IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 横河電機株式会社の特許一覧

特許7298494学習装置、学習方法、学習プログラム、判定装置、判定方法、および判定プログラム
<>
  • 特許-学習装置、学習方法、学習プログラム、判定装置、判定方法、および判定プログラム 図1
  • 特許-学習装置、学習方法、学習プログラム、判定装置、判定方法、および判定プログラム 図2
  • 特許-学習装置、学習方法、学習プログラム、判定装置、判定方法、および判定プログラム 図3
  • 特許-学習装置、学習方法、学習プログラム、判定装置、判定方法、および判定プログラム 図4
  • 特許-学習装置、学習方法、学習プログラム、判定装置、判定方法、および判定プログラム 図5
  • 特許-学習装置、学習方法、学習プログラム、判定装置、判定方法、および判定プログラム 図6
  • 特許-学習装置、学習方法、学習プログラム、判定装置、判定方法、および判定プログラム 図7
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-06-19
(45)【発行日】2023-06-27
(54)【発明の名称】学習装置、学習方法、学習プログラム、判定装置、判定方法、および判定プログラム
(51)【国際特許分類】
   G06N 20/00 20190101AFI20230620BHJP
   G06F 18/15 20230101ALI20230620BHJP
   G05B 23/02 20060101ALI20230620BHJP
【FI】
G06N20/00
G06F18/15
G05B23/02 T
G05B23/02 Z
【請求項の数】 12
(21)【出願番号】P 2020014710
(22)【出願日】2020-01-31
(65)【公開番号】P2021121888
(43)【公開日】2021-08-26
【審査請求日】2022-03-04
(73)【特許権者】
【識別番号】000006507
【氏名又は名称】横河電機株式会社
(74)【代理人】
【識別番号】110000877
【氏名又は名称】弁理士法人RYUKA国際特許事務所
(72)【発明者】
【氏名】藤井 涼平
(72)【発明者】
【氏名】林 艶艶
【審査官】加藤 優一
(56)【参考文献】
【文献】米国特許出願公開第2019/0188584(US,A1)
【文献】特開2019-153045(JP,A)
【文献】国際公開第2019/229977(WO,A1)
【文献】特開2019-082918(JP,A)
【文献】特開2017-033526(JP,A)
【文献】特開昭56-012591(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G06N 3/00 -99/00
G06F 18/00 -18/40
G05B 23/00 -23/02
(57)【特許請求の範囲】
【請求項1】
設備を測定した測定データおよび前記設備の状態を含む学習用データを取得する学習用データ取得部と、
前記学習用データ中の前記測定データの平均値の変化または重心の移動を伴うドリフトを低減する前処理を行って前処理済学習用データを出力する学習用前処理部と、
前記前処理済学習用データを用いて、平均値の変化または重心の移動を伴うドリフトを低減する前処理が行われた測定データから前記設備の状態を判定するモデルを学習する処理を行う学習処理部と
を備える学習装置。
【請求項2】
前記学習用前処理部は、
前記学習用データ中の測定データのドリフトを表す特徴量を算出する特徴量算出部と、
前記学習用データ中の測定データから前記特徴量に応じたドリフトを除去するデータ変換部と
を有する
請求項1に記載の学習装置。
【請求項3】
前記学習用前処理部が行うべき前処理の種類の指定を入力する指定入力部を更に備え、
前記学習用前処理部は、入力された前記指定に対応する前処理を行う請求項1または2に記載の学習装置。
【請求項4】
前記学習用前処理部は、前記指定に応じて、前記学習用データ中の測定データの重心移動を低減する前処理、または前記学習用データ中の測定データの差分をスライドウィンドウ内で算出する前処理の少なくとも1つを行う請求項3に記載の学習装置。
【請求項5】
前記設備を測定した測定データを含む判定用データを取得する判定用データ取得部と、
前記判定用データのドリフトを低減する前処理を行って前処理済判定用データを出力する判定用前処理部と、
学習済の前記モデルを用いて、前記前処理済判定用データから前記設備の状態を判定する判定部と
を更に備える請求項1から4のいずれか一項に記載の学習装置。
【請求項6】
前記前処理済学習用データおよび前記前処理済判定用データの分布を表示する処理を行う表示処理部を更に備える請求項5に記載の学習装置。
【請求項7】
前記学習用データおよび前記判定用データは、前記設備に設けた複数のセンサの測定値を含み、
前記複数のセンサの測定値のうち、前記モデルの判定結果に対する寄与度が相対的に高い少なくとも1つのセンサの測定値を選択する選択部を更に備え、
前記表示処理部は、前記前処理済学習用データおよび前記前処理済判定用データのうち前記選択部により選択された前記少なくとも1つのセンサの測定値の分布を表示する処理を行う
請求項6に記載の学習装置。
【請求項8】
学習装置が、設備を測定した測定データおよび前記設備の状態を含む学習用データを取得することと、
前記学習装置が、前記学習用データ中の前記測定データの平均値の変化または重心の移動を伴うドリフトを低減する前処理を行って前処理済学習用データを出力することと、
前記学習装置が、前記前処理済学習用データを用いて、平均値の変化または重心の移動を伴うドリフトを低減する前処理が行われた測定データから前記設備の状態を判定するモデルを学習する処理を行うことと
を備える学習方法。
【請求項9】
コンピュータにより実行され、前記コンピュータを、
設備を測定した測定データおよび前記設備の状態を含む学習用データを取得する学習用データ取得部と、
前記学習用データ中の前記測定データの平均値の変化または重心の移動を伴うドリフトを低減する前処理を行って前処理済学習用データを出力する学習用前処理部と、
前記前処理済学習用データを用いて、平均値の変化または重心の移動を伴うドリフトを低減する前処理が行われた測定データから前記設備の状態を判定するモデルを学習する処理を行う学習処理部と
を備える学習装置として機能させるための学習プログラム。
【請求項10】
設備を測定した測定データを含む判定用データを取得する判定用データ取得部と、
前記判定用データの平均値の変化または重心の移動を伴うドリフトを低減する前処理を行って前処理済判定用データを出力する判定用前処理部と、
学習用データに対して平均値の変化または重心の移動を伴うドリフトを低減する前処理が行われた前処理済学習用データを用いて学習したモデルを用いて、前記前処理済判定用データから前記設備の状態を判定する判定部と
を備える判定装置。
【請求項11】
判定装置が、設備を測定した測定データを含む判定用データを取得することと、
前記判定装置が、前記判定用データの平均値の変化または重心の移動を伴うドリフトを低減する前処理を行って前処理済判定用データを出力することと、
