IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ パナソニックIPマネジメント株式会社の特許一覧

特許7300636負荷制御回路、負荷制御方法、及びプログラム
<>
  • 特許-負荷制御回路、負荷制御方法、及びプログラム 図1
  • 特許-負荷制御回路、負荷制御方法、及びプログラム 図2
  • 特許-負荷制御回路、負荷制御方法、及びプログラム 図3
  • 特許-負荷制御回路、負荷制御方法、及びプログラム 図4
  • 特許-負荷制御回路、負荷制御方法、及びプログラム 図5
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-06-22
(45)【発行日】2023-06-30
(54)【発明の名称】負荷制御回路、負荷制御方法、及びプログラム
(51)【国際特許分類】
   H03K 17/725 20060101AFI20230623BHJP
   G05F 1/455 20060101ALI20230623BHJP
【FI】
H03K17/725 A
G05F1/455 A
【請求項の数】 9
(21)【出願番号】P 2018246278
(22)【出願日】2018-12-27
(65)【公開番号】P2020108040
(43)【公開日】2020-07-09
【審査請求日】2021-06-07
(73)【特許権者】
【識別番号】314012076
【氏名又は名称】パナソニックIPマネジメント株式会社
(74)【代理人】
【識別番号】110002527
【氏名又は名称】弁理士法人北斗特許事務所
(72)【発明者】
【氏名】北角 由也
(72)【発明者】
【氏名】中村 将之
【審査官】▲高▼橋 徳浩
(56)【参考文献】
【文献】特開2007-174409(JP,A)
【文献】国際公開第2018/163993(WO,A1)
【文献】特開2011-050141(JP,A)
【文献】特開2018-148432(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G05F1/12-G05F7/00
H03K17/72-H03K17/735
(57)【特許請求の範囲】
【請求項1】
電源と負荷との間に電気的に接続されて前記電源と前記負荷との間の導通/非導通を切り替える双方向スイッチと、
記電源から前記双方向スイッチへ駆動電力を供給するか否かを切り替える電圧駆動型の第1スイッチ素子及び自己保持型の第2スイッチ素子と、
前記第1スイッチ素子及び前記第2スイッチ素子の各々のオン/オフを、前記第1スイッチ素子のオン期間において前記第2スイッチ素子をオンさせ、かつ前記第1スイッチ素子のオフ期間において前記第2スイッチ素子をオフさせるように、同期させて、前記双方向スイッチを制御する制御部と、を備え
前記第1スイッチ素子及び前記第2スイッチ素子は、
前記第1スイッチ素子及び前記第2スイッチ素子が非導通であれば、前記双方向スイッチが非導通となり、
前記第1スイッチ素子及び前記第2スイッチ素子のうちの少なくとも一方が導通すれば、前記双方向スイッチが導通する
ように、前記双方向スイッチの制御端子と接地端子との間に並列に電気的に接続される、
負荷制御回路。
【請求項2】
前記第2スイッチ素子は、サイリスタである、
請求項1記載の負荷制御回路。
【請求項3】
前記第1スイッチ素子は、電界効果トランジスタである、
請求項1又は2に記載の負荷制御回路。
【請求項4】
前記制御部は、前記負荷に印加される負荷電圧の半周期ごとに前記第1スイッチ素子をオンさせる、
請求項1~3のいずれか1項に記載の負荷制御回路。
【請求項5】
前記制御部は、前記負荷に印加される負荷電圧のゼロクロスに基づいて、前記第1スイッチ素子を制御する、
請求項1~4のいずれか1項に記載の負荷制御回路。
【請求項6】
前記負荷は、誘導負荷を含む、
請求項1~5のいずれか1項に記載の負荷制御回路。
【請求項7】
