれないという違いを伴って、5Gネットワークに対してここで説明するものと類似の方法でサポートされていてもよい。
【0033】
[0042]
通信システム100によるUE105のポジション決定は、典型的には、UE105と複数の基地局110、114のそれぞれとの間の距離(例えば、それぞれ、UE105とgNB110-1、110-2、および、110-3との間の距離D1、D2、および、D3)を決定することと、三辺測量を使用して、UEのロケーションを決定することとを伴う。上記のように、これらの距離を決定するために、UE105は、これらの基地局110、114によって送信される(ここで以下に説明されるものを含む)ポジション測定信号を測定することができる。例えば、基準信号時間差(RSTD)測定に基づくOTDOAを使用するポジション決定は、典型的に、基地局110、114によるこれらの基準信号の送信の同期、または、基地局110、114のペア間の実時間差(RTD)の他の何らかの方法で取得された知識のいずれかを必要とする。LMF120は、典型的に、この知識を有し、したがって、さまざまな基地局110、114のUE105によって行われる測定に基づく非同期ネットワークにおけるポジション決定は、例えば、LMF120がUE105から測定を受信した後にUE105のポジションを決定すること、または、UE105がLMF120からRTD情報を受信した後にそれ自体のポジションを決定することを伴うことがある。LTEネットワークでは、PRS基準信号を使用して、OTDOAポジショニングのために、これらのRSTD測定を行うことができる。
【0034】
[0043]
図2は、参照のために提供される、PRSポジショニング機会を有するLTEサブフレームシーケンスの構造の図である。
図2では、図示するように、時間は、左から右に時間が増加するように水平に(例えば、X軸上に)表され、周波数は、下から上に周波数が増加(または、減少)するように垂直に(例えば、Y軸上に)表されている。
図2中に示すように、ダウンリンクおよびアップリンクLTE無線フレーム210は、それぞれ10m秒の持続時間である。ダウンリンク周波数分割デュプレクス(FDD)モードに対して、無線フレーム210は、それぞれ1m秒の持続時間の10個のサブフレーム212で構成されている。各サブフレーム212は、それぞれ0.5m秒の持続時間の2つのスロット214を含んでいる。LTEでは、これらの無線フレーム210は、
図1の基地局110、114と同様の基地局によって送信される。PRSは、エリア中の任意のUEによって検出されてもよく、したがって、これらの基地局によって「ブロードキャスト」されると考えられる。
【0035】
[0044]
周波数ドメインでは、利用可能な帯域幅は、均一に間隔を空けた直交副搬送波216に分割されていてもよい。例えば、15kHz間隔を使用する通常の長さのサイクリックプレフィックスに対して、副搬送波216は、12個の副搬送波または「周波数ビン」のグループにグループ化されていてもよい。
図2において、12個の副搬送波216を含む各グルーピングは、「リソースブロック」(または、「物理リソースブロック」(PRB))として呼ばれ、上記の例では、リソースブロック中の副搬送波の数は、N
RB
SC=12と書けるかもしれない。所定のチャネル帯域幅に対して、送信帯域幅コンフィギュレーション222としても呼ばれる、各チャネル222上の利用可能なリソースブロックの数は、N
DL
RB222として示される。例えば、上記の例における3MHzチャネル帯域幅に対して、各チャネル222上の利用可能なリソースブロックの数は、N
DL
RB=15によって与えられる。
【0036】
[0045]
したがって、リソースブロックは、1つのサブフレーム212(2つのスロット214)と12個の副搬送波とを含む、無線フレーム210中の周波数および時間リソースのユニットとして説明できる。各スロット214は、(ダウンリンク(DL)無線フレームに対する)基地局、または、(アップリンク(UL)無線フレームに対する)UEが、無線周波数(RF)信号を送信するかもしれない6または7個の期間、または、「シンボル」を含んでいる。12×12または14×12グリッド中の各1つの副搬送波×1シンボルセルは、「リソース要素」(RE)を表しており、「リソース要素」(RE)は、フレームの最小の離散部分であり、物理チャネルまたは信号からのデータを表している単一の複素値を含んでいる。
【0037】
[0046]
PRSは、ポジショニング「機会」にグループ化されている特殊ポジショニングサブフレーム中で送信されてもよい。例えば、LTEでは、PRSポジショニング機会は、連続するポジショニングサブフレームの数N
PRS218を含むことができ、その数N
PRSは、1と160との間であってもよい(例えば、値1、2、4、および、6とともに他の値を含んでいてもよい)。基地局によってサポートされるセルに対するPRSポジショニング機会は、ミリ秒(または、サブフレーム)間隔の数T
PRSによって示される間隔220において周期的に生じてもよく、T
PRSは、5、10、20、40、80、160、320、640、または、1280と等しくてもよい。例として、
図2は、ポジショニング機会の周期性を示し、N
PRSは4と等しく、T
PRSは20以上である。いくつかの実施形態では、T
PRSは、連続するポジショニング機会の開始の間のサブフレームの数に関して測定してもよい。
【0038】
[0047]
PRSは、PRSコンフィギュレーションパラメータ(例えば、NPRS、TPRS、任意のミューティングおよび/または周波数ホッピングシーケンス、PRS ID、帯域幅等)により展開でき、これは、担当基地局を介してロケーションサーバからUEに提供されてもよい。これらのPRSコンフィギュレーションパラメータは、基地局ごとに変化してもよく、これらのPRSコンフィギュレーションパラメータを各基地局に提供するロケーションサーバによって設定されていてもよい。
【0039】
[0048]
所定の基地局に対するPRSは、リソースブロック内のリソース要素の予め定められているパターンを使用して送信してもよい。所定の副搬送波に対して、これは、基地局がスロットごとに1~2個のシンボルを使用してPRSを送信することを意味しているかもしれない。しかしながら、問題なことに、基地局が同じシンボルを使用して、各機会に対してPRSを送信する場合、いったん各機会に対するシンボルが決定されると、PRSは容易に検出可能になる。このようなことから、これは、PRSのような従来の基準信号が、基地局のロケーションを決定するためのウォードライビングおよび/またはクラウドソーシングの活動に対して脆弱であるかもしれない1つの態様である。
【0040】
[0049]
さらに、所定の基地局に対するPRSはまた、特定のコードを使用して送信されるかもしれない。コード分離は、セル間を区別する能力を改善するためにPRSによって使用される分離の3つのレイヤのうちの1つである。(他の2つは、周波数および時間分離であり、リソースブロックのリソース要素がさまざまな基地局間で割り振られ、基地局がその上で同じリソースを使用しようと試行することを防ぐ。)コード分離では、各基地局は、一意または準一意である異なるPRSシーケンスまたは「コード」を送信し、検出されたPRSを送信した基地局をUEが決定することを可能にする。しかしながら、各基地局に対する静的コードの割り振りには問題がある。PRSの送信のための静的シンボルの使用と同様に、基地局が各機会に同じコードでPRSを送信する場合、PRSの発信基地局は、いったんコードが決定されると容易に決定可能になる。このようなことから、これは、PRSのような従来の基準信号が、基地局のロケーションを決定するためのウォードライビングおよび/またはクラウドソーシングの活動に対して脆弱であるかもしれない別の態様である。
【0041】
[0050]
5G標準規格に対して、無線フレームは、
図2中に図示したLTEに対する構造と同様であることが予想される。しかしながら、ある特性(例えば、タイミング、利用可能帯域幅等)は変化するかもしれない。加えて、PRSを置換する新たなポジション測定信号の特性も変化して、この新しい基準信号が、PRSの現在の特性を上回っておよび超えて、正確な測定を提供すること、マルチパスに対してロバストであること、セル間の高レベルの直交性および分離を提供すること、ならびに、比較的低いUE電力を消費することを可能にするかもしれない。
【0042】
[0051]
上記で議論したPRSの脆弱性を防ぐために、ポジション測定信号の実施形態は、機会の間に「シンボルホッピング」および/または「コードホッピング」をさらに用いて、ポジション測定信号が送信されるリソースブロックのシンボルをおよび/またはポジション測定信号をエンコードするコードを動的に調節して、ポジション測定信号の無認可の検出および利用を防ぐのを助けてもよい。UEが各機会に対する正しいシンボルおよび/またはコードを用いて、基地局からのポジション測定信号を「リスニング」することができるように、基地局に対するシンボルホッピングおよび/またはコードホッピングのパターンをUEが決定することを可能にする情報が、ロケーションサーバによって、認可されたUEに送られてもよい(または、他の何らかの許可プロセスを介して取得されてもよい)。
【0043】
[0052]
図3A~
図3Cは、シンボルホッピングがさまざまな実施形態においてどのように実現できるかの実例である。
図3Aでは、代表的なスロット(ここではスロット300として包括的および総称的に呼ばれる)が、3つの連続するポジショニング機会に対して図示されている。ここで、第1、第2、および、第3のポジショニング機会に対するスロットは、それぞれ、300-1A、300-2A、および、300-3Aとしてラベル付けされている。(もちろん、
図2中に図示されているように、リソースブロックごとに2つのスロットがあり、異なる機会のスロット間に多くの介在スロットがあってもよい。これらの追加のスロットは図示されていない。ポジション測定信号はまた、追加の副搬送波を使用して、および/または、特定のものの内の2つ以上のシンボルを使用して、送信されてもよいが、これらの変形も示されていない。このようなことから、示したスロット300は、ポジション測定信号を送信するのに使用されるスロットおよび/またはシンボルのより大きいセットの実例である。)
