IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ コリア アトミック エナジー リサーチ インスティテュートの特許一覧

特許7297885電子ビームを利用した大気浄化用反応装置およびこれを含む大気浄化装置
<>
  • 特許-電子ビームを利用した大気浄化用反応装置およびこれを含む大気浄化装置 図1
  • 特許-電子ビームを利用した大気浄化用反応装置およびこれを含む大気浄化装置 図2
  • 特許-電子ビームを利用した大気浄化用反応装置およびこれを含む大気浄化装置 図3
  • 特許-電子ビームを利用した大気浄化用反応装置およびこれを含む大気浄化装置 図4
  • 特許-電子ビームを利用した大気浄化用反応装置およびこれを含む大気浄化装置 図5
  • 特許-電子ビームを利用した大気浄化用反応装置およびこれを含む大気浄化装置 図6
  • 特許-電子ビームを利用した大気浄化用反応装置およびこれを含む大気浄化装置 図7
  • 特許-電子ビームを利用した大気浄化用反応装置およびこれを含む大気浄化装置 図8
  • 特許-電子ビームを利用した大気浄化用反応装置およびこれを含む大気浄化装置 図9
  • 特許-電子ビームを利用した大気浄化用反応装置およびこれを含む大気浄化装置 図10
  • 特許-電子ビームを利用した大気浄化用反応装置およびこれを含む大気浄化装置 図11
  • 特許-電子ビームを利用した大気浄化用反応装置およびこれを含む大気浄化装置 図12
  • 特許-電子ビームを利用した大気浄化用反応装置およびこれを含む大気浄化装置 図13
  • 特許-電子ビームを利用した大気浄化用反応装置およびこれを含む大気浄化装置 図14
  • 特許-電子ビームを利用した大気浄化用反応装置およびこれを含む大気浄化装置 図15
  • 特許-電子ビームを利用した大気浄化用反応装置およびこれを含む大気浄化装置 図16
  • 特許-電子ビームを利用した大気浄化用反応装置およびこれを含む大気浄化装置 図17
  • 特許-電子ビームを利用した大気浄化用反応装置およびこれを含む大気浄化装置 図18
  • 特許-電子ビームを利用した大気浄化用反応装置およびこれを含む大気浄化装置 図19
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-06-16
(45)【発行日】2023-06-26
(54)【発明の名称】電子ビームを利用した大気浄化用反応装置およびこれを含む大気浄化装置
(51)【国際特許分類】
   B01J 19/12 20060101AFI20230619BHJP
   B01D 53/38 20060101ALI20230619BHJP
   B01D 53/76 20060101ALI20230619BHJP
【FI】
B01J19/12 C ZAB
B01D53/38
B01D53/76
【請求項の数】 17
(21)【出願番号】P 2021523016
(86)(22)【出願日】2019-09-30
(65)【公表番号】
(43)【公表日】2022-01-14
(86)【国際出願番号】 KR2019012724
(87)【国際公開番号】W WO2020085669
(87)【国際公開日】2020-04-30
【審査請求日】2021-04-26
(31)【優先権主張番号】10-2018-0127215
(32)【優先日】2018-10-24
(33)【優先権主張国・地域又は機関】KR
(31)【優先権主張番号】10-2019-0035891
(32)【優先日】2019-03-28
(33)【優先権主張国・地域又は機関】KR
(31)【優先権主張番号】10-2019-0035892
(32)【優先日】2019-03-28
(33)【優先権主張国・地域又は機関】KR
(73)【特許権者】
【識別番号】597060645
【氏名又は名称】コリア アトミック エナジー リサーチ インスティテュート
【氏名又は名称原語表記】KOREA ATOMIC ENERGY RESEARCH INSTITUTE
(74)【代理人】
【識別番号】110000523
【氏名又は名称】アクシス国際弁理士法人
(72)【発明者】
【氏名】ピョン・ナム・キム
(72)【発明者】
【氏名】ミョン・チュ・イ
(72)【発明者】
【氏名】ヨン・ムク・イム
(72)【発明者】
【氏名】キョ・ハ・チャン
(72)【発明者】
【氏名】ピョン・ヨン・チョン
【審査官】河野 隆一朗
(56)【参考文献】
【文献】特開平07-284642(JP,A)
【文献】特開昭53-075163(JP,A)
【文献】特開2003-294897(JP,A)
【文献】特表2000-515808(JP,A)
【文献】特開平09-262431(JP,A)
【文献】特開昭49-096975(JP,A)
【文献】米国特許出願公開第2010/0307912(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
B01J 19/00 - 19/32
B01D 53/34 - 53/85
B01D 53/92
B01D 53/96
A61L 9/18
B01D 53/32
B01F 25/4314
(57)【特許請求の範囲】
【請求項1】
所定の長さを有し、外部から流入した流体が通過できるように中空型で形成されるハウジング;
前記ハウジングの内部に流入した流体が旋回しながら移動できるように、前記ハウジングの内部に長さ方向に沿って配置されて前記流体の移動経路を案内するガイド部;および
前記ハウジングの内部に電子ビームが透過され得るように前記ハウジングの一側に備えられる透過部;を含み、
前記ガイド部は前記ハウジングの長さ方向に沿って少なくとも一回以上螺旋状に巻回された翼部を含み、
前記翼部は前記ハウジング内に流入されたすべての前記流体が前記ハウジングを通過する過程で前記透過部に向かって移動し前記透過部を通じて流入した電子ビームが前記流体に照射し得るように、一側端が前記ハウジングの内面と接するように形成され、且つ前記透過部に隣接して配置される前記翼部の部分が直線状に形成される、電子ビームを利用した大気浄化用反応装置。
【請求項2】
