IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカの特許一覧

特許7300253予測モデル分散方法および予測モデル分散システム
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-06-21
(45)【発行日】2023-06-29
(54)【発明の名称】予測モデル分散方法および予測モデル分散システム
(51)【国際特許分類】
   G09C 1/00 20060101AFI20230622BHJP
   G06N 3/10 20060101ALI20230622BHJP
【FI】
G09C1/00 650Z
G06N3/10
【請求項の数】 7
(21)【出願番号】P 2018190943
(22)【出願日】2018-10-09
(65)【公開番号】P2019215512
(43)【公開日】2019-12-19
【審査請求日】2021-07-09
(31)【優先権主張番号】P 2017199582
(32)【優先日】2017-10-13
(33)【優先権主張国・地域又は機関】JP
(31)【優先権主張番号】P 2018109618
(32)【優先日】2018-06-07
(33)【優先権主張国・地域又は機関】JP
【前置審査】
(73)【特許権者】
【識別番号】514136668
【氏名又は名称】パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ
【氏名又は名称原語表記】Panasonic Intellectual Property Corporation of America
(74)【代理人】
【識別番号】100109210
【弁理士】
【氏名又は名称】新居 広守
(74)【代理人】
【識別番号】100137235
【弁理士】
【氏名又は名称】寺谷 英作
(74)【代理人】
【識別番号】100131417
【弁理士】
【氏名又は名称】道坂 伸一
(72)【発明者】
【氏名】西田 直央
(72)【発明者】
【氏名】海上 勇二
(72)【発明者】
【氏名】大庭 達海
(72)【発明者】
【氏名】加藤 遼
(72)【発明者】
【氏名】山田 翔太
(72)【発明者】
【氏名】アッタラパドゥン ナッタポン
(72)【発明者】
【氏名】照屋 唯紀
(72)【発明者】
【氏名】松田 隆宏
(72)【発明者】
【氏名】花岡 悟一郎
【審査官】打出 義尚
(56)【参考文献】
【文献】DAHL, Morten,Private Deep Learning with MPC,2017年04月,https://mortendahl.github.io/2017/04/17/private-deep-learning-with-mpc/
【文献】LIU, Jian et al.,Oblivious Neural Network Predictions via MiniONN transformations,Cryptology ePrint Archive, Paper 2017/452,2017年08月,https://eprint.iacr.org/2017/452
【文献】COURBARIAUX, Matthieu et al.,Binarized Neural Networks: Training Deep Neural Networks with Weights and Activations Constrained to +1 or -1,arXiv: 1602.02830,2016年03月,https://arxiv.org/abs/1602.02830
【文献】PAYMAN MOHASSEL; ET AL,SECUREML: A SYSTEM FOR SCALABLE PRIVACY-PRESERVING MACHINE LEARNING,2017 IEEE SYMPOSIUM ON SECURITY AND PRIVACY (SP),2017年05月,PAGE(S):19 - 38,http://dx.doi.org/10.1109/SP.2017.12
(58)【調査した分野】(Int.Cl.,DB名)
G09C 1/00
G06N 3/02
(57)【特許請求の範囲】
【請求項1】
情報処理装置で用いられる、入力を秘匿したまま予測処理を行うための予測モデル分散方法であって、
ニューラルネットワークである第一の予測モデルを、前記第一の予測モデルに含まれる複数のパラメータの一部から、前記予測処理に用いられるパラメータをあらかじめ算出することで第二の予測モデルとし、さらに、前記第二の予測モデルに含まれる複数のパラメータのうち小数の値を整数の値に変換し、負の数値に対し、秘密分散法で用いる除数を加算し正の数値に変換することにより前記第二の予測モデルを第三の予測モデルに変換する予測モデル変換ステップと、
前記第三の予測モデルを、前記秘密分散法により分散する予測モデル分散化ステップと、
を含み、
前記予測処理に用いられるパラメータは、前記予測処理が含む、データ分布の均一化のための均一化処理に用いられる均一化パラメータであり、
前記均一化パラメータは、s、tを含み、
前記均一化処理の入力をx、前記均一化処理の出力をyとしたときに、前記均一化処理の式は、y=sx+tと表され、
前記予測モデル変換ステップでは、前記第一の予測モデルに含まれる複数のパラメータを用いて前記均一化パラメータs、tを算出することで前記第二の予測モデルとする、
予測モデル分散方法。
【請求項2】
前記第一の予測モデルに含まれる複数のパラメータは、前記均一化処理に用いられる学習済みパラメータγ、σ、ε、β、μを含み、
前記均一化処理は前記学習済みパラメータを用いて次式で表され、
【数1】
前記予測モデル変換ステップでは、以下の式で表される前記均一化パラメータs、tを算出することで前記第二の予測モデルとする、
【数2】
【数3】
請求項1に記載の予測モデル分散方法。
【請求項3】
前記第一の予測モデルは、1または-1の二値で構成される複数のパラメータを含む二値化ニューラルネットワークである、
請求項1又は2に記載の予測モデル分散方法。
【請求項4】
さらに、
事前に収集した学習用のデータを用いて、前記第一の予測モデルの学習処理を行う学習ステップを含む、
請求項1~3のいずれか一項に記載の予測モデル分散方法。
【請求項5】
さらに、
センシングによって得られたデータから特徴量を算出する特徴量算出ステップと、
算出された前記特徴量を前記秘密分散法により分散する特徴量分散化ステップと、
を含む、
請求項1~4のいずれか一項に記載の予測モデル分散方法。
【請求項6】
さらに、
分散された前記第三の予測モデルに、分散された前記特徴量を入力して、分散された前記第三の予測モデルで予測処理を実行する予測処理ステップを含み、
前記予測処理ステップは、非線形処理を含み、
前記非線形処理は、前記非線形処理に対する入力が0または正に対応する数値であれば1に、前記入力が負に対応する数値であれば-1に対応する正の数値に変換する処理である、
請求項5に記載の予測モデル分散方法。
【請求項7】
入力を秘匿したまま予測処理を行うための予測モデル分散システムであって、
ニューラルネットワークである第一の予測モデルを、前記第一の予測モデルに含まれる複数のパラメータの一部から、前記予測処理に用いられるパラメータをあらかじめ算出することで第二の予測モデルとし、さらに、前記第二の予測モデルに含まれる複数のパラメータのうち小数の値を整数の値に変換し、負の数値に対し、秘密分散法で用いる除数を加算し正の数値に変換することにより前記第二の予測モデルを第三の予測モデルに変換する予測モデル変換部と、
前記第三の予測モデルを、前記秘密分散法により分散する予測モデル分散部と、
を備え、
前記予測処理に用いられるパラメータは、前記予測処理が含む、データ分布の均一化のための均一化処理に用いられる均一化パラメータであり、
前記均一化パラメータは、s、tを含み、
前記均一化処理の入力をx、前記均一化処理の出力をyとしたときに、前記均一化処理の式は、y=sx+tと表され、
前記予測モデル変換では、前記第一の予測モデルに含まれる複数のパラメータを用いて前記均一化パラメータs、tを算出することで前記第二の予測モデルとする、
予測モデル分散システム。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、秘密分散法により内容を秘匿しながらニューラルネットワークの予測処理を行うための予測モデル分散方法および予測モデル分散システムに関する。
【背景技術】
【0002】
近年、様々な企業がニューラルネットワークを利用したサービスを提供している。ニューラルネットワークを用いたサービスの例として、アップロードされた画像から被写体の種別を識別するサービスや、ユーザの購買履歴をもとにそのユーザが好むと思われる商品を推薦するサービス等が挙げられる。
【0003】
このようなサービスでは、ユーザからの入力情報、例えば、ユーザがアップロードする画像またはユーザの購買履歴等の入力情報に機微な情報が含まれていることも多いため、ユーザのプライバシ情報を保護する必要がある。そのため、ユーザがサービス提供者に対してプライバシ情報を公開することなく、ニューラルネットワークの学習処理および予測処理を行う技術が求められている。
【0004】
また、サービス提供者の立場から見ても、サービスのノウハウに関わる情報をできる限りユーザに知られることなく、ユーザにサービスを提供できることが求められる。
【0005】