前記負荷は、固体発光素子を有する光源と、換気扇と、を含む、
請求項1~6のいずれか1項に記載の負荷制御回路。
【請求項8】
電源と負荷との間に電気的に接続されて前記電源と前記負荷との間の導通/非導通を切り替える双方向スイッチを、前記電源から前記双方向スイッチへ駆動電力を供給するか否かを切り替える電圧駆動型の第1スイッチ素子及び自己保持型の第2スイッチ素子であって前記第1スイッチ素子及び前記第2スイッチ素子が非導通であれば前記双方向スイッチが非導通となり前記第1スイッチ素子及び前記第2スイッチ素子のうちの少なくとも一方が導通すれば前記双方向スイッチが導通するように前記双方向スイッチの制御端子と接地端子との間に並列に電気的に接続される前記第1スイッチ素子及び前記第2スイッチ素子の各々のオン/オフを、前記第1スイッチ素子のオン期間において前記第2スイッチ素子をオンさせかつ前記第1スイッチ素子のオフ期間において前記第2スイッチ素子をオフさせるように同期させて、制御する、
負荷制御方法。
【請求項9】
1以上のプロセッサに、
請求項8記載の負荷制御方法を実行させるための、
プログラム。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、一般に負荷制御回路、負荷制御方法、及びプログラムに関する。より詳細には、本開示は、双方向スイッチにより負荷を制御する負荷制御回路、負荷制御方法、及びプログラムに関する。
【背景技術】
【0002】
特許文献1には、商用電源と負荷との間に直列に接続される2線式の負荷制御装置が開示されている。この負荷制御装置は、主開閉部と、操作スイッチと、制御部と、を備える。主開閉部は、商用電源及び負荷に対し直列に接続された主スイッチ素子(トライアック)を有し、負荷に対して電力の供給を制御する。操作スイッチは、ユーザによって操作され、少なくとも負荷を起動するための起動信号を出力する。制御部は、操作スイッチに接続され、操作スイッチから送信される信号に応じて、主開閉部の開閉を制御する。
【先行技術文献】
【特許文献】
【0003】
【文献】特開2011-87260号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
本開示は、使用可能な負荷の制限を受けにくい負荷制御回路、負荷制御方法、及びプログラムを提供することを目的とする。
【課題を解決するための手段】
【0005】
本開示の一態様に係る負荷制御回路は、双方向スイッチと、電圧駆動型の第1スイッチ素子と、自己保持型の第2スイッチ素子と、制御部と、を備える。前記双方向スイッチは、電源と負荷との間に電気的に接続されて前記電源と前記負荷との間の導通/非導通を切り替える。前記第1スイッチ素子及び前記第2スイッチ素子は、前記電源から前記双方向スイッチへ駆動電力を供給するか否かを切り替える。前記制御部は、前記第1スイッチ素子及び前記第2スイッチ素子の各々のオン/オフを、前記第1スイッチ素子のオン期間において前記第2スイッチ素子をオンさせ、かつ前記第1スイッチ素子のオフ期間において前記第2スイッチ素子をオフさせるように、同期させて、前記双方向スイッチを制御する。前記第1スイッチ素子及び前記第2スイッチ素子は、前記第1スイッチ素子及び前記第2スイッチ素子が非導通であれば、前記双方向スイッチが非導通となり、前記第1スイッチ素子及び前記第2スイッチ素子のうちの少なくとも一方が導通すれば、前記双方向スイッチが導通するように、前記双方向スイッチの制御端子と接地端子との間に並列に電気的に接続される。
【0006】