前記ハウジングは長さ方向と垂直な断面の少なくとも一部弧の形状の断面を有するように形成される、請求項1に記載の電子ビームを利用した大気浄化用反応装置。
【請求項3】
前記翼部は前記ハウジングの内部半径と同一の大きさの幅を有する曲面で形成される、請求項1に記載の電子ビームを利用した大気浄化用反応装置。
【請求項4】
前記翼部が巻回される中心軸は前記ハウジングの中心軸と一致する、請求項1に記載の電子ビームを利用した大気浄化用反応装置。
【請求項5】
前記ハウジングは側部に所定の大きさで開口形成される開口部を含み、
前記透過部は前記開口部を覆うフィルム部材である、請求項1に記載の電子ビームを利用した大気浄化用反応装置。
【請求項6】
前記ハウジングは前記開口部の縁に沿って形成されるフランジ部を含み、
前記透過部は前記フランジ部に結合される締結フレームを媒介として前記フランジ部に着脱可能に結合される、請求項5に記載の電子ビームを利用した大気浄化用反応装置。
【請求項7】
前記ハウジングは両端部が開放された中空型の胴体と、前記流体が前記胴体の内部に流入できるように前記胴体の前段に備えられる流入口および前記流体が前記胴体の内部から外部に流出するように前記胴体の後段に備えられる流出口を含む、請求項1に記載の電子ビームを利用した大気浄化用反応装置。
【請求項8】
前記流入口は入口側の内径が前記胴体の内径より相対的に小さな大きさを有するように形成される、請求項7に記載の電子ビームを利用した大気浄化用反応装置。
【請求項9】
前記透過部は前記ハウジングの一側にそれぞれ備えられる二つの透過部;を含み、
前記二つの透過部は、前記ハウジングの内部に照射される電子ビームが互いに重なる重畳領域が形成されるように一直線上に配置される第1透過部および第2透過部を含む、請求項1に記載の電子ビームを利用した大気浄化用反応装置。
【請求項10】
前記第1透過部の表面と前記第2透過部の表面とが対向するように平行に配置されており、且つ前記ハウジングの中心軸を通り、該中心軸に直交する方向であって前記第1透過部の表面と前記第2透過部の表面とに対して直交する方向に沿って切断したときに観察される断面において、該中心軸に直交する方向に座標軸を取り、前記ハウジングの一の内面の座標値を0とし、前記一の内面に対向する他の内面の座標値をDとした場合、前記重畳領域は2/5D~3/5Dの位置に形成される、請求項9に記載の電子ビームを利用した大気浄化用反応装置。
【請求項11】
前記重畳領域の長さ(L)は前記電子ビームの最大透過深さ(Dmax)から電子ビームの有効透過深さ(De)を差し引いた残りの長さに該当する大きさである、請求項10に記載の電子ビームを利用した大気浄化用反応装置。
【請求項12】
前記ハウジングの一部の内径(D)は前記第1透過部または第2透過部を通じて照射される電子ビームの最大透過深さ(Dmax)と前記電子ビームの有効透過深さ(De)を足した長さに該当する大きさである、請求項10に記載の電子ビームを利用した大気浄化用反応装置。
【請求項13】
前記電子ビームを利用した大気浄化用反応装置は複数個で備えられて直列連結される複数個の大気浄化用反応装置を含み、
前記複数個の大気浄化用反応装置のうち前段に配置される大気浄化用反応装置の流出口と後段に配置される大気浄化用反応装置の流入口は互いに直列連結されてベンチュリ管を形成する、請求項1に記載の電子ビームを利用した大気浄化用反応装置。
【請求項14】
内部空間を有するチャンバー;
前記ハウジングが前記チャンバーを横切るように前記内部空間に配置される請求項1~請求項13のいずれか一項に記載された電子ビームを利用した大気浄化用反応装置;および
前記透過部の上部に位置するように前記内部空間に配置されて前記ハウジングの内部に電子ビームを照射する少なくとも一つの電子ビーム発生器;を含む、大気浄化装置。
【請求項15】
前記チャンバーは放射線を遮蔽できるように金属材質からなる、請求項14に記載の大気浄化装置。
【請求項16】
前記電子ビームを利用した大気浄化用反応装置は排気ガス供給源と直接連結される、請求項14に記載の大気浄化装置。
【請求項17】
前記電子ビーム発生器は0.5MeV以下の低エネルギー電子加速器である、請求項14に記載の大気浄化装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は電子ビームを利用した大気浄化用反応装置およびこれを含む大気浄化装置に関する。
【背景技術】
【0002】
電子加速器を利用した大気浄化技術は全世界的に1990年代から多様な技術が紹介され、韓国内には2000年代に入ってから多様な電子ビームを利用した大気浄化技術が紹介されている。
【0003】
しかし、大気浄化技術に適用される一般的な電子加速器は電子ビームを透過する照射窓が長方形の形状であり、使用者の環境およびビームエネルギーにより照射窓の横の長さだけ変更される。
【0004】
電子加速器から照射される電子ビームの透過深さは電子加速器の加速電圧すなわち、ビームエネルギーに依存して決定される。通常的に電子ビームの有効透過深さは最大透過深さの2/3地点であるので、電子ビームは照射窓を通じて引き出される相当量のエネルギー(30%以上)が消失される。
【0005】
これに伴い、従来の電子ビームを利用した大気浄化用反応器は、大容量の排煙ガスを処理するためには電子ビームの有効透過深さおよび損失などを理由に、必要以上の高エネルギーを有する電子加速器を適用しなければ処理容量を確保することができなかった。
【0006】
このため、大容量の排煙ガスを処理するための従来の大気浄化用反応器は、必要以上のビームエネルギーを有する電子加速器が適用されなければならないため大きさが大きくならざるを得ない限界がある。これに伴い、放射線を遮蔽するためのチャンバーの大きさも非常に大きくならざるを得ず、これによる設置費用も急激に増加する問題がある。
【発明の概要】
【発明が解決しようとする課題】
【0007】
本発明は前記のような点を勘案して案出されたもので、排煙ガスが反応器の内部を回転しながら通過することによって、電子ビームで排煙ガスを全体的に照射しながらも均一に照射され得る、電子ビームを利用した大気浄化用反応装置およびこれを含む大気浄化装置を提供することにその目的がある。
