IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ パーク システムズ コーポレーションの特許一覧

特許7298813原子顕微鏡で目標位置を認識するための装置及び方法
<>
  • 特許-原子顕微鏡で目標位置を認識するための装置及び方法 図1a
  • 特許-原子顕微鏡で目標位置を認識するための装置及び方法 図1b
  • 特許-原子顕微鏡で目標位置を認識するための装置及び方法 図2
  • 特許-原子顕微鏡で目標位置を認識するための装置及び方法 図3
  • 特許-原子顕微鏡で目標位置を認識するための装置及び方法 図4
  • 特許-原子顕微鏡で目標位置を認識するための装置及び方法 図5
  • 特許-原子顕微鏡で目標位置を認識するための装置及び方法 図6
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B1)
(11)【特許番号】
(24)【登録日】2023-06-19
(45)【発行日】2023-06-27
(54)【発明の名称】原子顕微鏡で目標位置を認識するための装置及び方法
(51)【国際特許分類】
   G01Q 20/02 20100101AFI20230620BHJP
   G01Q 60/36 20100101ALI20230620BHJP
【FI】
G01Q20/02
G01Q60/36
【請求項の数】 14
(21)【出願番号】P 2021208597
(22)【出願日】2021-12-22
【審査請求日】2021-12-22
(73)【特許権者】
【識別番号】515304628
【氏名又は名称】パーク システムズ コーポレーション
(74)【代理人】
【識別番号】110000877
【氏名又は名称】弁理士法人RYUKA国際特許事務所
(72)【発明者】
【氏名】チョンフン アン
(72)【発明者】
【氏名】ヨンサン チョ
(72)【発明者】
【氏名】サン-イル パク
【審査官】佐野 浩樹
(56)【参考文献】
【文献】特開2003-149121(JP,A)
【文献】国際公開第2016/189575(WO,A1)
【文献】特開2005-308406(JP,A)
【文献】特開2012-225722(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01B11/00 -11/30 、21/00 -21/32 、
G01Q10/00 -90/00
(57)【特許請求の範囲】
【請求項1】
プローブが配置されるように構成されたカンチレバー(Cantilever)と、
前記カンチレバーの上面を撮影する撮影部と、
前記カンチレバー及び前記撮影部と動作可能に連結された制御部とを含み、
前記制御部は、
前記撮影部を通じて撮影された映像に基づいて前記カンチレバーを認識するように学習された認識モデルを利用して前記映像から前記カンチレバーを認識した結果データを獲得し、
前記獲得された結果データを利用して前記カンチレバー上の目標位置を算出するように構成され、
前記結果データは、前記カンチレバーの境界を含むバウンディングボックス(bounding box)を表したバウンディングボックスデータ、及び前記カンチレバーと前記カンチレバーでない客体とを分割した分割データ(segmentation data)のうち少なくとも一つを含む、原子顕微鏡の目標位置を認識するための装置。
【請求項2】
前記カンチレバーの表面にレーザー光を照射するように構成された光学部と、
前記カンチレバーの位置を調整するように構成された駆動部とをさらに含み、
前記制御部は、前記算出された目標位置に前記光学部のレーザー光が照射されるように前記駆動部を通じて前記カンチレバーの位置を調整するように構成される、請求項1に記載の原子顕微鏡の目標位置を認識するための装置。
【請求項3】
前記カンチレバーの表面にレーザー光を照射するように構成された光学部をさらに含み、
前記制御部は、前記算出された目標位置に前記光学部のレーザー光が照射されるように前記光学部の位置を調整するように構成される、請求項1に記載の原子顕微鏡の目標位置を認識するための装置。
【請求項4】
前記認識モデルは、
前記カンチレバーの周辺環境に関する複数の参照映像を利用して前記カンチレバーを認識するように学習された人工ニューラルネットワークモデルである、請求項1に記載の原子顕微鏡の目標位置を認識するための装置。
【請求項5】
前記複数の参照映像は、
前記カンチレバー周辺の照明強さ、及び前記撮影部の焦点距離のうち少なくとも一つを変化させながら撮影された映像である、請求項4に記載の原子顕微鏡の目標位置を認識するための装置。
【請求項6】
前記制御部は、
前記バウンディングボックスをなす複数の頂点に対する座標値を利用して前記目標位置を算出するように構成される、請求項1に記載の原子顕微鏡の目標位置を認識するための装置。
【請求項7】
前記制御部は、
前記分割データを二進化して二進化データを獲得し、前記獲得された二進化データを利用して前記カンチレバーの外郭線を検出し、前記検出された外郭線を含むバウンディングボックスを生成し、前記生成されたバウンディングボックスをなす複数の頂点に対する座標値を利用して前記目標位置を算出するように構成される、請求項1に記載の原子顕微鏡の目標位置を認識するための装置。
【請求項8】
原子顕微鏡の制御部により行われる目標位置を認識するための方法において、
撮影部を通じてプローブが配置されるように構成されたカンチレバー(Cantilever)の上面を撮影する段階と、
前記撮影部を通じて撮影された映像に基づいて前記カンチレバーを認識するように学習された認識モデルを利用して前記映像から前記カンチレバーを認識した結果データを獲得する段階と、
前記獲得された結果データを利用して前記カンチレバー上の目標位置を算出する段階とを含み、
前記結果データは、前記カンチレバーの境界を含むバウンディングボックス(bounding box)を表したバウンディングボックスデータ、及び前記カンチレバーと前記カンチレバーでない客体とを分割した分割データ(segmentation data)のうち少なくとも一つを含む、目標位置を認識するための方法。