これら2つの条件を満たす技術として、データを秘匿したまま計算を行うことが可能な秘密計算法という手法を用いて、ニューラルネットワークの予測処理を行う方法が考えられている。秘密計算法は、データを保管する主体に対して計算過程と結果とを秘匿することができる技術である。例えば、クラウドのような第三者が管理するサーバにデータを保管し、その保管しているデータに対してあらゆる演算を実行することができる。第三者には、入力データ、計算過程、計算結果を知られることがないため、個人情報のような機微な情報に対する分析処理をアウトソースすることができる。特に、非特許文献1(SecureML)および非特許文献2(CryptoNets)は、データを秘匿にしたまま予測処理を行う技術が開示されている。
【先行技術文献】
【非特許文献】
【0006】
【文献】Payman Mohassel、外1名、「SecureML: A System for Scalable Privacy-Preserving Machine Learning」、「IEEE Symposium on Security and Privacy 2017」(https://eprint.iacr.org/2017/396.pdf)
【文献】Ran Gilad-Bachrach、外5名、「CryptoNets: Applying Neural Networks to Encrypted Data with High Throughput and Accuracy」、(http://proceedings.mlr.press/v48/gilad-bachrach16.pdf)
【文献】Adi Shamir、「How to share a secret」、(http://dl.acm.org/citation.cfm?id=359176)
【文献】Ronald Cramer、外2名、「Share Conversion, Pseudorandom Secret-Sharing and Applications to Secure Computation」、(https://rd.springer.com/chapter/10.1007/978-3-540-30576-7_19)
【文献】Toshinori Araki、外4名、「High-Throughput Semi-Honest Secure Three-Party Computation with an Honest Majority」、(https://eprint.iacr.org/2016/768.pdf)
【文献】Takashi Nishide、外1名、「Multiparty Computation for Interval, Equality, and Comparison Without Bit-Decomposition Protocol」、「Public Key Cryptography - PKC 2007」、Springer Berlin Heidelberg 、(https://rd.springer.com/chapter/10.1007/978-3-540-71677-8_23)
【文献】Matthieu Courbariaux、外4名、「Binarized Neural Networks: Training Deep Neural Networks with Weights and Activations Constrained to +1 or -1」、(https://arxiv.org/abs/1602.02830)
【発明の概要】
【発明が解決しようとする課題】
【0007】
しかしながら、非特許文献1(SecureML)は、一般的なニューラルネットワークに比べて予測精度が低下するという問題がある。また、非特許文献2(CryptoNets)は、計算量が膨大であり、実用性に疑問がある。
【0008】
そこで、本開示では、予測精度の低下を低減することができる予測モデル分散方法および予測モデル分散システムを提供する。さらに、本開示では、上記構成を有することにより、計算量を少なく維持することができるため、予測処理のスピードの低下を低減することができる。
【課題を解決するための手段】
【0009】
上記課題を解決するため、予測モデル分散方法の一態様は、情報処理装置で用いられる、入力を秘匿したまま予測処理を行うための予測モデル分散方法であって、ニューラルネットワークである第一の予測モデルを、前記第一の予測モデルに含まれる複数のパラメータの一部から、前記予測処理に用いられるパラメータをあらかじめ算出することで第二の予測モデルとし、さらに、前記第二の予測モデルに含まれる複数のパラメータのうち小数の値を整数の値に変換し、負の数値に対し、秘密分散法で用いる除数を加算し正の数値に変換することにより前記第二の予測モデルを第三の予測モデルに変換する予測モデル変換ステップと、前記第三の予測モデルを、前記秘密分散法により分散する予測モデル分散化ステップと、を含前記予測処理に用いられるパラメータは、前記予測処理が含む、データ分布の均一化のための均一化処理に用いられる均一化パラメータであり、前記均一化パラメータは、s、tを含み、前記均一化処理の入力をx、前記均一化処理の出力をyとしたときに、前記均一化処理の式は、y=sx+tと表され、前記予測モデル変換ステップでは、前記第一の予測モデルに含まれる複数のパラメータを用いて前記均一化パラメータs、tを算出することで前記第二の予測モデルとすることを特徴とするものである。
【0010】
また、上記問題を解決するため、予測モデル分散システムの一態様は、入力を秘匿したまま予測処理を行うための予測モデル分散システムであって、ニューラルネットワークである第一の予測モデルを、前記第一の予測モデルに含まれる複数のパラメータの一部から、前記予測処理に用いられるパラメータをあらかじめ算出することで第二の予測モデルとし、さらに、前記第二の予測モデルに含まれる複数のパラメータのうち小数の値を整数の値に変換し、負の数値に対し、秘密分散法で用いる除数を加算し正の数値に変換することにより前記第二の予測モデルを第三の予測モデルに変換する予測モデル変換部と、前記第三の予測モデルを、前記秘密分散法により分散する予測モデル分散部と、を備え、前記予測処理に用いられるパラメータは、前記予測処理が含む、データ分布の均一化のための均一化処理に用いられる均一化パラメータであり、前記均一化パラメータは、s、tを含み、前記均一化処理の入力をx、前記均一化処理の出力をyとしたときに、前記均一化処理の式は、y=sx+tと表され、前記予測モデル変換では、前記第一の予測モデルに含まれる複数のパラメータを用いて前記均一化パラメータs、tを算出することで前記第二の予測モデルとする。
【発明の効果】
【0011】
本開示の予測モデル分散方法および予測モデル分散システムによれば、入力を秘匿のまま予測処理のスピードおよび予測精度の低下を低減することができる。
【図面の簡単な説明】
【0012】
図1】実施の形態に係る予測モデル分散システムの全体構成の一例を示す図である。
図2】実施の形態におけるユーザ端末装置の構成の一例を示す図である。
図3】実施の形態におけるデータ提供装置の構成の一例を示す図である。
図4】実施の形態におけるデータ演算装置の構成一例を示す図である。
図5】実施の形態における予測モデル分散システムの学習フェーズの動作を示すシーケンス図である。
図6】実施の形態における予測モデル分散システムの予測フェーズの動作を示すシーケンス図である。
図7】実施の形態における予測モデル分散システムの予測フェーズの動作を示すシーケンス図である。
図8】実施の形態における予測処理の動作を示すシーケンス図である。
図9】実施の形態における特徴量の一例を示す図である。
図10】実施の形態における分散化特徴量の一例を示す図である。
図11】実施の形態における均一化処理の一例を示す図である。
図12】実施の形態における予測モデルの一例を示す図である。
図13A】実施の形態における事前計算後の予測モデルの一例を示す図である。
図13B】実施の形態における整数化後の予測モデルの一例を示す図である。
図13C】実施の形態における負の整数を正の整数に変換した予測モデルの一例を示す図である。
図14】実施の形態における予測処理のフローの概要を示す図である。
図15】実施の形態における変換前の重み行列の一例を示す図である。
図16】実施の形態における均一化処理の一例を示す図である。
【発明を実施するための形態】
【0013】
(本開示の基礎となった知見)
暗号化したままニューラルネットワークの予測演算を行う手法として、非特許文献1(SecureML)と非特許文献2(CryptoNets)が開示されている。しかしこれらの方法は、予測精度が低下し、かつ、計算量が膨大であるため、実用性に疑問がある。
【0014】
そこで、本開示では、例えば、Binarized Neural Networks(二値化ニューラルネットワーク)のようなニューラルネットワークを秘密計算法で実現することにより、入力を秘匿のまま予測処理のスピードおよび予測精度の低下を低減することができる予測モデル分散方法および予測モデル分散システムを提供する。
【0015】
本開示の一態様は以下の通りである。
【0016】
本開示の一態様に係る予測モデル分散方法は、入力を秘匿したまま予測処理を行うための予測モデル分散方法であって、ニューラルネットワークである予測モデルに含まれる複数のパラメータのうち負の数値を正の数値に変換することにより前記予測モデルを変換する予測モデル変換ステップと、変換された前記予測モデルを、秘密分散法により分散する予測モデル分散化ステップと、を含む。
【0017】
これにより、予測モデルに含まれる全パラメータが正の数値に変換されるため、予測モデルを分散させる手法として秘密分散法を適用することができる。そのため、入力を秘匿のまま予測処理のスピードおよび予測精度の低下を低減することができる。
【0018】