本開示の一態様に係る負荷制御方法は、双方向スイッチを、電圧駆動型の第1スイッチ素子及び自己保持型の第2スイッチ素子の各々のオン/オフを、前記第1スイッチ素子のオン期間において前記第2スイッチ素子をオンさせかつ前記第1スイッチ素子のオフ期間において前記第2スイッチ素子をオフさせるように同期させて、制御する。前記双方向スイッチは、電源と負荷との間に電気的に接続されて前記電源と前記負荷との間の導通/非導通を切り替える。前記第1スイッチ素子及び前記第2スイッチ素子は、前記電源から前記双方向スイッチへ駆動電力を供給するか否かを切り替える。前記第1スイッチ素子及び前記第2スイッチ素子は、前記第1スイッチ素子及び前記第2スイッチ素子が非導通であれば前記双方向スイッチが非導通となり、前記第1スイッチ素子及び前記第2スイッチ素子のうちの少なくとも一方が導通すれば前記双方向スイッチが導通するように、前記双方向スイッチの制御端子と接地端子との間に並列に電気的に接続される。
【0007】
本開示の一態様に係るプログラムは、1以上のプロセッサに、上記の負荷制御方法を実行させるためのプログラムである。
【発明の効果】
【0008】
本開示は、使用可能な負荷の制限を受けにくい、という利点がある。
【図面の簡単な説明】
【0009】
図1図1は、本開示の一実施形態に係る負荷制御回路の構成を示す概略回路図である。
図2図2は、同上の負荷制御回路の動作例を示すフローチャートである。
図3図3は、同上の負荷制御回路の第1スイッチ素子及び第2スイッチ素子の動作例の説明図である。
図4図4は、同上の負荷制御回路の動作の説明図である。
図5図5は、第2比較例の負荷制御回路の動作の説明図である。
【発明を実施するための形態】
【0010】
(1)概要
本実施形態に係る負荷制御回路10は、図1に示すように、電源11と負荷12との間に電気的に接続され、電源11から負荷12への通電状態を切り替えるために用いられる。電源11は、例えば、単相100〔V〕、60〔Hz〕の商用電源である。負荷12は、例えば、LED(Light Emitting Diode)等の固体発光素子を有する光源と、換気扇と、を含み得る。換気扇は、ACモータ式の換気扇、DCモータ式の換気扇の他、電子回路が搭載された換気扇、又は電気式シャッタ付きの換気扇等を含み得る。つまり、負荷12は、誘導負荷を含み得る。
【0011】
負荷制御回路10は、例えば住宅の壁等に取り付けられるスイッチの筐体に収納される。スイッチは、一例として、設定した時刻に応じて電源11から負荷12への通電状態を切り替えるタイマ機能を有するスイッチを含む。その他、スイッチは、例えば人感センサ又は明るさセンサでの検知結果に応じて電源11から負荷12への通電状態を切り替えるスイッチを含む。また、上記に挙げたスイッチは、いずれもユーザからの操作を受け付けることで、電源11から負荷12への通電状態を切り替える機能も有している。
【0012】
負荷制御回路10は、双方向スイッチQ0と、電圧駆動型の第1スイッチ素子Q1と、自己保持型の第2スイッチ素子Q2と、制御部1と、を備えている。双方向スイッチQ0は、電源11と負荷12との間に電気的に接続されて、電源11と負荷12との間の導通/非導通を切り替える。
【0013】
ここで、双方向スイッチQ0は、負荷制御回路10の接続端子101と接続端子102との間に接続されている。言い換えれば、負荷制御回路10の内部において、接続端子101と接続端子102とは、双方向スイッチQ0を介して電気的に接続されている。したがって、双方向スイッチQ0がオン状態にあれば、接続端子101と接続端子102との間が双方向スイッチQ0を介して導通する。また、双方向スイッチQ0がオフ状態にあれば、接続端子101と接続端子102との間が非導通となる。つまり、双方向スイッチQ0が導通していれば、電源11と負荷12との間が導通し、電源11から負荷12に電力が供給される。本実施形態では、双方向スイッチQ0のオン状態とは、双方向スイッチQ0が連続的に導通している状態だけではなく、双方向スイッチQ0が間欠的に導通している状態を含む。つまり、双方向スイッチQ0のオン状態とは、電源11から負荷12への電力供給が行われる状態であり、双方向スイッチQ0のオフ状態とは、電源11から負荷12への電力供給が遮断される状態である。
【0014】