図2中に図示したリソースブロックのスロット214と同様に、これらのスロットはそれぞれ、(スロット300内の列として図示した)7つのシンボルを有する。網掛けのシンボル310-1A、310-2A、310-3Aは、ポジション測定信号が基地局によって送信されるシンボルを表している。
図3Bおよび
図3Cはまた、同じ規則でラベル付けされ、網掛けされているスロット300を図示している。
【0044】
[0053]
図示したように、
図3のスロット300は、基本シンボルホッピングがどのように実行されうるかを図示している。この例では、ポジション測定信号が送信されるシンボル310-1Aは、スロット300-1Aの第1のシンボルを含んでいる。第2の機会では、ポジション測定信号が送信されるシンボル310-2Aは、スロット300-2Aの第2のシンボルを含み、第3の機会では、ポジション測定信号が送信されるシンボル310-3Aは、スロット300-3Aの第3のシンボルを含んでいる。したがって、スロット内でポジション測定信号が送信されるシンボルのポジションは、各連続するポジショニング機会に対して、1つだけ(第1から、第2、第3、等へ)進む。
【0045】
[0054]
図3B中に図示する例では、ポジション測定信号が送信されるシンボル310-1B、310-2B、および、310-3Bは、連続するポジショニング機会ごとに2シンボルだけ(例えば、第1から、第3、第5等へ)進む。また、
図3C中に図示する例では、ポジション測定信号が送信されるシンボル310-1C、310-2C、310-3Cは、連続するポジショニング機会ごとに4シンボルだけ進む。しかしながら、この例では、スロットごとに7個のシンボルしかないことから、第3のスロット300-3Cは、ポジション測定信号が送信されるシンボル310-3Cがどのようにスロットを「ラップアラウンド」することができるかを図示している。このようなラップアラウンド(第7のシンボルの後の次のシンボルとして、第1のシンボルを扱う)は、ポジショニング測定信号の送信のために指定されたシンボルが、スロット300のエッジを越えて進む、各機会に対して生じるかもしれない。
【0046】
[0055]
したがって、
図3A~
図3C中に図示するように、異なる機会に対して異なるシンボル中で送信することによって、シンボルホッピングを使用して、(例えば、ウォードライビング、クラウドソーシング等を介した)総当たり攻撃に対してガードするのを助けるための暗号化のタイプを追加することができる。さらに、異なる基地局は、異なる方法で進むことができる。例えば、基地局の第1のグループは、
図3A中に図示した方法で、第2のグループは、
図3B中に図示した方法で、第3のグループは、
図3C中に図示した方法で、進んでもよい。
【0047】
[0056]
図3A~
図3C中に図示した例におけるシンボルの決定は、使用されるシンボルのポジション(例えば、スロット内の第1、第2等のポジション)は、前のポジションプラスN(Nは機会ごとに進むシンボルの数)、モジュロS(Sはスロットごとのシンボルの数)である基本方程式を使用して計算してもよい。いくつかの実施形態では、方程式をリバースエンジニアリングすることをより困難にするかもしれない、機会間の擬似ランダムパターンを作り出す、より高度な方程式またはパターン発生アルゴリズムを使用してもよい。他の実施形態では、1つ以上のシフトレジスタ(例えば、線形フィードバックシフトレジスタ(LFSR))および/または他のハードウェア回路中で値を維持して、ポジション測定信号が送信されるスロットのシンボルを決定してもよい。
【0048】
[0057]
いくつかの実施形態では、(少なくとも部分的にハードウェア中で実現するものを含む)シンボルホッピングのために使用される方程式および/または他のアルゴリズムは、入力のための変数として基地局のIDを使用し、異なる基地局に対して異なる出力を可能にしてもよい。セルラネットワーク内の基地局に対するシンボルホッピングのパターンを決定するために、認可されたUEには、(例えば、ロケーションサーバによって)方程式が与えられてもよい。
【0049】
[0058]
方程式によって与えられるパターンにおいて、所定の機会がどこにあるかを決定するために、認可されたUEには、「シード情報」も与えられてもよい。この情報は、タイムスタンプと方程式またはアルゴリズムの初期状態として提供されてもよい。
図3Aの例では、例えば、シード情報は、ポジション測定信号がスロットの第1のシンボル中で送信された時間を含んでいてもよく、それによって、UEが、現在の時間に基づいて、現在の時間におけるタイムスタンプ間の機会の数を、したがって、現在の時間においてポジション測定信号が送信されるシンボルを決定することを可能にする。シフトレジスタが使用される実施形態では、シード情報は、シフトレジスタに対する初期値を含んでいてもよく、方程式または他のアルゴリズムを使用して、シフトレジスタをどのように進めるかを決定してもよい。
【0050】
[0059]
より一般的には、シンボルホッピングのための「シード情報」は、UEが方程式または他のパターン発生器を使用して、すべての将来の機会に対するシンボル送信を決定することを可能にするタイムスタンプまたは同様の基準を含んでいてもよい。
【0051】
[0060]
コードホッピングは、暗号化の追加のレイヤを提供することができる。前に示したように、特定のポジション測定信号を送信した基地局をUEが識別することを可能にできる特定のコードでポジション測定信号をエンコードしてもよい。ポジション測定信号送信において使用するコードは、とりわけ、コード間の好ましい直交性と、総当たり攻撃に対して所望の量のセキュリティを提供するのに十分な大きさのコード空間(例えば、数千個以上のオーダーの利用可能なコード)とを提供する自己相関および/または相互相関特性に基づいて選択してもよい。
【0052】
[0061]
PRSおよびCRS基準信号のためにLTEにおいてゴールドコードを使用し、5Gにおけるポジション測定信号においてもゴールドコードを使用してもよい。ゴールドコードは、20億(2^31-1)のシーケンスを循環し、既知の技術を使用して長さ2-31線形フィードバックシフトレジスタを使用して発生させてもよく、1つのシフトレジスタは、何らかのシード値で初期化された他のシフトレジスタ中の既知の値を含んでいる。とはいえ、ゴールドコードに追加して、または、ゴールドコードの代替として、ポジション測定信号において、Zadoff-Chuおよび/または他のコードを使用してもよい。
【0053】
[0062]
上記で説明したシンボルホッピングと同様に、コードホッピングは、方程式または他のコード発生器を使用して、ポジション測定信号をエンコードするためのコードを発生させることを伴うことができ、このコードは、プロプライエタリであり、必要に応じて、認可されたUEと共有されてもよい(例えば、ロケーションサーバによって送られる)。さらに、コードは、基地局の識別子に基づいて、特定の基地局に個別化されていてもよく、方程式または他のコード発生器に対するシード情報がUEに提供され、UEが方程式/コード発生器を使用して、現在のポジション測定信号に対するコードを決定できるようにしてもよい。
【0054】
[0063]
コードホッピングスキームはまた、ゴールドコードを適用して、所定のセルに割り当てられている識別の擬似ランダムシーケンスを発生させてもよい。1つの実施形態は、既知のシードを用いてLFSRを初期化し、LFSRをある予め定められている数のステップ進め、出力シーケンスからある数のビットを抽出し、これらのビットを識別番号として評価することである。
【0055】
[0064]
コードホッピングスキームの1つの例では、セルAは、機会1においてセル識別1にしたがって信号を送信し、機会2においてセル識別1700にしたがって信号を送信してもよい。コードホッピングシーケンスおよびその初期状態の知識を有する認可されたUEは、機会1中の識別1を有する測定をセルAに関係付けることができ、同様に、機会2中の識別1700を有する測定された信号をセルAに関係付けることができる。逆に、認可されていないUEは、総当たりを通して、機会1中の識別1と、機会2中の識別1700とを有する信号を検出することができるが、これらの測定をセルAに容易に関係付けることはできない。検出した測定とその送信ポイントとの間の関係性がなくては、測定は、ポジショニングの目的には役に立たないだろう。
【0056】
[0065]
図4は、実施形態にしたがう、ロケーションサーバと、UEと、基地局との間の対話を図示するスイムレーンダイヤグラムである。ロケーションサーバ、UE、および、基地局は、それぞれ、LMF120、UE105、および、gNBのような、
図1中に図示するコンポーネントに対応していてもよい。(しかしながら、
図4中に図示する対話は、
図1の通信ネットワーク100以外のネットワークで行われてもよい。)当業者が理解するように、代替の実施形態は、図示されているブロックを組み合わせ、分離し、再配置し、および/または、他の方法で対話を変更してもよい。
【0057】
[0066]
対話は、ブロック405において、ロケーションサーバがBSAをUEに送ることで開始してもよく、これは、ブロック410においてUEによって受け取られる。前述のように、BSAは、(例えば、いったんUEと基地局の少なくとも一部分との間の距離または角度が決定されると、三辺測量または三角測量を介して)UEのロケーションを決定することを可能にする、通信ネットワーク中のさまざまな基地局に対するロケーション情報を含むことができる。このようなことから、いくつかの実施形態では、BSAは、BSA中に複数の基地局のそれぞれに対する識別子と座標とを含んでいてもよい。また、上述したように、いくつかの実施形態は、BSAの内容が確実に保護されるのを助ける(BSAの暗号化のような)予防措置を含んでいてもよい。
【0058】
[0067]
