IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

<>
  • -重心計測機能付き操作装置及び操作システム 図1
  • -重心計測機能付き操作装置及び操作システム 図2
  • -重心計測機能付き操作装置及び操作システム 図3
  • -重心計測機能付き操作装置及び操作システム 図4
  • -重心計測機能付き操作装置及び操作システム 図5
  • -重心計測機能付き操作装置及び操作システム 図6
  • -重心計測機能付き操作装置及び操作システム 図7
  • -重心計測機能付き操作装置及び操作システム 図8
  • -重心計測機能付き操作装置及び操作システム 図9
  • -重心計測機能付き操作装置及び操作システム 図10
  • -重心計測機能付き操作装置及び操作システム 図11
  • -重心計測機能付き操作装置及び操作システム 図12
  • -重心計測機能付き操作装置及び操作システム 図13
  • -重心計測機能付き操作装置及び操作システム 図14
  • -重心計測機能付き操作装置及び操作システム 図15
  • -重心計測機能付き操作装置及び操作システム 図16
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-06-21
(45)【発行日】2023-06-29
(54)【発明の名称】重心計測機能付き操作装置及び操作システム
(51)【国際特許分類】
   G06F 3/01 20060101AFI20230622BHJP
   A63B 22/16 20060101ALI20230622BHJP
   A61B 5/11 20060101ALI20230622BHJP
   A61H 1/02 20060101ALI20230622BHJP
   G06F 3/0338 20130101ALI20230622BHJP
   A63H 30/04 20060101ALI20230622BHJP
【FI】
G06F3/01 510
A63B22/16
A61B5/11 210
A61H1/02 C
G06F3/0338
A63H30/04 A
【請求項の数】 12
(21)【出願番号】P 2019130033
(22)【出願日】2019-07-12
(65)【公開番号】P2021015477
(43)【公開日】2021-02-12
【審査請求日】2022-02-17
(73)【特許権者】
【識別番号】504224153
【氏名又は名称】国立大学法人 宮崎大学
(74)【代理人】
【識別番号】110000729
【氏名又は名称】弁理士法人ユニアス国際特許事務所
(72)【発明者】
【氏名】山子 剛
(72)【発明者】
【氏名】帖佐 悦男
【審査官】塩屋 雅弘
(56)【参考文献】
【文献】特開2019-040555(JP,A)
【文献】特開2002-253534(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
A61B 5/06-5/22
G06F 3/01
3/033-3/039
3/048-3/04895
3/14-3/153
A63B22/16
A61B 5/11
A61H 1/02
A63H30/04
(57)【特許請求の範囲】
【請求項1】
操作者が立位で乗る被荷重面と、
前記被荷重面上に乗っている前記操作者の荷重の作用点の前記被荷重面と平行な計測面上において固定された座標系上の座標である重心座標と、前記計測面上の基準点の座標に対する前記重心座標の相対的な位置を表す重心ベクトルとを算出する演算部と、
前記重心ベクトルが向いている方向に基づいて定められる方向を操作対象物の平面上における移動方向とする旨の制御信号を生成する信号生成部と、
前記操作対象物に対して前記制御信号を送信する通信部とを備えることを特徴とする重心計測機能付き操作装置。
【請求項2】
前記制御信号は、前記操作対象物を移動させる移動方向と共に、前記重心ベクトルの大きさに基づいて定められる、前記操作対象物の移動速度を制御する情報を含むことを特徴とする請求項1に記載の重心計測機能付き操作装置。
【請求項3】
前記演算部は、前記操作者の荷重値を算出し、
前記制御信号は、前記荷重値に基づいて定められる、前記操作対象物の前記平面と直交する方向への移動を制御する情報を含むことを特徴とする請求項1又は2に記載の重心計測機能付き操作装置。
【請求項4】
前記通信部は、平坦面上に載置された前記操作対象物に対して前記制御信号を送信することを特徴とする請求項1又は2に記載の重心計測機能付き操作装置。
【請求項5】
前記制御信号は、予め前記通信部が受信したそれぞれの前記操作対象物を区別するために割り振られた固有情報に基づいて定められる、識別情報を含むことを特徴とする請求項1~4のいずれか一項に記載の重心計測機能付き操作装置。
【請求項6】
前記制御信号の送信周期を設定する、周期設定部を備えることを特徴とする請求項1~5のいずれか一項に記載の重心計測機能付き操作装置。
【請求項7】
操作者が立位で乗る被荷重面と、前記被荷重面上に乗っている前記操作者の荷重の作用点の前記被荷重面と平行な計測面上において固定された座標系上の座標である重心座標を算出して出力するデータ出力部とを有する重心計測装置と、