【請求項9】
前記算出された目標位置に光学部の光が照射されるように前記カンチレバーの位置を調整する段階をさらに含む、請求項8に記載の目標位置を認識するための方法。
【請求項10】
前記算出された目標位置に光学部の光が照射されるように前記光学部の位置を調整する段階をさらに含む、請求項8に記載の目標位置を認識するための方法。
【請求項11】
前記認識モデルは、
前記カンチレバーの周辺環境に関する複数の参照映像を利用して前記カンチレバーを認識するように学習された人工ニューラルネットワークモデルである、請求項8に記載の目標位置を認識するための方法。
【請求項12】
前記複数の参照映像は、
前記カンチレバー周辺の照明強さ、及び前記撮影部の焦点距離のうち少なくとも一つを変化させながら撮影された映像である、請求項11に記載の目標位置を認識するための方法。
【請求項13】
前記獲得された結果データを利用して前記カンチレバー上の前記目標位置を算出する段階は、
前記バウンディングボックスをなす複数の頂点に対する座標値を利用して前記目標位置を算出する段階である、請求項8に記載の目標位置を認識するための方法。
【請求項14】
前記獲得された結果データを利用して前記カンチレバー上の前記目標位置を算出する段階は、
前記分割データを二進化して二進化データを獲得する段階と、
前記獲得された二進化データを利用して前記カンチレバーの外郭線を検出する段階と、
前記検出された外郭線を含むバウンディングボックスを生成する段階と、
前記生成されたバウンディングボックスをなす複数の頂点に対する座標値を利用して前記目標位置を算出する段階とを含む、請求項8に記載の目標位置を認識するための方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、原子顕微鏡で目標位置を認識するための装置及び方法に関する。
【背景技術】
【0002】
一般的に、走査型プローブ顕微鏡(Scanning Probe Microscope、SPM)は、カンチレバー(cantilever)という小さい棒に付くナノサイズのプローブ(probe)が試料表面に近接する時、試料とプローブとの間に相互作用する物理量を測定する装置を意味する。このような走査型プローブ顕微鏡は、走査型トンネル顕微鏡(Scanning Tunneling Microscope、STM)及び原子間力顕微鏡(Atomic Force Microscope、AFM)(以下、「原子顕微鏡」という)を含むことができる。
【0003】
ここで、原子顕微鏡は、原子顕微鏡に備えられた光学部のレーザー光がカンチレバーのプローブに対応する位置に照射され、これによりカンチレバーが撓むことによりプローブが試料の表面をスキャン(scan)することで、試料表面の形状(または、屈曲)をイメージ化した試料イメージを獲得することができる。
【0004】
このように試料イメージを獲得するためには、カンチレバーが試料をスキャンするに適合な目標位置を正確に認識する必要があるが、カンチレバーの製造社によってサイズと模様が多様であり、かかる目標位置を正確に認識し難いという問題点がある。
【0005】
従って、原子顕微鏡で目標位置を正確に認識するための装置及び方法が要求される。
【発明の概要】
【発明が解決しようとする課題】
【0006】
本発明は、解決しようとする課題は、原子顕微鏡で目標位置を算出するための装置及び方法を提供することにある。
【0007】
具体的に、本発明が解決しようとする課題は、カンチレバーのサイズと模様に関係なく、目標位置を正確に認識するための装置及び方法を提供することにある。
【0008】
本発明の課題は、以上で言及した課題に制限されず、言及されなかったまた他の課題は、下記の記載から当業者に明確に理解できるであろう。
【課題を解決するための手段】
【0009】
前述したような課題を解決するために、原子顕微鏡で目標位置を認識するための装置及び方法が提供される。
【0010】
本発明の実施例による原子顕微鏡において目標位置を認識するための装置は、プローブが配置されるように構成されたカンチレバー(Cantilever)と、前記カンチレバーの上面を撮影する撮影部と、前記カンチレバー、前記駆動部及び前記撮影部と動作可能に連結された制御部とを含み、前記制御部は、前記撮影部を通じて撮影された映像に基づいて前記カンチレバーを認識するように学習された認識モデルを利用して前記映像から前記カンチレバーを認識した結果データを獲得し、前記獲得された結果データを利用して前記カンチレバーで目標位置を算出するように構成され、前記結果データは、前記カンチレバーの境界を含むバウンディングボックス(bounding box)を表したバウンディングボックスデータ、及び前記カンチレバーと前記カンチレバーでない客体とを分割した分割データ(segmentation data)のうち少なくとも一つを含む。
【0011】
本発明の実施例による原子顕微鏡の制御部により行われる目標位置を認識するための方法は、撮影部を通じてプローブが配置されるように構成されたカンチレバー(Cantilever)の上面を撮影する段階と、前記撮影部を通じて撮影された映像に基づいて前記カンチレバーを認識するように学習された認識モデルを利用して前記映像から前記カンチレバーを認識した結果データを獲得する段階と、前記獲得された結果データを利用して前記カンチレバーで目標位置を算出する段階とを含み、前記結果データは、前記カンチレバーの境界を含むバウンディングボックス(bounding box)を表したバウンディングボックスデータ、及び前記カンチレバーと前記カンチレバーでない客体とを分割した分割データ(segmentation data)のうち少なくとも一つを含む。
【0012】
その他の実施例の具体的な事項は、詳細な説明及び図面に含まれている。
【発明の効果】
【0013】
本発明は、原子顕微鏡のカンチレバーを認識するように学習された人工ニューラルネットワークモデルを利用することで、カンチレバーのサイズと模様に関係なく目標位置を正確に認識することができる。
【0014】