【0008】
また、本発明は処理効率が減少することなく処理容量を増加させ得る、電子ビームを利用した大気浄化用反応装置およびこれを含む大気浄化装置を提供することに他の目的がある。
【0009】
さらに、本発明は汚染度の高い排煙ガスを効果的に浄化できる、電子ビームを利用した大気浄化用反応装置およびこれを含む大気浄化装置を提供することにさらに他の目的がある。
【課題を解決するための手段】
【0010】
本発明の一側面によると、所定の長さを有し、外部から流入した流体が通過できるように中空型で形成されるハウジング;前記ハウジングの内部に流入した流体が旋回しながら移動できるように、前記ハウジングの内部に長さ方向に沿って配置されて前記流体の移動経路を案内するガイド部;および前記ハウジングの内部に電子ビームが透過され得るように前記ハウジングの一側に備えられる透過部;を含む電子ビームを利用した大気浄化用反応装置を提供する。
【0011】
本発明の他の側面によると、内部空間を有するチャンバー;前記ハウジングが前記チャンバーを横切るように前記内部空間に配置される前述した電子ビームを利用した大気浄化用反応装置;および前記透過部の上部に位置するように前記内部空間に配置されて前記ハウジングの内部に電子ビームを照射する少なくとも一つの電子ビーム発生器;を含む大気浄化装置を提供する。
【発明の効果】
【0012】
本発明によると、排煙ガスが反応器の内部を回転しながら通過することによって、低エネルギーの電子ビームを使っても排煙ガスに電子ビームを全体的に照射しながらも均一に照射することができる。これを通じて、反応器の内部にデッドゾーンが発生することを防止することによって、低エネルギーの電子ビームを使っても要求される十分な処理容量を確保することができる。
【0013】
また、本発明によると、互いに一直線上に配置される二つの透過部を通じて二つの電子ビーム発生器からそれぞれ照射される電子ビームが、反応器の内部で互いに重なることによってハウジングの直径を増加させても処理効率が減少することを防止することができる。
【0014】
また、本発明によると、二つの反応器を互いに直列連結し、互いに連結される部分がベンチュリ管を形成することによって、順次的な浄化を通じて処理効率を高めながらも反応器の内部圧力を減少させることができる。これを通じて、本発明は低エネルギーの電子ビームを使っても処理効率を増大させることができ、反応器の耐久性を高めることができる。
【0015】
さらに、本発明によると、全体設備の小型化が可能であるため自体遮蔽が可能であり、高エネルギー電子ビーム方式を採用する従来と比べて費用を画期的に改善することができる。
【図面の簡単な説明】
【0016】
図1】本発明の一実施例に係る電子ビームを利用した大気浄化用反応装置を示した概略図である。
図2図1の分離図である。
図3図1でハウジングの一部が切開された状態を示した図面である。
図4図1でハウジングの前面を見た図面である。
図5】本発明に係る電子ビームを利用した大気浄化用反応装置に適用され得るガイド部の多様な形態を示した図面である。
図6】本発明の一実施例に係る電子ビームを利用した大気浄化用反応装置でガイド部の形態による排煙ガスの流れを概略的に示したシミュレーション写真である。
図7】本発明の一実施例に係る電子ビームを利用した大気浄化用反応装置でガイド部の形態による排煙ガスの流れを概略的に示したシミュレーション写真である。
図8】本発明の一実施例に係る電子ビームを利用した大気浄化用反応装置でガイド部の形態による排煙ガスの流れを概略的に示したシミュレーション写真である。
図9】ガイド部が適用されていない従来方式の電子ビームを利用した大気浄化用反応装置で排煙ガスの流れを概略的に示したシミュレーション図面である。
図10】本発明の一実施例に係る大気浄化装置を示した概略図である。
図11】本発明の他の実施例に係る電子ビームを利用した大気浄化用反応装置を示した概略図である。
図12図11の分離図である。
図13図11でハウジングの一部が切開された状態を示した図面である。
図14】本発明の他の実施例に係る電子ビームを利用した大気浄化用反応装置で電子ビームの最大透過深さ、有効透過深さおよび重畳透過深さを説明するための図面である。
図15図11で流入口が除去されたハウジングの前面を見た図面である。
図16】本発明の他の実施例に係る大気浄化装置を示した概略図である。
図17】本発明のさらに他の実施例に係る電子ビームを利用した大気浄化用反応装置を示した概略図である。
図18図17でハウジングの一部が切開された状態を示した図面である。
図19】本発明のさらに他の実施例に係る大気浄化装置を示した概略図である。
【発明を実施するための形態】
【0017】
以下、添付した図面を参照して、本発明の実施例について本発明が属する技術分野で通常の知識を有する者が容易に実施できるように詳細に説明する。本発明は多様な異なる形態で具現され得、ここで説明する実施例に限定されない。図面で本発明を明確に説明するために説明に係わらない部分は省略し、明細書全体を通じて同一または類似する構成要素に対しては同じ参照符号を付加する。
【0018】
本発明の一実施例に係る電子ビームを利用した大気浄化用反応装置(以下、「大気浄化用反応装置」という。)100、200、300は、外部から流入した流体、一例として排煙ガスが旋回しながら移動することによって、低エネルギーの電子ビームを使っても前記排煙ガスを均一に照射することができる。
【0019】
このために、本発明の一実施例に係る大気浄化用反応装置100は、図1図4図11図14図17および図18に図示された通り、ハウジング110、210、ガイド部120および少なくとも一つの透過部130、130a、130bを含む。
【0020】
前記ハウジング110、210は外部から流入した流体が通過できるように所定の長さを有する中空型で形成され得、前記ガイド部120は前記ハウジング110、210の内部に配置され得る。
【0021】
一例として、前記ハウジング110、210は両端部が開放された中空型の胴体111と前記胴体111の開放された両端部側にそれぞれ備えられる流入口112および流出口113を含むことができ、前記ガイド部120は前記胴体111の内部に配置され得る。