平面上を移動するための移動機構を備える操作対象物と、
前記重心計測装置から出力された前記重心座標に関する情報に基づいて、前記操作対象物の前記平面上における移動方向を特定する制御信号を生成し、前記操作対象物に対して送信するコンピュータとを備え、
前記コンピュータは、
前記重心計測装置から出力された前記重心座標が入力され、前記計測面上の基準点の座標に対する前記重心座標の相対的な位置を表す重心ベクトルを算出する演算部と、
前記重心ベクトルが向いている方向に基づいて定められる方向を前記操作対象物の前記平面上における移動方向とする旨の前記制御信号を生成する信号生成部と、
前記操作対象物に対して前記制御信号を送信する通信部とを有することを特徴とする重心計測機能付き操作システム。
【請求項8】
前記制御信号は、前記操作対象物を移動させる移動方向と共に、前記重心ベクトルの大きさに基づいて定められる、前記操作対象物の移動速度を制御する情報を含むことを特徴とする請求項7に記載の重心計測機能付き操作システム。
【請求項9】
前記演算部は、前記操作者の荷重値を算出し、
前記制御信号は、前記荷重値に基づいて定められる、前記操作対象物の前記平面と直交する方向への移動を制御する情報を含むことを特徴とする請求項7又は8に記載の重心計測機能付き操作システム。
【請求項10】
前記通信部は、平坦面上に載置された前記操作対象物に対して前記制御信号を送信することを特徴とする請求項7又は8に記載の重心計測機能付き操作システム。
【請求項11】
前記制御信号は、予め前記通信部が受信したそれぞれの前記操作対象物を区別するために割り振られた固有情報に基づいて定められる、識別情報を含むことを特徴とする請求項7~10のいずれか一項に記載の重心計測機能付き操作システム。
【請求項12】
前記コンピュータは、前記制御信号の送信周期を設定する、周期設定部を備えることを特徴とする請求項7~11のいずれか一項に記載の重心計測機能付き操作システム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、操作装置及び操作システムに関し、特に、操作者の重心移動に基づいて、操作対象物を操作する重心計測機能付き操作装置及び重心計測機能付き操作システムに関する。
【背景技術】
【0002】
人の日常生活動作において重要な能力の一つとしてバランス能力がある。人は、バランス能力が低下すると、自己の体を支えることが難しくなり、転倒しやすくなってしまう。また、バランス能力は、スポーツ分野においても、俊敏な動きや毎回同じフォームで動作するために重要な能力の一つと考えられている。
【0003】
そこで、バランス能力を定量的に評価するために様々な方法が提案されている。例えば、簡易的な評価方法としては、両目を閉じた状態で、片足立ちを維持できる時間を計測する方法等がある。より詳細に評価する方法としては、例えば、下記特許文献1に記載されているような装置を用いた評価方法が提案されている。
【先行技術文献】
【特許文献】
【0004】
【文献】特開2016-195650号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
上述のように、バランス能力は、人にとって重要な能力の一つであり、特に、リハビリテーションの分野では、高齢者や大きな怪我をした人が不自由なく日常生活を送れるように、そして、スポーツの分野では、パフォーマンスを向上させるために、バランス能力を回復、維持、向上、さらには、幼児、成長期にある子供などの運動能力を発達させる方法や装置が期待されている。
【0006】
バランス能力は、体を支えるだけではなく、躓いたときの体の立て直しや、座位の状態から安定して立ち上がるための能力でもあるため、体全体の筋力、関節の柔軟性、骨格形状等に影響される。そこで、バランス能力を回復、維持、向上させる方法として、バランス能力に影響する筋力を鍛える筋力トレーニングや、関節を柔らかくするための柔軟体操等が提案されている。
【0007】
ところが、筋力トレーニングや柔軟体操は、すぐに体に変化が現れるものではなく、定期的に長期にわたって行わなければ、なかなか効果が表れない。そして、筋力トレーニングや柔軟体操のように体に負担をかけるものや、体に痛みが生じるものは、精神的な負担にもなり、長期にわたって継続して実施することが難しい。さらに、筋力トレーニングや柔軟体操のみでは、俊敏な動きや、重心を意識することが少ないため、体幹や神経系を鍛えることも困難である。
【0008】
本発明は、上記課題に鑑み、バランス能力を定量的に評価し、かつ、楽しみながらバランス能力を回復、維持、向上させることができる重心計測機能付き操作装置及び重心計測機能付き操作システムを提供することを目的とする。
【課題を解決するための手段】
【0009】
本発明の重心計測機能付き操作装置は、
操作者が立位で乗る被荷重面と、
前記被荷重面上に乗っている前記操作者の荷重の作用点の前記被荷重面と平行な計測面上における座標である重心座標と、前記計測面上の基準点の座標に対する前記重心座標の相対的な位置を表す重心ベクトルとを算出する演算部と、