例えば、本開示の一態様に係る予測モデル分散方法は、前記予測モデルは、前記複数のパラメータが1または-1の二値で構成されるパラメータを含む二値化ニューラルネットワークであってもよい。
【0019】
このように、予測モデルとして二値化ニューラルネットワークを用いることにより、行列積演算の計算時間を短くすることができる。また、予測モデルが二値化ニューラルネットワークであることにより、予測モデルに含まれる負の数値を正の数値に変換する処理が簡便になる。そのため、予測処理のスピードの低下を低減することができる。
【0020】
例えば、本開示の一態様に係る予測モデル分散方法は、さらに、事前に収集した学習用のデータを用いて、前記予測モデルの学習処理を行う学習ステップを含んでもよい。
【0021】
これにより、正しい予測結果を導き出すために適した予測モデルを作成しやすくなる。したがって、予測精度を向上させることができる。
【0022】
例えば、本開示の一態様に係る予測モデル分散方法は、前記予測モデル変換ステップでは、前記予測モデルに含まれる前記複数のパラメータのうち小数の値を整数の値に変換してもよい。
【0023】
複数のパラメータに小数の値が含まれると、計算が煩雑になり、計算時間が長くなる。また、小数を整数に変換しても、得られる計算結果は同じである。そのため、小数の値を整数の値に変換することにより、予測処理の精度が保たれたまま、予測処理における計算時間を短くすることができる。また、秘密分散法では、小数の値を扱うことができないため、小数の値を整数の値に変換する必要がある。これにより、変換後の予測モデルを秘密分散法により分散させることができる。
【0024】
例えば、本開示の一態様に係る予測モデル分散方法は、前記予測モデル変換ステップでは、前記予測モデルに含まれる前記複数のパラメータのうちの負の数値に対し、前記秘密分散法で用いる除数を加算することにより、前記負の数値を正の数値に変換してもよい。
【0025】
一般に、パラメータの数値が大きいほど予測精度が高く、数値が小さいほうが計算速度が速い。そのため、例えば、予測精度と予測スピードとのバランスの観点から、秘密分散法で用いる除数の値を決定し、負の数値に加算する。これにより、変換後の予測モデルを用いると、予測精度および予測スピードの低下を低減することができる。また、変換後の予測モデルに含まれる全てのパラメータが正の数値で表されるため、変換後の予測モデルを秘密分散法により分散させることができる。したがって、入力を秘匿のまま予測処理を行うことができる。
【0026】
例えば、本開示の一態様に係る予測モデル分散方法は、前記予測モデル変換ステップでは、前記予測モデルに含まれる前記複数のパラメータのうち数値を、前記数値の符号を0または1で示す符号部と、前記数値の絶対値を示す数値部との組に変換することにより、前記負の数値を正の数値に変換してもよい。
【0027】
当該変換処理は、例えば、予測モデルに含まれるパラメータの1つが-10である場合、-10は、符号を示す符号部と数値の絶対値を示す数値部との組(1,10)に変換される。このように、負の数値である-10が正の数値である1と10との組に変換されるため、予測モデルに含まれるパラメータは、正の数値のみで表される。したがって、当該変換処理を予測モデルに適用することにより、変換された予測モデルを秘密分散法により分散させることができる。
【0028】
例えば、本開示の一態様に係る予測モデル分散方法は、前記予測モデル変換ステップでは、さらに、前記複数のパラメータの一部から新たなパラメータを生成してもよい。
【0029】
これにより、予測モデルを分散化する、つまり、予測モデルを暗号化する前に、予測モデルに含まれる学習済みのパラメータで構成される部分を計算する。パラメータは学習されると固定であるため、予測モデルが暗号化される前に固定値となる部分を計算して新たなパラメータを生成してもよい。これにより、予測モデルが暗号化された後に計算されるよりも、計算量および通信量を削減することができるため、予測処理における計算スピードを向上させることができる。したがって、入力が秘匿されたままで予測処理を行っても、処理スピードの低下を低減することができる。
【0030】
例えば、本開示の一態様に係る予測モデル分散方法は、さらに、センシングによって得られたデータから特徴量を算出する特徴量算出ステップと、前記算出された特徴量を前記秘密分散法により分散する特徴量分散化ステップと、を含んでもよい。
【0031】
これにより、ユーザからセンシングによって得られた個人情報などの機微な情報についても、予測モデルと同様にして、秘密分散法により分散させることができる。そのため、本開示の一態様に係る予測モデル分散方法によれば、予測処理に対する入力(ここでは、ユーザ情報)を秘匿のまま、つまり、ユーザのプライバシ情報を保護しながら、予測処理を実行することができる。
【0032】
例えば、本開示の一態様に係る予測モデル分散方法は、分散された前記予測モデルに分散された前記特徴量を入力して、分散された前記予測モデルで予測処理を実行する予測処理ステップを含み、前記予測処理ステップは、非線形処理を含み、前記非線形処理は、前記非線形処理に対する入力が0または正に対応する数値であれば1に、前記入力が負に対応する数値であれば-1に対応する正の数値に変換する処理であってもよい。
【0033】
これにより、変換後の数値が予測の正確性が保証される正の数値範囲に収まるように入力の数値を変換することができる。そのため、予測処理のスピードおよび予測精度の低下を低減することができる。
【0034】
また、本開示の一態様に係る予測モデル分散システムは、入力を秘匿したまま予測処理を行うための予測モデル分散システムであって、ニューラルネットワークである予測モデルに含まれる複数のパラメータのうち負の数値を正の数値に変換することにより前記予測モデルを変換する予測モデル変換部と、変換された前記予測モデルを、秘密分散法により分散する予測モデル分散部と、を備える。
【0035】
当該システムによれば、予測モデルに含まれる全パラメータが正の数値に変換されるため、予測モデルを分散させる手法として秘密分散法を適用することができる。そのため、入力を秘匿のまま予測処理のスピードおよび予測精度の低下を低減することができる。
【0036】
なお、以下で説明する実施の形態は、いずれも本開示の一具体例を示すものである。以下の実施の形態で示される数値、形状、構成要素、ステップ、ステップの順序などは、一例であり、本開示を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。また、各図は、必ずしも厳密に図示したものではない。各図において、実質的に同一の構成については同一の符号を付し、重複する説明は省略又は簡略化することがある。
【0037】
また、本開示の主旨を逸脱しない限り、当業者が思いつく各種変形を実施の形態に施したものや、全ての実施の形態において、各々の実施の形態における一部の構成要素を組み合わせて構築される別の形態も、本開示の範囲に含まれる。
【0038】
(実施の形態)
以下、本実施の形態に係る予測モデル分散方法および予測モデル分散システムについて図面を用いて説明する。
【0039】
[予測モデル分散システム]
本実施の形態に係る予測モデル分散システムは、入力を秘匿したまま予測処理を行うための予測モデル分散システムであって、ニューラルネットワークである予測モデルに含まれる複数のパラメータのうち負の数値を正の数値に変換することにより予測モデルを変換する予測モデル変換部と、変換された予測モデルを、秘密分散法により分散する予測モデル分散部と、を備える。
【0040】
本実施の形態では、さらに、センシングによって得られたデータから特徴量を算出する特徴量算出部と、算出された特徴量を秘密分散法により分散する特徴量分散化部と、を備える。
【0041】
また、本実施の形態では、さらに、分散された予測モデルに分散された特徴量を入力して、分散された予測モデルで予測処理を実行する予測処理部を備える。
【0042】
[1. 予測モデル分散システムの構成]
ここでは、本開示の実施の形態に係る予測モデル分散システムの構成について図面を参照しながら説明する。なお、本明細書では、予測モデル分散システムは、暗号化された予測モデル(以下、分散化予測モデル)と、分散化予測モデルと同様の方法で暗号化されたユーザ情報(以下、分散化特徴量)とを用いて、暗号化されたまま予測処理を行うシステムである。以下、予測モデル分散システムを秘匿予測システムとも言う。また、以下、分散化および暗号化を秘匿化とも言う。
【0043】
[1.1 予測モデル分散システムの全体構成]
図1は、本開示の実施の形態1に係る予測モデル分散システムの全体構成の一例を示す図である。図1に示すように、予測モデル分散システムは、例えば、ユーザ端末装置100とデータ提供装置200と3つのデータ演算装置300、310、320とを備える。各装置間の通信は、有線のインターネット線、無線通信、専用通信等のいずれかであればよい。
【0044】
ここで、データ演算装置300、310、320はそれぞれ、1つのクラウドサーバ、もしくは、1つのクラウドサーバに含まれる装置である。
【0045】
予測モデル分散システムにおいて、例えば、企業または団体が予測処理に必要なデータ(以下、予測モデル)を、データ提供装置200から3つのクラウドサーバ、すなわち、データ演算装置300、310、320に秘匿して送信する。ユーザが秘匿予測システムのサービスを利用する際は、ユーザが自身の情報(以下、特徴量)を、ユーザ端末装置100から3つのクラウドサーバであるデータ演算装置300、310、320に秘匿して送信する。3つのクラウドサーバは互いに通信を行うことにより、それぞれのクラウドサーバが他のクラウドサーバで得られたデータを利用しながら、データを秘匿したまま予測結果を計算し、3つのクラウドサーバはそれぞれ得られた予測結果をユーザ端末装置100へ送信する。