代替実施形態では、BSAは、他のソースを介しておよび/または他の時間に、UEによって取得されてもよい。いくつかの実施形態では、例えば、BSAは、UEのルーチン保守または更新中にUEに通信されてもよい。いくつかの実施形態では、BSAは、UEの製造中に他のソフトウェアとともにインストールされていてもよい。BSAは、通信されるときに暗号化され、その後、BSAを使用することがUEに認可され、BSAを解読する鍵がUEに与えられるときに「ロック解除」されてもよい。所望の機能性に依存して、このプロセスは、例えば、異なるエンティティ(例えば、UEのユーザ、UEによって実行されるアプリケーション、セルラキャリアまたは他の事業者等)によるアクションによって開始されてもよい。
【0059】
[0068]
いくつかの実施形態では、BSAの1つ以上の基地局によるシンボルホッピングおよび/またはコードホッピングを決定する手段はまた、ブロック405および410においてロケーションサーバによってUEに通信されてもよい。例えば、ロケーションサーバは、BSAを通信するのと同時に、方程式、パターン発生器、コード発生器、および/または、これらに類するものをUEに通信してもよい。(しかしながら、代替実施形態では、別個に通信されてもよい。)前述のように、シンボルホッピングおよび/またはコードホッピングを決定する手段は、基地局に対する識別情報とともにシード情報を使用して、所定のポジショニング機会に対するポジショニング測定信号送信のために基地局が使用する、シンボルおよび/またはコードを決定してもよい。
【0060】
[0069]
ブロック415において、UEは、ロケーションサーバからのポジショニング情報を要求し、ブロック420において、要求がロケーションサーバによって受け取られる。オプション的に、ブロック425において、ロケーションサーバは、UEを認可して、UEがポジショニング情報にアクセスする許可を確実に有するようにすることができる。このようなケースでは、UEによって送られるポジショニング情報要求は、UEの識別子、および/または、ロケーションサーバがUEを認可することを可能にする認可情報として使用されるかもしれない他の情報を含んでいてもよい。他のインスタンスでは、認可は、別に(例えば、UEとロケーションサーバとの間の通信セッションの開始の間に)行われてもよい。
【0061】
[0070]
ブロック430において、ロケーションサーバは、UEにポジショニング情報を送り、UEは、これをブロック435において受け取る。ここで、ポジショニング情報は、所望の機能性に依存して、UEが3つのことのうちの1つを行うことを可能にするシード情報を含んでいてもよい。第1に、例えば、基地局がシンボルホッピングに携わる場合、UEは、ブロック442によって図示されるように、所定のポジショニング機会において基地局によって送信されるポジション決定信号のシンボルを決定することができる。第2に、例えば、基地局がコードホッピングに携わる場合、UEは、ブロック444によって図示されるように、ポジション決定信号のコードを決定してもよい。第3に、コードホッピングおよびシンボルホッピングの両方が使用される場合、UEは、ポジション決定信号の指定されたシンボルおよびコードを決定してもよい。
【0062】
[0071]
所望の機能性に依存して、ポジショニング情報は、ある時間期間の後に満了してもよい。すなわち、ポジショニング情報中のシード情報は、有限時間期間内の所定のポジショニング機会に基地局によって送信されるポジション決定信号のシンボルおよび/またはコードをUEが決定することを可能にしてもよい。時間期間の後、シンボルホッピングおよび/またはコードホッピングに対して、新しいシード情報(または、新しい方程式または他のアルゴリズム)を使用してもよく、この新しい情報を、認可されたUEに送ることができる。この機能性は、クラウドソーシングおよび/またはウォードライビング攻撃に対してシステムをより弾力的にするのを助けることができるだけでなく、オペレータがBSAの使用のためにサブスクリプションタイプモデルを用いることを可能にすることができ、UEは、必要に応じて、ポジション測定信号の送信によって提供されるポジショニング方法に対するこれらのライセンス/アクセスを周期的に更新することができる。いずれにしても、実施形態にしたがうと、ブロック430において送られ、ブロック435において受け取られるポジショニング情報は、複数の機会に対するシンボルおよび/またはコードの決定を可能にしてもよい(したがって、これらの実施形態では、すべての機会に対してポジショニング情報を送る必要はない)。
【0063】
[0072]
ブロック445において(および、ブロック442、444、または、446における決定が行われた所定の機会の間に)、基地局は、ブロック442、444、または、446において行われた決定に基づいて、指定されたシンボルおよび/またはコードを使用して、ブロック450においてUEによって受信されるポジショニング測定信号を送信する。これは、UEによって受信されるポジショニング測定信号を送信するいくつかの基地局のうちの1つであってもよく、それによって、UEが、一般的なOTDOA技術あるいは三角測量または三辺測量のような基礎となる方法を使用して、基地局の既知のポジションに基づいて、そのポジションを決定することを可能にする。
【0064】
[0073]
この情報に基づいて、UEは、ブロック455に図示されるように、そのロケーションを決定することができる。前に示したように、UEは、UEがポジショニング測定信号を受信した基地局のロケーションについての情報とともに、BSAをローカルに記憶することによって、そのようにすることが可能にされていてもよい。追加的にまたは代替的に、UEは、ポジショニングセッションの間に、ロケーションサーバからこの情報を取得してもよい。当業者は、ブロック455においてロケーションが決定されてもよい多数の方法を理解するであろう。
【0065】
[0074]
図5は、上記で説明し、
図1、
図3、および、
図4に図示した実施形態の態様によるUEの機能性を図示する実施形態にしたがう、ワイヤレス通信ネットワーク中で移動体デバイスを用いて基準信号を取得する方法500を図示するフローダイヤグラムである。ブロックの機能性を実行する手段は、
図7中に図示し、以下でより詳細に説明する、UE105のソフトウェアおよび/またはハードウェアコンポーネントを含んでいてもよい。
【0066】
[0075]
ブロック510において、機能性は、移動体デバイスにおいて、ワイヤレス通信ネットワーク中の複数の基地局に対する基地局情報を取得することを含んでいる。基地局情報は、複数の基地局の各基地局のロケーションと識別子とを含んでいる。上記のように、基地局情報は、BSAまたは基地局関連データの同様の収集物を含んでいてもよく、製造時の(例えば、担当基地局、Wi-Fiアクセスポイント、または、他の情報ゲートウェイを通して、セルラ通信ネットワーク、インターネット、または、他の手段を介しての)ロケーションサーバからのもの(そして、その後、例えば、ロック解除される)を、および、これらに類するものを含む、さまざまな方法のうちのいずれかで、移動体デバイスに提供されてもよい。
【0067】
[0076]
ブロック510において機能性を実行する手段は、バス705、処理ユニット710、ワイヤレス通信インターフェース730、メモリ760、入力デバイス770、および/または、
図7中に示し、以下でより詳細に説明するUE105の他のコンポーネントのような、UE105の1つ以上のコンポーネントを備えていてもよい。
【0068】
[0077]
ブロック520において、機能性は、移動体デバイスにおいて、複数の基地局のうちの基地局に対するシード情報を取得することを含んでいる。前述のように、UEは、方程式または他のアルゴリズムに入れるシード情報を利用して、ある時間期間(例えば、サブスクリプション時間)中に、または、無期限に、任意の所定のポジショニング機会に対して、ポジション測定信号の送信のためのシンボルおよび/またはコードを決定してもよい。いくつかの実施形態では、シード情報は、基地局によって後に送信されるワイヤレスポジショニング測定信号の少なくとも一部分の、シンボル期間、コード、または、両方を決定できる時間を示しているタイムスタンプを含んでいてもよい。追加的にまたは代替的に、シード情報は、初期状態情報を含んでいてもよく、初期状態情報は、シンボルホッピングおよび/またはコードホッピングのために使用されるアルゴリズムのタイプに依存して変化してもよい(例えば、初期状態情報は、1つ以上のシフトレジスタに対する初期値と、より大きいパターンにおける初期コードおよび/またはシンボル等とを含んでいてもよい)。所望の機能性に依存して、この情報は、基地局によって、または、他の手段によって(例えば、Wi-Fiアクセスポイントを通して、インターネットを介して、ロケーションサーバから)提供されてもよい。シード情報は、複数の基地局(例えば、BSA中のすべての基地局、UEの推定ポジションのある距離内のすべての基地局等)に対するシード情報を提供するメッセージ中で来てもよい。
【0069】
[0078]
ブロック520において機能性を実行する手段は、
図7中に図示し、以下でより詳細に説明する、バス705、処理ユニット710、ワイヤレス通信インターフェース730、メモリ760、入力デバイス770、および/または、UE105の他のコンポーネントのような、UE105の1つ以上のコンポーネントを備えていてもよい。
【0070】
[0079]
ブロック530において、機能性は、基地局に対する基地局情報とシード情報とに基づいて、第1のポジショニング機会に対する第1の情報を決定することを含んでいる。ここで、第1の情報は、(1)一連の連続するシンボルを有する第1のリソースブロックから選択され、第1の機会の間の基地局によるポジション測定信号の送信に対して指定された第1のシンボル、または、(2)コードの予め定められているセットから選択され、第1のポジショニング機会の間の基地局によるポジション測定信号の送信をエンコードするように指定された第1のコード、のいずれかまたは両方を含むことができる。言い換えれば、第1の情報は、指定されたシンボル(ブロック442の機能性)、指定されたコード(ブロック444)、または、指定されたシンボルとコードの両方(ブロック446)を決定することによって、