【0022】
また、前記ハウジング110、210の一側には、外部から照射される電子ビームを前記胴体111の内部に透過する少なくとも一つの透過部130、130a、130bが備えられ得る。
【0023】
これに伴い、前記流入口112を通じて流入した流体は前記胴体111の内部で前記ガイド部120に沿って流動した後、前記流出口113を通じて外部に排出され得、前記流体が前記胴体111の内部を通過する過程で前記透過部130、130a、130bを通じて流入した電子ビームが前記流体側に照射され得る。
【0024】
この時、前記ハウジング110、210は長さ方向と垂直な断面が円形の断面を有するように形成され得る。好ましくは、前記ハウジング110、210は前記透過部130、130a、130bを除いた残り部分が円形の断面を有するように形成され得る。
【0025】
一例として、前記胴体111は長さ方向と垂直な断面が円形の断面を有するように形成され得、前記胴体111は全体の長さに対して同一の内径を有するように形成され得る。
【0026】
このような場合、前記透過部130、130a、130bが形成された胴体111の一部は、前記透過部130、130a、130bを除いた残り部分が弧の形状の断面を有するように形成され得る。また、前記流入口112は入口側の内径が前記胴体111の内径より相対的に小さな大きさを有するように形成され得る。これを通じて、前記流入口112を通じて外部から流入した流体は圧力勾配を通じて前記胴体111の内部に円滑に流入することができる。
【0027】
これに伴い、本発明の一実施例に係る大気浄化用反応装置100、200、300は、前記流入口112を通じて前記ハウジング110、210の内部に流入した流体が前記ガイド部120を通じて円滑に旋回され得る。
【0028】
本発明で、前記流入口112は前記胴体111の内径より相対的に小さな大きさの内径を有する入口112aと前記入口112aから内径が徐々に増加して前記入口112aおよび胴体111を互いに連結する縮小部112bを含むことができる。
【0029】
また、前記流出口113は前記流入口112と同様に出口113a側の内径が前記胴体111の内径より相対的に小さな大きさを有するように形成され得る。
【0030】
併せて、前記流出口113は前記胴体111の内径より相対的に小さな大きさの内径を有する出口113aと、前記胴体111の端部から前記出口113aまで内径が徐々に減少して前記胴体111および出口113aを互いに連結する縮小部113bを含むことができる。
【0031】
前記ガイド部120は前記流入口112を通じて前記胴体111の内部に流入した流体の移動経路を案内することができる。
【0032】
このために、前記ガイド部120は前記胴体111の内部に長さ方向に沿って配置され得る。
【0033】
この時、前記ガイド部120は前記胴体111の内部を通過する流体を旋回させることができる。
【0034】
このために、前記ガイド部120は図3図5に図示された通り、中心軸122と前記中心軸122を中心に巻回された翼部121を含むことができ、前記ガイド部120は前記胴体111の内部に長さ方向に沿って配置され得る。
【0035】
この時、前記翼部121は前記ハウジング210の長さ方向と平行するように配置される中心軸122に沿って少なくとも一回以上螺旋状に巻回され得る。
【0036】
また、前記翼部121は図4に図示された通り、前記胴体111の内部半径R1と同一の大きさの幅R2を有する曲面で形成され得る。
【0037】
これに加えて、前記翼部121は一側端が前記胴体111の内面と接するように配置され得、前記翼部121が巻回される中心軸122は前記ハウジング210の長さ方向と平行するように配置され得、前記中心軸122は前記胴体111の中心軸と一致するように前記胴体111の内部に配置され得る。
【0038】
これを通じて、前記流入口112を通じて前記胴体111の内部に流入したすべての流体は、前記翼部121の表面に沿って前記流出口113側に移動することができ、前記流入口112を通じて前記胴体111の内部に流入したすべての流体は、前記流出口113側に移動する過程で前記翼部121を通じて旋回されることによって前記透過部130、130a、130bと近い位置に移動することができる。
【0039】
本発明で、前記翼部121の巻回の回数は図3に図示された通り、4回であってもよく、図5の(a)に図示された通り、8回であってもよく、図5の(b)に図示された通り、16回であってもよい。しかし、前記翼部121の巻回の回数はこれに限定するものではなく、前記翼部121の巻回の回数は処理しようとする流体の容量に合うように適切に変更され得る。
【0040】
また、図面には前記翼部121が前記胴体111の長さ方向と平行するように配置される中心軸122を基準として、少なくとも一回以上螺旋状に巻回されるものとして図示したが、本発明はこれに限定するものではなく、前記中心軸122は省略されてもよい。このような場合、前記ガイド部120は前記胴体111の長さ方向と平行するように配置される仮想の中心軸を基準として、少なくとも1回以上螺旋状に巻回された翼部121のみで構成され得る。
【0041】
このように本発明の一実施例に係る大気浄化用反応装置100、200、300は、前記流入口112を通じて前記胴体111の内部に流入した流体が前記流出口113に移動する過程で、前記胴体111の内部に流入した流体が前記ガイド部120を通じて旋回され得ることによって、前記胴体111の内部に流入した流体が前記透過部130、130a、130bと近い位置に移動することができ、前記透過部130、130a、130bと近い位置に移動した流体は前記透過部130、130a、130bを通じて流入した電子ビームに照射された後、前記流出口113を通じて外部に排出され得る。
【0042】
すなわち、本発明の一実施例に係る大気浄化用反応装置100、200、300は、前記流入口112を通じて胴体111の内部に流入したすべての流体が前記透過部130、130a、130bと近い位置に移動することによって、前記透過部130、130a、130bを通じて流入した電子ビームの強度が弱くても、前記電子ビームに照射された後に流出口113を通じて外部に排出され得る。