前記判定装置が、学習用データに対して平均値の変化または重心の移動を伴うドリフトを低減する前処理が行われた前処理済学習用データを用いて学習したモデルを用いて、前記前処理済判定用データから前記設備の状態を判定することと
を備える判定方法。
【請求項12】
コンピュータにより実行され、前記コンピュータを、
設備を測定した測定データを含む判定用データを取得する判定用データ取得部と、
前記判定用データの平均値の変化または重心の移動を伴うドリフトを低減する前処理を行って前処理済判定用データを出力する判定用前処理部と、
学習用データに対して平均値の変化または重心の移動を伴うドリフトを低減する前処理が行われた前処理済学習用データを用いて学習したモデルを用いて、前記前処理済判定用データから前記設備の状態を判定する判定部と
して機能させる判定プログラム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、学習装置、学習方法、学習プログラム、判定装置、判定方法、および判定プログラムに関する。
【背景技術】
【0002】
近年、プラントの制御システムの中には、学習済みのモデルを用いてプラントの設備をモニタリングして診断する機能を有するものがある。例えば、非特許文献1は、モニタリング対象にこれまで起きていない故障や劣化が生じた場合にコンセプトドリフトを検出し、適切なタイミングでモデル更新を行う技術を開示する。
[先行技術文献]
[特許文献]
[非特許文献1] 坂本他4名、「適応型モニタリングシステムにおけるコンセプトドリフト検出に向けた初期実験」、人工知能学会研究会資料SIG-KBS-B401-05、日本、2014年7月24日
【発明の概要】
【発明が解決しようとする課題】
【0003】
一般に、診断に用いるモデルは、学習用データを用いて教育されるので、学習用データを取得した状況、条件、および機器の設定等に依存したものとなり、別の状況等における診断に適用することが困難である。このため、上記従来技術においては、測定対象のデータの特徴が時間とともに変化していくドリフト現象を検知し、ドリフトが検知された場合にモデルを更新する必要が生じる。
【課題を解決するための手段】
【0004】
上記課題を解決するために、本発明の第1の態様においては、学習装置を提供する。学習装置は、設備を測定した測定データおよび設備の状態を含む学習用データを取得する学習用データ取得部を備えてよい。学習装置は、学習用データ中の測定データのドリフトを低減する前処理を行って前処理済学習用データを出力する学習用前処理部を備えてよい。学習装置は、前処理済学習用データを用いて、前処理された測定データから設備の状態を判定するモデルを学習する処理を行う学習処理部を備えてよい。
【0005】
学習用前処理部は、学習用データ中の測定データのドリフトを表す特徴量を算出する特徴量算出部を備えてよい。学習用前処理部は、学習用データ中の測定データから特徴量に応じたドリフトを除去するデータ変換部を備えてよい。
【0006】
学習装置は、学習用前処理部が行うべき前処理の種類の指定を入力する指定入力部を更に備えてもよい。学習用前処理部は、入力された指定に対応する前処理を行ってよい。
【0007】
学習用前処理部は、指定に応じて、学習用データ中の測定データの重心移動を低減する前処理、または学習用データ中の測定データの差分をスライドウィンドウ内で算出する前処理の少なくとも1つを行ってよい。
【0008】
学習装置は、設備を測定した測定データを含む判定用データを取得する判定用データ取得部を備えてよい。学習装置は、判定用データのドリフトを低減する前処理を行って前処理済判定用データを出力する判定用前処理部を備えてよい。学習装置は、学習済のモデルを用いて、前処理済判定用データから設備の状態を判定する判定部を備えてよい。
【0009】
学習装置は、前処理済学習用データおよび前処理済判定用データの分布を表示する処理を行う表示処理部を更に備えてよい。
【0010】
学習用データおよび判定用データは、設備に設けた複数のセンサの測定値を含んでよい。学習装置は、複数のセンサの測定値のうち、モデルの判定結果に対する寄与度が相対的に高い少なくとも1つのセンサの測定値を選択する選択部を更に備えてよい。表示処理部は、前処理済学習用データおよび前処理済判定用データのうち選択部により選択された少なくとも1つのセンサの測定値の分布を表示する処理を行ってよい。
【0011】
本発明の第2の態様においては、学習方法を提供する。学習方法は、学習装置が、設備を測定した測定データおよび設備の状態を含む学習用データを取得することを含む。学習方法は、学習装置が、学習用データ中の測定データのドリフトを低減する前処理を行って前処理済学習用データを出力することを含む。学習方法は、学習装置が、前処理済学習用データを用いて、前処理された測定データから設備の状態を判定するモデルを学習する処理を行うことを含む。
【0012】
本発明の第3の態様においては、コンピュータにより実行される学習プログラムを提供する。学習プログラムは、コンピュータを、設備を測定した測定データおよび設備の状態を含む学習用データを取得する学習用データ取得部として機能させてよい。学習プログラムは、コンピュータを、学習用データ中の測定データのドリフトを低減する前処理を行って前処理済学習用データを出力する学習用前処理部として機能させてよい。学習プログラムは、コンピュータを、前処理済学習用データを用いて、前処理された測定データから設備の状態を判定するモデルを学習する処理を行う学習処理部として機能させてよい。
【0013】
本発明の第4の態様においては、判定装置を提供する。判定装置は、設備を測定した測定データを含む判定用データを取得する判定用データ取得部を備えてよい。判定装置は、判定用データのドリフトを低減する前処理を行って前処理済判定用データを出力する判定用前処理部を備えてよい。判定装置は、学習用データに対して前処理が行われた前処理済学習用データを用いて学習したモデルを用いて、前処理済判定用データから設備の状態を判定する判定部を備えてよい。
【0014】
本発明の第5の態様においては、判定方法を提供する。判定方法は、判定装置が、設備を測定した測定データを含む判定用データを取得することを含んでよい。判定方法は、判定装置が、判定用データのドリフトを低減する前処理を行って前処理済判定用データを出力することを含んでよい。判定方法は、判定装置が、学習用データに対して前処理が行われた前処理済学習用データを用いて学習したモデルを用いて、前処理済判定用データから設備の状態を判定することを含んでよい。
【0015】
本発明の第6の態様においては、コンピュータにより実行される判定プログラムを提供する。判定プログラムは、コンピュータを、設備を測定した測定データを含む判定用データを取得する判定用データ取得部として機能させてよい。判定プログラムは、コンピュータを、判定用データのドリフトを低減する前処理を行う判定用前処理部として機能させてよい。判定プログラムは、コンピュータを、学習用データに対して前処理が行われた前処理済学習用データを用いて学習したモデルを用いて、前処理済判定用データから設備の状態を判定する判定部として機能させてよい。
【0016】
なお、上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。
【図面の簡単な説明】
【0017】
図1】本発明の実施形態に係る学習装置100および判定装置150の構成を示す。