【0046】
なお、ユーザ端末装置100は1つ以上であってもよいし、データ提供装置200も1つ以上であってもよい。さらに、図1に示す例では、予測モデル分散システムは、データ演算装置を3つ備えているが、データ演算装置を少なくとも2つ備えていればよい。理由の詳細については、後述する。概要を説明すると、本開示で用いられる秘密分散法は、データを分散する数に応じて、乱数を加算する回数が増える。そのため、1つの分散されたデータでは、除数を割り出すことができないため、少なくとも2つの分散されたデータが必要となる。そのため、データを秘匿したまま算出された予測結果もまた、秘匿された状態であり、復号された予測結果を得るために、2つ以上の秘匿された予測結果が必要となる。
【0047】
なお、予測モデル分散システムを構成する各装置間の通信は、リアルタイムの通信でなくてもよい。例えば、ユーザ端末装置100はセンシングしたユーザ情報または秘匿予測処理(以下、予測処理とも呼ぶ)の要求コマンドをある程度集めて、一時に、複数のデータ演算装置300、310、320に送信してもよい。
【0048】
[1.2 ユーザ端末装置]
図2は、ユーザ端末装置100の構成の一例を示す図である。ユーザ端末装置100は、センシング部101と、特徴量算出部102と、特徴量分散部103と、復号部104と、予測結果利用部105と、通信部106とを含んで構成される。ユーザ端末装置100は、例えば、プロセッサ(マイクロプロセッサ)、メモリ、センサ、通信インタフェース等を備えるコンピュータまたは携帯端末に実装される。
【0049】
ユーザ端末装置100は、例えばユーザの血圧、心拍、CTスキャン情報等のユーザに関する情報、すなわち、プライバシデータをセンシングし、特徴量を算出してデータ演算装置300、310、320へ送信する。そして、ユーザ端末装置100は、算出された特徴量に対応する予測結果をデータ演算装置300、310、320に要求し、予測結果をデータ演算装置300、310、320から得て、予測モデル分散システムにおけるサービスに利用する。
【0050】
[1.2.1 センシング部]
センシング部101は、ユーザについての情報をセンシングするためのセンサである測定装置を、1つ以上含んで構成される。
【0051】
センシングする情報は、例えばユーザの血圧、体温、心拍等のバイタルデータ、ユーザの身体を撮影または測定して得られる顔画像、エコー情報、CTスキャン情報等の画像情報等でもよい。
【0052】
またセンシングする情報は、例えばGPS(Global Positioning System)で得られる位置情報、ユーザが電気機器または車両等の移動体を操作した履歴を示すログ情報、あるいは、ユーザによる商品等の購入履歴情報等でもよい。
【0053】
ログ情報は、例えば車両のステアリング操作、アクセル操作、ブレーキ操作、変速ギアの操作等に関連して取得または測定される各種情報であり、例えば、変位量、速度、加速度等を操作時刻と対応付けた情報であってもよい。
【0054】
センシングするユーザの情報は、例えばユーザが他人に知られたくない個人的な事柄であるプライバシデータであってもよい。
【0055】
予測モデル分散システムは、プライバシデータを秘匿したまま、Binarized Neural Networks(二値化ニューラルネットワーク)の予測処理を行うための予測モデル分散システムであって、秘匿したまま予測結果を算出する秘匿予測システムである。ここでは、センシング部101でセンシングされたユーザについての情報は、プライバシデータであると仮定して説明する。
【0056】
[1.2.2 特徴量算出部]
特徴量算出部102は、センシング部101で取得したユーザのプライバシデータから特徴量を算出する。特徴量算出部102が算出する特徴量は、複数の成分を含むベクトルで表され得る。
【0057】
この特徴量は、例えば、ユーザの身体の全体または一部位についての形状、サイズ、重量、状態、および、動きの少なくとも1つに関連する指標を示す成分を含む。
【0058】
なお、特徴量の対象となるユーザの身体の部位はいかなる部位であってもよく、例えば、目、鼻、耳、手、足、臓器、血管等がある。
【0059】
ユーザの身体の全体または一部位についての状態としては、例えば健康状態、例えば、健康診断に用いられる各種検査項目に対する状態、水分量、血圧、酸素飽和度等が挙げられる。
【0060】
また、ユーザの身体の全体または一部位についての動きとしては、例えば、体動、具体的には、単位時間当たりの寝返り回数等、微振動、例えば、心拍数、呼吸数、吸気呼気比率等が挙げられる。
【0061】
なお、特徴量は、例えば、ユーザの顔画像における特徴的なパラメータの主成分である。特徴量は、例えば、ある領域の位置、面積、幅等の情報であってもよい。また、特徴量は、センシング部101でユーザについて測定された何らかの要素を示す履歴情報から、時間軸に対応した要素の傾向を例えば多項式で表現した場合の各項の係数を成分として含むベクトルで表される情報であってもよい。
【0062】
センシング部101で取得した情報から抽出された特徴量自体も、プライバシデータであり得る。図9は、本実施の形態における特徴量の一例を示す図である。
【0063】
[1.2.3 特徴量分散部]
特徴量分散部103は、特徴量算出部102により算出された特徴量を、あらかじめ定められた方法により分散して秘匿する。特徴量分散部103では、データ演算装置300、310、320において特徴量を分散された状態のまま使用して予測処理を行うことが可能な方法、例えば、非特許文献3のShamir(2,3)閾値秘密分散法を用いて特徴量を分散させることにより、分散された特徴量(以下、分散化特徴量ともいう)を作成する。
【0064】
秘密分散法とは、秘密情報から複数の分散情報を生成する技術である。分散情報は予め定められた組み合わせからは秘密情報を復元できるが、それ以外の組み合わせからは秘密情報が復元できないように作られる。定められた組み合わせには様々な構造を取ることができ、その構造は、アクセス構造と呼ばれる。様々なアクセス構造があるが、代表的なアクセス構造として、閾値型アクセス構造について説明する。閾値型アクセス構造は、生成される分散情報の数nと、閾値kの2つのパラメータで表される。k個以上の分散情報からは秘密情報が復元できるが、k個未満の分散情報からは秘密情報が復元できないというものである。閾値型アクセス構造を有する秘密分散法には、例えば、上記のShamir(2,3)閾値秘密分散法があり、秘密情報を入力として3個の分散情報を生成するための分散処理と、2個以上の分散情報から秘密情報を復元する復元処理とを含む。
【0065】
なお、秘密分散法は、非特許文献3に記載の方法に限らず、非特許文献4または非特許文献5に示された方法を用いてもよい。分散処理に用いる法pは、あらかじめシステムで決定され、特徴量分散部103で保持される。図10は、本実施の形態における分散化特徴量の一例を示す図である。
【0066】
[1.2.4 復号部]
復号部104は、ユーザ端末装置100がデータ演算装置300、310、320に送信した分散された特徴量に対応する予測結果を、データ演算装置300、310、320からそれぞれ受信して復号する。これらの予測結果は、秘密分散法により分散された特徴量および予測モデルを分散された状態のまま使用して得られた結果であり、暗号化された予測結果である。これらの予測結果の復号方法については、例えば、非特許文献3、非特許文献4、および、非特許文献5のいずれかの方法を用いればよい。
【0067】
[1.2.5 予測結果利用部]
予測結果利用部105は、復号部104で復号された予測結果を利用する。予測結果の利用の一例としては、予測結果をユーザへ提示すること、つまり、予測結果の提示である。予測結果の提示は、例えば、画像であってもよく、音声であってもよい。予測結果の提示が画像である場合、当該提示は、例えば、予測結果に基づくグラフ、統計情報等の形式で表示される。また、予測結果の提示が音声である場合、当該提示は、例えば、予測結果に基づく音声で出力される。なお、予測結果の提示は、画像および音声であってもよい。この場合、ユーザ端末装置100は、例えば画像を表示するディスプレイ、音声を出力するスピーカーなどの音声出力装置、および、その他のユーザインタフェースを含んで実装され、予測結果を提示してもよい。
【0068】
また、予測結果利用部105は、予測結果に基づいて、さらに所定の演算、または、情報検索等を行い、ユーザに対して、病院での検診の提案、生活習慣の改善のためのアドバイス、または、お勧めの献立等を提示してもよい。
【0069】
[1.2.6 通信部]
通信部106は、複数のデータ演算装置300、310、320と通信を行う。通信部106は、特徴量分散部103で作成された分散された特徴量をそれぞれデータ演算装置300、310、320に送信する。以下のデータ演算装置の項にて詳細に説明するが、複数のデータ演算装置300、310、320は、これらの分散化特徴量を受信することをトリガーとし、これらの分散化特徴量を秘匿された状態のまま使用して、予測処理を実行する。また通信部106は、データ演算装置300、310、320がそれぞれ計算した予測結果を受信し、復号部104に送信する。なお、これらの予測結果は、上述の通り、暗号化された予測結果である。
【0070】
[1.3 データ提供装置]