図4中に図示した機能性をUEが実行することを可能にすることができる。したがって、シンボルホッピングおよび/またはコードホッピングが生じる場合、第1の機会の間の基地局によるポジション測定信号の送信において、どのシンボルおよび/またはコードを使用するかに関する決定が行われてもよい。いくつかの実施形態にしたがうと、第1のシンボルまたは第1のコードのいずれかまたは両方を決定することは、初期状態情報に基づいて、線形フィードバックシフトレジスタに値を入力することを含むことができる。追加的にまたは代替的に、第1のシンボルまたは第1のコードのいずれかまたは両方を決定することは、シード情報からのデータを方程式に入力することと、方程式から第1のシンボルまたは第1のコードのいずれかまたは両方を取得することとを含んでいてもよい。
【0071】
[0080]
ブロック530において機能性を実行する手段は、
図7中に図示され、以下でより詳細に説明する、バス705、処理ユニット710、メモリ760、入力デバイス770、および/または、UE105の他のコンポーネントのような、UE105の1つ以上のコンポーネントを備えていてもよい。
【0072】
[0081]
ブロック540において、機能性は、移動体デバイスを用いて、第1のシンボルまたは第1のコードのいずれかまたは両方を決定することに基づいて、ポジション測定信号の第1の測定を行うことを含んでいる。前に示したように、ポジション測定信号は、LTEにおけるPRSまたはCRS信号と同様であってもよく、RTD測定を行い、OTDOAポジショニングのために、RTD測定を使用することができる。
【0073】
[0082]
ブロック540において機能性を実行する手段は、
図7中に図示され、以下でより詳細に説明する、バス705、処理ユニット710、ワイヤレス通信インターフェース730、メモリ760、入力デバイス770、および/または、UE105の他のコンポーネントのような、UE105の1つ以上のコンポーネントを備えていてもよい。
【0074】
[0083]
所望の機能性に依存して、実施形態は、1つ以上の追加の特徴を含んでいてもよい。基地局によるシンボルホッピングおよび/またはコードホッピングは、第1の機会と第2の機会との間に生じてもよい。したがって、機能性は、基地局に対する識別情報とシード情報とに基づいて、第2のポジショニング機会に対する第2のポジショニング測定信号情報を決定することを含んでいてもよく、第2のポジショニングレジメント信号情報は、(1)一連の連続するシンボルを有する第2のリソースブロックから選択され、第2の機会の間の基地局によるポジション測定信号の送信に対して指定された第2のシンボル、または、(2)コードの予め定められているセットから選択され、第2のポジショニング機会の間の基地局によるポジション測定信号の送信に対して指定された第2のコード、のいずれかまたは両方を含んでいる。移動体デバイスを用いて、第2のシンボルまたは第2のコードのいずれかまたは両方を決定することに基づいて、ポジション測定信号の第2の測定を行ってもよい。ここで、
図3A~3C中に図示されているように、リソースブロック内の第2のシンボルのポジションは、第1のリソースブロック内の第1のシンボルのポジションと異なっていてもよい。追加的にまたは代替的に、第2のコードは、第1のコードと異なっていてもよい。線形フィードバックシフトレジスタを使用する場合、第2のコードを決定することは、少なくとも1つの線形フィードバックシフトレジスタの値を回数シフトすることを含んでいてもよい。シフトの量は、基地局ごとに変化してもよい。このようなことから、少なくとも1つの線形フィードバックシフトレジスタの値をシフトする回数を決定することは、基地局の識別に基づいていてもよい。追加的にまたは代替的に、いくつかの実施形態では、方法は、移動体デバイスを用いて、複数のポジショニング機会のそれぞれに対して、少なくとも1つの線形フィードバックシフトレジスタの値をシフトする回数を決定することをさらに含んでいてもよく、少なくとも1つの線形フィードバックシフトレジスタの値をシフトする回数は、複数のポジショニング機会のうちの少なくとも2つのポジショニング機会に対して異なる。
【0075】
[0084]
図6は、実施形態にしたがう、ワイヤレス通信ネットワークの基地局から基準信号を送信する方法600を図示するフローダイヤグラムである。
図5中に図示した1つ以上のブロックの機能性は、基地局(例えば、
図1中に図示したgNB110および/またはng-eNB114)によって実行してもよい。これらの機能を実行する手段は、
図9中に図示され、以下でより詳細に説明するようなソフトウェアおよび/またはハードウェアコンポーネントを含んでいてもよい。
【0076】
[0085]
ブロック610において、機能性は、第1のポジショニング機会の間にポジション測定信号を送信し、ポジション測定信号は、一連の連続するシンボルを有する第1のリソースブロックの第1のシンボルの間に送信され、ポジション測定信号は、コードの予め定められているセットの第1のコードでエンコードされることを含んでいる。ブロック610において機能性を実行する手段は、例えば、
図9中に図示され、以下でより詳細に説明する、バス905、処理ユニット910、ワイヤレス通信インターフェース930、(ソフトウェアコンポーネントを含んでいてもよい)メモリ960、ならびに/あるいは、基地局の他のハードウェアおよび/またソフトウェアコンポーネントを備えていてもよい。
【0077】
[0086]
ブロック620において、機能性は、第2のポジショニング機会の間にポジション測定信号を送信し、ポジション測定信号は、一連の連続するシンボルを有する第2のリソースブロックの第2のシンボルの間に送信され、ポジション測定信号は、コードの予め定められているセットの第2の信号でエンコードされることを含んでいる。ここで、基地局は、第1のポジショニング機会と第2のポジショニング機会との間のシンボルホッピングおよび/またはコードホッピングに携わっていてもよい。したがって、第2のシンボルは、第2のリソースブロック内で、第1のリソースブロック内の第1のシンボルの順序と異なる順序を有していてもよく、第2のコードは、第1のコードと異なっていてもよく、または、両方であってもよい。
【0078】
[0087]
ブロック610において機能性を実行する手段は、例えば、
図9中に図示され、以下でより詳細に説明する、バス905、処理ユニット910、ワイヤレス通信インターフェース930、(ソフトウェアコンポーネントを含んでいてもよい)メモリ960、ならびに/あるいは、基地局の他のハードウェアおよび/またはソフトウェアコンポーネントを備えていてもよい。
【0079】
[0088]
図7は、(例えば、
図1~6に関連して)ここの上記で説明したように利用できる、UE105の実施形態を図示している。例えば、UE105は、
図5の方法500の機能のうちの1つ以上を実行することができる。
図7は、さまざまなコンポーネントの一般的な実例を提供することのみを意味し、それらのいずれかまたはすべてを適切に利用してもよいことに留意すべきである。いくつかのインスタンスでは、
図7によって図示されるコンポーネントは、単一の物理的デバイスに局所化され、および/または、異なる物理的ロケーションに配置されていてもよい(例えば、ユーザの身体の異なる部分に位置付けられ、このケースでは、コンポーネントは、パーソナルエリアネットワーク(PAN)および/または他の手段を介して通信可能に接続されていてもよい)さまざまなネットワーク化されているデバイス間で分散されていてもよいことに留意されたい。
【0080】
[0089]
バス705を介して電気的に結合することができる(または、そうでなければ、適切に通信してもよい)ハードウェア要素を備えるUE105が示されている。ハードウェア要素は、処理ユニット710を含んでいてもよく、処理ユニット710は、1つ以上の汎用プロセッサ、(デジタル信号プロセッシング(DSP)チップ、グラフィックスアクセラレーションプロセッサ、特定用途向け集積回路(ASIC)、および/または、これらに類するもののような)1つ以上の特殊目的プロセッサ、ならびに/あるいは、他の処理構造または手段を含むことができるが、これらに限定されない。
図7中に示すように、いくつかの実施形態は、所望の機能に依存して、別個のDSP720を有してもよい。ワイヤレス通信に基づくロケーション決定および/または他の決定は、(以下で議論する)処理ユニット710および/またはワイヤレス通信インターフェース730において提供されてもよい。UE105はまた、1つ以上の入力デバイス770と、1つ以上の出力デバイス715とを含むことができ、入力デバイス770は、キーボード、タッチスクリーン、タッチパッド、マイクロフォン、ボタン、ダイヤル、スイッチ、および/または、これらに類するものを含むことができるが、これらに限定されず、出力デバイス715は、ディスプレイ、発光ダイオード(LED)、スピーカー、および/または、これらに類するものを含むことができるが、これらに限定されない。
【0081】
[0090]
UE105はまた、ワイヤレス通信インターフェース730を含んでいてもよく、ワイヤレス通信インターフェース730は、モデム、ネットワークカード、赤外線通信デバイス、ワイヤレス通信デバイス、および/または、(Bluetooth(登録商標)デバイス、IEEE802.11デバイス、IEEE802.15.4デバイス、Wi-Fiデバイス、WiMAXデバイス、セルラ通信設備等のような)チップセット、ならびに/あるいは、これらに類するものを含んでいてもよいが、これらに限定されず、これらは、
図1に関して上記で説明したネットワークを介してUE105が通信することを可能にしてもよい。ワイヤレス通信インターフェース730は、データおよびシグナリングが、ネットワーク、eNB、gNB、ng-eNB、および/または、他のネットワークコンポーネント、コンピュータシステム、および/または、ここで説明する他の何らかの電子デバイスとの間で通信(例えば、送信および受信)されることを可能にしてもよい。通信は、ワイヤレス信号734を送るおよび/または受け取る1つ以上のワイヤレス通信アンテナ732を介して実行することができる。