図2】本発明の実施形態に係る学習装置100の動作フローを示す。
図3】本発明の実施形態に係る判定装置150の動作フローを示す。
図4】本発明の実施形態に係る表示画面の一例を示す。
図5】本発明の実施形態に係る測定データの一例を示す。
図6】本発明の実施形態に係るドリフト除去後の測定データの一例を示す。
図7】本発明の複数の態様が全体的または部分的に具現化されてよいコンピュータ2200の例を示す。
【発明を実施するための形態】
【0018】
以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は特許請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
【0019】
図1は、本実施形態に係る学習装置100および判定装置150の構成を示す。学習装置100は、前処理によってドリフトの影響を低減または除去した学習用データを用いてプラントの設備の状態を判定するモデルを学習する。判定装置150は、学習したモデルを用いて、前処理によってドリフトの影響を低減または除去した判定用データに基づいてプラント等の設備の状態を判定する。このようにして、学習装置100および判定装置150は、ドリフトの影響を低減または除去して学習および判定を行うことにより、測定データにドリフトが生じた場合においてもモデルを学習し直す必要性を減らし、再学習の処理負荷を低減することができる。
【0020】
ここで、プラントとしては、化学やバイオ等の工業プラントの他、ガス田や油田等の井戸元やその周辺を管理制御するプラント、水力・火力・原子力等の発電を管理制御するプラント、太陽光や風力等の環境発電を管理制御するプラント、上下水やダム等を管理制御するプラント等が挙げられる。また、設備としては、タンク、配管、バルブ、ボイラー、コンプレッサー、モータ、およびその他の装置等が挙げられる。
【0021】
なお、学習装置100および判定装置150は、プラント以外に設置される設備に対しても適用することができる。例えば、学習装置100および判定装置150は、省エネ性や快適性を実現するべくビルの空調を制御する設備等に適用されてもよい。本実施形態においては、学習装置100および判定装置150が、プラントの設備に適用される場合について例示する。
【0022】
学習装置100は、学習用データ取得部105と、学習用前処理部110と、学習処理部130とを備える。学習用データ取得部105は、学習用データを取得する。学習用データは、プラントの設備を測定した測定データと、その測定データに応じた設備の状態とを含む。ここで、測定データは、各測定タイミングについて、プラントの1または複数の設備に設けられた1または複数のセンサによって測定された測定値を含む。このような測定データは、例えば設備の測定対象箇所における温度、圧力、流量、振動、または腐食等を示すデータであってよい。設備の状態は、設備の異常または故障の有無等を表すものであり、一例としてプラントの保守員等のユーザが測定データに対してラベリング(アノテーション)したものであってよい。
【0023】
学習用前処理部110は、学習用データ取得部105に接続され、学習用データ取得部105が取得した学習用データ中の測定データのドリフトを低減する前処理を行い、前処理によって得られた前処理済学習用データを出力する。学習用前処理部110は、特徴量算出部115と、データ変換部120とを有する。特徴量算出部115は、学習用データ取得部105が取得した学習用データ中の測定データの特徴量を算出する。例えば、特徴量算出部115は、学習用データ中の測定データのドリフトを表す特徴量を算出する。データ変換部120は、特徴量算出部115に接続され、学習用データ中の測定データのドリフトを低減(すなわち少なくとも一部を除去)し、または測定データのドリフトを除去する。ここで、データ変換部120は、特徴量算出部115が算出した特徴量に応じたドリフトについては、この特徴量に応じたドリフトを学習用データ中の測定データから除去してよい。
【0024】
学習処理部130は、学習用前処理部110に接続される。学習処理部130は、学習用前処理部110によって前処理された前処理済学習用データを用いて、前処理された測定データから設備の状態を判定するモデルを学習する処理を行う。学習処理部130は、学習済みのモデルをモデル記憶部140に格納する。
【0025】
学習装置100は、指定入力部125を有してもよい。指定入力部125は、学習装置100のユーザから、学習用前処理部110が学習用データ中の測定データに対して適用するべき前処理の種類の指定等の前処理パラメータを入力する。学習装置100のユーザから前処理の種類等の指定を入力した場合には、学習用前処理部110内の特徴量算出部115は、入力された指定に対応する特徴量を算出し、データ変換部120は、算出された特徴量に応じて、入力された指定に対応する前処理を行ってよい。
【0026】
モデル記憶部140は、学習装置100に接続され、学習処理部130によって学習されたモデルを記憶する。
【0027】
判定装置150は、判定用データ取得部155と、判定用前処理部160と、判定部180とを有する。判定用データ取得部155は、判定用データを取得する。判定用データは、プラントの1または複数の設備に設けられた1または複数のセンサによって各測定タイミングでプラントの設備を測定した測定データを含む。
【0028】
判定用前処理部160は、判定用データ取得部155に接続され、判定用データ取得部155が取得した判定用データのドリフトを低減する前処理を行って前処理済判定用データを出力する。判定用前処理部160は、特徴量算出部165と、データ変換部170とを有する。特徴量算出部165は、判定用データ取得部155が取得した測定データの特徴量を算出する。例えば、特徴量算出部165は、判定用データ中の測定データのドリフトを表す特徴量を算出する。特徴量算出部165は、学習用前処理部110内の特徴量算出部115と同様の機能および構成を有してよい。データ変換部170は、特徴量算出部165に接続され、判定用データ中の測定データのドリフトを低減(すなわち少なくとも一部を除去)し、または測定データのドリフトを除去する。ここで、データ変換部170は、特徴量算出部165が算出した特徴量に応じたドリフトについては、判定用データ中の測定データから特徴量に応じたドリフトを除去する。データ変換部170は、学習用前処理部110内のデータ変換部120と同様の機能および構成を有してよい。
【0029】
判定部180は、モデル記憶部140および判定用前処理部160に接続される。判定部180は、モデル記憶部140に記憶された学習済のモデルを用いて、前処理済判定用データからプラントの状態を判定する。ここで、モデル記憶部140に記憶された学習済のモデルは、学習用データに対して学習用の前処理が行われた前処理済学習用データを用いて学習したものである。
【0030】
判定装置150は、指定入力部175を有してもよい。指定入力部175は、判定装置150のユーザから、判定用前処理部160が判定用データ中の測定データに対して適用するべき前処理の種類の指定等の前処理パラメータを入力する。判定装置150のユーザから前処理の種類等の指定を入力した場合には、判定用前処理部160内の特徴量算出部165は、入力された指定に対応する特徴量を算出し、データ変換部170は、算出された特徴量に応じて、入力された指定に対応する前処理を行ってよい。