続いて、データ提供装置200について説明する。図1に示すように、データ提供装置200は、例えば、企業または団体が予測処理に必要なデータを、データ演算装置300、310、320に秘匿して提供するための装置である。
【0071】
図3は、本実施の形態におけるデータ提供装置200の構成の一例を示す図である。データ提供装置200は、学習データ格納部201と、学習部202と、予測モデル変換部204と、予測モデル分散部205と、通信部206と、予測モデル格納部203とを含んで構成される。
【0072】
データ提供装置200は、例えば、企業または団体が所持している血圧、心拍、CTスキャン情報等の生体情報と、生体情報に対応する症例とを紐づけたデータから、Binarized Neural Networks(二値化ニューラルネットワーク)の学習処理により予測モデルを作成する。そして、データ提供装置200は、作成された予測モデルを秘密分散法により分散させて、秘匿のまま、複数のデータ演算装置300、310、320に送信する。
【0073】
[1.3.1 学習データ格納部]
学習データ格納部201は、入力を秘匿のまま予測処理を行うために必要な予測モデルを作成するための学習データを格納する。学習データは、ユーザ端末装置100の特徴量算出部102で算出される特徴量と同じ性質のデータと、当該特徴量と同じ性質のデータに対応する正解データとの組である。本実施の形態では、例えば、複数の患者のバイタルデータから算出された特徴量と、当該特徴量に対応する正解データである患者の病名との組を学習データとする。
【0074】
[1.3.2 学習部]
学習部202では、学習データ格納部201に格納された学習データに対して、あらかじめ定められた方法により学習処理を行い、予測モデルを作成する。学習処理については、例えば、非特許文献7に示された方法を用いる。図12は、本実施の形態における予測モデルの一例を示す図である。
【0075】
[1.3.3 予測モデル格納部]
予測モデル格納部203は、学習部202で作成した予測モデルを格納する。
【0076】
[1.3.4 予測モデル変換部]
予測モデル変換部204は、予測モデル格納部203に格納された予測モデルに対して変換処理を行う。
【0077】
図11は、本実施の形態における予測処理の均一化処理の一例を示す図である。図11の(式A)は、Binarized Neural Networks(二値化ニューラルネットワーク)における予測処理の均一化処理の一例を示す式である。(式A)のγ、σ、ε、β、μは予測モデルに含まれる学習済みのパラメータであり、xは均一化処理の入力、yは均一化処理の出力を示す。(式A)の一部を示す、図11の(式B)および(式C)は、上記の5つの学習済みのパラメータが固定値であるため、予測処理の前に計算可能である。そのため、予測モデル変換部204では、(式B)および(式C)の計算を均一化処理の前にあらかじめ行い、これを新たな予測モデルとする。以下、図11の(式B)および(式C)の計算をあらかじめ行うことを事前計算とも呼ぶ。
【0078】
これにより、データ演算装置300、310、320での計算量および通信量を削減することができる。
【0079】
予測モデル分散部205で秘密分散法により予測モデルを分散する際、小数を扱うことはできないため、予測モデル変換部204では、作成された予測モデルに対して事前に定めた数値を掛け、小数点以下を切り捨てることで整数化する。例えば、作製された予測モデルを10倍して、小数点以下を切り捨てて、整数化する(図13Aおよび図13B参照)。
【0080】
また、予測モデル分散部205で秘密分散法により予測モデルを分散する際、負の数値を扱うことはできないため、予測モデル変換部204では、予測モデルのうち、負の数値で表される要素を正の数値に変換し、変換予測モデルを作成する。例えば、ある要素xが負の数値だった場合、分散処理に用いる法pに対して、要素xをp+xに変換する(図13Bおよび図13C参照)。
【0081】
図13Aは、本実施の形態における事前計算後の予測モデルの一例を示す図である。図13Aでは、図12に示す5つのパラメータγ、σ、ε、β、μを、図11の(式B)および(式C)に代入して算出された新たなパラメータsおよびパラメータtを示している。パラメータsおよびパラメータtは、小数を含む。上述した通り、予測モデルを分散する際に、小数を扱うことはできないため、小数を整数化する。ここでは、パラメータsおよびパラメータtを10倍して、小数点以下を切り捨てて整数化する。
【0082】
図13Bは、本実施の形態における整数化後の予測モデルの一例を示す図である。図13Bに示すように、整数化されたパラメータsおよびパラメータtは、負の数値を含む。上述した通り、予測モデルを分散する際に、負の数値を扱うことはできないため、負の数値を正の数値に変換する。具体的には、負の数値に対し、秘密分散法で用いる除数p(上記の法p)を加算して、負の数値を正の数値に変換する。例えば、p=65519とすると、上記パラメータのうちの負の数値は、負の数値に対応する非常に大きな正の数値に変換される。
【0083】
図13Cは、本実施の形態における負の数値を正の数値に変換した予測モデルの一例を示す図である。上述した通り、図13Cに示すパラメータsおよびパラメータtは、整数化後の予測モデルのうち、負の数値に対し、法pを加算することにより、当該負の数値に対応する非常に大きな正の数値に変換される。なお、図13Cにおいて、p=65519である。
【0084】
[1.3.5 予測モデル分散部]
予測モデル分散部205は、予測モデル変換部204により作成された変換予測モデルを、あらかじめ定められた方法により分散して秘匿する。予測モデル分散部205では、データ演算装置300、310、320において特徴量を暗号化したまま、予測処理を行うことが可能な分散された予測モデル(以下、分散化予測モデルともいう)を作成する。予測モデル分散部205では、例えば、非特許文献3のShamir(2,3)閾値秘密分散法を用いて分散し、分散化予測モデルを作成する。
【0085】
なお、上述の通り、秘密分散法としては、非特許文献3の方法に限られず、非特許文献4、および、非特許文献5のいずれかに示された方法を用いてもよい。分散処理に用いる法pは、あらかじめシステムで決定され、予測モデル分散部205で保持される。
【0086】
[1.3.6 通信部]
通信部206は、データ演算装置300、310、320と通信を行う。通信部206は、予測モデル分散部205で作成された分散化予測モデルを複数のデータ演算装置300、310、320に送信する。
【0087】
[1.4 データ演算装置]
続いて、データ演算装置について説明する。図1に示すように、データ演算装置300、310、320は、例えば、クラウドサーバである。予測モデル分散システムでは、データ演算装置300は、2つ以上備えられていればよい。本実施の形態では、3つのデータ演算装置300、310、320はそれぞれ、互いに通信を行うことで、データを秘匿したまま予測結果を計算し、ユーザ端末装置100へ送信する。より具体的には、データ演算装置300、310、320では、分散化予測モデルに分散化特徴量を入力して、分散化予測モデルで予測処理を実行する。以下、本実施の形態におけるデータ演算装置300、310、320についてより具体的に説明する。
【0088】
図4は、データ演算装置300の構成の一例を示す図である。データ演算装置300は、分散化予測モデル格納部301と、予測演算部302と、通信部303とを含んで構成される。データ演算装置300は、ユーザ端末装置100から受信した分散化特徴量と、データ提供装置200から受信した分散化予測モデルを、分散された状態のまま使用して予測処理を行う。なお、データ演算装置310、320は、データ演算装置300と同じ構成である。
【0089】
[1.4.1 分散化予測モデル格納部]
分散化予測モデル格納部301は、データ提供装置200から受信した分散された予測モデルを格納する。
【0090】
[1.4.2 予測演算部]
予測演算部302は、分散化予測モデル格納部301に格納されている分散化予測モデルと、ユーザ端末装置100から受信した分散化特徴量とを用いて、予測処理を行う。予測演算部302では、分散化予測モデルと分散化特徴量とを分散された状態のまま使用して予測処理を行い、分散化予測結果を求める。
【0091】
図14は、本実施の形態における予測処理のフローの概要を示す図である。予測処理は、行列積演算、データ分布の均一化処理、非線形処理、最大値探索の4つの処理で実行される。予測処理では、行列積演算、データ分布の均一化処理、非線形処理が所定の回数繰り返し実行された後、最大値探索により予測結果を得る。
【0092】
まず、行列積演算について説明する。行列積演算は、分散された入力ベクトルである分散化特徴量と、分散化予測モデルに含まれる分散化重み行列との行列積を計算する。図15は、本実施の形態における変換前の重み行列の一例を示す図である。図15に示すように、予測モデルは、複数のパラメータが1または-1の二値で構成されるパラメータを含む二値化ニューラルネットワークである。図示しないが、本実施の形態では、分散化予測モデルは、例えば、図15に示す予測モデルに含まれる複数のパラメータのうち負の数値を正の数値に変換することにより得られる変換後の予測モデルを秘密分散法により分散された暗号化された予測モデルである。また、分散化特徴量は、センシングによって得られたデータから算出された特徴量を、予測モデルと同様に、秘密分散法により分散して得られた暗号化された特徴量である。例えば、図10に示すように、分散化特徴量は、1つの特徴量(例えば、特徴量1)を秘密分散法により分散して得られた3つの暗号化された特徴量である。具体的には、図9に示す特徴量1が12であり、この特徴量1に乱数(ここでは、26)を加算すると、図10に示すデータ演算装置300に送信される特徴量1の分散化特徴量38が算出される。上述したように、データを分散する個数に応じて、乱数の加算回数が増す。具体的には、2つめの分散化特徴量は、乱数26を2回加算して得られる。例えば、2つめの分散化特徴量は、図10に示すデータ演算装置310に送信される特徴量1の分散化特徴量64である。