【0043】
これによって、本発明の一実施例に係る大気浄化用反応装置100、200、300は、前記胴体111の内部に流入したすべての流体が電子ビームに照射されずにすぐに外部に排出されることを根本的に遮断することができる。
【0044】
これを通じて、本発明の一実施例に係る大気浄化用反応装置100、200、300は、前記透過部130、130a、130bを通じて0.5MeV以下の低エネルギーを有する電子ビームが前記流体に照射されても前記流体側に電子ビームを均一に照射できることによって、全体のサイズを小型化しながらも十分な処理容量を確保することができる。
【0045】
これに伴い、本発明の一実施例に係る大気浄化用反応装置100は全体のサイズが小型化され得ることによって自体遮蔽が可能となり得、高エネルギー電子ビーム方式を採用する従来と比べて設備費用を画期的に減らすことができる。
【0046】
これは、図6図9を通じて確認することができる。
【0047】
すなわち、図6図8は前記ガイド部120が採用された本発明の一実施例に係る大気浄化用反応装置100でガイド部120の形態による流体の流れを概略的に示したシミュレーション写真であり、図9はガイド部が適用されていない従来方式の電子ビームを利用した大気浄化用反応装置で流体の流れを概略的に示したシミュレーション写真である。
【0048】
具体的には、本発明の一実施例に係る大気浄化用反応装置100は図6図8に図示された通り、前記流入口112を通じて胴体111の内部に流入した流体が前記ガイド部120を通じて旋回することによって、前記透過部130と近い位置を経て流出口113側に移動するのを確認することができる。
【0049】
反面、図9に図示された通り、ガイド部120が適用されていない従来方式の電子ビームを利用した大気浄化用反応装置は、内部に流入した流体が中央部に集中して通過するのを確認することができる。これに伴い、透過部130を通じて反応装置の内部に流入した電子ビームの強度が弱いため電子ビームの透過深さが浅い場合には、流体が電子ビームに円滑に照射されずにすぐに外部に排出され得る。
【0050】
これに伴い、ガイド部120が適用されていない従来方式の電子ビームを利用した大気浄化用反応装置は、処理対象である流体に電子ビームを円滑に照射するためには2MeV以上の高エネルギーを有する電子ビームが供給されなければならない。
【0051】
このため、従来方式の大気浄化用反応装置は2MeV以上の高エネルギーを有する電子ビームを円滑に遮蔽するためには、遮蔽設備もサイズが大きくなったり厚くならなければならないため、設備の全体のサイズが大きくならざるを得ない限界がある。
【0052】
また、これを防止するために低エネルギーを有する電子ビームを使う場合、反応装置のサイズを減らすことにより、電子ビームの透過深さが浅くても流体が円滑に電子ビームに照射されるように構成することができるが、このような場合には反応装置のサイズが小さくなることによって十分な処理容量を確保できない限界がある。
【0053】
前記少なくとも一つの透過部130、130a、130bは外部から照射される電子ビームを前記胴体111の内部に透過させることができる。これを通じて、前記胴体111の内部を通過する流体は、前記少なくとも一つの透過部130、130a、130bを通じて流入した電子ビームに露出され得る。
【0054】
このために、前記少なくとも一つの透過部130、130a、130bは前記ハウジング110、210の一側に備えられ得る。
【0055】
具体的には、前記胴体111は所定の大きさで開口形成される少なくとも一つの開口部114を含むことができ、前記少なくとも一つの透過部130、130a、130bは前記少なくとも一つの開口部114を覆うように配置され得る。
【0056】
ここで、前記少なくとも一つの開口部114は前記少なくとも一つの透過部130、130a、130bと対応する個数で形成され得る。また、前記少なくとも一つの透過部130、130a、130bは所定の面積を有する板状のフィルム部材であり得るが、これに限定するものではなく、電子ビームを円滑に透過できる材質であればすべて使われ得る。
【0057】
この時、前記少なくとも一つの透過部130、130a、130bは前記胴体111に着脱可能に結合され得る。このために、前記胴体111は前記開口部114の縁に沿って形成される少なくとも一つのフランジ部115を含むことができ、前記フランジ部115側には内部に貫通部142が形成された締結フレーム140、140a、140bが結合され得る。
【0058】
このような場合、前記透過部130、130a、130bは縁側が前記フランジ部115および締結フレーム140、140a、140bの間に配置され得る。これに伴い、前記締結フレーム140、140a、140bとフランジ部115が互いに結合すると前記透過部130、130a、130bの縁側は前記締結フレーム140、140a、140bおよびフランジ部115を通じて固定され得、前記透過部130、130a、130bは前記貫通部142を通じて外部に露出され得る。
【0059】
併せて、互いに向き合うフランジ部115および透過部130、130a、130bの接触面上には、オーリングのような密封部材150が配置され得る。このような密封部材150は前記胴体111の内部を流動する流体が前記開口部114を通じて外部に流出することを防止することができる。
【0060】
この時、本発明の一実施例に係る大気浄化用反応装置200は外部から流入した流体が複数の位置で電子ビームに露出され得るように構成され得る。
【0061】
すなわち、本発明の一実施例に係る大気浄化用反応装置200は複数個の透過部130a、130bを含むことができる。
【0062】
これを通じて、本実施例に係る大気浄化用反応装置200は複数個の透過部130a、130bを通じて照射される電子ビームを利用して前記胴体111の内部に流入した流体を処理することによって、処理効率が減少することなく処理容量を増加させ得る。
【0063】