【0031】
判定装置150は、選択部185および表示処理部190を有してもよい。選択部185は、モデル記憶部140に接続される。学習用データおよび判定用データ中の測定データがプラントの1または複数の設備に設けた複数のセンサの測定値を含む場合、選択部185は、複数のセンサの測定値のうち、モデルの判定結果に対する寄与度が相対的に高い少なくとも1つのセンサの測定値を選択する。
【0032】
表示処理部190は、データ変換部120およびデータ変換部170に接続され、前処理済学習用データおよび前処理済判定用データを受け取る。また、表示処理部190は、選択部185に接続され、データ変換部120およびデータ変換部170から受け取った前処理済学習用データおよび前処理済判定用データの分布を表示する処理を行う。ここで、表示処理部190は、データ変換部120およびデータ変換部170から受け取った前処理済学習用データおよび前処理済判定用データのうち選択部185により選択された少なくとも1つのセンサの測定値の分布を表示画面に表示する処理を行ってよい。なお、表示処理部190は、表示画面を表示するためのディスプレイ等の表示部を含んでよい。これに代えて、表示処理部190は、外部の表示部に対して表示画面を表示する処理を行ってもよい。
【0033】
以上に示した学習装置100および判定装置150によれば、学習時に測定データのドリフトを低減または除去してモデルの学習を行い、診断(判定)時にも測定データのドリフトを低減または除去してからモデルを用いて診断を行うことによって、測定データのドリフトの影響を低減または除去した学習および診断を実現することができる。
【0034】
図2は、本実施形態に係る学習装置100の動作フローを示す。S200(ステップ200)において、学習用データ取得部105は、学習用データを取得する。
【0035】
S210において、指定入力部125は、学習装置100のユーザから、学習用データ中の測定データに対して適用するべき前処理の種類等の指定を入力する。ここで、学習用前処理部110が適用可能な前処理は、重心移動の除去、およびスライドウィンドウ内での差分計算によるドリフトの除去等を含んでよい。指定入力部125は、前処理の種類等の前処理パラメータの指定として、このような前処理のいずれを行うかを入力してよく、スライドウィンドウの長さ等の前処理に付随するパラメータを入力してもよい。
【0036】
S220において、特徴量算出部115は、学習用データ中の測定データのドリフトを表す特徴量を算出する。ここで、特徴量算出部115は、指定入力部125を介して前処理の種類等が入力されている場合には、指定された前処理およびパラメータに応じた特徴量を算出する。特徴量算出部115は、前処理の種類等の指定が入力されていない場合には、デフォルトの設定に応じた特徴量を算出する。
【0037】
例えば、センサからの測定データの値にオフセットが加わっていくようなドリフトに対しては、特徴量算出部115は、予め定められた長さまたはサンプル数の期間のスライドウィンドウ毎の測定データの平均値を算出してよい。また、特徴量算出部115は、1または複数のセンサからの測定値を含む測定データについて、予め定められた長さまたはサンプル数の期間のスライドウィンドウ毎の測定データの重心を算出してよい。ここで、このような平均または重心等を算出する場合に、特徴量算出部115は、外れ値を除いて平均または重心等を算出してもよい。特徴量算出部115は、例えば対象期間中の全測定値の平均から標準偏差の例えば3倍等の所定の係数以上外れた測定値を外れ値とみなしてよい。また、特徴量算出部115は、測定データのドリフトを表す特徴量として、平均または重心等が変化する周期(例えば1週間毎)またはタイミングを算出してもよい。
【0038】
S230において、データ変換部120は、学習用データ中の測定データのドリフトを低減する前処理を行って前処理済学習用データを出力する。ここで、データ変換部120は、指定入力部125を介して前処理の種類等の指定が入力されている場合には、測定データに対してユーザが指定した前処理を適用する。前処理の種類等の指定が入力されていない場合、データ変換部120は、S220で算出した特徴量に応じたドリフトを除去する。例えば、あるセンサからの測定データにおける平均値の変化を伴うドリフトに対しては、データ変換部120は、測定データの各サンプル値からS220で算出した平均値を減じて平均値の変化の影響を除去する。また、複数のセンサからの測定データにおける重心の移動を伴うドリフトに対しては、データ変換部120は、測定データの各タイミングにおけるサンプル値の組からS220で算出した重心を減じて重心の変化の影響を除去する。データ変換部120は、前処理の種類が指定されていない場合には、デフォルトで定められた前処理を適用してよい。これに代えて、データ変換部120は、特徴量算出部115が算出した、平均または重心等が変化する周期またはタイミングを示す特徴量に基づいて、その変化よりも短い期間のスライドウィンドウを使用すること、および変化が生じた指標(平均、重心等)の変化を除去することを決定してもよい。
【0039】
また、データ変換部120は、ドリフト除去の種類によっては、特徴量算出部115が算出する特徴量を用いずに測定データに対してドリフトを除去する前処理を行うことができる。このようなドリフト除去の方法は、例えばスライドウィンドウ内での差分計算が挙げられる。より具体的には、スライドウィンドウ内の測定値の最大値から最小値を減じた値、スライドウィンドウ内の測定値の最初と最後の値、または、スライドウィンドウ内の隣接する測定値の差のうち最も大きい値といったスライドウィンドウ内の測定値の差分を用いる場合には、この計算に伴って平均値の変化の影響が除去される。したがって、データ変換部120は、このようなドリフト除去については、特徴量算出部115が算出する平均値等の特徴量を使用する必要はない。なお、データ変換部120は、このような場合でも、平均等が変化する周期またはタイミングを示す特徴量を用いてスライドウィンドウの大きさを決定してもよい。
【0040】
また、データ変換部120は、測定データの大きさを標準化する処理を行ってもよい。例えば、データ変換部120は、測定値および平均値の差分を標準偏差で割った値を前処理後の測定データとすることにより、測定データの大きさを標準化してもよい。これにより、データ変換部120は、センサの感度が変化するようなドリフトに対しても、適切な前処理を施すことができる。
【0041】
S240において、学習処理部130は、学習用前処理部110からの前処理済学習用データを用いて、前処理された測定データから設備の状態を判定するモデルを学習する処理を行う。一例として、モデルは、判定対象の各タイミングについて、1または複数のセンサからの1または複数の測定値を入力し、その1または複数の測定値に応じた設備の状態の判定結果を出力する。ここで、モデルは、サポートベクターマシン(SVM)、ニューラルネットワーク、またはその他の機械学習モデルを用いてよい。
【0042】
例えば、SVMを用いる場合、学習処理部130は、前処理済学習用データにおける、各タイミングの1または複数の測定値の組を座標とする点を多次元空間にマップした場合に、設備が正常とラベリングされた点の集合と、設備が異常であるとラベリングされた点の集合との間を最大のマージンをもって分離する超平面を学習する。この超平面は、各測定値に対応する重みの組を含む重みベクトルによって表される。