また、本発明は、上述した人工ニューラルネットワークモデルを利用することで、プローブの位置に対応する目標位置を認識するための演算速度を速くして原子顕微鏡の認識性能を向上させることができる。
【0015】
また、本発明は、原子顕微鏡のプローブ位置に対応する目標位置を認識して光学部のレーザー光が、カンチレバーが試料をスキャンするに適合な目標位置に照射されるようにカンチレバーの位置を自動的に調整することができる。
【0016】
本発明による効果は、以上で例示した内容によって制限されず、さらに多様な効果が本明細書内に含まれている。
【図面の簡単な説明】
【0017】
図1a】本発明の実施例による原子顕微鏡システムを説明するための概路図である。
図1b】本発明の実施例による原子顕微鏡システムを説明するための概路図である。
図2】本発明の実施例による電子装置の概略的なブロック図である。
図3】本発明の実施例によりカンチレバーの位置を認識するために利用される学習された認識モデルを説明するための例示図である。
図4】本発明の実施例によるバウンディングボックスデータを利用して目標位置を算出する方法を説明するための例示図である。
図5】本発明の実施例による分割データを利用して目標位置を算出する方法を説明するための例示図である。
図6】本発明の実施例による原子顕微鏡システムでカンチレバーの目標位置を算出するための方法を説明するためのフローチャートである。
【発明を実施するための形態】
【0018】
本発明の利点及び特徴、そしてそれらを達成する方法は、添付の図面と共に詳細に後述されている実施例を参照すれば明確になるであろう。しかし、本発明は、以下で開示される実施例に限定されるものではなく、互いに異なる多様な形態で具現され、但し、本実施例は本発明の開示を完全にさせ、本発明が属する技術分野で通常の知識を有する者に発明の範疇を完全に知らせるために提供されるものであり、本発明は請求項の範疇により定義されるだけである。図面の説明と関連して、類似した構成要素については類似した参照符号が使用されることができる。
【0019】
本文書において、「有する」、「有することができる」、「含む」または「含むことができる」などの表現は、当該特徴(例:数値、機能、動作、または部品などの構成要素)の存在を示し、追加的な特徴の存在を排除しない。
【0020】
本文書において、「AまたはB」、「Aまたは/及びBのうち少なくとも一つ」または「Aまたは/及びBのうち一つまたはそれ以上」などの表現は、共に並べられた項目の全ての可能な組み合わせを含むことができる。例えば、「AまたはB」、「A及びBのうち少なくとも一つ」または「AまたはBのうち少なくとも一つ」は、(1)少なくとも一つのAを含む、(2)少なくとも一つのBを含む、または(3)少なくとも一つのA及び少なくとも一つのBの両方を含む場合を全て指称することができる。
【0021】
本文書で使用された「第1」、「第2」、「第一」または「第二」などの表現は多様な構成要素を順序及び/または重要度に関係なく修飾することができ、一構成要素を他の構成要素と区分するために使用されるだけで、当該構成要素を限定しない。例えば、第1使用者機器と第2使用者機器は、順序または重要度と関係なく、互いに異なる使用者機器を表すことができる。例えば、本文書に記載された権利範囲を逸脱せず第1構成要素は第2構成要素と命名されることができ、同様に、第2構成要素も第1構成要素に変えて命名されることができる。
【0022】
ある構成要素(例:第1構成要素)が他の構成要素(例:第2構成要素)に「(機能的にまたは通信的に)連結されて((operatively or communicatively)coupled with/to)」いるか「接続されて(connected to)」いると言及された時は、上記ある構成要素が上記他の構成要素に直接的に連結されるか、他の構成要素(例:第3構成要素)を通じて連結されていることができると理解されるべきである。一方、ある構成要素(例:第1構成要素)が他の構成要素(例:第2構成要素)に「直接連結されて」いるか「直接接続されて」いると言及された時は、上記ある構成要素と上記他の構成要素との間に他の構成要素(例:第3構成要素)が存在しないと理解されることができる。
【0023】
本文書で使用された表現「~するように構成された(または設定された)(configured to)」は、状況によって、例えば、「~に適合した(suitable for)」、「~する能力を有する(having the capacity to)」、「~するように設計された(designed to)」、「~するように変更された(adapted to)」、「~するように作られた(made to)」、または「~をすることができる(capable of)」に変えて使用されることができる。用語「~するように構成された(または設定された)」は、ハードウェア的に「特に設計された(specifically designed to)」ことだけを必ずしも意味するものではない。その代わり、ある状況では「~するように構成された装置」という表現は、その装置が他の装置または部品と共に「~することができる」ことを意味することができる。例えば、文句「A、B、及びCを行うように構成された(または設定された)プロセッサ」は当該動作を行うための専用プロセッサ(例:組み込まれたプロセッサ)、またはメモリー装置に格納された一つ以上のソフトウェアプログラムを実行することで、当該動作を行うことができる汎用プロセッサ(generic-purpose processor)(例:CPUまたはapplication processor)を意味することができる。
【0024】
本文書で使用された用語は、単に特定の実施例を説明するために使用されたもので、他の実施例の範囲を限定しようとする意図ではないことがある。単数の表現は文脈上明らかに異なって意味しない限り、複数の表現を含むことができる。技術的であるか科学的な用語を含み、ここで使用される用語は本文書に記載された技術分野で通常の知識を有する者により一般的に理解されるものと同一の意味を有することができる。本文書に使用された用語のうち一般的な辞書に定義された用語は、関連技術の文脈上有する意味と同一または類似した意味で解釈されることができ、本文書で明らかに定義されない限り、理想的であるか過度に形式的な意味で解釈されない。場合によって、本文書で定義された用語でも本文書の実施例を排除するように解釈されることができない。