前記重心ベクトルが向いている方向に基づいて定められる方向を操作対象物の平面上における移動方向とする旨の制御信号を生成する信号生成部と、
前記操作対象物に対して前記制御信号を送信する通信部とを備えることを特徴とする。
【0010】
上記装置は、操作者が被荷重面に乗り、自分の重心を動かすことで、特定の制御信号を受けて平面上を移動する操作対象物、例えば、ロボット、ドローン、ラジコンカー等を、意図した方向に動かすことができる。計測面上の基準点の座標は、装置の被荷重面の中心点や、操作開始前に計測された操作者の静止立位時の重心位置とすることができる。
【0011】
被荷重面上に乗っている操作者は、ロボット、ドローン、ラジコンカーが意図通りに動くように、被荷重面にかかっている体全体の荷重のバランスを調整して、自分の重心を維持したり、俊敏に動かしたりする。このような動作を継続することで、操作者は、体全体を支えるための筋力や、俊敏に体を動かすための筋力、さらには体幹や神経系を鍛えることができる。
【0012】
また、上記装置を用いることで、操作者は、ロボット、ドローン、ラジコンカーを自分の分身として、特定の経路上を決まった時間内に走破させる等、ゲーム感覚でバランス能力の評価やトレーニングをすることができる。
【0013】
さらに、フィジカル空間で自分の分身としてロボット、ドローン、ラジコンカーを協働的に動かすことで、障害物の有無やコースの形状等を意識した操作ができるため、画面やスクリーン上のバーチャル空間のキャラクターを操作する装置と比較して、本発明は、操作対象物に感情移入しやすく、操作性の難易度や緻密な調整が要求されるため、操作者がより効果的にバランス能力を鍛えることができる。
【0014】
上記重心計測機能付き操作装置において、
前記制御信号は、前記操作対象物を移動させる移動方向と共に、前記重心ベクトルの大きさに基づいて定められる、前記操作対象物の移動速度を制御する情報を含んでいても構わない。
【0015】
上記構成とすることで、重心位置に更なる要素が加わり、操作者は、より細かい重心位置の調整を行うようになる。したがって、より高度なバランス能力のトレーニングを行うことができる。
【0016】
上記重心計測機能付き操作装置において、
前記演算部は、前記操作者の荷重値を算出し、
前記制御信号は、前記荷重値に基づいて定められる、前記操作対象物の前記平面と直交する方向への移動速度を制御する情報を含んでいても構わない。
【0017】
ここでいう荷重値とは、被荷重面にかかっている荷重であり、操作者が静止立位で被荷重面の乗っている場合は、荷重値は、操作者の体重と等しくなる。そして、操作者が、被荷重面に対して、勢いよく屈んだり、ジャンプしたりすることで、計測される荷重値が変動する。なお、操作者が立位で被荷重面の乗っている状態で被荷重面にかかる静的な荷重は静荷重、操作者が勢いよく屈む等して被荷重面にかかる動的な荷重は動荷重とも称される。
【0018】
上記構成とすることで、ドローン等の飛行体を操作することができる。これにより、荷重移動だけでなく、荷重値を調整するための動きが取り入れられるため、より高度なバランス能力のトレーニングを行うことができる。
【0019】
上記重心計測機能付き操作システムにおいて、
前記通信部は、平坦面上に載置された前記操作対象物に対して前記制御信号を送信するものであっても構わない。
【0020】
操作対象物の動作が平坦面上での移動だけとなれば、操作者は、重心位置の操作だけに集中することができる。したがって、バランス能力の回復を優先するリハビリの初期段階におけるトレーニング等に活用することができる。
【0021】
上記重心計測機能付き操作装置において、
前記制御信号は、予め前記通信部が受信したそれぞれの前記操作対象物を区別するために割り振られた固有情報に基づいて定められる、識別情報を含んでいても構わない。
【0022】
上記構成とすることで、複数の操作対象物を用意して、それぞれ独立の操作装置で操作することができる。つまり、各操作装置とペアリングした複数のロボットによって、レース、サッカーや棒倒しといった複数人で戦略性の高いゲームをすることができる。
【0023】
そして、各操作者は、同じフィジカル空間において、自分の分身であるロボットと、他の操作者が操作するロボットとを競争させ、又は協働させることで、自分が操作するロボットに愛着を持ち、ゲームを楽しみながらバランス能力のトレーニングをすることができる。
【0024】
上記重心計測機能付き操作装置において、
前記制御信号の送信周期を設定する、周期設定部を備えていても構わない。
【0025】
人は、自分の重心を固定したまま維持させることが困難であり、いくら重心を固定しようとしても僅かに揺れ動いてしまう。つまり、ロボット、ドローン、ラジコンカーは、常に操作者の重心位置に基づいて動作するとなると、重心座標に基づいて移動しながらも、僅かに揺動をしながら移動することや、意図した方向になかなか動こうとしないことがある。
【0026】
また、制御信号の周期が長すぎると、操作対象物は、移動と停止を繰り返す場合や、操作者が重心位置を変えているにも関わらず、しばらく重心位置の変化に反応せず、同じ移動方向に同じ移動速度で移動し続けてしまう場合がある。