【0043】
また、例えばニューラルネットワークを用いる場合、学習処理部130は、前処理済学習用データに含まれる、1または複数のセンサからの1または複数の測定値の組を入力層に入力した場合に出力層から出力される判定結果と目標とする判定結果との誤差を最小化するように、バックプロパゲーション等の手法を用いて各ニューロン間の重みおよび各ニューロンのバイアスを調整する。
【0044】
なお、プラントの設備は、異常となるのは稀であるから、学習用データ中の測定データのほとんどには正常である旨のラベルが付与されており、異常である旨のラベルが付された測定データはわずかである。このようなアンバランスの問題を解消するために、特徴量算出部115は、S220において、正常である旨のラベルが付された測定データ(正常データ)をアンダーサンプリングして、データ変換部120を介して学習処理部130に供給してよい。すなわち例えば、特徴量算出部115は、正常データにおける各タイミングのサンプルの中から、一定の周期毎またはランダムに選択したサンプルを用いてモデルを学習することにより正常データのサンプル数を減らしてよい。
【0045】
また、特徴量算出部115は、S220において、異常である旨のラベルが付された測定データ(異常データ)をオーバーサンプリングしてもよい。すなわち例えば、特徴量算出部115は、異常データのサンプルを重複して使用したり、異常データの平均および分散を用いて異常データの新たなサンプルをランダムに生成したりする等により、異常データのサンプル数を増やしてよい。また、特徴量算出部115は、SMOTE(Synthetic Minority Oversampling Technique)等の手法を用いて、異常データのサンプル同士の間の点をランダムに新たなサンプルとして追加してもよい。特徴量算出部115はまた、正常データのアンダーサンプリングおよび異常データのオーバーサンプリングを併用することによってさらにアンバランスを低減してもよい。
【0046】
また、学習処理部130は、モデルのハイパーパラメータ(例えばニューラルネットワークにおける層数、ノード数等)を最適化して、モデルの正答率をより高めるように調整してもよい。また、学習処理部130は、ワンクラスSVM等の1クラス分類を行う機械学習モデルを用いることにより、正常データの各サンプルを1つのクラスに分類できるようにモデルを学習してもよい。
【0047】
図3は、本実施形態に係る判定装置150の動作フローを示す。S300において、判定用データ取得部155は、判定用データを取得する。判定用データ取得部155は、プラントの1または複数の設備に設けられた1または複数のセンサからリアルタイムに提供されるセンサデータを判定用データとして取得してよい。
【0048】
S310において、指定入力部175は、判定装置150のユーザから、判定用データ中の測定データに対して適用するべき前処理の種類等の前処理パラメータの指定を入力する。指定入力部175は、図2のS210と同様の処理により、前処理の種類等の前処理パラメータの指定を入力してよい。
【0049】
S320において、特徴量算出部165は、判定用データ中の測定データのドリフトを表す特徴量を算出する。特徴量算出部165は、図2のS220と同様の処理により、特徴量を算出してよい。
【0050】
S330において、データ変換部170は、判定用データのドリフトを低減する前処理を行って前処理済判定用データを出力する。データ変換部170は、図2のS330と同様の処理により、判定用データに前処理を適用してよい。なお、特徴量算出部165およびデータ変換部170は、特徴量算出部115およびデータ変換部120が行った前処理と同じ前処理を判定用データに対して適用してよい。これに代えて、特徴量算出部165およびデータ変換部170は、特徴量算出部115およびデータ変換部120が行った前処理と少なくとも一部が異なる前処理を判定用データに対して適用してよい。例えば、学習用データおよび判定用データの間でドリフトの周期が異なる場合、特徴量算出部165およびデータ変換部170は、学習用データに対して行った前処理とは異なる周期でドリフトを低減する前処理を判定用データに対して適用してよい。
【0051】
S340において、判定用データ中の測定データが複数のセンサの測定値を含む場合、選択部185は、モデルの判定結果に対する寄与度が相対的に高い少なくとも1つのセンサの測定値を、表示画面に表示すべきパラメータとして選択する。
【0052】
S350において、表示処理部190は、学習用前処理部110から受け取った前処理済学習用データおよび判定用前処理部160から受け取った前処理済判定用データに含まれる各センサの測定値のうち、S340において選択された少なくとも1つのセンサの測定値の分布を表示画面に表示する。これにより、表示処理部190は、正常と判断された前処理済学習用データ、異常と判断された前処理済学習用データ、および前処理済判定用データのそれぞれが、判定結果に対する寄与度が高い各センサの測定値を座標軸として選択した座標空間上でどの範囲に分布するかを表示することができる。
【0053】
S360において、指定入力部175は、判定装置150のユーザから、判定用データ中の測定データに対して適用するべき前処理の種類等の前処理パラメータを変更する指示を入力する。前処理の種類等を変更する指示があった場合、判定装置150は、処理をS330へと進め、判定用データに対して変更後の前処理を適用し(S330)、前処理済学習用データおよび前処理済判定用データの測定値の分布を再表示する(S340~S350)処理を行う。前処理の種類等を変更する指示がない場合、判定部180は、モデル記憶部140に記憶された学習済みのモデルを用いて、判定用前処理部160による前処理済判定用データから設備の状態を判定する(S370)。
【0054】
図4は、本実施形態に係る表示画面400の一例を示す。表示画面400は、分布表示部410と、健全性表示部420と、前処理パラメータ入力部430と、前処理手法入力部440とを備える。
【0055】
分布表示部410は、前処理済学習用データおよび前処理済判定用データのうち、選択部185によって選択された少なくとも1つのセンサの測定値の分布を表示する。本図の例において、選択部185は、モデルの判定結果に対する寄与度が相対的に高い3つのセンサの測定値を選択している。ここで、選択部185は、あるセンサの測定値の変化がモデルの判定結果に与える影響度が大きい場合に、判定結果に対するそのセンサの測定値の寄与度が大きいと判断してよい。例えば、SVMにおいては、選択部185は、判定結果の境界を示す超平面を表す重みベクトルの各要素のうち、絶対値が大きい順に予め定められた数(例えば2次元表示においては2,3次元表示においては3)を選択し、選択した要素に対応するセンサの測定値を寄与度が相対的に高いものとして選択してもよい。また、ニューラルネットワークにおいては、選択部185は、各センサの測定値を入力する各入力ノードから判定結果を出力する出力ノードに至るまでの関数を展開した場合に、出力値に対する影響が大きい順に予め定められた数のセンサを選択してよい。
【0056】