【0025】
本発明の様々な実施例のそれぞれの特徴が部分的にまたは全体的に互いに結合または組み合わせ可能であり、当業者が充分に理解できるように技術的に多様な連動及び駆動が可能であり、各実施例が互いに対して独立して実施可能でもよく、連関関係で共に実施可能でもよい。
【0026】
以下で、添付の図面を参照して本発明の多様な実施例を詳しく説明する。
【0027】
図1a及び図1bは、本発明の実施例による原子顕微鏡システムを説明するための概路図である。提示された実施例において、図1aは原子顕微鏡システムが一体化された場合を説明するための概路図であり、図1bは原子顕微鏡システムが原子顕微鏡及びこれを駆動及び制御する電子装置を含む場合を説明するための概路図である。
【0028】
先ず、原子顕微鏡システムが一体化された場合を図1aを参照して説明する。
【0029】
図1aを参照すると、原子顕微鏡システム100は、試料の表面的特性を原子単位でイメージ化して分析及び観察できるようにするための顕微鏡装置であって、下面にプローブ115が配置されたカンチレバー110、カンチレバー110を動かすように駆動する第1駆動部120、プローブ115に対応するカンチレバー110の上面の位置にレーザー光を照射する光学部130、照射された位置で反射したレーザー光の位置を検出する光学検出部140、試料155が装着され、試料155をスキャンするように駆動する第2駆動部150、カンチレバー110の上面を撮影するための撮影部160、これらを制御する制御部170、及び試料155の表面特性を表した試料イメージを表示する表示部180を含む。
【0030】
原子顕微鏡システム100の制御部170は、第2駆動部150を通じて試料155をスキャンしながら、積層されたピエゾ(stacked piezo)のようなZスキャナ(図示せず)またはチューブスキャナ(tube scanner、図示せず)を通じてカンチレバー110の下面に配置されたプローブ115が試料155の表面を追従しながらスキャンするようにする。プローブ115が試料155の表面をスキャンする間に、プローブ115と試料155の表面との間の原子間相互作用が起きるようになり、プローブ115を試料155の表面側へ引っ張る引力及び/または押し出す斥力が発生してカンチレバー110が上下に撓むようになる。
【0031】
ここで、第1駆動部120は、後述するように、カンチレバー110の表面に映るレーザー光のスポットの位置を変更させられるように、カンチレバー110を移動させる駆動部である。第1駆動部120は、上述した図示しないZスキャナやチューブスキャナと別途で具備されることが一般的であるが、統合的に構成されることを排除するものではない。また、第1駆動部120、図示しないZスキャナやチューブスキャナ以外に相対的に大きい変位で撮影部160とカンチレバー110間の位置を変動させられるZステージ(図示せず)がさらに具備されることができる。
【0032】
一方、第1駆動部120は、図1a及び図1bではカンチレバー110に直接連結されると図示されているが、これは説明の便宜のためのもので、他の構成を介してカンチレバー110と連結されることができる。
【0033】
光学部130は、カンチレバー110の上面でプローブ115に対応する目標位置にレーザー光を照射し、これにより、カンチレバー110から反射したレーザー光は、PSPD(Position Sensitive Position Detector)のような光学検出部140に映る。これにより、カンチレバー110の撓みまたは歪みは、光学検出部140に映ったレーザー光のスポットの動きを検出することで測定されることができ、試料155表面の情報が得られる。制御部170は、このように生成された試料イメージを表示部180により表示することができる。
【0034】
ここで、目標位置は、カンチレバー110が試料をスキャンするために適合に駆動されることができる位置であることができる。例えば、目標位置は、カンチレバー110の下面に配置されたプローブ115の位置に対応する上面の位置、カンチレバー110が試料をスキャンするために適合に駆動されることができる既設定された位置または所望の位置であることができるが、これに限定されない。原子顕微鏡の製造社によって光学部で照射されるレーザー光のスポット模様またはスポットサイズが多様であり、カンチレバーの駆動のためにレーザー光が照射される位置が多様であることができるため、上述した目標位置はこれに基づいて多様な位置になることができる。
【0035】
このように試料イメージを獲得するためには、光学部130のレーザー光がプローブ115に対応する目標位置に正確に照射される必要があり、このため、カンチレバー110の上面でプローブ115に対応する目標位置を認識する必要がある。しかし、カンチレバー110は、製造社によってまたは測定用途によって多様に具備されることができるため、これを正確に認識するための方法が要求される。
【0036】
プローブ115に対応するカンチレバー110の上面の位置を正確に認識するために、制御部170は撮影部160を通じてカンチレバー110の上面を撮影し、撮影部160を通じて撮影された映像に基づいてカンチレバー110を認識することができる。
【0037】
ここで、撮影部160は、対物レンズ、鏡筒及びCCDカメラが含まれて構成されることができ、対物レンズ及びCCDカメラは鏡筒に結合されることで対物レンズにより光学的に拡大された像がCCDカメラにより撮影されることができるように構成されることができる。かかる具体的構成は公知の構成であり、図1a及び1bでは、図示省略していることに留意すべきである。
【0038】