【0082】
[0091]
所望の機能性に依存して、ワイヤレス通信インターフェース730は、基地局(例えば、ng-eNBおよびgNB)と通信する別個のトランシーバと、ワイヤレスデバイスおよびアクセスポイントのような他の地上トランシーバとを備えていてもよい。UE105は、さまざまなネットワークタイプを含んでいてもよい異なるデータネットワークと通信してもよい。例えば、ワイヤレス広域ネットワーク(WWAN)は、コード分割多元接続(CDMA)ネットワーク、時分割多元接続(TDMA)ネットワーク、周波数分割多元接続(FDMA)ネットワーク、直交周波数分割多元接続(OFDMA)ネットワーク、単一搬送波周波数分割多元接続(SC-FDMA)ネットワーク、WiMAX(IEEE 802.16)等であってもよい。CDMAネットワークは、cdma2000、広帯域CDMA(W-CDMA(登録商標))等のような、1つ以上の無線アクセステクノロジー(RAT)を実現してもよい。cdma2000には、IS-95、IS-2000、および、IS-856標準規格が含まれる。TDMAネットワークは、GSM(登録商標)、デジタルアドバンストモバイルフォンシステム(D-AMPS)、または、他の何らかのRATを実現するかもしれない。OFDMAネットワークは、LTE、LTEアドバンスト、5G NR等を用いるかもしれない。5G NR、LTE、LTEアドバンスト、GSM、および、WCDMAは、「第3世代パートナーシッププロジェクト」(3GPP)からの文書中に説明されている。cdma2000は、「第三世代パートナーシッププロジェクト2」(3GPP2)という名の機関からの文書中に説明されている。3GPPおよび3GPP2文書は、公的に入手可能である。ワイヤレスローカルエリアネットワーク(WLAN)は、IEEE802.11xネットワークであってもよく、ワイヤレスパーソナルエリアネットワーク(WPAN)は、Bluetooth(登録商標)ネットワーク、IEEE802.15x、または、他の何らかのタイプのネットワークであってもよい。ここで説明する技術はまた、WWAN、WLAN、および/または、WPANの任意の組み合わせに対して使用してもよい。
【0083】
[0092]
UE105は、センサ740をさらに含むことができる。センサ740は、1つ以上の慣性センサおよび/または他のセンサ(例えば、加速度計、ジャイロスコープ、カメラ、磁力計、高度計、マイクロフォン、近接センサ、光センサ、気圧計、および、これらに類するもの)を含んでいてもよいが、これらに限定されず、これらのうちのいくつかは、ここで説明するポジション決定を補完および/または促進するために使用してもよい。
【0084】
[0093]
UE105の実施形態はまた、(アンテナ732と同じものとすることができる)アンテナ782を使用して、1つ以上のGNSS衛星(例えば、SV190)から信号784を受信することが可能なGNSS受信機780を含んでいてもよい。GNSS信号測定に基づくポジショニングを利用して、ここで説明する技術を補完および/または組み込むことができる。GNSS受信機780は、グローバルポジショニングシステム(GPS)、ガリレオ、グロナス、日本上の準天頂衛星システム(QZSS)、インド上のインド領域ナビゲーショナル衛星システム(IRNSS)、中国上の北斗、および/または、これらに類するもののような、GNSSシステムのGNSS SVから、従来の技術を使用して、UE105のポジションを抽出することができる。さらに、GNSS受信機780は、例えば、広域補強システム(WAAS)、欧州静止航法オーバーレイサービス(EGNOS)、多機能衛星補強システム(MSAS)、および、静止衛星型衛星航法補強システム(GAGAN)、および/または、これらに類するもののような、1つ以上のグローバルおよび/または領域ナビゲーション衛星システムに関係付けられるか、または、そうでなければ、これらとともに使用することが可能であってもよい、さまざまな補強システム(例えば、衛星ベース補強システム(SBAS))とともに使用できる。
【0085】
[0094]
UE105は、メモリ760をさらに含み、および/または、メモリ760と通信してもよい。メモリ760は、ローカルおよび/またはネットワークアクセス可能記憶装置、ディスクドライブ、ドライブアレイ、光記憶デバイス、ランダムアクセスメモリ(「RAM」)および/またはリードオンリーメモリ(「ROM」)のようなソリッドステート記憶デバイスを含めることができるが、これらに限定されず、これらは、プログラム可能、フラッシュ更新可能、および/または、これらに類するものとすることができる。このような記憶デバイスは、さまざまなファイルシステム、データベース構造、および/または、これらに類するものを含むが、これらに限定されない、任意の適切なデータ記憶を実現するように構成されていてもよい。
【0086】
[0095]
UE105のメモリ760は、オペレーティングシステム、デバイスドライバ、実行可能ライブラリ、および/または、1つ以上のアプリケーションプログラムのような他のコードを含む、(
図7中に示していない)ソフトウェア要素も備えることができ、これは、さまざまな実施形態により提供されるコンピュータプログラムを含んでもよく、ならびに/あるいは、ここで説明したように、他の実施形態により提供される方法を実現し、および/または、システムを構成するように設計されていてもよい。単なる例として、上記で議論した方法に関して説明した1つ以上の手順は、UE105(ならびに/あるいは、UE105内の処理ユニット710またはDSP720)によって実行可能な、メモリ760中のコードおよび/または命令として実現してもよい。態様において、このようなコードおよび/または命令を使用して、汎用コンピュータ(または、他のデバイス)を構成および/または適合させて、説明した方法にしたがって1つ以上の動作を実行することができる。
【0087】
[0096]
図8は、通信ネットワークサーバ800の実施形態を図示しており、これは、NG-RAN135および5GC140のような5Gネットワークのさまざまなコンポーネント、ならびに/あるいは、他のネットワークタイプの同様のコンポーネントを含む、通信システム(例えば、
図1の通信システム100)の1つ以上のコンポーネントにおいて利用され、および/または、それらに組み込まれてもよい。
図8は、
図6に関連して説明した方法のような、さまざまな他の実施形態によって提供される方法を実行することができる通信ネットワークサーバ800の1つの実施形態の概略図を提供している。
図8は、さまざまなコンポーネントの一般的な実例を提供することのみを意味し、これらのいずれかまたはすべてを適切に利用してもよいことに留意すべきである。したがって、
図8は、比較的別々にされている方法で、または、比較的より統合されている方法で、どのように個々のシステム要素を実現できるかを広く図示している。さらに、
図8によって図示されるコンポーネントは、単一のデバイスに局所化され、および/または、異なる物理的または地理的ロケーションに配置されていてもよいさまざまなネットワーク化されているデバイスの間で分散されていてもよいことに留意されたい。いくつかの実施形態では、通信ネットワークサーバ800は、LMF120、E-SMLC、SUPLロケーションプラットフォーム(SLP)、および/または、他の何らかのタイプのロケーション可能デバイスに対応していてもよい。
【0088】
[0097]
バス805を介して電気的に結合することができる(または、そうでなければ、適切に通信してもよい)ハードウェア要素を備える通信ネットワークサーバ800が示されている。ハードウェア要素は、処理ユニット810を含んでいてもよく、処理ユニット810は、1つ以上の汎用プロセッサ、(デジタル信号プロセッサチップ、グラフィックスアクセラレーションプロセッサ、および/または、これらに類するもののような)1つ以上の特殊目的プロセッサ、および/または、
図6に関連して説明した方法を含む、ここで説明した方法のうちの1つ以上を実行するように構成することができる、他の処理構造を含むことができるが、これらに限定されない。通信ネットワークサーバ800はまた、1つ以上の入力デバイス815と、1つ以上の出力デバイス820とを含むことができ、入力デバイス815は、マウス、キーボード、カメラ、マイクロフォン、および/または、これらに類するものを含むことができるが、これらに限定されず、出力デバイス820は、ディスプレイデバイス、プリンタ、および/または、これらに類するものを含むことができるが、これらに限定されない。
【0089】
[0098]
通信ネットワークサーバ800は、1つ以上の非一時的記憶デバイス825をさらに含んでいて(および/または、1つ以上の非一時的記憶デバイス825と通信して)もよく、1つ以上の非一時的記憶デバイス825は、ローカルおよび/またはネットワークアクセス可能の記憶装置を備えることができるが、これらに限定されず、ならびに/あるいは、ディスクデバイス、ドライブアレイ、光学記憶デバイス、RAMおよび/またはROMのようなソリッドステート記憶デバイスを含めることができるが、これらに限定されず、これらは、プログラム可能、フラッシュ更新可能、および/または、これらに類するものとすることができる。このような記憶デバイスは、さまざまなファイルシステム、データベース構造、および/または、これらに類するものを含むが、これらに限定されない、任意の適切なデータ記憶を実現するように構成されていてもよい。
【0090】
[0099]
通信ネットワークサーバ800はまた、通信サブシステム830を含んでいてもよく、これは、ワイヤレス通信インターフェース833によって管理および制御される(いくつかの実施形態における)ワイヤライン通信テクノロジーおよび/またはワイヤレス通信テクノロジーのサポートを含むことができる。通信サブシステム830は、モデム、ネットワークカード(ワイヤレスまたはワイヤード)、赤外線通信デバイス、ワイヤレス通信デバイス、および/または、チップセット、ならびに/あるいは、これらに類するものを含んでいてもよい。通信サブシステム830は、ネットワーク、移動体デバイス、他の通信ネットワークサーバ、コンピュータシステム、および/または、ここで説明する他の何らかの電子デバイスと、データおよびシグナリングが交換できるように、ワイヤレス通信インターフェース833のような、1つ以上の入力および/または出力通信インターフェースを含んでいてもよい。「移動体デバイス」および「UE」という用語は、ここでは交換可能に使用されることに留意されたい。