本実施形態に係る表示処理部190は、選択された3つのセンサの測定値を3軸方向とする3次元空間における前処理済学習用データおよび前処理済判定用データの分布を3次元散布図として分布表示部410に表示している。図中丸印は正常と分類された前処理済学習用データの各サンプルを、バツ印は異常と分類された前処理済学習用データの各サンプルを、三角印は前処理済判定用データの各サンプルを示す。
【0057】
本図においては、前処理済判定用データの分布(図中三角印)は、3次元座標空間上で、正常と分類された前処理済学習用データの分布(図中丸印)からずれている。ここで、測定データのドリフトが除去できている場合には、前処理済判定用データの分布は、前処理済学習用データの分布と重なるはずである。したがって、本図のように前処理済判定用データの分布が前処理済学習用データの分布からずれている場合は、表示処理部190は、判定用データのドリフトが十分に除去できていないことをユーザに認識させることができ、図3のS360において前処理の種類を変更する等の手段によって判定用データのドリフトを除去するといった対応をとらせることができる。また、表示処理部190は、表示画面400に分布表示部410を表示させることにより、判定部180による誤判定がドリフトの残存によって生じたか否かをユーザに確認させることができる。
【0058】
健全性表示部420は、判定部180が学習済みのモデルを用いて前処理済判定用データに基づき判定したプラントの状態の判定結果を示す健全性指標値の時系列データを表す。表示処理部190は、各タイミングにおける前処理済判定用データをモデルに与えて得られる各タイミングの判定結果を、時系列のグラフとして表示させる。SVMを用いる場合、表示処理部190は、各タイミングにおける各センサの測定値と、各センサに対応する重みとの積和を健全性指標値として表示してよい。ニューラルネットワークを用いる場合、表示処理部190は、各センサの測定値を入力層に入力した場合における、判定結果を出力する出力ノードの出力値を、健全性指標値として表示してもよい。図中健全性表示部420の破線は、健全性指標値についての正常および異常の閾値を示す。判定部180は、健全性指標値が閾値以下となったことに応じてプラントの判定対象設備が異常であると判定する。
【0059】
前処理パラメータ入力部430は、前処理パラメータの指定をユーザから受け付けるべく表示処理部190が表示する入力欄である。また、前処理手法入力部440は、前処理の種類の指定をユーザから受け付けるべく表示処理部190が表示する入力欄である。本図において、指定入力部125および指定入力部175は、前処理パラメータ入力部430および前処理手法入力部440へのユーザの入力を通じて前処理の種類およびその他の前処理用のパラメータを受け取る。本図の例において、前処理手法入力部440には前処理手法として「重心移動」を用いることが指定され、前処理パラメータ入力部430には前処理パラメータとして「1週間」が指定されている。これを受けて、指定入力部125および指定入力部175は、測定データの重心が移動するドリフトを低減すること、および、ウィンドウ窓の長さを1週間とすることを学習用前処理部110および学習用前処理部160に設定する。学習用前処理部110および学習用前処理部160、前処理パラメータ入力部430および前処理手法入力部440に対する指定に応じて、測定データの重心移動を低減する前処理、またはスライドウィンドウ内で測定データの差分を算出する前処理の少なくとも1つを行ってよい。
【0060】
以上に示した表示画面400によれば、分布表示部410の表示によって測定データのドリフトが除去できているか否かをユーザに確認させることができる。また、ドリフトが除去できていない場合には、指定入力部125および指定入力部175は、前処理パラメータ入力部430および前処理手法入力部440を介して、適切な前処理の指定をユーザから受け取ることができる。また、健全性表示部420の表示を見たユーザが判定装置150による判定が誤りであると結論づけた場合には、判定装置150は、誤判断のタイミングにおける測定データおよび判定対象設備の正しい状態の組を追加の学習用データとして学習用データ取得部105に供給してモデルの再学習に利用させてもよい。この場合、判定装置150は、学習装置100に対して、図2のS200からの処理を行う指示を送り、学習装置100は、その指示に基づいて、図2のS200から再学習処理を行ってもよい。
【0061】
なお、特徴量算出部115が学習用データのアンダーサンプリングまたはオーバーサンプリングの少なくとも1つを行う機能を有する場合、表示処理部190は、アンダーサンプリング/オーバーサンプリングを適用するか否かの指定の入力欄、アンダーサンプリング/オーバーサンプリングのレートの指定の入力欄、またはその他のアンダーサンプリング/オーバーサンプリングのパラメータを指定する入力欄のうちの少なくとも1つを表示してもよい。この場合、指定入力部125は、アンダーサンプリング/オーバーサンプリングに関する指定を入力し、特徴量算出部115は、この指定に基づいて学習用データのアンダーサンプリング/オーバーサンプリングを行ってよい。
【0062】
図5は、本実施形態に係る測定データの一例を示し、図6は、本実施形態に係るドリフト除去後の測定データの一例を示す。これらの図の横軸は、時間の経過を示し、縦軸は測定値を示す。
【0063】
本図の例において、測定データは、測定箇所の温度を測定するための温度センサの測定値の時系列データである。この測定データには、図5に示すように、1週間毎に重心が移動するドリフトが発生している。
【0064】
特徴量算出部115は、このような測定データを含む学習用データを受け取ったことに応じて、測定データのドリフトを表す特徴量として、スライドウィンドウ毎の重心と、重心が変化する周期(本図の例においては1週間)とを算出する。これに代えて、指定入力部125は、図4の前処理パラメータ入力部430および前処理手法入力部440への入力を介して、ユーザが指定した前処理手法(図4においては「重心移動」)および前処理パラメータ(図4においては「1週間」)を受け取ってもよい。この場合、特徴量算出部115は、指定された前処理手法および前処理パラメータに応じて上記の特徴量を算出する。
【0065】
データ変換部120は、特徴量算出部115が算出した特徴量に応じて、測定データを上記周期(本図の例においては1週間)毎に分割した各区間において、測定データから当該区間の重心の値を減じる前処理を行ってよい。これにより、データ変換部120は、図6に示したように、周期的なドリフトの影響を除去した測定データを得ることができる。学習処理部130は、このようにしてドリフトの影響を除去した測定データを含む前処理済学習用データを用いてモデルを学習することができる。なお、測定データをある周期毎に分割した各区間の平均または重心等を用いて測定データのドリフトを除去すると、区間同士の境界において図6のタイミング24~29あたりおよびタイミング55~57あたりに示されているような不連続点が発生しうる。このため、学習処理部130は、区間の切り替わり後予め定められたマージン期間の間の測定値は学習に用いないようにしてもよい。
【0066】