具体的に、撮影された映像に基づいてカンチレバー110を認識するために、制御部170はカンチレバー110を多様な環境で撮影した複数の参照映像(または学習映像)に基づいてカンチレバー110を認識するように学習された認識モデルを利用することができる。ここで、複数の参照映像は、カンチレバー110周辺の照明強さ、及び/または撮影部160の焦点距離(即ち、カメラ及び/または対物レンズの焦点距離)などを一定に変化させながら撮影された映像であることができる。
【0039】
認識モデルは、複数の参照映像を予め学習し、新しく入力される映像からカンチレバーを認識するように構成された人工ニューラルネットワークモデルであることができる。多様な実施例において、認識モデルは、予め学習された畳み込みニューラルネットワーク(CNN: Convolutional Neural Network)であることができるが、これに限定されない。予め学習された畳み込みニューラルネットワークは、入力された入力値に対して畳み込み(convolution)演算を行う一つ以上の階層から構成されることができ、入力値から畳み込み演算を行い、出力値を推論することができる。例えば、予め学習された畳み込みニューラルネットワークは、複数の人工ニューラルネットワークステージで分類(classification)動作、客体の境界を含むバウンディングボックス(bounding box)を設定(または調整)するための回帰(bounding box regression)動作、及び客体と客体でない背景とを分割(segmentation)するためのバイナリーマスキング(binary masking)動作を並行するMask R-CNN(Regions with Convolutional Neural Network)であることができるが、これに限定されない。
【0040】
かかる認識モデルは、一つのステージが分類動作及び回帰動作を行いクラスラベル(class label)データ及びバウンディングボックスデータを出力し、他の一つのステージがバイナリーマスキング動作を行い、分割データを出力することができる。
【0041】
制御部170は、このように出力されたデータのうちバウンディングボックスデータ及び分割データを利用してカンチレバー110の上面でプローブ115に対応する位置を算出することができる。
【0042】
制御部170は、光学部130のレーザー光が算出された位置に照射されるようにカンチレバー110及び/または光学部130の位置を調整することができる。ここで、カンチレバー110の位置は、第1駆動部120により調整されることができ、光学部130の位置調整のために別途の駆動装置がさらに具備されることができる。
【0043】
このような認識モデルを処理するために、制御部170は、ニューラルプロセッシングユニット(Neural Processing Unit、NPU)175を含むことができる。NPU175は、AIチップセット(またはAIプロセッサ)またはAIアクセラレーター(AI accelerator)であることができる。換言すると、NPU175は、人工ニューラルネットワークの遂行に最適化したプロセッサチップに該当することができる。
【0044】
多様な実施例において、カンチレバー110を認識するためにsummer、accumulator、メモリーなどがNPU175にハードウェア的に具現されることができる。また、NPU175は、原子顕微鏡システム100と独立した(stand-alone)装置として具現されることができるが、これに限定されない。
【0045】
図1bを参照すると、原子顕微鏡システム100は、プローブ115が配置されたカンチレバー110、第1駆動部120、光学部130、光学検出部140、試料155が装着される第2駆動部150、及び撮影部160を含み、これらを制御するための電子装置200が別途具備されることができる。
【0046】
電子装置200は、原子顕微鏡システム100を制御し、カンチレバー110のプローブ115位置を認識及び調整するためのタブレットPC(Personal Computer)、ノートブック及び/またはPCなどのうち少なくとも一つを含むことができる。
【0047】
このような電子装置200は、カンチレバー110のプローブ115が配置された位置に光学部130のレーザー光が照射されるように撮影部160を通じてカンチレバー110の上面を撮影した映像を受信し、受信された映像に基づいてカンチレバー110を認識することができる。カンチレバー110を認識するために上述した認識モデルを利用することができるが、これに限定されない。
【0048】
電子装置200は、認識されたカンチレバー110でプローブ115に対応する位置を算出し、算出された位置に光学部130のレーザー光が照射されるようにするための指示を原子顕微鏡システム100に伝達することができる。
【0049】
これを通じて、本発明は、原子顕微鏡のカンチレバーを認識するように学習された人工ニューラルネットワークモデルを利用することで、カンチレバーのサイズと模様に関係なく目標位置を正確に認識することができ、原子顕微鏡のビーム整列(beam alignment)を自動化することができる。
【0050】
下記では、図2を参照して電子装置200についてより具体的に説明する。
【0051】
図2は、本発明の実施例による電子装置の概略的なブロック図である。
【0052】
図2を参照すると、電子装置200は、通信部210、表示部220、格納部230及び制御部240を含む。
【0053】
通信部210は、電子装置200が外部装置と通信可能に連結する。通信部210は、有/無線通信を利用して原子顕微鏡システム100と連結され、原子顕微鏡システム100の駆動及び制御と関連した多様なデータを送受信することができる。具体的に、通信部210は、原子顕微鏡システム100の第1駆動部120、光学部130、光学検出部140、第2駆動部150、及び撮影部160の駆動及び制御のための指示を伝達するか、撮影部160を通じて撮影された映像を受信することができる。また、通信部210は、原子顕微鏡システム100から試料イメージを受信することができる。
【0054】