具体的には、本発明の一実施例に係る大気浄化用反応装置200は図11図14に図示された通り、前記複数個の透過部130a、130bは前記ハウジング210の互いに異なる位置にそれぞれ形成される第1透過部130aと第2透過部130bを含むことができる。
【0064】
これに伴い、前記ハウジング210の内部に流入した流体は、前記胴体111の内部を通過する過程で前記第1透過部130aおよび第2透過部130bを通じて流入した電子ビームにそれぞれ露出され得る。
【0065】
この時、本実施例に係る大気浄化用反応装置200は前記第1透過部130aおよび第2透過部130bが一直線上に位置するように配置され得、前記胴体111は前記第1透過部130aを通過した電子ビームと前記第2透過部130bを通過した電子ビームが互いに重なる重畳領域Sを形成できる大きさの内径を有することができる。
【0066】
すなわち、前記第1透過部130aを通過した電子ビームと前記第2透過部130bを通過した電子ビームが互いに重なる重畳領域Sは、前記胴体111の内部中央部に形成され得、前記胴体111の内部中央部で前記胴体111の内面から一定間隙離隔した位置まで形成され得る。
【0067】
一例として、図14に図示された通り、前記第1透過部130aは前記胴体111の上部側に備えられ得、前記第2透過部130bは前記胴体111の下部側に備えられ得、前記第1透過部130aを通過した電子ビームの強度と前記第2透過部130bを通過した電子ビームの強度は互いに同一の大きさであり得る。
【0068】
このような場合、前記重畳領域Sは前記胴体111の内径Dに対して2/5~3/5の位置に形成され得る。また、前記胴体111の内径Dに対して2/5~3/5の位置に形成される重畳領域Sの長さLは、前記第1透過部130aまたは第2透過部130bを通じて照射される電子ビームの最大透過深さDmaxから前記電子ビームの有効透過深さDeを差し引いた残りの長さに該当する大きさであり得る。併せて、前記胴体111の内径Dは前記第1透過部130aまたは第2透過部130bを通じて照射される電子ビームの最大透過深さDmaxと前記電子ビームの有効透過深さDeを足した長さに該当する大きさであり得る。
【0069】
非制限的な一例として、前記胴体111の内部に形成される電子ビームの重畳領域Sはその長さがLが電子ビームの最大透過深さの1/3倍に該当する長さであり得、前記胴体111の内径Dは電子ビームの最大透過深さの5/3倍の大きさを有することができる。
【0070】
これを通じて、本実施例に係る大気浄化用反応装置200は、前記第1透過部130aを通じて胴体111の内部に流入した電子ビームのうち有効透過深さDeから外れた電子ビームと前記第2透過部130bを通じて胴体111の内部に流入した電子ビームのうち有効透過深さDeから外れた電子ビームが互いに重なることによって、二つの電子ビームが重なる重畳領域Sを形成することができる。
【0071】
通常、電子ビームはビームエネルギーの大きさにより最大透過深さDmaxが決定され、アメリカの国立標準技術研究所(NIST)で提示したビームエネルギーの大きさによる空気中における最大透過深さは下記の表1の通りである。
【0072】
【表1】
【0073】
このような電子ビームのエネルギーは深さが長くなるほどエネルギーの損失が発生し、通常表面と同一のエネルギーを有する地点を示す有効透過深さDeは最大透過深さDmaxの2/3倍に該当する大きさである。すなわち、電子ビームの最大透過深さDmaxの1/3倍に該当する大きさはエネルギーの損失が発生する非有効透過深さDneである。
【0074】
本実施例では、前記第1透過部130aおよび第2透過部130bが一直線上に位置するように前記ハウジング210に形成し、前記第1透過部130aを透過した第1電子ビームと前記第2透過部130bを透過した第2電子ビームが有効透過深さDeである2/3Dmaxから外れた非有効透過深さDneに該当する部分が互いに重なる重畳領域Sを形成できるように、前記胴体111の内径を電子ビームの最大透過深さDmaxの5/3倍である大きさを有するように形成することができる。
【0075】
これを通じて、本実施例では第1電子ビームまたは第2電子ビームが有効透過深さから外れた非有効透過深さDneで第2電子ビームまたは第1電子ビームと互いに重なって失われたエネルギーが補償されることによって、有効透過深さDeから外れた非有効透過深さDneでも有効透過深さDeでのエネルギーと同等水準のエネルギーを具現することができる。
【0076】
すなわち、図14に図示された通り、前記第1透過部130aを透過した第1電子ビームの最大透過深さDmaxから有効透過深さDeを除いた非有効透過深さDneに該当する第1電子ビームは、前記第2透過部130bを透過した第2電子ビームの最大透過深さDmaxから有効透過深さDeを除いた非有効透過深さDneに該当する第2電子ビームと互いに重なり得る。
【0077】
これを通じて、非有効透過深さDneで失われた電子ビームのエネルギーは、他の電子ビームが非有効透過深さDneで有するエネルギーを通じて補完されることによって、それぞれの有効透過深さDeまでのエネルギーと同等水準のエネルギーを具現することができる。
【0078】
換言すると、本実施例に係る大気浄化用反応装置200は前記胴体111の内径Dが電子ビームの最大透過深さDmaxの5/3倍である大きさを有するように設定される場合、前記胴体111の内部は前記透過部130a、130bからの深さにかかわらず、同等水準のエネルギーを有する電子ビームが流入し得る。
【0079】
これによって、本実施例では一つの透過部を通じて電子ビームが照射される方式と比較する時、同一の大きさの電子ビームを適用しても処理効率が低下することなく胴体111の内径を電子ビームの有効透過深さDeの2倍ではなく、電子ビームの有効透過深さDeの2.5倍まで増加させることができる。
【0080】
これを通じて、本実施例に係る大気浄化用反応装置200は、重畳領域Sを通じて失われたエネルギーを相互に補完して処理効率が減少することを防止できることによって、処理効率が減少することなく前記胴体111の内部を通過する流体の量を増加させて処理容量を増加させ得る。
【0081】