第1スイッチ素子Q1は、電圧駆動型、つまり第1スイッチ素子Q1の制御端子に印加される電圧の大きさに応じてオン/オフを切り替えるスイッチである。本実施形態では、第1スイッチ素子Q1は、FET(Field Effect Transistor:電界効果トランジスタ)である。第2スイッチ素子Q2は、自己保持型、つまり一度ターンオンすると、保持電流が零になるまでオン状態を維持するスイッチである。本実施形態では、第2スイッチ素子Q2は、サイリスタである。
【0015】
第1スイッチ素子Q1及び第2スイッチ素子Q2は、双方向スイッチQ0の制御端子T1に並列に電気的に接続されている。また、第1スイッチ素子Q1及び第2スイッチ素子Q2は、後述するように、いずれも電源11から双方向スイッチQ0に駆動電力を供給するか否かを切り替えるためのスイッチである。
【0016】
制御部1は、第1スイッチ素子Q1及び第2スイッチ素子Q2の各々のオン/オフを同期させることにより、双方向スイッチQ0を制御する。具体的には、制御部1は、電源11から負荷12に印加される負荷電圧V1のゼロクロスを検出したタイミングを基準として、第1スイッチ素子Q1及び第2スイッチ素子Q2の各々のオン/オフを制御する。
【0017】
上述のように、本実施形態では、電圧駆動型の第1スイッチ素子Q1と、自己保持型の第2スイッチ素子Q2との両方を用いて双方向スイッチQ0を制御している。このため、本実施形態では、第1スイッチ素子Q1のみを用いて双方向スイッチQ0を制御する場合には使用することが難しい種類の負荷12を使用することが可能である。同様に、本実施形態では、第2スイッチ素子Q2のみを用いて双方向スイッチQ0を制御する場合には使用することが難しい種類の負荷12を使用することが可能である。つまり、本実施形態では、使用可能な負荷12の制限を受けにくい、という利点がある。
【0018】
(2)詳細
以下、本実施形態の負荷制御回路10の構成について図1を用いて詳細に説明する。以下では、負荷制御回路10は、タイマ機能を有するスイッチに用いられていると仮定する。また、以下では、負荷制御回路10に接続される負荷12は、上述の固体発光素子を有する光源、又は換気扇であると仮定する。
【0019】
負荷制御回路10は、既に述べたように、2つの接続端子101,102と、双方向スイッチQ0と、第1スイッチ素子Q1と、第2スイッチ素子Q2と、制御部1と、を備えている。2つの接続端子101,102の各々は、配線が電気的かつ機械的に接続される部品である。これらの2つの接続端子101,102、双方向スイッチQ0、第1スイッチ素子Q1、第2スイッチ素子Q2、及び制御部1は、1つの筐体に収容されている。本実施形態における「接続端子」等の「端子」は、電源線を接続するための部品(端子)でなくてもよく、例えば、電子部品のリード、又は回路基板に含まれる導体の一部であってもよい。
【0020】
2つの接続端子101,102の間には、コンデンサC1及びバリスタVR1の並列回路が電気的に接続されている。また、2つの接続端子101,102のうち一方の接続端子101は、インダクタL1を介して、整流器DB1の一対の交流入力端子A1,A2のうちの一方の交流入力端子A1に電気的に接続されている。
【0021】
整流器DB1は、ダイオードブリッジからなり、一対の交流入力端子A1,A2と、一対の直流出力端子B1,B2と、を有している。整流器DB1は、双方向スイッチQ0の両端間に印加される電圧(以下、「スイッチ間電圧」ともいう)を全波整流し、全波整流後の電圧を一対の直流出力端子B1,B2から出力する。
【0022】
双方向スイッチQ0は、電源11と負荷12との間に電気的に接続され、電源11と負荷12との間の導通/非導通を切り替える。本実施形態では、双方向スイッチQ0は、3端子の双方向サイリスタ(トライアック)にて構成されている。双方向スイッチQ0は、接続端子101と接続端子102との間に電気的に接続されており、接続端子101と接続端子102との間における双方向の電流の通過/遮断を切り替える。双方向スイッチQ0の制御端子T1(ゲート端子)は、整流器DB1の一対の交流入力端子A1,A2のうちの一方の交流入力端子A2に電気的に接続されている。