【0027】
そこで、上記構成とすることで、制御信号の送信周期を任意に設定でき、操作対象物を制御する制御信号から、人の重心の揺れ動きのような、短い周期の信号を取り除くことができる。したがって、操作者が、操作対象物をスムーズに動かすことができる。
【0028】
なお、ロボットを静止させる方法としては、例えば、任意の大きさに設定されたサークル内に重心位置があるときや、被荷重面に閾値以上の荷重がかかっていないことが検出されたときに、操作装置が操作対象物に対して停止信号を送信するように設定する方法がある。
【0029】
本発明の重心計測機能付き操作システムは、
操作者が立位で乗る被荷重面と、前記被荷重面上に乗っている前記操作者の荷重の作用点の前記被荷重面と平行な計測面上における座標である重心座標を算出して出力するデータ出力部とを有する重心計測装置と、
平面上を移動するための移動機構を備える操作対象物と、
前記重心計測装置から出力された前記重心座標に関する情報に基づいて、前記操作対象物の前記平坦上における移動方向を特定する制御信号を生成し、前記操作対象物に対して送信するコンピュータとを備え、
前記コンピュータは、
前記重心計測装置から出力された前記重心座標が入力され、前記計測面上の基準点の座標に対する前記重心座標の相対的な位置を表す重心ベクトルを算出する演算部と、
前記重心ベクトルが向いている方向に基づいて定められる方向を前記操作対象物の前記平面上における移動方向とする旨の前記制御信号を生成する信号生成部と、
前記操作対象物に対して前記制御信号を送信する通信部とを有する。
【0030】
また、上記重心計測機能付き操作システムにおいて、
前記制御信号は、前記操作対象物を移動させる移動方向と共に、前記重心ベクトルの大きさに基づいて定められる、前記操作対象物の移動速度を制御する情報を含んでいても構わない。
【0031】
さらに、上記重心計測機能付き操作システムにおいて、
前記演算部は、前記操作者の荷重値を算出し、
前記制御信号は、前記荷重値に基づいて定められる、前記操作対象物の前記平面と直交する方向への移動速度を制御する情報を含んでいても構わない。
【0032】
さらに、上記重心計測機能付き操作システムにおいて、
前記通信部は、平坦面上に載置された前記操作対象物に対して前記制御信号を送信するものであっても構わない。
【0033】
さらに、上記重心計測機能付き操作システムにおいて、
前記制御信号は、予め前記通信部が受信したそれぞれの前記操作対象物を区別するために割り振られた固有情報に基づいて定められる、識別情報を含んでいても構わない。
【0034】
さらに、上記重心計測機能付き操作システムにおいて、
前記コンピュータは、前記制御信号の送信周期を設定する、周期設定部を備えていても構わない。
【0035】
上記システムは、上記装置に対して、重心計測装置が被荷重面下に配置されたセンサ等によって被荷重面の各位置にかかっている荷重の計測を行ってコンピュータに対して測定データを出力し、コンピュータが、入力された測定データに基づいて重心座標と重心ベクトルの演算と制御信号の生成と操作対象物への制御信号の送信を行う構成である。
【0036】
すなわち、上記の重心計測機能付き操作装置と同じ機能を備えた操作システムであり、各構成による効果も上述の通りである。さらに、上記構成においては、重心計測以外の機能がコンピュータに搭載されるため、操作者が乗る重心計測装置をコンパクトで、かつ、軽量に構成することができ、重心計測装置が持ち運びしやすくなる。
【発明の効果】
【0037】
本発明によれば、バランス能力を定量的に評価し、かつ、楽しみながらバランス能力を回復、維持、向上させることができる重心計測機能付き操作装置及び重心計測機能付き操作システムが実現される。
【図面の簡単な説明】
【0038】
図1】操作装置の使用態様を示す模式的な図である。
図2】操作装置の一実施形態の模式的な全体斜視図である。
図3図1の操作装置の上面視の図面である。
図4】操作装置の各処理手段の構成の一実施形態を模式的に示す図面である。
図5】重心ベクトルの各成分を示す図面である。
図6】一つの操作装置と複数の操作対象物を用いた使用態様を示す模式的な図である。
図7】複数の操作装置と複数の操作対象物を用いた使用態様を示す模式的な図である。
図8】操作システムの使用態様を示す模式的な図である。
図9】操作システムの一実施形態の模式的な全体構成図である。
図10図5の重心計測装置の上面視の図面である。
図11】操作システムの構成の一実施形態を模式的に示す図面である。
図12】操作対象物がドローンである場合の操作装置の使用態様を示す模式的な図である。
図13】操作対象物がドローンである場合の操作装置の使用態様を示す模式的な図である。
図14】操作対象物がドローンである場合の操作装置の使用態様を示す模式的な図である。
図15】屈みこみ時の荷重変動を示すグラフである。
図16】ジャンプ時の荷重変動を示すグラフである。
【発明を実施するための形態】
【0039】
以下、本発明の操作装置及び操作システムについて、図面を参照して説明する。なお、以下の各図面は、いずれも模式的に図示されたものであり、図面上の寸法比や個数は、実際の寸法比や個数と必ずしも一致していない。