表示部220は、使用者に各種のコンテンツ(例:テキスト、イメージ、ビデオ、アイコン、バナーまたはシンボルなど)を表示することができる。具体的に、表示部220は、原子顕微鏡システム100から受信された試料イメージを表示することができる。
【0055】
多様な実施例において、表示部220はタッチスクリーンを含むことができ、例えば、電子ペンまたは使用者の身体の一部を利用したタッチ(touch)、ジェスチャー(gesture)、近接、ドラッグ(drag)、スワイプ(swipe)またはホバリング(hovering)入力などを受信することができる。
【0056】
格納部230は、原子顕微鏡システム100を駆動及び制御するために使用される多様なデータを格納することができる。多様な実施例において、格納部230は、フラッシュメモリー(登録商標)タイプ(flash(登録商標) memory type)、ハードディスクタイプ(hard disk type)、マルチメディアカードマイクロタイプ(multimedia card micro type)、カードタイプのメモリー(例えば、SDまたはXDメモリーなど)、ラム(Random Access Memory、RAM)、SRAM(Static Random Access Memory)、ロム(Read-Only Memory、ROM)、EEPROM(Electrically Erasable Programmable Read-Only Memory)、PROM(Programmable Read-Only Memory)、磁気メモリー、磁気ディスク、光ディスクのうち少なくとも一つのタイプの格納媒体を含むことができる。電子装置200は、インターネット(internet)上で前記格納部230の格納機能を行うウェブストレージ(web storage)と関連して動作することもできる。
【0057】
制御部240は、通信部210、表示部220、及び格納部230と動作可能に連結され、原子顕微鏡システム100を制御し、カンチレバー110の目標位置を認識するための多様な命令を行うことができる。
【0058】
制御部240は、中央処理装置(CPU)、グラフィック処理装置(GPU)、アプリケーションプロセッサ(AP)、デジタル信号処理装置(DSP)、算術論理演算装置(ALU)及び人工ニューラルネットワークプロセッサ(NPU)245のうち少なくとも一つを含むように構成されることができる。
【0059】
具体的に、制御部240は、通信部210を通じて原子顕微鏡システム100の撮影部160を通じてカンチレバー110の上面を撮影した映像を受信し、受信された映像に基づいて認識モデルを利用して映像からカンチレバー110を認識することができる。換言すると、制御部240は、認識モデルを通じて認識されたカンチレバー110に関する結果データを獲得することができる。このような結果データは、上述したようにバウンディングボックスデータ及び分割データを含むことができる。
【0060】
多様な実施例において、認識モデルは外部のサーバーに格納されて、制御部240は通信部210を通じてサーバーに映像を送信し、外部のサーバーで算出された結果データを受信するように構成されることもできる。
【0061】
制御部240は、バウンディングボックスデータ及び分割データのうち少なくとも一つを利用して目標位置を算出し、算出された目標位置にレーザー光が照射されるようにカンチレバー110及び/または光学部130の駆動を調整するための指示を原子顕微鏡システム100に伝達することができる。
【0062】
このように認識モデルを利用してカンチレバー110を認識する動作は、NPU245により行われることができる。
【0063】
下記では、図3図5を参照してカンチレバー110を認識し、認識結果によってカンチレバー110のプローブ115位置を算出するための方法を具体的に説明する。
【0064】
図3は、本発明の実施例によってカンチレバーの位置を認識するために利用される学習された認識モデルを説明するための例示図である。
【0065】
図3を参照すると、学習された認識モデル300は、複数の人工ニューラルネットワークステージを含むことができる。
【0066】
具体的に、学習された認識モデル300は、畳み込みニューラルネットワーク315、領域提案ニューラルネットワーク(Region Proposal Network)325、関心領域整列ニューラルネットワーク(ROI(Region Of Interest) Align Network)340及び複数の全結合ニューラルネットワーク(Fully Connected Network)350、355を含むことができる。ここで、複数の全結合ニューラルネットワークは、第1全結合ニューラルネットワーク350及び第2全結合ニューラルネットワーク355を含む。
【0067】
撮影部160を通じて撮影されたカンチレバー110の映像310が認識モデル300の入力値として入力されると、認識モデル300は映像で特徴を抽出するための畳み込み演算を行う畳み込みニューラルネットワーク315を通じて特徴データ(Feature Map)320を獲得することができる。
【0068】
このような特徴データ320は、カンチレバー110が含まれると予想される候補領域を提案するための領域提案ニューラルネットワーク325に入力される。認識モデル300は、領域提案ニューラルネットワーク325を通じて特徴データ320からカンチレバー110が含まれると予想される候補領域(Region Proposal)及びこれに対する点数(objectness score)を含むデータ330を獲得することができる。
【0069】
認識モデル300は、畳み込みニューラルネットワーク315を通じて出力された特徴データ320及び領域提案ニューラルネットワーク325を通じて出力されたデータ330に基づいて候補領域データ335を獲得することができる。ここで、候補領域データ335は、特徴データ320でカンチレバー110が含まれると予想される少なくとも一つの候補領域に対応して抽出されたデータであることができる。少なくとも一つの候補領域は、予測された客体の形態によって多様なサイズを有することができる。
【0070】