一方、本発明の一実施例に係る大気浄化用反応装置300は、外部から流入した流体が複数個の反応装置100a、100bを順次通過できるように構成され得る。
【0082】
一例として、本実施例に係る大気浄化用反応装置300は複数個の反応装置100a、100bを含むことができ、前記複数個の反応装置100a、100bは互いに直列連結され得る。
【0083】
これに伴い、本実施例に係る大気浄化用反応装置300は、外部から流入した流体が複数個の反応装置100a、100bを順次通過しながら浄化作用が複数回に亘って起きることによって、処理効率を画期的に高めることができる。
【0084】
併せて、本実施例に係る大気浄化用反応装置300は、流体が複数個の反応装置100a、100bを順次通過しながら複数回に亘って浄化作用が起きることによって、それぞれの反応装置のサイズを減らすことができ、それぞれの反応装置に低エネルギーの電子ビームが供給されても汚染度が高い流体を円滑に処理することができる。
【0085】
この時、本実施例に係る大気浄化用反応装置300は、互いに直列連結される複数個の反応装置100a、100bで互いに連結される部分がベンチュリ管を通じて連結され得る。
【0086】
これによって、本実施例に係る大気浄化用反応装置300は、複数個の反応装置が互いに直列連結されて反応装置の全体を通過する流体の全体の経路が増加しても、それぞれの反応装置100a、100bの内部に加えられる圧力を低くすることができることによって、小型化が可能でありながらも耐久性を高めることができる。
【0087】
具体的な一例として、本実施例に係る大気浄化用反応装置300は図17および図18に図示された通り、互いに直列連結される第1反応装置100aおよび第2反応装置100bを含むことができ、前記第1反応装置100aが第2反応装置100bの前段に配置され得、前記第1反応装置100aの流出口113は前記第2反応装置100bの流入口112と互いに直列連結されることによってベンチュリ管を形成することができる。
【0088】
すなわち、前記第1反応装置100aおよび第2反応装置100bが互いに直列連結される場合、前記第1反応装置100aの流出口113は前記第2反応装置100bの流入口112と互いに連結され得る。
【0089】
これに伴い、前記第1反応装置100aの流出口113および第2反応装置100bの流入口112は、縮小部113b、出口113a、入口112aおよび縮小部112bが順次連結されることによってベンチュリ管を形成することができる。
【0090】
これを通じて、前記流入口112を通じて外部から流入した流体は圧力勾配を通じて前記胴体111の内部に円滑に流入することができ、前記流入口112を通じて前記胴体111の内部に流入した流体は前記ガイド部120を通じて旋回されても縮小部113bおよび出口113aを経て後段に配置される第2反応装置100bの流入口または外部に排出され得る。
【0091】
これによって、前記胴体111の内部に流入した流体が前記胴体111の内部でガイド部120を通じて旋回されても、流出口113を通過する過程でタービュレンスが発生することを最小化できることによって、流体の通過速度が遅延することを防止できるため、流体の処理速度が遅延することを防止することができる。
【0092】
併せて、前記第1反応装置100aから第2反応装置100b側に移動する流体は、前記ベンチュリ管を通過する過程でベンチュリ効果が発生することによって、圧力が減少した後に前記第2反応装置100b側に流入することができる。
【0093】
このため、第2反応装置100bで胴体111の内部に配置されて流体の移動経路を案内するガイド部120が高い圧力によって破損することを防止できることによって、耐久性を高めることができる。
【0094】
これに伴い、本実施例に係る大気浄化用反応装置300で外部から前記第1反応装置100a側に流入した流体は、前記第1反応装置100aで電子ビームのエネルギーを吸収する1次反応が起きた後に前記第2反応装置100b側に移動することができ、前記第1反応装置100aを通過して第2反応装置100b側に移動した流体は第2反応装置100aで電子ビームのエネルギーを吸収する2次反応が起こり得る。
【0095】
このため、本実施例に係る大気浄化用反応装置300は、流体が第1反応装置100aおよび第2反応装置100bを順次通過しながら複数回に亘って浄化作用が起きることによって、それぞれの反応装置のサイズを減らすことができ、それぞれの反応装置に低エネルギーの電子ビームが供給されても汚染度が高い流体を円滑に処理することができる。
【0096】
また、本実施例に係る大気浄化用反応装置300は、前記第1反応装置100aで1次反応が起きた流体が前記第1反応装置100aの流出口113および第2反応装置100bの流入口112の連結を通じて形成されたベンチュリ管を通過して前記第2反応装置100b側に移動することができる。
【0097】
これに伴い、前記第1反応装置100aから第2反応装置100b側に移動する流体は、前記ベンチュリ管を通過する過程でベンチュリ効果が発生することによって圧力が減少した後、前記第2反応装置100b側に流入することができる。
【0098】
このため、本実施例に係る大気浄化用反応装置300は、複数個の反応装置が互いに直列連結されて反応装置の全体を通過する流体の全体の経路が増加しても、それぞれの反応装置100a、100bの内部に加えられる圧力を低くすることができることによって、小型化が可能でありながらも耐久性を高めることができる。
【0099】
ベンチュリ効果は、パイプ内で直径が小さい狭い部分を通過する時に流体の圧力が相対的に減少する現象である。このようなベンチュリ効果は公知の内容であるため、詳細な説明は省略することにする。
【0100】
一方、本実施例に係る大気浄化用反応装置300を構成する第1反応装置100aおよび第2反応装置100bとして図1図4に図示された大気浄化用反応装置100が適用されるものとして図示したが、本実施例はこれに限定するものではなく、本実施例に係る大気浄化用反応装置300を構成する第1反応装置100aおよび第2反応装置100bとして、図11図15に図示された大気浄化用反応装置200が第1反応装置100aおよび第2反応装置100bとして適用されてもよい。