【0040】
[第一実施形態]
本発明の操作装置1の構成につき、説明する。
【0041】
最初に操作装置1の使用態様を説明する。図1は、操作装置1の使用態様を示す模式的な図である。図1に示すように、操作装置1に乗った操作者が、操作装置1上で自分の重心位置をコントロールするようにバランスをとることで、平坦面上の少し離れた位置に置かれた操作対象物2を操作する。操作対象物2は、操作装置1から送信された制御信号3を受信して、制御信号3に基づいて平坦面上を移動する。操作対象物2としては、例えば、二足歩行あるいは球形状の車輪で移動するロボットやミニカー等を用いることができる。
【0042】
図2は、操作装置1の一実施形態の模式的な全体斜視図である。図3は、図2の操作装置1の上面視の図面である。図2及び図3に示すように、第一実施形態の操作装置1は、操作者が立位で乗るための被荷重面1aを備えている。なお、以下説明において、被荷重面1aが構成されている平面をXY平面として、操作者が被荷重面1aに乗ったときの左右方向をX方向(右方向をX正方向)、前後方向をY方向(前方向をY正方向)とし、XY平面と直交する方向をZ方向として説明する。
【0043】
操作装置1は、内部、すなわち図2において被荷重面1aよりも下方において、情報に対する処理を行う処理手段が内蔵されている。図4は、操作装置1の上記各処理手段の構成の一実施形態を模式的に示す図面である。図4に示すように、操作装置1は、演算部10、信号生成部11、通信部12及び周期設定部13を備える。
【0044】
また、第一実施形態の操作装置1は、被荷重面1a下に図示しない複数の荷重計測用のセンサを搭載しており、重心計測機能を備える。荷重計測用のセンサとしては、例えば、圧力センサ、歪ゲージセンサ、ロードセル等のセンサを用いることができる。
【0045】
演算部10は、上記の各センサが測定した分力及び各センサが配置されている座標位置を利用して、被荷重面1aと平行な計測面上の荷重の作用点の座標を算出する。以後、荷重の作用点を重心と呼び、荷重の作用点の座標を重心座標と呼ぶ。
【0046】
演算部10は、被荷重面1a上に乗っている操作者の重心座標と、基準点1bを原点とした重心座標の相対的な方向と距離を表す重心ベクトルG1(CX,CY)とを算出する(図5参照)。図5は、重心ベクトルG1の各成分を示す図面である。ここで、CXは、重心ベクトルG1のX方向の成分、CYは、重心ベクトルG1のY方向の成分である。第一実施形態において、基準点1bは、Z方向に向かってXY平面を見たときに、被荷重面1aの中心点と重なる位置とした。なお、基準点1bは、操作開始前に計測された操作者の静止立位時の重心位置としても構わない。
【0047】
演算部10は、算出した重心ベクトルG1のX正方向を0°として反時計回りを正方向とする角度θと、重心ベクトルG1の大きさr1のデータを信号生成部11に対して出力する。重心ベクトルG1の角度θは、重心ベクトルG1の各成分(CX,CY)に基づいて、次の式を満たすように算出される。
【0048】
【数1】
【0049】
そして、重心ベクトルG1の大きさr1は、重心ベクトルG1の各成分(CX,CY)に基づいて、次のように算出される。
【0050】
【数2】
【0051】
信号生成部11は、演算部10から出力された重心ベクトルG1の角度θのデータに基づいて、図1に示すように、平坦面上に配置された操作対象物2を、操作対象物2の正面をY正方向に対応させて重心ベクトルG1の角度θと同じ方向である移動方向に移動させる制御信号3を生成する。なお、操作が難しい場合等には、操作対象物2の正面には対応させず、操作装置1、あるいは被荷重面10aにおける操作者の向き等に合わせるように、移動方向が設定されていても構わない。
【0052】
さらに信号生成部11は、演算部10から出力された重心ベクトルG1の大きさr1のデータに基づいて、操作対象物2を角度θの方向である移動方向に向かって、重心ベクトルG1の大きさr1に比例する移動速度で移動させるように制御する制御信号3を生成する。ここで、制御信号3は、角度θに関する情報を含む制御信号3と、移動速度に関する情報含む制御信号3を別々で生成するものであってもよく、同じ制御信号3の中にいずれの情報をも含めて生成すものであってもよい。
【0053】
通信部12は、信号生成部11で生成された制御信号3を操作対象物2に対して送信する。このとき、制御信号3の送信周期が短すぎると、短い周期で細かく動く重心の揺動まで制御信号3として、操作対象物2に送信されてしまう。そうすると、操作対象物2が、重心の揺動に合わせて振動するような動作や、制御不能で動かなくなってしまう恐れがある。また、制御信号3の送信周期が長すぎると、操作対象物2が操作者の重心移動動作に追従しなくなり、操作対象物2が操作者の重心移動に対して遅れるような動作となり、スムーズ動きができなくなる。
【0054】