このような候補領域データ335は、線形補間(linear interpolation)を利用して固定されたサイズに変換させるための関心領域整列ニューラルネットワーク340に入力される。ここで、固定されたサイズは、n×n形態であることができるが(n>0)、これに限定されない。
【0071】
認識モデル300は、関心領域調整ニューラルネットワーク340を通じてn×n形態の関心領域データ345を出力することができる。この時、関心領域データ345は、線形補間を利用して候補領域データ335を固定されたサイズで整列させたデータであることができるが、これに限定されない。
【0072】
このような関心領域データ345は、第1全結合ニューラルネットワーク350及び第2全結合ニューラルネットワーク355のそれぞれに入力される。ここで、第1全結合ニューラルネットワーク350は、複数の全結合層(Fully Connected Layer)を含むことができるが、これに限定されない。第2全結合ニューラルネットワーク355は、オートエンコーダー(Auto Encoder)構造が追加されたマスクブランチネットワーク(mask branch network)または少なくとも一つの全結合層(または畳み込み層)であることができるが、これに限定されない。ここで利用されたオートエンコーダーは、入力データにノイズ(noise)を追加した後、ノイズのない原本入力を再構成して出力するように学習されたエンコーダーであり、認識モデル300の分割性能を向上させることができる。
【0073】
認識モデル300は、第1全結合ニューラルネットワーク350を通じて分類データ360及びバウンディングボックスデータ365を出力し、第2全結合ニューラルネットワーク355を通じて分割データ370を出力することができる。例えば、バウンディングボックスデータ365は、カンチレバーを含むバウンディングボックスを表すイメージであり、分割データ370はカンチレバーと、カンチレバーでない背景とを表すイメージであることができる。
【0074】
このように出力されたバウンディングボックスデータ365及び分割データ370は、カンチレバー110のプローブ115の位置を算出するために利用されることができる。
【0075】
多様な実施例において認識モデルの認識正確度を向上させるために、結果データの周辺をクラスタリングする後処理方式(post processing)が利用されることができる。例えば、クラスタリング方式は、CRF(Conditional Random Field)及び/またはChan-Veseアルゴリズムなどが利用されることができるが、これに限定されない。
【0076】
このように学習された認識モデルを利用することで、本発明は、プローブの位置を認識するための演算速度を速くして、原子顕微鏡の認識性能を向上させることができる。
【0077】
下記では、図4を参照してバウンディングボックスデータを利用してカンチレバー110の目標位置を算出するための方法を具体的に説明する。
【0078】
図4は、本発明の実施例によるバウンディングボックスデータを利用してカンチレバーの目標位置を算出する方法を説明するための例示図である。提示された実施例における方法は、図1aの制御部170または図2の制御部240により行われることができる。下記では、図1aの制御部170で行われる場合を説明する。
【0079】
図4を参照すると、バウンディングボックスデータ400は、カンチレバー410を含む矩形のバウンディングボックス420を含む。バウンディングボックス420の左側上端の第1頂点430座標(x1、y1)及び右側下端の第2頂点440座標(x2、y2)は、目標位置を算出するために利用されることができる。
【0080】
具体的に、制御部170は、目標位置450を表す座標(x、y)を算出するために、xを算出するための数式「(x1+x2)/2」及びyを算出するための数式「y1+(y2-y1)*ratio」を利用することができる(0<ratio<1、default ratio=4/5)。
【0081】
このように座標(x、y)が算出されると、制御部170は、算出された座標(x、y)に光学部130のレーザー光が照射されるようにカンチレバー110及び/または光学部130の位置を調整することができる。
【0082】
これを通じて、本発明は原子顕微鏡のビーム整列を自動化することができる。
【0083】
下記では、図5を参照して分割データを利用してカンチレバー110の目標位置を算出するための方法を具体的に説明する。
【0084】
図5は、本発明の実施例による分割データを利用してカンチレバーの目標位置を算出する方法を説明するための例示図である。提示された実施例における方法は、図1aの制御部170または図2の制御部240により行われることができる。下記では、図1aの制御部170で行われる場合を説明する。
【0085】
図5の(a)を参照すると、分割データ500は、カンチレバーを表す真の(True)値及びカンチレバーを除いた客体、すなわち、背景を表す偽りの(false)値を含むことができる。
【0086】
制御部170は、真値及び偽値に基づいて分割データ500を二進化して図5の(b)のように二進化データ510を生成することができる。
【0087】
制御部170は、図5の(c)のように、二進化データ510から外郭線520を抽出することができる。外郭線を抽出するために、制御部170は、キャニーエッジ検出アルゴリズム(Canny Edge)及び/またはOpenCVのfindcontour関数を利用することができるが、これに限定されない。
【0088】
制御部170は、抽出された外郭線520に基づいて図5の(d)のようにバウンディングボックス530を生成することができる。バウンディングボックス530は、抽出された外郭線が含まれるように矩形の形態で生成されることができる。
【0089】
制御部170は、生成されたバウンディングボックス530の左側上端の第1頂点の座標及び右側上端の第2頂点の座標を利用してプローブの位置を算出することができ、具体的な算出方法は、図4で説明したように行われることができる。
【0090】