【0101】
また、本実施例に係る大気浄化用反応装置300を構成する第1反応装置100aおよび第2反応装置100bとして、図1図4に図示された大気浄化用反応装置100と図11図15に図示された大気浄化用反応装置200が第1反応装置100aおよび第2反応装置100bとしてそれぞれ適用されてもよい。
【0102】
併せて、本実施例に係る大気浄化用反応装置300を構成する第1反応装置100aおよび第2反応装置100bとして電子ビームを利用した公知の反応装置が適用されてもよい。
【0103】
加えて、本実施例に係る大気浄化用反応装置300を構成する反応装置100a、100bの全体の個数は、流体の汚染度によって3個以上で備えられてもよい。
【0104】
一方、前述した大気浄化用反応装置100、200、300は大気浄化装置1000、2000、3000に適用され得る。
【0105】
一例として、本発明の一実施例に係る大気浄化装置1000、2000、3000は図10図16および図19に図示された通り、少なくとも一つのチャンバー1100、1100a、1100b、大気浄化用反応装置100、200、300および電子ビーム発生器1200を含むことができる。
【0106】
ここで、前記大気浄化用反応装置100、200、300は前述した大気浄化用反応装置100、200、300がそのまま適用され得る。
【0107】
すなわち、前記大気浄化用反応装置100はハウジング110、ガイド部120および透過部130を含むことができ、前記大気浄化用反応装置200はハウジング210、ガイド部120および二つの透過部130a、130bを含むことができる。
【0108】
併せて、前記大気浄化用反応装置300は前述した通り、第1反応装置100aおよび第2反応装置100bを含むことができ、前記第1反応装置100aおよび第2反応装置100bは互いに直列連結され得、前記第1反応装置100aの流出口113および第2反応装置100bの流入口112が直列連結されてベンチュリ管を形成することができる。
【0109】
このような大気浄化用反応装置100、200、300は前述した説明と同じであるため、詳細な説明は省略することにする。
【0110】
前記少なくとも一つのチャンバー1100、1100a、1100bは内部空間を有する箱体の形状で形成され得る。このようなチャンバー1100、1100a、1100bは前記大気浄化用反応装置100、200、300および電子ビーム発生器1200が設置される設置空間を提供することができ、前記電子ビーム発生器1200から照射される電子ビームを遮蔽する役割を遂行することができる。
【0111】
一例として、前記チャンバー1100、1100a、1100bはアルミニウムなどのような金属材質で形成され得る。
【0112】
このような場合、前記大気浄化用反応装置100、200、300は、前記流入口112および流出口113側が前記チャンバー1100、1100a、1100bに固定される形態であり得、前記電子ビーム発生器1200が前記透過部130、130a、130bの上部に位置するように配置され得る。
【0113】
併せて、図16に図示された通り、前記大気浄化用反応装置200で前記透過部130a、130bが複数個で備えられる場合、前記電子ビーム発生器1200は複数個の透過部130a、130bと対応する個数で備えられ得、複数個の電子ビーム発生器1200は前記複数個の透過部130a、130bとそれぞれ対応する位置に位置するように配置され得る。
【0114】
これに伴い、前記電子ビーム発生器1200から発生した電子ビームは、前記透過部130、130a、130bを通じて前記ハウジング110、210の内部に円滑に透過することができる。ここで、前記電子ビーム発生器1200は0.5MeV以下の低エネルギーの電子ビームを生成する低エネルギー電子加速器であり得る。このような場合、前記チャンバー1100、1100a、1100bは前記電子ビーム発生器1200で発生した電子ビームの放射能を遮蔽する遮蔽チャンバーの役割を遂行することができる。
【0115】
これを通じて、本発明の一実施例に係る大気浄化装置1000、2000、3000は、前記チャンバー1100、1100a、1100bが前記大気浄化用反応装置100、200、300および少なくとも一つの電子ビーム発生器1200を設置するための最小限のサイズで具現されても、前記少なくとも一つの電子ビーム発生器1200から発生した電子ビームの放射能を十分に遮蔽することができる。
【0116】
これに伴い、本発明の一実施例に係る大気浄化装置1000、2000、3000は、前記チャンバー1100、1100a、1100bの大きさを最小化できることによって小型のモジュール化された形態で具現することができる。
【0117】
この時、前記流入口112は排気ガス供給源1300と直接連結され得る。一例として、前記排気ガス供給源1300は生産設備の排気ガスダクトであり得る。これに伴い、本発明の一実施例に係る大気浄化装置1000、2000、3000は前記排気ガスダクトから排出される流体の浄化が必要な場合、前記流入口112を排気ガスダクト側に直接連結することによって使用便宜性を高めることができる。
【0118】
一方、前述において、前記電子ビーム発生器1200が0.5MeV以下の低エネルギー電子加速器のものを例示したが、前記電子ビーム発生器1200はこれに限定するものではなく、0.5MeVを超過する中エネルギーまたは高エネルギー電子加速器であってもよく、前述した大気浄化用反応装置100、200、300も0.5MeVを超過する中エネルギーまたは高エネルギー電子加速器を利用する大気浄化装置に適用され得ることを明らかにしておく。
【0119】
以上、本発明の一実施例について説明したが、本発明の思想は本明細書に提示される実施例に制限されず、本発明の思想を理解する当業者は同一思想の範囲内で、構成要素の付加、変更、削除、追加などによって他の実施例を容易に提案できるであろうが、これも本発明の思想範囲に属するものと言える。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17
図18
図19