この対策として、操作装置1の制御信号3を生成するタイミングを調整する方法、制御信号3を操作対象物2に対して送信するタイミングを調整する方法、あるいは、操作対象物2で、制御信号3に対して応答するタイミングを調整する方法が考えられる。いずれの構成としても構わないが、操作装置1が送信する制御信号3に対応して動く操作対象物2を任意に選ぶ場合、操作対象物2によっては、制御信号3に対して応答するタイミングを調整できない場合が考えられる。したがって、操作装置1において、制御信号3を生成するタイミング、あるいは操作対象物2に対して送信するタイミングを調整できることが好ましい。
【0055】
そこで、本実施形態においては、信号生成部11が制御信号3を常時生成し、周期設定部13が操作対象物2に制御信号3を送信する周期を調整する構成とした。周期設定部13によって、制御信号3の送信周期を任意に設定できることで、上述のように、操作者が、操作対象物2をスムーズに動かせるように調整することができる。
【0056】
なお、操作装置1は、複数の操作対象物2の操作が可能な構成であっても構わない。図6は、一つの操作装置1で特定の操作対象物2を操作する使用態様を示す模式的な図である。図6が示すような状態の場合、複数の操作対象物2のそれぞれに対して、異なる固有情報が割り振られているものとすることができる。
【0057】
このときまた、通信部12は、操作対象物2に対して制御信号3の送信を開始する前に、複数の操作対象物2の中から、実際に操作する対象を特定するために、実際に操作したい操作対象物2から固有情報を受信する。信号生成部11は、当該固有情報に基づいて生成した識別情報を含めた制御信号3を生成し、通信部12はこの識別情報が含まれた制御信号3を送信する。
【0058】
通信部12から送信された制御信号3が受信可能な範囲内に配置されている複数の操作対象物2は、それぞれがこの制御信号3を受信する。操作対象物2は、このとき、制御信号3に含まれている識別情報が、自身の操作対象物2に割り当てられている固有情報に対応している場合に限り、制御信号3に含まれる情報に基づいて移動を行う。
【0059】
よって、操作者は、複数の操作対象物2が配置されている状態で、特定の操作対象物2のみを操作することができる。なお、操作装置1と操作対象物2の双方が複数存在していても構わない。図7は、複数の操作装置1でそれぞれの操作対象物2を操作する使用態様を示す模式的な図である。上記構成とすることで、図7が示すように、同時に複数の操作者が、それぞれの操作装置1によって、別々の操作対象物2の操作を行うこともできる。
【0060】
操作装置1の通信部12が、操作開始前に操作対象物2から、固有情報を受信する方法は、例えば、操作装置1の通信部12が、操作対象物2に対して、固有情報を発信させるためのトリガ信号を送信する方法や、操作装置1と操作対象物2をケーブル等で一度接続してペアリング処理を行う方法がある。
【0061】
このように、第一実施形態の操作装置1に乗った操作者は、操作装置1の被荷重面1a上で体を傾ける等して、操作対象物2を移動させたい移動方向に、かつ、動かしたい速度で動かすように自分の重心を調整して操作対象物2を操作する。したがって、操作者は、操作対象物2の動きを見ながら、常に自分の重心位置を意識して、操作対象物2が意図通りの経路を移動するように、細かな重心の位置調整や、俊敏な重心移動を繰り返す。
【0062】
つまり、操作者は、体全体の荷重のバランスを微調整し、状況に応じて任意の位置で重心を動かないように維持したり、俊敏に体全体を動かしたりするので、操作者の体には自然と重心を調整しようとする筋肉に負荷がかかり、バランス能力に影響する筋力が鍛えられる。さらに、操作者は、常に重心位置を意識して、重心位置の維持や、俊敏に重心移動を繰り返すことにもなるため、自分の重心を調整する感覚が身につき、体幹や神経系も鍛えられる。
【0063】
また、複数の操作者が、それぞれの操作対象物2を、同じフィールド上で操作して、例えば、レース、協働性と戦略性の高いサッカーや棒倒し等のゲームを行うことができる。複数の操作装置1と複数の操作対象物2を用意して、複数人での一斉に操作対象物2を動かす場合、他の操作者が動かす操作対象物2の動きに注意を払うようになり、より細かい精度で、俊敏に重心の位置調整を意識するようになる。
【0064】
さらに、細かい精度で重心を調整できるようになれば、同じフォームでスイングを行うゴルフ等のスポーツにおいて、姿勢やスイングフォームの僅かなずれを認識して調整することができ、パフォーマンスの向上にもつながる。
【0065】
以上のように、第一実施形態の操作装置1を用いれば、操作者は、リハビリテーションや筋力トレーニングではなく、ゲームをしている感覚で、楽しみながら無意識にバランス能力の回復、維持、向上を図ることができる。そして、楽しみながらバランス能力のトレーニングができるため、定期的に長期にわたって継続して行うことができる。
【0066】
[第二実施形態]
本発明の操作システム5の構成につき、説明する。
【0067】
第一実施形態の説明と同様に、最初に操作システム5の使用態様を説明する。図8は、操作システム5の使用態様を示す模式的な図である。図8に示すように、重心計測装置50に乗った操作者は、重心計測装置50上で荷重をコントロールするようにバランスをとる。そして、荷重の測定データ信号52を受信したコンピュータ51から送信される制御信号3によって平坦面上の少し離れた位置に置かれた操作対象物2が操作される。