【0093】
続いて、行列積演算で得られたデータ分布の均一化処理について説明する。図16は、本実施の形態におけるデータ分布の均一化処理で用いられる式の一例を示す図である。図16において、xは入力ベクトルであり、上述の行列積演算で算出されるベクトルである。また、ベクトルsおよびベクトルtは、予測モデルに含まれる均一化パラメータである。図16は、図11の(式A)、(式B)および(式C)により得られる式y=sx+tに対応する。ここで、yは、出力ベクトルであり、均一化処理により算出されるベクトルである。均一化処理は、入力ベクトルと均一化パラメータとの和と積により計算される。均一化処理を行うことで、行列積演算、均一化処理、非線形処理を繰り返す回数を削減することができる。なお、本実施の形態では、均一化パラメータとして、図13Cに示すベクトルsおよびベクトルtを用いる。
【0094】
続いて、非線形処理について説明する。非線形処理は、均一化処理により算出されたベクトル(例えば、上記のy)である分散された入力ベクトルのそれぞれの要素について、非線形変換を行う処理である。非線形処理は、例えば、非線形処理に対する入力が0または正に対応する数値であれば1に、入力が負に対応する数値であれば-1に対応する正の数値に変換する。
【0095】
予測処理では、上記の行列積演算、データ分布の均一化処理、および、非線形処理が所定の回数繰り返し実行された後、最大値探索が行われる。
【0096】
続いて、最大値探索について説明する。最大値探索では、分散された入力ベクトルの全要素の中で最大値の要素を探索する。最大値検索では、例えば、最大値検索に対する入力ベクトルの全要素間で大小関係を比較し、比較結果の論理積を計算することにより実現される。より具体的には、最大値検索では、各要素について、他の全ての要素と個別に大小関係が比較される。比較結果は、0および1の二値で表される。例えば、ある要素の値が他の要素の値と同じ、または、他の要素の値よりも大きければ、比較結果は1で表され、ある要素の値が他の要素の値よりも小さければ、比較結果は0で表される。全要素について、他の要素との大小関係の比較結果は、比較表に格納される。この場合、全要素の中で最大値の要素は、他の要素との大小関係の比較結果が全て1になる。そのため、比較結果の論理積を計算した場合、論理積は、最大値の要素のみが1になり、それ以外の要素は全て0になる。この特性を利用することで、最大値の要素を抽出することができる。
【0097】
上述のように、本実施の形態では、行列積演算、データ分布の均一化処理、非線形処理、および、最大値探索の4つの処理は、それぞれの処理に対する入力の和、積、大小関係の比較、論理積だけで構成され得る。非特許文献6では、2つの分散された値を復号することなく、それらの値の和、積、大小関係の比較、および、論理積を計算できる。このことから、予測処理に非特許文献6の方式を用いることで、分散化予測モデルと分散化特徴量とを復号することなく、入力を秘匿したまま予測処理を行うことができる。
【0098】
[1.4.3 通信部]
データ演算装置300の通信部303は、ユーザ端末装置100、データ提供装置200、他のデータ演算装置310、320と通信を行う。通信部303は、データ提供装置200から分散化予測モデルを受信し、受信した分散化予測モデルを分散化予測モデル格納部に格納する。通信部303は、ユーザ端末装置100から分散化特徴量を受信し、受信した分散化特徴量を予測演算部302へ送信する。また、通信部303は、予測演算部302で算出された分散化予測結果をユーザ端末装置100に送信する。
【0099】
上述の通り、データ演算装置300は、分散化予測モデルと分散化特徴量とを復号することなく、これらを分散されたまま、つまり、秘匿のまま、予測処理を行う。そのため、通信部303は、他のデータ演算装置310、320に対して、分散化予測モデルおよび分散化特徴量に処理を加えたデータを送信する。
【0100】
[2. 予測モデル分散システムの動作(予測モデル分散方法)]
予測モデル分散システムの動作の一例について説明する。予測モデル分散システムの動作は、データ提供装置200が予測モデルを学習し分散する学習フェーズと、複数のデータ演算装置300、310、320が分散された予測モデル(いわゆる、分散化予測モデル)を利用して分散された特徴量(いわゆる、分散化特徴量)の予測を行う予測フェーズの2つを含む。
【0101】
[2.1 学習フェーズ]
まず、予測モデル分散システムの学習フェーズの動作について説明する。図5は、本実施の形態に係る予測モデル分散システムの学習フェーズの動作の一例を示すシーケンス図である。
【0102】
学習ステップS101では、データ提供装置200は、学習データ格納部201に格納された学習用のデータを参照し、学習部202にてBinarized Neural Networks(二値化ニューラルネットワーク)である予測モデルの学習処理を行う。
【0103】
これにより、予測処理を行うための予測モデルが作成される。作成された予測モデルは予測モデル格納部203に格納される。
【0104】
次に、予測モデル変換ステップS102では、データ提供装置200は、作成された予測モデルに対して、予測モデル変換部204にて変換処理を適用する。具体的には、予測モデル変換ステップS102では、データ提供装置200は、ニューラルネットワークである予測モデルに含まれる複数のパラメータのうち負の数値を正の数値に変換することにより、当該予測モデルを変換する。
【0105】
より具体的には、予測モデル変換ステップS102では、予測モデルに含まれる複数のパラメータのうち小数の値を整数の値に変換し、次いで、複数のパラメータのうち負の数値を正の整数に変換する。
【0106】
これにより、負の数値を含む予測モデルを、正の数値のみで表現することができるため、秘密分散法により予測モデルを分散させた後も、正しく計算を行うことができる。
【0107】
次に、予測モデル分散化ステップS103では、データ提供装置200は、予測モデル変換ステップS102で変換された予測モデルを秘密分散法により分散する。これにより、分散された予測モデル(いわゆる、分散化予測モデル)が得られる。
【0108】
次に、ステップS104では、データ提供装置200は、予測モデル分散化ステップS103で得られた分散化予測モデルを、複数のデータ演算装置300、310、320に送信する。
【0109】
次に、ステップS105では、データ演算装置300、310、320は、データ提供装置200から受信した分散化予測モデルを分散化予測モデル格納部301に格納する。
【0110】
以上により、学習フェーズでは、データ提供装置200は、予測処理を行うための予測モデルを作成し、作成された予測モデルを秘密分散法により分散して分散化予測モデルを作成する。これにより、予測モデルを秘匿のまま複数のデータ演算装置300、310、320に送信することができる。
【0111】
[2.2 予測フェーズ]
続いて、予測モデル分散システムの予測フェーズについて説明する。図6および図7は、本実施の形態に係る予測モデル分散システムの予測フェーズにおけるユーザ端末装置100の動作の一例を示すシーケンス図である。
【0112】
まず、ステップS201では、ユーザ端末装置100は、センシング部101で情報を取得する。ここでは、センシングによって得られた情報は、ユーザのプライバシデータである。センシング部101で取得された情報は、特徴量算出部102に送信される。
【0113】
次に、特徴量算出ステップS202では、ユーザ端末装置100は、特徴量算出部102にて、センシング部101から受信した情報から特徴量を算出する。特徴量は、センシング部101から受信した情報の特徴を示す値である。図9を再び参照すると、図9では、特徴量1、特徴量2および特徴量3が上記特徴量の例として示されている。
【0114】
次に、特徴量分散化ステップS203では、ユーザ端末装置100は、特徴量算出ステップS202で算出された特徴量を、秘密分散法により分散する。これにより、分散された特徴量(いわゆる、分散化特徴量)が得られる。ここで、図10を再び参照して、分散化特徴量の算出方法について説明する。例えば、センシング部101でセンシングされたユーザの情報が特徴量1である場合、特徴量1は、データ演算装置の数に応じた個数(ここでは、3つ)に分散される。特徴量1に対し、乱数(ここでは、26)を加算し、データ演算装置300に送信する分散化特徴量を算出する。さらに、この分散化特徴量に26を加算し、データ演算装置310に送信する分散化特徴量を算出する。さらに、この分散化特徴量に26を加算し、データ演算装置320に送信する分散化特徴量を算出する。
【0115】
次に、ステップS204では、ユーザ端末装置100は、分散化特徴量を複数のデータ演算装置300、310、320に送信する。具体的には、図10に示すように、ユーザ端末装置100は、特徴量1、特徴量2、および、特徴量3をそれぞれ分散した分散化特徴量を、複数のデータ演算装置300、310、320に送信する。
【0116】
複数のデータ演算装置300、310、320は、それぞれ、ユーザ端末装置100から分散化特徴量を受信すると、分散化予測モデル格納部(データ演算装置300では、分散化予測モデル格納部301)に格納された分散化予測モデルを読み出し、予測処理ステップS205を開始する。