【0091】
[0100]
多くの実施形態では、通信ネットワークサーバ800は、RAMおよび/またはROMデバイスを含むことができるワーキングメモリ835をさらに備えている。ソフトウェア要素は、ワーキングメモリ835内に位置付けられているように示されており、オペレーティングシステム840、デバイスドライバ、実行可能ライブラリ、および/または、アプリケーションプログラム845のような他のコードを含むことができ、これは、さまざまな実施形態により提供されるコンピュータプログラムを含んでもよく、ならびに/あるいは、ここで説明したように、他の実施形態により提供される、方法を実現し、および/または、システムを構成するように設計されていてもよい。単なる例示として、
図6に関連して説明した方法のような、上記で議論した方法に関して説明した1つ以上の手順は、ワーキングメモリ835中に(例えば、一時的に)記憶され、コンピュータ(および/または、処理ユニット810のようなコンピュータ内の処理ユニット)により実行可能であるコードおよび/または命令として実行されるかもしれず、ある態様では、このようなコードおよび/または命令を使用して、汎用コンピュータ(または、他のデバイス)を構成および/または適合させ、説明した方法にしたがって1つ以上の動作を実行することができる。
【0092】
[0101]
これらの命令および/またはコードのセットは、上記で説明した記憶デバイス825のような、非一時的コンピュータ読取可能記憶媒体上に記憶されていてもよい。いくつかのケースでは、記憶媒体は、通信ネットワークサーバ800のような、通信ネットワークサーバ内に組み込まれていてもよい。他の実施形態では、記憶媒体を使用して、その上に記憶されている命令/コードにより汎用コンピュータをプログラム、構成および/または適合できるように、記憶媒体は、通信ネットワークサーバ(例えば、光学ディスクのような取り外し可能媒体)から分離していてもよく、および/または、インストールパッケージ中で提供されていてもよい。これらの命令は、通信ネットワークサーバ800により実行可能である、実行可能なコードの形態をとるかもしれず、および/または、ソースおよび/またはインストール可能なコードの形態をとるかもしれず、ソースおよび/またはインストール可能なコードは、(例えば、さまざまな一般的に利用可能な、コンパイラ、インストールプログラム、圧縮/伸長ユーティリティ等のいずれかを使用して)通信ネットワークサーバ800上でのコンパイルおよび/またはインストールのときに、実行可能なコードの形態をとる。
【0093】
[0102]
図9は、(例えば、
図1~6に関連して)ここの上記で説明したように利用できる基地局900の実施形態を示している。例えば、基地局900は、
図6の方法600の機能のうちの1つ以上を実行することができる。
図9は、さまざまなコンポーネントの一般的な実例を提供することのみを意味し、これらのいずれかまたはすべてを適切に利用してもよいことに留意すべきである。いくつかの実施形態では、基地局900は、ここの上記で説明した、LMF120、gNB110、ng-eNB114に対応していてもよい。
【0094】
[0103]
バス905を介して電気的に結合できる(または、さもなければ、他の方法で適切に通信してもよい)ハードウェア要素を備える基地局900が示されている。ハードウェア要素は、処理ユニット910を含んでいてもよく、これは、1つ以上の汎用プロセッサ、(DSPチップ、グラフィックスアクセラレーションプロセッサ、ASIC、および/または、これらに類するもののような)1つ以上の特殊目的プロセッサ、ならびに/あるいは、他の処理構造または手段を含むことができるが、これらに限定されない。
図9に示すように、いくつかの実施形態は、所望の機能に依存して、別個のDSP920を有していてもよい。ワイヤレス通信に基づくロケーション決定および/または他の決定は、(以下で議論する)処理ユニット910および/またはワイヤレス通信インターフェース930において提供されてもよい。基地局900はまた、1つ以上の入力デバイス970と、1つ以上の出力デバイス915とを含むことができ、1つ以上の入力デバイス970は、キーボード、ディスプレイ、マウス、マイクロフォン、ボタン、ダイヤル、スイッチ、および/または、これらに類するものを含むことができるが、これらに限定されず、1つ以上の出力デバイス915は、ディスプレイ、LED、スピーカー、および/または、これらに類するものを含むことができるが、これらに限定されない。
【0095】
[0104]
基地局900はまた、ワイヤレス通信インターフェース930を含んでいてもよく、ワイヤレス通信インターフェース930は、モデム、ネットワークカード、赤外線通信デバイス、ワイヤレス通信デバイス、および/または、(Bluetooth(登録商標)デバイス、IEEE802.11デバイス、IEEE802.15.4デバイス、Wi-Fiデバイス、WiMAXデバイス、セルラ通信機能等のような)チップセット、および/または、これらに類するものを含んでいてもよいが、これらに限定されない。ワイヤレス通信インターフェース930は、データおよびシグナリングが、UE、他の基地局(例えば、eNB、gNB、および、ng-eNB)、および/または、他のネットワークコンポーネント、コンピュータシステム、および/または、ここで説明する他の何らかの電子デバイスに通信される(例えば、送信および受信される)ことを可能にしてもよい。通信は、ワイヤレス信号934を送るおよび/または受け取る1つ以上のワイヤレス通信アンテナ932を介して実行することができる。
【0096】
[0105]
基地局900はまた、ワイヤライン通信テクノロジーのサポートを含むことができるネットワークインタフェース980を含んでいてもよい。ネットワークインタフェース980は、モデム、ネットワークカード、チップセット、および/または、これらに類するものを含んでいてもよい。ネットワークインタフェース980は、ネットワーク、通信ネットワークサーバ、コンピュータシステム、および/または、ここで説明する他の何らか電子デバイスとデータの交換を可能にする、1つ以上の入力および/または出力通信インターフェースを含んでいてもよい。
【0097】
[0106]
多くの実施形態では、基地局900は、メモリ960をさらに備えている。メモリ960は、ローカルおよび/またはネットワークアクセス可能記憶装置、ディスクドライブ、ドライブアレイ、光記憶デバイス、RAMおよび/またはROMのようなソリッドステート記憶デバイスを含むことができるが、これらに限定されず、これらは、プログラム可能、フラッシュ更新可能、および/または、これらに類するものとすることができる。このような記憶デバイスは、さまざまなファイルシステム、データベース構造、および/または、これらに類するものを含むが、これらに限定されない、任意の適切なデータ記憶を実現するように構成されていてもよい。
【0098】
[0107]
基地局900のメモリ960は、オペレーティングシステム、デバイスドライバ、実行可能ライブラリ、および/または、1つ以上のアプリケーションプログラムのような他のコードを含む、(
図9中に示していない)ソフトウェア要素も含むことができ、これは、さまざまな実施形態により提供されるコンピュータプログラムを含んでいてもよく、ならびに/あるいは、ここで説明したように、他の実施形態により提供される方法を実現し、および/または、システムを構成するように設計されていてもよい。単なる例として、上記で議論した方法に関して説明した1つ以上の手順は、基地局900(ならびに/あるいは、基地局900内の処理ユニット910またはDSP920)によって実行可能な、メモリ960中のコードおよび/または命令として実現してもよい。態様において、このようなコードおよび/または命令を使用して、汎用コンピュータ(または、他のデバイス)を構成および/または適合させて、説明した方法にしたがって1つ以上の動作を実行することができる。
【0099】
[0108]
特定の要件にしたがって実質的な変更を行ってもよいことは当業者には明らかであろう。例えば、カスタマイズされているハードウェアも使用してもよく、および/または、特定の要素は、ハードウェア、(アプレット等のようなポータブルソフトウェアを含む)ソフトウェア、または、両方で実現してもよい。さらに、ネットワーク入力/出力デバイスのような、他のコンピューティングデバイスへの接続を用いてもよい。
【0100】
[0109]
添付の図面を参照すると、メモリを含むことができるコンポーネントは、非一時的機械読取可能媒体を含むことができる。ここで使用するように、「機械読取可能媒体」および「コンピュータ読取可能媒体」という用語は、機械に特定の様式で動作させるデータを提供することに関与するあらゆる記憶媒体を指している。上記で提供した実施形態では、さまざまな機械読取可能媒体は、実行のために処理ユニットおよび/または他のデバイスに命令/コードを提供する際に関与してもよい。追加的にまたは代替的に、機械読取可能媒体は、このような命令/コードを記憶および/または搬送するために使用してもよい。多くのインプリメンテーションでは、コンピュータ読取可能媒体は、物理的および/または有形の記憶媒体である。このような媒体は、不揮発性の媒体、揮発性の媒体、および、送信媒体を含む、多くの形態をとってもよいが、これらに限定されない。コンピュータ読取可能媒体の一般的な形態は、例えば、磁気および/または光学媒体、パンチカード、ペーパーテープ、ホールのパターンを有する他の何らかの物理媒体、RAM、PROM、EPROM、FLASH(登録商標)-EPROM、他の何らかのメモリチップまたはカートリッジ、以下で説明するような搬送波、あるいは、コンピュータが命令および/またはコードを読み取ることができる他の何らかの媒体を含んでいる。