【0068】
操作対象物2は、上述の第一実施形態でも例示したものと同様で、重心計測装置50から送信された制御信号3を受信して、制御信号3に基づいて平坦面上を移動する、二足歩行あるいは球形状の車輪で移動するロボットや、ミニカー等を用いることができる。
【0069】
図9は、操作システム5の構成の一実施形態を模式的に示す図面である。図10は、図9の重心計測装置50の上面視の図面である。図9及び図10に示すように、操作システム5は、重心計測機能を備えるため、重心計測装置50とコンピュータ51によって構成される。コンピュータ51は、汎用のノートブック型PC、デスクトップ型PC、タブレット型PC、スマートフォンなどで実現できる。
【0070】
第二実施形態の重心計測装置50は、操作者が立位で乗るための被荷重面50aを備えている。なお、以下説明において、被荷重面50aが構成されている平面をXY平面として、操作者が被荷重面50aに乗ったときに正面となる方向をY正方向とし、XY平面と直交する方向をZ方向として説明する。
【0071】
第一実施形態における操作装置1と、第二実施形態における重心計測装置50は、説明の便宜のために外観形状は同じとしたが、いずれも図1等に図示された形状には限定されない。
【0072】
図9は、操作システム5の構成の一実施形態を模式的に示す図面である。図9に示すように、重心計測装置50は、データ出力部60を備え、コンピュータ51は、演算部70、信号生成部71、通信部72及び周期設定部73を備える。
【0073】
第二実施形態の重心計測装置50は、被荷重面50a下に図示しない複数の荷重計測用のセンサを搭載しており、重心計測機能を備える。荷重計測用のセンサとしては、上述した第一実施形態の操作装置1と同様に、圧力センサ、歪ゲージセンサ、ロードセル等のセンサを用いることができる。
【0074】
データ出力部60は、上記の各センサが測定した分力を測定データ信号52としてコンピュータ51に対して出力する。
【0075】
コンピュータ51の演算部70は、重心計測装置50のデータ出力部60から出力された測定データ信号52に基づいて、操作者の重心座標と計測面上の基準点50bを原点とした重心座標の相対的な位置を表す重心ベクトルG1(CX,CY)を算出する。第二実施形態においても第一実施形態の操作装置1と同様に、計測面上の基準点50bは、Z方向に向かって被荷重面50aを見たときの、被荷重面50aの中心点としたが、基準点50bは、操作開始前に計測された操作者の静止立位時の重心位置としても構わない。
【0076】
演算部70は、算出した重心ベクトルG1の角度θと大きさr1のデータを信号生成部71に対して出力する。重心ベクトルG1の各成分の定義は、第一実施形態の説明で上述した定義と同じである。
【0077】
コンピュータ51の信号生成部71及び通信部72の機能は、第一実施形態の操作装置1の信号生成部11及び通信部72と同じである。また、操作対象物2は、第一実施形態と同様に、上述したような、平坦面上を移動するための移動機構を備えたものを採用することができる。
【0078】
上記構成とすることで、第一実施形態の操作装置1と同様に、ストレスや苦痛を感じることが少なく、楽しみながら無意識にバランス能力の回復、維持、向上を図ることができる。そして、楽しみながらバランス能力のトレーニングができるため、定期的に長期にわたって継続して行うことができる。
【0079】
また、第二実施形態においては、重心計測以外の機能をコンピュータ51が担うことで、第一実施形態の操作装置1と比べると重心計測装置50をコンパクトで、かつ、軽量に構成することができ、持ち運びがしやすくなる。
【0080】
本実施形態において、重心計測装置50とコンピュータ51との間は有線によって接続されていても構わない。なお、第二実施形態におけるコンピュータ51をUSBメモリ型などの小型コンピュータで構成し、重心計測装置50に連結されることで利用されるものとしても構わない。
【0081】
[第三実施形態]
本発明の操作装置1によって、飛行体であるドローン80を操作する実施形態につき、説明する。
【0082】
操作対象物2がドローン80である場合の操作装置1の使用態様を説明する。本実施形態では、操作装置1が、内蔵されている荷重計測用の各センサによって、被荷重面1aにかかっている操作者による荷重を計測し、演算部10が、各センサによって計測された静荷重及び動荷重に基づいて、被荷重面1aにかかっている荷重値を算出する。ここで、本明細書における荷重とは、操作装置1に内蔵されている各センサによって計測された荷重に基づいて、演算部10が算出する、被荷重面1aにかかっている荷重の値である。
【0083】
まず、操作開始前に、操作装置1は、静止立位状態の操作者から被荷重面1aが受ける荷重、すなわち、静荷重である体重を計測する。その後、操作が開始すると、計測された動荷重による波形を用いて、信号生成部11が、ドローン80が下降、もしくは、上昇するように移動する情報を含む制御信号3を生成する。これらの制御信号3が通信部12によって送信され、ドローン80が制御信号3を受信すると、ドローン80が昇降動作を行う。