【0117】
予測処理ステップでは、複数のデータ演算装置300、310、320は、分散化特徴量と分散化予測モデルとを分散された状態のまま使用して、Binarized Neural Networks(二値化ニューラルネットワーク)の予測処理を行う。なお、予測処理ステップS205の詳細については後述する。
【0118】
これにより、複数のデータ演算装置300、310、320は、それぞれ予測処理の結果として分散化予測結果を得る。なお、非特許文献6の方式を用いて予測処理の計算を行った場合、予測処理を行う際は、複数のデータ演算装置300、310、320のそれぞれが有する分散された情報、および、分散された情報を予測処理したデータを、複数のデータ演算装置300、310、320の間で通信する必要がある。
【0119】
次に、ステップS206では、複数のデータ演算装置300、310、320は、それぞれ、分散化予測結果をユーザ端末装置100へ送信する。
【0120】
次に、ステップS207では、ユーザ端末装置100は、複数のデータ演算装置300、310、320から送信された分散化予測結果を受信し、受信された分散化予測結果を復号し、予測結果を得る。
【0121】
最後に、ステップS208では、ユーザ端末装置100は、予測結果利用部105にて、取得した予測結果を利用する。
【0122】
以上により、予測フェーズでは、データ提供装置200は、予測処理を行うための予測モデルを作成し、作成された予測モデルを秘密分散法により分散して分散化予測モデルを作成する。これにより、予測モデルを秘匿のまま複数のデータ演算装置300、310、320に送信することができる。
【0123】
[2.3 予測処理ステップS205]
複数のデータ演算装置300、310、320は、ユーザ端末装置100から分散化特徴量を受信することをトリガーとして、予測処理ステップS205を開始する。予測処理ステップS205では、複数のデータ演算装置300、310、320は、分散化特徴量と分散化予測モデルとを分散されたまま用いて、Binarized Neural Networks(二値化ニューラルネットワーク)の予測処理を行う。
【0124】
以下、予測モデル分散システムの予測処理ステップS205について、より具体的に説明する。図8は、本実施の形態に係る予測モデル分散システムの予測フェーズにおける複数のデータ演算装置300、310、320の動作の一例を示すシーケンス図である。
【0125】
まず、行列積演算ステップS301では、複数のデータ演算装置300、310、320は、分散化特徴量(図10参照)である分散された入力ベクトルを受信すると、分散化予測モデルである分散化重み行列(図15参照)との行列積を計算し、出力として第一分散化ベクトルを得る。より具体的には、データ演算装置300における動作を例に説明すると、データ演算装置300は、ユーザ端末装置100から分散化特徴量を受信すると、分散化予測モデル格納部301に格納された分散化予測モデルを読み出す。次いで、データ演算装置300は、分散化特徴量と分散化予測モデルとの行列積を計算し、第一分散化特徴量である第一分散化ベクトルを得る。なお、分散化予測モデル(ここでは、分散化重み行列)は、全ての要素が正の数値になるように変換された変換後の予測モデルを、秘密分散法により分散して得られる。より具体的には、図15に例示する二値化ニューラルネットワークである予測モデル(ここでは、重み行列)は、当該予測モデルの複数のパラメータ(つまり、要素)のうち-1が-1に対応する正の数値に変換される。予測モデルの全ての要素が正の数値で表されることにより、予測モデル分散システムは、当該予測モデルを秘密分散法により分散することができる。
【0126】
次に、均一化処理ステップS302では、複数のデータ演算装置300、310、320は、行列積演算ステップS301で出力として得られた第一分散化ベクトルと、均一化パラメータ(図16参照)とを用いて、第一分散化ベクトルに含まれる要素ごとに積および和を計算し、出力として第二分散化特徴量である第二分散化ベクトルを得る。具体的には、第二分散化ベクトルは、図16に示すように、各要素x~xをそれぞれ、図11の(式A)~(式C)により導かれる均一化処理の式y=sx+tに代入して求められる。
【0127】
次に、非線形処理ステップS303では、均一化処理ステップS302で出力として得られた第二分散化ベクトルを非線形処理に対する入力ベクトルとし、非線形処理を行う。より具体的には、非線形処理ステップS303では、入力ベクトルの各要素が0または正に対応する数値であれば1に、入力ベクトルの各要素が負に対応する数値であれば-1に対応する正の整数に変換する。これにより、非線形処理ステップS303では、出力として第三分散化特徴量である第三分散化ベクトルを得る。
【0128】
次に、複数のデータ演算装置300、310、320は、非線形処理ステップS303で出力として得られた第三分散化ベクトルと、分散化予測モデルとを用いて、行列積演算ステップS301を実行する。続いて、複数のデータ演算装置300、310、320は、行列積演算ステップS301で得られた第四分散化ベクトルを入力として、均一化処理ステップS302を実行した後、均一化処理ステップS302で得られた第五分散化ベクトルを入力として、非線形処理ステップS303を実行する。これにより、第六分散化ベクトルが得られる。
【0129】
このように、上記の行列積演算ステップS301、均一化処理ステップS302、および、非線形処理ステップS303の一連のステップは所定の回数繰り返される。図14を再び参照すると、本実施の形態では、例えば、当該一連のステップ(いわゆる、層)は2回繰り返される。これにより、第六分散化ベクトルが得られる。次いで、行列演算ステップS304では、複数のデータ演算装置300、310、320は、上記一連のステップS301~S303を所定の回数(ここでは、2回)繰り返して出力として得られた第六分散化ベクトルと、重み行列との行列積を算出する。これにより、第七分散化ベクトルが得られる。次いで、均一化処理ステップS305では、行列演算ステップS304で得られた第七分散化ベクトルに対して均一化処理を実行する。これにより、第八分散化ベクトルが得られる。最後に、最大値探索ステップS306では、均一化処理ステップS305で得られた第八分散化ベクトルのうち最大値の要素を探索する。これにより、分散化予測結果が得られる。
【0130】
以上のように、本実施の形態に係る予測モデル分散方法では、予測モデルの複数のパラメータのうち負の数値を正の数値に変換することで、予測モデルを秘密分散法により分散することができる。これにより、分散化特徴量および分散化予測モデルを分散させた状態のまま使用して、つまり、秘匿のまま、予測処理を行うことができる。そのため、予測処理の途中に第三者が予測処理に係るデータを取得したとしても、元のデータに復号されにくい。したがって、本実施の形態に係る予測モデル分散方法を適用することにより、ユーザのプライバシデータ、および、企業独自のノウハウなどの機密性の高い情報を第三者から保護することができる。また、例えば、均一化パラメータのように、予測モデルの複数のパラメータの一部を事前に計算することで、予測処理を高速化することができる。
【0131】
(他の実施の形態)
以上、本開示に係る予測モデル分散システム、および、予測モデル分散方法について、実施の形態に基づいて説明したが、本開示は、上記の実施の形態に限定されるものではない。本開示の主旨を逸脱しない限り、当業者が思いつく各種変形を実施の形態に施したものや、実施の形態における一部の構成要素を組み合わせて構築される別の形態も、本開示の範囲に含まれる。例えば、以下のような場合も本開示に含まれる。
【0132】
(1)上記実施の形態では、データ提供装置200が、予測モデル変換部204において、予測モデルに含まれる複数のパラメータ(以下、要素ともいう)のうち負の数値を正の数値に変換する例を示したが、これに限られない。予測モデル変換部204は、予測モデルに対して、以下に示す変換処理を行ってもよい。ある要素x(ここでは、xは整数)について、x=ab(ただし、aは、xの符号を示す符号部であり、bはxの絶対値を示す数値部である。)とする。符号部aには、ある要素xが0または正の数値であれば0を代入し、ある要素xが負の数値であれば1を代入する。また、数値部bには、xの絶対値を代入する。このようにして、ある要素xは、aとbとの組(a,b)に変換される。予測モデルに含まれる全ての要素に上記変換処理を適用することにより、予測モデルに含まれる負の数値を正の数値に変換することができる。そのため、変換処理後の予測モデルに含まれる全要素は、正の数値(ここでは、正の整数)のみで表される。これにより、予測モデル分散部205は、変換処理後の予測モデルを秘密分散法により分散することができる。
【0133】