下記では、図6を参照して原子顕微鏡システムでカンチレバーの目標位置を算出するための方法を説明する。
【0091】
図6は、本発明の実施例による原子顕微鏡システムでカンチレバーの目標位置を算出するための方法を説明するためのフローチャートである。下記で述べる動作は、図1aの制御部170または図2の制御部240により行われることができる。下記では、図1aの制御部170で行われる場合を説明する。
【0092】
図6を参照すると、制御部170は、撮影部160を通じてプローブ115が配置されたカンチレバー110を撮影し(S600)、撮影された映像に基づいてカンチレバー110を認識するように学習された認識モデルを利用して映像からカンチレバー110を認識した結果データを獲得する(S610)。ここで、結果データは、カンチレバー110の境界を含むバウンディングボックスを表したバウンディングボックスデータ、及びカンチレバー110とカンチレバー110でない客体(例:背景)とを分割した分割データを含むことができる。
【0093】
制御部170は、獲得された結果データを利用してカンチレバー110で目標位置を算出する(S620)。具体的に、制御部170は、バウンディングボックスデータを利用して目標位置を算出するか、分割データを利用して目標位置を算出することができる。
【0094】
バウンディングボックスデータを利用する場合、制御部170は、バウンディングボックスをなす複数の頂点に対する座標値を利用して目標位置を算出することができる。
【0095】
分割データを利用する場合、制御部170は、分割データを二進化して二進化データを獲得し、獲得された二進化データを利用してカンチレバー110の外郭線を検出することができる。制御部170は、検出された外郭線を含むバウンディングボックスを生成し、生成されたバウンディングボックスをなす複数の頂点に対する座標値を利用して目標位置を算出することができる。
【0096】
このように目標位置が算出されると、制御部170は、目標位置に光学部130のレーザー光が照射されるように第1駆動部120を通じてカンチレバー110の位置を調整することができる。また、別途の駆動装置により光学部130の位置が調整されることもできる。
【0097】
これを通じて、本発明は、原子顕微鏡のカンチレバーを認識するように学習された人工ニューラルネットワークモデルを利用することで、カンチレバーのサイズと模様に関係なくカンチレバーが試料をスキャンするに適合した目標位置を正確に認識することができる。
【0098】
本発明の実施例による装置及び方法は、多様なコンピュータ手段を通じて行われることができるプログラム命令形態で具現され、コンピュータ読取可能媒体に記録されることができる。コンピュータ読取可能媒体は、プログラム命令、データファイル、データ構造などを単独でまたは組み合わせて含むことができる。
【0099】
コンピュータ読取可能媒体に記録されるプログラム命令は、本発明のために特に設計され構成されたものであるか、コンピュータソフトウェア分野の当業者に公知されて使用可能なものであってもよい。コンピュータ読取可能記録媒体の例には、ハードディスク、プロッピィーディスク及び磁気テープのような磁気媒体(magnetic media)、CD-ROM、DVDのような光記録媒体(optical media)、フロプティカルディスク(floptical disk)のような磁気-光媒体(magneto-optical media)及びロム(ROM)、ラム(RAM)、フラッシュメモリーなどのようなプログラム命令を格納し行うように特に構成されたハードウェア装置が含まれる。プログラム命令の例には、コンパイラーにより作られるような機械語コードだけでなく、インタプリターなどを使用してコンピュータにより実行されることができる高級言語コードを含む。
【0100】
上述したハードウェア装置は、本発明の動作を行うために一つ以上のソフトウェアモジュールとして作動するように構成されることができ、その反対も同一である。
【0101】
以上、添付の図面を参照して本発明の実施例をさらに詳しく説明したが、本発明は必ずしもこのような実施例に限られるものではなく、本発明の技術思想を逸脱しない範囲内で多様に変形実施されることができる。よって、本発明に開示された実施例は、本発明の技術思想を限定するためのものではなく、説明するためのもので、このような実施例により本発明の技術思想の範囲が限定されるものではない。従って、以上で記述した実施例は、全ての面で例示的なものであり、限定的ではないと理解すべきである。本発明の保護範囲は、以下の特許請求の範囲により解釈されるべきであり、それと同等な範囲内にある全ての技術思想は本発明の権利範囲に含まれると解釈されるべきである。
【符号の説明】
【0102】
100:原子顕微鏡システム
110:カンチレバー
115:プローブ
120:第1駆動部
130:光学部
140:光学検出部
150:第2駆動部
155:試料
160:撮影部
170:制御部
175:NPU
180:表示部
200:電子装置
210:通信部
220:表示部
230:格納部
240:制御部
245:NPU
【要約】      (修正有)
【課題】原子顕微鏡でプローブの目標位置を認識する。
【解決手段】プローブが配置されるように構成されたカンチレバー(Cantilever)と、前記カンチレバーの上面を撮影する撮影部と、前記カンチレバー、前記駆動部及び前記撮影部と動作可能に連結された制御部とを含み、前記制御部は、前記撮影部を通じて撮影された映像に基づいて前記カンチレバーを認識するように学習された認識モデルを利用して前記映像から前記カンチレバーを認識した結果データを獲得し、前記獲得された結果データを利用して前記カンチレバーで目標位置を算出するように構成され、前記結果データは、前記カンチレバーの境界を含むバウンディングボックス(bounding box)を表したバウンディングボックスデータ、及び前記カンチレバーと前記カンチレバーでない客体とを分割した分割データ(segmentation data)のうち少なくとも一つを含む。
【選択図】図1
図1a
図1b
図2
図3
図4
図5
図6