【0084】
図12図14は、操作対象物2がドローン80である場合の操作装置1の使用態様を示す模式的な図である。図12に示すように、操作装置1に乗った操作者は、操作装置1上で荷重をコントロールするようにバランスをとりながら、ドローン80を床と平行な方向に移動するように操作する。
【0085】
図13に示すように、例えば、操作者が屈みこむように動作すると、瞬間的に被荷重面1aによって体重よりも小さな荷重値が計測され、その後すぐに体重よりも大きな荷重値が計測されると、ドローン80は、下降するように動作する。図14に示すように、例えば、操作者がジャンプや勢いよく体を伸ばすように動作すると、瞬間的に被荷重面1a上の荷重値がゼロになり、ドローン80は、上昇するように動作する。
【0086】
なお、ジャンプしている時間や、屈みこんで大きな荷重が検出される時間は瞬間的であり、かつ、当該動作によって荷重値の操作を行う前後は必ず反発的に逆の荷重が発生してしまう。例えば、ジャンプ前の踏み込み時と後の着地時には大きな荷重が生じてしまう。そこで、これらを解決する方法として、例えば、信号生成部11が、ドローン80の昇降動作を制御する信号を生成した後、一定時間は、昇降動作を制御する信号を生成しないように構成されていても構わない。
【0087】
図15は、屈みこみ時の荷重変動を示すグラフである。図15に示すグラフの縦軸は、演算部10によって算出された動荷重が操作者の静荷重、すなわち、体重に対して何%かを示しており、横軸は時間を示している。図15に示すように、屈みこみ時、荷重が体重50%を下回り(P1)、その後、所定の時間T1(例えば、0.5秒)以内に体重の150%を超える荷重が計測された場合(P2)に屈みこみ動作と認識し、ドローンを任意の高さ分だけ降下させる。この時、動作指令を与えた後、任意の時間だけ信号を無視する。
【0088】
図16は、ジャンプの時の荷重変動を示すグラフである。図16に示すグラフの縦軸及び横軸が示すパラメータは、図15のグラフと同じである。図16に示すように、ジャンプ時には、荷重が体重の200%を超えて(P3)、その後、所定の時間T2(例えば、0.5秒)以内に荷重がゼロもしくは任意の下限値を下回った場合(P4)には、ジャンプしたと認識し、ドローンを任意高さ分だけ上昇させる。この時、動作指令を与えた後は、任意の時間だけ信号を無視する。
【0089】
第三実施形態は、操作装置1によるドローン80の操作について説明したが、操作システム5においても、コンピュータ51に同様の構成を採用することでドローン80を操作する構成を実現することができる。
【0090】
[別実施形態]
以下、別実施形態につき説明する。
【0091】
〈1〉 操作装置1、又は操作システム5の重心計測装置50の被荷重面(1a,50a)が被荷重面(1a,50a)上の重心位置を示すように、発光部を備えていても構わない。上記構成とすることで、被荷重面(1a,50a)上のどこに自分の重心があるのかを一目で確認や評価することができる。
【0092】
また、上記構成により、操作者は、操作対象物2の操作開始前に、自分の重心位置が基準とする位置からずれていないか確認し、ずれていれば調整することができ、さらに、操作対象物2が意図しない方向に移動する場合には、自分の重心位置が意図通りに動いていることも確認することができる。
【0093】
〈2〉 操作装置1、又は操作システム5のコンピュータ51の演算部(10,70)が、複数の荷重計測用のセンサから取得された時系列の計測値、あるいは、算出した重心座標、重心ベクトルG1の時系列データに対して、高い周波数の成分を除去するための演算フィルタを備えていても構わない。演算フィルタは、例えば、移動平均フィルタ等を採用し得る。
【0094】
〈3〉 上述した操作装置1及び操作システム5が備える構成は、あくまで一例であり、本発明は、図示された各構成に限定されない。
【0095】
なお、バランス能力の低い高齢者などが本発明の装置やシステムを使用する場合、手すりに掴まる、ノルディックウォーキングの杖を使う、または補助者等が牽引して転倒を防ぐようにしてもよい。
【0096】
さらに、操作対象物2がドローン80のような飛行体である場合、ドローン80の重心ベクトルG1で操作する方向と直交する方向への操作は、必ずしも荷重値に基づいて行われる必要はなく、別途当該方向だけを操作する別のコントローラを用意しても構わない。
【符号の説明】
【0097】
1 : 操作装置
1a : 被荷重面
1b : 基準点
2 : 操作対象物
3 : 制御信号
5 : 操作システム
10 : 演算部
11 : 信号生成部
12 : 通信部
13 : 周期設定部
50 : 重心計測装置
50a : 被荷重面
50b : 基準点
51 : コンピュータ
52 : 測定データ信号
60 : データ出力部
70 : 演算部
71 : 信号生成部
72 : 通信部
73 : 周期設定部
80 : ドローン
G1 : 重心ベクトル
θ : 角度
r1 : 大きさ
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16