(2)上記実施の形態では、データ提供装置200が、予測モデル変換部204において、均一化処理の式に含まれるパラメータsおよびパラメータtを、学習済みのパラメータを用いて事前に計算する際のパラメータsおよびパラメータtの変換処理の一例を示したが、これに限られない。予測モデル変換部204は、均一化処理の式に対して、以下に示す変換処理を行ってもよい。予測モデル変換部204が、事前に、つまり、均一化処理の前に、図11の(式B)および(式C)を計算することにより、パラメータsおよびパラメータtが決定される。これにより、図11の(式A)は、y=sx+tで表される。そのため、予測演算部302は、均一化処理の式y=sx+tを用いて、入力xに対して均一化処理を行うことができる。均一化処理の後に、非線形処理が行われる。非線形処理では、sx+tの計算結果である出力yと0との大小関係を比較する。例えば、ある数値と0との大小関係を比較する場合、ある数値をいかなる正の数値で割っても、その数値と0との大小関係の比較結果は変わらない。このことから、均一化処理の出力yと0との大小関係を比較する場合に、yの代わりに、yを所定の正の数値で割った数値を当該比較に用いてもよい。例えば、上記均一化処理の式中のsについて、s=cd(ただし、cは、xの符号を表し、dは、sの絶対値を表す。)とすると、均一化処理の出力yをsの絶対値dで割ると、y/d=cx+t/dとなる。データ提供装置200は、予測モデル変換部204において、事前にt/dを計算してもよい。これにより、予測演算部302は、均一化処理の式としてyを所定の正の数値で割った式であるy/d=cx+t/dを用いて、入力xに対して均一化処理を行うことができる。以上により、予測演算部302は、均一化処理の式y/d=cx+t/dを用いると、上記実施の形態における均一化処理の式y=sx+tを用いる場合よりもさらに計算量を削減することができる。
【0134】
(3)上記実施の形態では、予測演算部302における非線形処理の一例として、非線形処理に対する入力が0または正に対応する数値であれば1に、当該入力が負に対応する数値であれば-1に対応する正の数値に変換する処理を用いるが、これに限定されない。例えば、非線形処理では、入力が0であれば0に、入力が0より大きければ1に、入力が0より小さければ-1に対応する正の整数に変換する処理等、非線形処理後の数値が0以上で表される3つの整数となる変換処理が適用されてもよい。
【0135】
(4)上記実施の形態では、予測演算部302における最大値探索処理の一例として、各要素について、他の全ての要素と大小関係を比較し、比較結果の理論積が1となる要素が最大値の要素であると判定する処理方法を挙げたが、これに限定されない。例えば、最大値探索処理では、以下の処理により最大値の要素(以下、最大値要素)を求めてもよい。最大値探索処理に対する入力ベクトルの複数の要素のうち1つ目の要素(要素Aとする)を暫定的な最大値要素とし、要素Aと残りの要素との大小関係を順次比較する。暫定的な最大値要素である要素Aよりも大きい要素(要素Bとする)が見つかった場合は、要素Bを新しい暫定的な最大値要素とし、要素Bと残りの要素との大小関係を順次比較する。全要素と比較した段階での暫定的な最大値要素が要素Bであるとすると、要素Bの数値と番号とを最大値探索処理の出力とする。
【0136】
(5)また、予測演算部302における最大値探索処理は、以下の処理により最大値要素を求めてもよい。例えば、最大値探索処理に対する入力ベクトルの全要素について、隣り合う要素同士で大小関係を比較し、小さい要素を除外する。この処理を繰り返し、最後に残った1つの要素が最大値要素であると判定することにより、最大値要素を求めることができる。
【0137】
(6)上記実施の形態では、ユーザ端末装置100が予測結果を利用する処理の一例を述べたが、次に示すような処理を行ってもよい。ユーザは予測結果を受け取り復号した後、予測結果の正誤および有用度に関する情報をデータ提供装置200に送信してもよい。
【0138】
(7)上記実施の形態では、ユーザ端末装置100が予測結果を利用する処理の一例を述べたが、次に示すような処理を行ってもよい。ユーザ端末装置100は、複数のデータ演算装置300、310、320から予測結果を受け取り復号した後、予測モデル分散システムに入力したユーザに関する情報(以下、ユーザ情報)と共に、予測結果の正誤および有用度に関する情報をデータ提供装置200に送信してもよい。
【0139】
(8)上記実施の形態では、データ提供装置200が行う処理の一例を述べたが、次のような処理を行ってもよい。データ提供装置200は、ユーザ端末装置100から受け取ったユーザ情報と予測結果に関する情報との組、または、予測結果に関する情報のみをもとに予測モデルの再学習を行ってもよい。そして、データ提供装置200は、再学習により新しく作成された予測モデルを秘密分散法により分散させ、新たな分散化予測モデルとして複数のデータ演算装置300、310、320に送信する。複数のデータ演算装置300、310、320は、受信した新たな予測モデルを予測モデル格納部に格納し、予測モデルを更新する。
【0140】
(9)上記の実施の形態における各装置は、具体的には、マイクロプロセッサ、ROM(Read Only Memory)、RAM(Random Access Memory)、ハードディスクユニット、ディスプレイユニット、キーボード、マウスなどから構成されるコンピュータシステムである。RAMまたはハードディスクユニットには、コンピュータプログラムが記録されている。マイクロプロセッサが、上記コンピュータプログラムに従って動作することにより、各装置は、その機能を達成する。ここでコンピュータプログラムは、所定の機能を達成するために、コンピュータに対する指令を示す命令コードが複数個組み合わされて構成されたものである。
【0141】
(10)上記の実施の形態における各装置は、構成する構成要素の一部または全部は、1個のシステムLSI(Large Scale Integration:大規模集積回路)から構成されていてもよい。システムLSIは、複数の構成部を1個のチップ上に集積して製造された超多機能LSIであり、具体的には、マイクロプロセッサ、ROM、RAMなどを含んで構成されるコンピュータシステムである。RAMには、コンピュータプログラムが記録されている。マイクロプロセッサが、コンピュータプログラムに従って動作することにより、システムLSIは、その機能を達成する。
【0142】
また、上記の各装置を構成する構成要素の各部は、個別に1チップ化されていても良いし、一部または全てを含むように1チップ化されてもよい。
【0143】
また、ここでは、システムLSIとしたが、集積度の違いにより、IC(Integrated circuit)、LSI、スーパーLSI、ウルトラLSIと呼称されることもある。また、集積回路化の手法はLSIに限るものではなく、専用回路または汎用プロセッサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)、LSI内部の回路セルの接続または設定を再構成可能なリコンフィギュラブル・プロセッサーを利用してもよい。
【0144】
さらには、半導体技術の進歩または派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適用等が可能性としてありえる。
【0145】
(11)上記の各装置を構成する構成要素の一部または全部は、各装置に脱着可能なICカードまたは単体のモジュールから構成されているとしてもよい。ICカードまたは前記モジュールは、マイクロプロセッサ、ROM、RAMなどから構成されるコンピュータシステムである。ICカードまたは前記モジュールは、上記の超多機能LSIを含んでいてもよい。マイクロプロセッサが、コンピュータプログラムに従って動作することにより、前記ICカードまたは前記モジュールは、その機能を達成する。このICカードまたはこのモジュールは、耐タンパ性を有してもよい。
【0146】
(12)本開示は、上記に示す方法であるとしてもよい。また、これらの方法をコンピュータにより実現するコンピュータプログラムであるとしてもよいし、上記コンピュータプログラムからなるデジタル信号であるとしてもよい。
【0147】
また、本開示は、上記コンピュータプログラムまたは上記デジタル信号をコンピュータ読み取り可能な記録媒体、例えば、フレキシブルディスク、ハードディスク、CD-ROM、MO(Magneto-Optical disc)、DVD、DVD-ROM、DVD-RAM、BD(Blu-ray(登録商標)Disc)、半導体メモリなどに記録したものとしてもよい。また、これらの記録媒体に記録されている上記デジタル信号であるとしてもよい。
【0148】
また、本開示は、上記コンピュータプログラムまたは上記デジタル信号を、電気通信回線、無線または有線通信回線、インターネットを代表とするネットワーク、データ放送等を経由して伝送するものとしてもよい。
【0149】
また、本開示は、マイクロプロセッサとメモリを備えたコンピュータシステムであって、メモリは、上記コンピュータプログラムを記録しており、マイクロプロセッサは、コンピュータプログラムに従って動作するとしてもよい。
【0150】
また、プログラムまたはデジタル信号を記録媒体に記録して移送することにより、またはプログラムまたは上記デジタル信号を、ネットワーク等を経由して移送することにより、独立した他のコンピュータシステムにより実施するとしてもよい。
【0151】
(13)上記実施の形態および上記変形例をそれぞれ組み合わせるとしてもよい。
【産業上の利用可能性】
【0152】
本開示は、ユーザの機微情報をデータ演算装置において平文で扱わず、プライバシを保護するシステム等に適用され得る。
【符号の説明】
【0153】
100 ユーザ端末装置
101 センシング部
102 特徴量算出部
103 特徴量分散部
104 復号部
105 予測結果利用部
106 通信部
200 データ提供装置
201 学習データ格納部
202 学習部
203 予測モデル格納部
204 予測モデル変換部
205 予測モデル分散部
206 通信部
300、310、320 データ演算装置
301 分散化予測モデル格納部
302 予測演算部
303 通信部
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13A
図13B
図13C
図14
図15
図16