また、判定用データに基づく判定フェーズにおいて、判定装置150は、上記の学習フェーズと同様に測定データを取り扱ってよい。すなわち、特徴量算出部165は、図5のような測定データを含む判定用データを受け取ったことに応じて、測定データのドリフトを表す特徴量として、スライドウィンドウ毎の重心と、重心が変化する周期とを算出する。これに代えて、指定入力部175は、図4の前処理パラメータ入力部430および前処理手法入力部440への入力を介して、ユーザが指定した前処理手法および前処理パラメータを受け取ってもよい。この場合、特徴量算出部165は、指定された前処理手法および前処理パラメータに応じて上記の特徴量を算出する。
【0067】
データ変換部170は、特徴量算出部165が算出した特徴量応じて、測定データを上記周期毎に分割した各区間において、測定データから当該区間の重心の値を減じる前処理を行ってよい。これにより、データ変換部170は、図6に示したように、周期的なドリフトの影響を除去した測定データを得ることができる。判定部180は、このようにしてドリフトの影響を除去した測定データを含む前処理済判定用データを用いて設備の状態を判定することができる。なお、判定部180は、図6のタイミング24~29あたりおよびタイミング55~57あたりに示されているような不連続点を避けるべく、区間の切り替わり後予め定められたマージン期間の間の測定値は判定に用いないようにしてもよい。
【0068】
以上に示した学習装置100および判定装置150によれば、測定データのドリフトの影響を受けないようにモデルを学習し、そのようなモデルを用いてプラントの診断を行うことができる。これにより、学習装置100および判定装置150は、測定データの特徴が時間の経過とともに変化したとしても、モデルを再学習させる必要性を低減することができる。
【0069】
また、学習装置100および判定装置150は、前処理の種類等の指定をユーザから受け取って、指定された前処理を行うこともできるので、例えば定期的なメンテナンスのためのプラントまたは一部の設備のシャットダウン、センサのキャリブレーションの実施、もしくは、センサまたはセンサデータを読み出す機器の設定変更等のユーザが知っているイベントに応じて前処理を変更可能とすることができる。
【0070】
また、学習装置100および判定装置150によれば、測定データのドリフトの影響を除いたモデルを使用するので、同一プラントまたは異なるプラントにおける、同一または類似の構成を有する設備に対しても再学習なしにモデルを適用することも可能となる。
【0071】
なお、以上の説明においては、説明の便宜上測定データに対して1つの前処理を適用する場合を例示した。これに代えて、学習装置100および判定装置150は、異なるセンサからの測定データに対して、異なる前処理を施すようにしてもよい。例えば、学習装置100および判定装置150は、センサA1~A3からの測定データaに対しては1週間毎の周期の重心移動処理、センサB1~B2からの測定データbに対しては30分毎の周期の重心移動処理、センサCからの測定データcには1日の長さのスライドウィンドウを用いた差分計算処理を行うようにしてもよい。
【0072】
また、以上の説明においては、選択部185および表示処理部190が判定装置150内に設けられる場合を例示した。これに代えて、選択部185および表示処理部190は、学習装置100に設けられてもよい。また、学習装置100は、判定装置150を一体化した装置として提供されてもよく、逆に判定装置150が学習装置100を一体化した装置として提供されてもよい。また、学習装置100または判定装置150の少なくとも一方は、クラウドコンピューティングによって実現されてもよい。
【0073】
本発明の様々な実施形態は、フローチャートおよびブロック図を参照して記載されてよく、ここにおいてブロックは、(1)操作が実行されるプロセスの段階または(2)操作を実行する役割を持つ装置のセクションを表わしてよい。特定の段階およびセクションが、専用回路、コンピュータ可読媒体上に格納されるコンピュータ可読命令と共に供給されるプログラマブル回路、および/またはコンピュータ可読媒体上に格納されるコンピュータ可読命令と共に供給されるプロセッサによって実装されてよい。専用回路は、デジタルおよび/またはアナログハードウェア回路を含んでよく、集積回路(IC)および/またはディスクリート回路を含んでよい。プログラマブル回路は、論理AND、論理OR、論理XOR、論理NAND、論理NOR、および他の論理操作、フリップフロップ、レジスタ、フィールドプログラマブルゲートアレイ(FPGA)、プログラマブルロジックアレイ(PLA)等のようなメモリ要素等を含む、再構成可能なハードウェア回路を含んでよい。
【0074】
コンピュータ可読媒体は、適切なデバイスによって実行される命令を格納可能な任意の有形なデバイスを含んでよく、その結果、そこに格納される命令を有するコンピュータ可読媒体は、フローチャートまたはブロック図で指定された操作を実行するための手段を作成すべく実行され得る命令を含む、製品を備えることになる。コンピュータ可読媒体の例としては、電子記憶媒体、磁気記憶媒体、光記憶媒体、電磁記憶媒体、半導体記憶媒体等が含まれてよい。コンピュータ可読媒体のより具体的な例としては、フロッピー(登録商標)ディスク、ディスケット、ハードディスク、ランダムアクセスメモリ(RAM)、リードオンリメモリ(ROM)、消去可能プログラマブルリードオンリメモリ(EPROMまたはフラッシュメモリ)、電気的消去可能プログラマブルリードオンリメモリ(EEPROM)、静的ランダムアクセスメモリ(SRAM)、コンパクトディスクリードオンリメモリ(CD-ROM)、デジタル多用途ディスク(DVD)、ブルーレイ(RTM)ディスク、メモリスティック、集積回路カード等が含まれてよい。
【0075】
コンピュータ可読命令は、アセンブラ命令、命令セットアーキテクチャ(ISA)命令、マシン命令、マシン依存命令、マイクロコード、ファームウェア命令、状態設定データ、またはSmalltalk、JAVA(登録商標)、C++等のようなオブジェクト指向プログラミング言語、および「C」プログラミング言語または同様のプログラミング言語のような従来の手続型プログラミング言語を含む、1または複数のプログラミング言語の任意の組み合わせで記述されたソースコードまたはオブジェクトコードのいずれかを含んでよい。
【0076】
コンピュータ可読命令は、汎用コンピュータ、特殊目的のコンピュータ、若しくは他のプログラム可能なデータ処理装置のプロセッサまたはプログラマブル回路に対し、ローカルにまたはローカルエリアネットワーク(LAN)、インターネット等のようなワイドエリアネットワーク(WAN)を介して提供され、フローチャートまたはブロック図で指定された操作を実行するための手段を作成すべく、コンピュータ可読命令を実行してよい。プロセッサの例としては、コンピュータプロセッサ、処理ユニット、マイクロプロセッサ、デジタル信号プロセッサ、コントローラ、マイクロコントローラ等を含む。
【0077】
図7は、本発明の複数の態様が全体的または部分的に具現化されてよいコンピュータ2200の例を示す。コンピュータ2200にインストールされたプログラムは、コンピュータ2200に、本発明の実施形態に係る装置に関連付けられる操作または当該装置の1または複数のセクションとして機能させることができ、または当該操作または当該1または複数のセクションを実行させることができ、および/またはコンピュータ2200に、本発明の実施形態に係るプロセスまたは当該プロセスの段階を実行させることができる。そのようなプログラムは、コンピュータ2200に、本明細書に記載のフローチャートおよびブロック図のブロックのうちのいくつかまたはすべてに関連付けられた特定の操作を実行させるべく、CPU2212によって実行されてよい。