【0101】
[0110]
上記で議論した方法、システムおよびデバイスは、例である。さまざまな実施形態は、適切に、さまざまな手順またはコンポーネントを、省略、置換、または、追加してもよい。例えば、ある実施形態に関して説明した特徴を、さまざまな他の実施形態において組み合わせてもよい。実施形態の異なる態様および要素を、類似した方法で組み合わせてもよい。ここで提供する図のさまざまなコンポーネントは、ハードウェアおよび/またはソフトウェアで具現化することができる。また、テクノロジーは進化することから、要素のうちの多くは例であり、本開示を特定の例に限定するものではない。
【0102】
[0111]
このような信号を、ビット、情報、値、要素、シンボル、特性、変数、用語、数、数値、または、これらに類するものと呼ぶことは、主に、共同使用の理由から、時には便利であると証明されている。しかしながら、これらの用語および類似する用語はすべて、適切な物理量に関係付けられているものであり、単に便宜的なラベルにすぎないことを理解すべきである。そうではないと明確に述べられていない限り、上記の議論から明らかなように、本明細書全体を通して、「処理する」、「計算する」、「算出する」、「決定する」、「把握する」、「識別する」、「関係付ける」、「測定する」、「実行する」、または、これらに類するもののような用語を利用する議論は、特殊目的コンピュータまたは類似する特殊目的電子コンピューティングデバイスのような、特定の装置のアクションまたはプロセスのことを指していると認識される。したがって、本明細書の文脈では、特殊目的コンピュータまたは類似する特殊目的電子コンピューティングデバイスは、特殊目的コンピュータまたは類似する特殊目的電子コンピューティングデバイスの、メモリ、レジスタ、または、他の情報記憶デバイス、送信デバイス、または、ディスプレイデバイス内の、物理的電子的、電気的、または、磁気的な量として典型的に表される信号を操作または変換することが可能である。
【0103】
[0112]
ここで使用するような、用語「および」および「または」は、このような用語が使用されている文脈に少なくとも部分的に依存するようにも予想される、さまざまな意味を含んでいてもよい。典型的に、A、B、または、Cのようなリストを関係付けるために使用される場合の「または」は、包含的な意味でここでは使用されている、A、B、および、Cを意味するとともに、排他的な意味でここでは使用されている、A、B、または、Cを意味するように意図されている。加えて、ここで使用されるような、用語「1つ以上」は、単数形における任意の特徴、構造、または、特性を説明するために使用しているかもしれず、または、特徴、構造、または、特性の何らかの組み合わせを説明するために使用しているかもしれない。しかしながら、これは単なる例示的な例にすぎず、請求項中に記載されている主題事項は、この例に限定されるものではないことに留意すべきである。さらに、用語「~のうちの少なくとも1つ」は、A、B、または、Cのようなリストを関係付けるために使用される場合、A、AB、AA、AAB、AABCCC等のような、A、B、および/または、Cの任意の組み合わせを意味するように解釈できる。
【0104】
[0113]
いくつかの実施形態を説明してきたが、本開示の精神から逸脱することなく、さまざまな修正、代替構造、および、均等物を使用してもよい。例えば、上記要素は大きなシステムのコンポーネントにすぎず、他のルールが優先してもよく、または、そうでない場合には、さまざまな実施形態のアプリケーションを修正してもよい。また、上記の要素が考慮される前に、間に、または、後に、多くのステップに取り掛かってもよい。したがって、上記の説明は、本開示の範囲を限定するものではない。
以下に、本願の出願当初の特許請求の範囲に記載された発明を付記する。
[C1]
ワイヤレス通信ネットワーク中の移動体デバイスを用いて基準信号を取得する方法において、
前記移動体デバイスにおいて、前記ワイヤレス通信ネットワーク中の複数の基地局に対する基地局情報を取得し、前記基地局情報は、前記複数の基地局の各基地局のロケーションと識別子とを含むことと、
前記移動体デバイスを用いて、前記複数の基地局のうちの基地局に対するシード情報を取得することと、
前記基地局に対する前記基地局情報と前記シード情報とに基づいて、
一連の連続するシンボルを有する第1のリソースブロックから選択され、第1のポジショニング機会の間の前記基地局によるポジション測定信号の送信に対して指定された第1のシンボル、または、
コードの予め定められているセットから選択され、前記第1のポジショニング機会の間の前記基地局による前記ポジション測定信号の送信をエンコードするように指定された第1のコード、
のいずれか、または、両方を決定することと、
前記移動体デバイスを用いて、前記第1のシンボルまたは前記第1のコードのいずれかまたは両方を決定することに基づいて、前記ポジション測定信号の第1の測定を行うこととを含む方法。
[C2]
前記シード情報は、前記基地局によって後に送信されるワイヤレスポジショニング測定信号の少なくとも一部分の、シンボル期間、コード、または、両方を決定できる時間を示しているタイムスタンプを含むC1記載の方法。
[C3]
前記シード情報を取得することは、前記基地局から前記シード情報を受信することを含むC1記載の方法。
[C4]
前記シード情報は、初期状態情報を含むC1記載の方法。
[C5]
前記第1のシンボルまたは前記第1のコードのいずれかまたは両方を決定することは、前記初期状態情報に基づいて、線形フィードバックシフトレジスタに値を入力することを含むC4記載の方法。
[C6]
前記第1のシンボルまたは前記第1のコードのいずれかまたは両方を決定することは、前記シード情報からのデータを方程式に入力することと、前記方程式から前記第1のシンボルまたは前記第1のコードのいずれかまたは両方を取得することとを含むC1記載の方法。
[C7]
前記基地局に対する前記基地局情報と前記シード情報とに基づいて、
一連の連続するシンボルを有する第2のリソースブロックから選択され、第2のポジショニング機会の間の前記基地局による前記ポジション測定信号の送信のために指定された第2のシンボル、または、
前記コードの予め定められているセットから選択され、前記第2のポジショニング機会の間の前記基地局による前記ポジション測定信号の送信のために指定された第2のコード、
のいずれか、または、両方を決定することと、
前記移動体デバイスを用いて、前記第2のシンボルまたは前記第2のコードのいずれかまたは両方を決定することに基づいて、前記ポジション測定信号の第2の測定を行うこととをさらに含むC1記載の方法。
[C8]
前記第2のリソースブロック内の前記第2のシンボルのポジションは、前記第1のリソースブロック内の前記第1のシンボルのポジションと異なるC7記載の方法。
[C9]
前記第2のコードは、前記第1のコードと異なるC7記載の方法。
[C10]
前記第2のコードを決定することは、少なくとも1つの線形フィードバックシフトレジスタの値を回数シフトすることを含むC7記載の方法。
[C11]
前記基地局の識別に基づいて、前記少なくとも1つの線形フィードバックシフトレジスタの値をシフトする回数を決定することをさらに含むC10記載の方法。
[C12]
前記移動体デバイスを用いて、複数のポジショニング機会のそれぞれに対して、前記少なくとも1つの線形フィードバックシフトレジスタの値をシフトする回数を決定することをさらに含み、前記少なくとも1つの線形フィードバックシフトレジスタの値をシフトする回数は、前記複数のポジショニング機会のうちの少なくとも2つのポジショニング機会に対して異なるC10記載の方法。
[C13]
デバイスにおいて、
ワイヤレス通信インターフェースと、
メモリと、
前記ワイヤレス通信インターフェースおよび前記メモリと通信可能に結合されている処理ユニットとを具備し、
前記処理ユニットは、
ワイヤレス通信ネットワーク中の複数の基地局に対する基地局情報を取得し、前記基地局情報は、前記複数の基地局の各基地局のロケーションと識別子とを含み、
前記複数の基地局のうちの基地局に対するシード情報を取得し、
前記基地局に対する前記基地局情報と前記シード情報とに基づいて、
一連の連続するシンボルを有する第1のリソースブロックから選択され、第1のポジショニング機会の間の前記基地局によるポジション測定信号の送信に対して指定された第1のシンボル、または、
コードの予め定められているセットから選択され、前記第1のポジショニング機会の間の前記基地局による前記ポジション測定信号の送信をエンコードするように指定された第1のコード、
のいずれか、または、両方を決定し、
前記ワイヤレス通信インターフェースを使用して、前記第1のシンボルまたは前記第1のコードのいずれかまたは両方を決定することに基づいて、前記ポジション測定信号の第1の測定を行うように構成されているデバイス。
[C14]
前記処理ユニットは、前記シード情報から、前記基地局によって後に送信されるワイヤレスポジショニング測定信号の少なくとも一部分の、シンボル期間、コード、または、両方を決定できる時間を示しているタイムスタンプを取得するように構成されているC13記載のデバイス。
[C15]
前記処理ユニットは、少なくとも部分的に、前記基地局から前記シード情報を受信することによって、前記シード情報を取得するように構成されているC13記載のデバイス。
[C16]
前記処理ユニットは、前記シード情報を使用して、初期状態情報を決定するように構成されているC13記載のデバイス。
[C17]
前記処理ユニットは、前記初期状態情報に基づいて、少なくとも部分的に、線形フィードバックシフトレジスタに値を入力することによって、前記第1のシンボルまたは前記第1のコードのいずれかまたは両方を決定するように構成されているC16記載のデバイス。
[C18]
前記処理ユニットは、少なくとも部分的に、前記シード情報からのデータを方程式に入力することと、前記方程式から前記第1のシンボルまたは前記第1のコードのいずれかまたは両方を取得することとによって、前記第1のシンボルまたは前記第1のコードのいずれかまたは両方を決定するように構成されているC13記載のデバイス。