【0078】
本実施形態によるコンピュータ2200は、CPU2212、RAM2214、グラフィックコントローラ2216、およびディスプレイデバイス2218を含み、それらはホストコントローラ2210によって相互に接続されている。コンピュータ2200はまた、通信インターフェイス2222、ハードディスクドライブ2224、DVD-ROMドライブ2226、およびICカードドライブのような入/出力ユニットを含み、それらは入/出力コントローラ2220を介してホストコントローラ2210に接続されている。コンピュータはまた、ROM2230およびキーボード2242のようなレガシの入/出力ユニットを含み、それらは入/出力チップ2240を介して入/出力コントローラ2220に接続されている。
【0079】
CPU2212は、ROM2230およびRAM2214内に格納されたプログラムに従い動作し、それにより各ユニットを制御する。グラフィックコントローラ2216は、RAM2214内に提供されるフレームバッファ等またはそれ自体の中にCPU2212によって生成されたイメージデータを取得し、イメージデータがディスプレイデバイス2218上に表示されるようにする。
【0080】
通信インターフェイス2222は、ネットワークを介して他の電子デバイスと通信する。ハードディスクドライブ2224は、コンピュータ2200内のCPU2212によって使用されるプログラムおよびデータを格納する。DVD-ROMドライブ2226は、プログラムまたはデータをDVD-ROM2201から読み取り、ハードディスクドライブ2224にRAM2214を介してプログラムまたはデータを提供する。ICカードドライブは、プログラムおよびデータをICカードから読み取り、および/またはプログラムおよびデータをICカードに書き込む。
【0081】
ROM2230はその中に、アクティブ化時にコンピュータ2200によって実行されるブートプログラム等、および/またはコンピュータ2200のハードウェアに依存するプログラムを格納する。入/出力チップ2240はまた、様々な入/出力ユニットをパラレルポート、シリアルポート、キーボードポート、マウスポート等を介して、入/出力コントローラ2220に接続してよい。
【0082】
プログラムが、DVD-ROM2201またはICカードのようなコンピュータ可読媒体によって提供される。プログラムは、コンピュータ可読媒体から読み取られ、コンピュータ可読媒体の例でもあるハードディスクドライブ2224、RAM2214、またはROM2230にインストールされ、CPU2212によって実行される。これらのプログラム内に記述される情報処理は、コンピュータ2200に読み取られ、プログラムと、上記様々なタイプのハードウェアリソースとの間の連携をもたらす。装置または方法が、コンピュータ2200の使用に従い情報の操作または処理を実現することによって構成されてよい。
【0083】
例えば、通信がコンピュータ2200および外部デバイス間で実行される場合、CPU2212は、RAM2214にロードされた通信プログラムを実行し、通信プログラムに記述された処理に基づいて、通信インターフェイス2222に対し、通信処理を命令してよい。通信インターフェイス2222は、CPU2212の制御下、RAM2214、ハードディスクドライブ2224、DVD-ROM2201、またはICカードのような記録媒体内に提供される送信バッファ処理領域に格納された送信データを読み取り、読み取られた送信データをネットワークに送信し、またはネットワークから受信された受信データを記録媒体上に提供される受信バッファ処理領域等に書き込む。
【0084】
また、CPU2212は、ハードディスクドライブ2224、DVD-ROMドライブ2226(DVD-ROM2201)、ICカード等のような外部記録媒体に格納されたファイルまたはデータベースの全部または必要な部分がRAM2214に読み取られるようにし、RAM2214上のデータに対し様々なタイプの処理を実行してよい。CPU2212は次に、処理されたデータを外部記録媒体にライトバックする。
【0085】
様々なタイプのプログラム、データ、テーブル、およびデータベースのような様々なタイプの情報が記録媒体に格納され、情報処理を受けてよい。CPU2212は、RAM2214から読み取られたデータに対し、本開示の随所に記載され、プログラムの命令シーケンスによって指定される様々なタイプの操作、情報処理、条件判断、条件分岐、無条件分岐、情報の検索/置換等を含む、様々なタイプの処理を実行してよく、結果をRAM2214に対しライトバックする。また、CPU2212は、記録媒体内のファイル、データベース等における情報を検索してよい。例えば、各々が第2の属性の属性値に関連付けられた第1の属性の属性値を有する複数のエントリが記録媒体内に格納される場合、CPU2212は、第1の属性の属性値が指定される、条件に一致するエントリを当該複数のエントリの中から検索し、当該エントリ内に格納された第2の属性の属性値を読み取り、それにより予め定められた条件を満たす第1の属性に関連付けられた第2の属性の属性値を取得してよい。
【0086】
上で説明したプログラムまたはソフトウェアモジュールは、コンピュータ2200上またはコンピュータ2200近傍のコンピュータ可読媒体に格納されてよい。また、専用通信ネットワークまたはインターネットに接続されたサーバーシステム内に提供されるハードディスクまたはRAMのような記録媒体が、コンピュータ可読媒体として使用可能であり、それによりプログラムを、ネットワークを介してコンピュータ2200に提供する。
【0087】
以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。
【0088】
特許請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。特許請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。
【符号の説明】
【0089】
100 学習装置、105 学習用データ取得部、110 学習用前処理部、115 特徴量算出部、120 データ変換部、125 指定入力部、130 学習処理部、140 モデル記憶部、150 判定装置、155 判定用データ取得部、160 判定用前処理部、165 特徴量算出部、170 データ変換部、175 指定入力部、180 判定部、185 選択部、190 表示処理部、400 表示画面、410 分布表示部、420 健全性表示部、430 前処理パラメータ入力部、440 前処理手法入力部、2200 コンピュータ、2201 DVD-ROM、2210 ホストコントローラ、2212 CPU、2214 RAM、2216 グラフィックコントローラ、2218 ディスプレイデバイス、2220 入出力コントローラ、2222 通信インターフェイス、2224 ハードディスクドライブ、2226 DVD-ROMドライブ、2230 ROM、2240 入出力チップ、2242 キーボード
図1
図2
図3
図4
図5
図6
図7