[C19]
前記処理ユニットは、
前記基地局に対する前記基地局情報と前記シード情報とに基づいて、
一連の連続するシンボルを有する第2のリソースブロックから選択され、第2のポジショニング機会の間の前記基地局による前記ポジション測定信号の送信のために指定された第2のシンボル、または、
前記コードの予め定められているセットから選択され、前記第2のポジショニング機会の間の前記基地局による前記ポジション測定信号の送信のために指定された第2のコード、
のいずれか、または、両方を決定し、
前記ワイヤレス通信インターフェースを使用して、前記第2のシンボルまたは前記第2のコードのいずれかまたは両方を決定することに基づいて、前記ポジション測定信号の第2の測定を行うようにさらに構成されているC13記載のデバイス。
[C20]
前記処理ユニットは、少なくとも部分的に、少なくとも1つの線形フィードバックシフトレジスタの値を回数シフトすることによって、前記第2のコードを決定するように構成されているC19記載のデバイス。
[C21]
前記処理ユニットは、前記基地局の識別に基づいて、前記少なくとも1つの線形フィードバックシフトレジスタの値をシフトする回数を決定するようにさらに構成されているC20記載のデバイス。
[C22]
前記処理ユニットは、複数のポジショニング機会のそれぞれに対して、前記少なくとも1つの線形フィードバックシフトレジスタの値をシフトする回数を決定するようにさらに構成され、前記少なくとも1つの線形フィードバックシフトレジスタの値をシフトする回数は、前記複数のポジショニング機会のうちの少なくとも2つのポジショニング機会に対して異なるC20記載のデバイス。
[C23]
移動体デバイスにおいて、
ワイヤレス通信ネットワーク中の複数の基地局に対する基地局情報を取得し、前記基地局情報は、前記複数の基地局の各基地局のロケーションと識別子とを含む手段と、
前記複数の基地局のうちの基地局に対するシード情報を取得する手段と、
前記基地局に対する前記基地局情報と前記シード情報とに基づいて、
一連の連続するシンボルを有する第1のリソースブロックから選択され、第1のポジショニング機会の間の前記基地局によるポジション測定信号の送信に対して指定された第1のシンボル、または、
コードの予め定められているセットから選択され、前記第1のポジショニング機会の間の前記基地局による前記ポジション測定信号の送信をエンコードするように指定された第1のコード、
のいずれか、または、両方を決定する手段と、
前記第1のシンボルまたは前記第1のコードのいずれかまたは両方を決定することに基づいて、前記ポジション測定信号の第1の測定を行う手段とを具備するデバイス。
[C24]
前記シード情報を取得する手段は、前記基地局から前記シード情報を受信する手段を備えるC23記載のデバイス。
[C25]
前記第1のシンボルまたは前記第1のコードのいずれかまたは両方を決定する手段は、初期状態情報に基づいて、線形フィードバックシフトレジスタに値を入力する手段を備えるC23記載のデバイス。
[C26]
前記第1のシンボルまたは前記第1のコードのいずれかまたは両方を決定する手段は、前記シード情報からのデータを方程式に入力し、前記方程式から前記第1のシンボルまたは前記第1のコードのいずれかまたは両方を取得する手段を備えるC23記載のデバイス。
[C27]
前記基地局に対する前記基地局情報と前記シード情報とに基づいて、
一連の連続するシンボルを有する第2のリソースブロックから選択され、第2のポジショニング機会の間の前記基地局による前記ポジション測定信号の送信のために指定された第2のシンボル、または、
前記コードの予め定められているセットから選択され、前記第2のポジショニング機会の間の前記基地局による前記ポジション測定信号の送信のために指定された第2のコード、
のいずれか、または、両方を決定する手段と、
前記移動体デバイスを用いて、前記第2のシンボルまたは前記第2のコードのいずれかまたは両方を決定することに基づいて、前記ポジション測定信号の第2の測定を行う手段とをさらに具備するC23記載のデバイス。
[C28]
前記第2のコードを決定する手段は、少なくとも1つの線形フィードバックシフトレジスタの値を回数シフトする手段を備えるC27記載のデバイス。
[C29]
前記基地局の識別に基づいて、前記少なくとも1つの線形フィードバックシフトレジスタの値をシフトする回数を決定する手段をさらに具備するC28記載のデバイス。
[C30]
複数のポジショニング機会のそれぞれに対して、前記少なくとも1つの線形フィードバックシフトレジスタの値をシフトする回数を決定する手段をさらに具備し、前記少なくとも1つの線形フィードバックシフトレジスタの値をシフトする回数は、前記複数のポジショニング機会のうちの少なくとも2つのポジショニング機会に対して異なるC28記載のデバイス。
[C31]
ワイヤレス通信ネットワーク中の移動体デバイスに基準信号を取得させる組み込まれている命令を有する非一時的コンピュータ読取可能媒体において、
前記命令は、
前記ワイヤレス通信ネットワーク中の複数の基地局に対する基地局情報を取得し、前記基地局情報は、前記複数の基地局の各基地局のロケーションと識別子とを含み、
前記複数の基地局のうちの基地局に対するシード情報を取得し、
前記基地局に対する前記基地局情報と前記シード情報とに基づいて、
一連の連続するシンボルを有する第1のリソースブロックから選択され、第1のポジショニング機会の間の前記基地局によるポジション測定信号の送信に対して指定された第1のシンボル、または、
コードの予め定められているセットから選択され、前記第1のポジショニング機会の間の前記基地局による前記ポジション測定信号の送信をエンコードするように指定された第1のコード、
のいずれか、または、両方を決定し、
前記第1のシンボルまたは前記第1のコードのいずれかまたは両方を決定することに基づいて、前記ポジション測定信号の第1の測定を行うためのコンピュータコードを含む非一時的コンピュータ読取可能媒体。
[C32]
ワイヤレス通信ネットワークの基地局から基準信号を送信する方法において、
第1のポジショニング機会の間にポジション測定信号を送信し、
前記ポジション測定信号は、一連の連続するシンボルを有する第1のリソースブロックの第1のシンボルの間に送信され、
前記ポジション測定信号は、コードの予め定められているセットの第1のコードでエンコードされることと、
第2のポジショニング機会の間に前記ポジション測定信号を送信し、
前記ポジション測定信号は、一連の連続するシンボルを有する第2のリソースブロックの第2のシンボルの間に送信され、
前記ポジション測定信号は、前記コードの予め定められているセットの第2のコードでエンコードされることとを含み、
前記第2のシンボルは、前記第2のリソースブロック内で、前記第1のリソースブロック内の前記第1のシンボルの順序と異なる順序を有し、または、
前記第2のコードは、前記第1のコードと異なり、または、
両方である方法。
[C33]
基地局において、
ワイヤレス通信インターフェースと、
メモリと、
前記ワイヤレス通信インターフェースおよび前記メモリと通信可能に結合されている処理ユニットとを具備し、
前記処理ユニットは、
前記ワイヤレス通信インターフェースを使用して、第1のポジショニング機会の間にポジション測定信号を送信し、
前記ポジション測定信号は、一連の連続するシンボルを有する第1のリソースブロックの第1のシンボルの間に送信され、
前記ポジション測定信号は、コードの予め定められているセットの第1のコードでエンコードされ、
前記ワイヤレス通信インターフェースを使用して、第2のポジショニング機会の間に前記ポジション測定信号を送信し、
前記ポジション測定信号は、一連の連続するシンボルを有する第2のリソースブロックの第2のシンボルの間に送信され、
前記ポジション測定信号は、前記コードの予め定められているセットの第2のコードでエンコードされるように構成され、
前記第2のシンボルは、前記第2のリソースブロック内で、前記第1のリソースブロック内の前記第1のシンボルの順序と異なる順序を有し、または、
前記第2のコードは、前記第1のコードと異なり、または、
両方である基地局。
[C34]
デバイスにおいて、
第1のポジショニング機会の間にポジション測定信号を送信し、
前記ポジション測定信号は、一連の連続するシンボルを有する第1のリソースブロックの第1のシンボルの間に送信され、
前記ポジション測定信号は、コードの予め定められているセットの第1のコードでエンコードされる手段と、
第2のポジショニング機会の間に前記ポジション測定信号を送信し、
前記ポジション測定信号は、一連の連続するシンボルを有する第2のリソースブロックの第2のシンボルの間に送信され、
前記ポジション測定信号は、前記コードの予め定められているセットの第2のコードでエンコードされる手段とを具備し、
前記第2のシンボルは、前記第2のリソースブロック内で、前記第1のリソースブロック内の前記第1のシンボルの順序と異なる順序を有し、または、
前記第2のコードは、前記第1のコードと異なり、または、
両方であるデバイス。
[C35]
ワイヤレス通信ネットワークの基地局に、基準信号を送信させる組み込まれている命令を有する非一時的コンピュータ読取可能媒体において、
前記命令は、
第1のポジショニング機会の間にポジション測定信号を送信し、
前記ポジション測定信号は、一連の連続するシンボルを有する第1のリソースブロックの第1のシンボルの間に送信され、
前記ポジション測定信号は、コードの予め定められているセットの第1のコードでエンコードされ、
第2のポジショニング機会の間に前記ポジション測定信号を送信し、
前記ポジション測定信号は、一連の連続するシンボルを有する第2のリソースブロックの第2のシンボルの間に送信され、
前記ポジション測定信号は、前記コードの予め定められているセットの第2のコードでエンコードされるためのコンピュータコードを含み、
前記第2のシンボルは、前記第2のリソースブロック内で、前記第1のリソースブロック内の前記第1のシンボルの順序と異なる順序を有し、または、
前記第2のコードは、前記第1のコードと異なり、または、
両方である非一時的コンピュータ読取可能媒体。