【0023】
また、双方向スイッチQ0の制御端子T1は、抵抗R1,R2及びコンデンサC2からなる回路を介して接続端子102に電気的に接続されている。抵抗R1,R2の接続点は、整流器DB1の交流入力端子A1,A2のうちの一方の交流入力端子A2に電気的に接続されている。コンデンサC2及び抵抗R1の接続点は、双方向スイッチQ0の制御端子T1に電気的に接続されている。また、コンデンサC2及び抵抗R2の接続点は、接続端子102に電気的に接続されている。
【0024】
第1スイッチ素子Q1は、抵抗R6を介して、整流器DB1の一対の直流出力端子B1,B2のうちの高電位側の直流出力端子B1に電気的に接続されている。言い換えれば、第1スイッチ素子Q1は、整流器DB1を介して双方向スイッチQ0の制御端子T1に電気的に接続されている。本実施形態では、第1スイッチ素子Q1は、エンハンスメント形のnチャネルMOSFET(Metal-Oxide-Semiconductor Field Effect Transistor)にて構成されている。言い換えれば、第1スイッチ素子Q1は、電界効果トランジスタである。
【0025】
第1スイッチ素子Q1のドレイン端子は、抵抗R6を介して整流器DB1の高電位側の直流出力端子B1に電気的に接続されている。第1スイッチ素子Q1のソース端子は、整流器DB1の低電位側の直流出力端子B2(グランド)に電気的に接続されている。第1スイッチ素子Q1のゲート端子は、抵抗R3及びコンデンサC3の並列回路を介して、制御部1に電気的に接続されている。そして、第1スイッチ素子Q1は、ゲート端子に制御部1から電圧信号である第1制御信号Sig1が入力されることにより、整流器DB1の一対の直流出力端子B1,B2間の導通/非導通を切り替える。
【0026】
第2スイッチ素子Q2は、抵抗R5を介して、整流器DB1の一対の直流出力端子B1,B2のうちの高電位側の直流出力端子B1に電気的に接続されている。言い換えれば、第2スイッチ素子Q2は、整流器DB1を介して双方向スイッチQ0の制御端子T1に電気的に接続されている。本実施形態では、第2スイッチ素子Q2は、サイリスタ(逆阻止3端子サイリスタ)にて構成されている。
【0027】
第2スイッチ素子Q2のアノードは、抵抗R5を介して整流器DB1の高電位側の直流出力端子B1に電気的に接続されている。第2スイッチ素子Q2のカソードは、整流器DB1の低電位側の直流出力端子B2(グランド)に電気的に接続されている。第2スイッチ素子Q2のゲートは、抵抗R4及びコンデンサC4の並列回路を介して、制御部1に電気的に接続されている。そして、第2スイッチ素子Q2は、ゲートに制御部1から電流信号である第2制御信号Sig2が入力されることにより、整流器DB1の一対の直流出力端子B1,B2間の導通/非導通を切り替える。
【0028】
ここで、第1スイッチ素子Q1及び第2スイッチ素子Q2が非導通であれば、双方向スイッチQ0の制御端子T1に十分な大きさの制御電圧(ゲート電圧)が印加されず、双方向スイッチQ0は非導通の状態を維持する。一方、第1スイッチ素子Q1及び第2スイッチ素子Q2のうちの少なくとも一方が導通していれば、整流器DB1を介して電流が流れることにより、双方向スイッチQ0の制御端子T1に十分な大きさの制御電圧が印加され、双方向スイッチQ0が導通する。つまり、第1スイッチ素子Q1及び第2スイッチ素子Q2は、双方向スイッチQ0の制御端子T1に並列に電気的に接続され、電源11から双方向スイッチQ0に駆動電力を供給するか否かを切り替える。なお、双方向スイッチQ0は、自己保持型のスイッチであるため、負荷12に印加される負荷電圧V1がゼロクロスする、つまり双方向スイッチQ0を流れる保持電流が零になると、非導通状態に切り替わる。
【0029】
制御部1は、一例として、1以上のプロセッサ及び1以上のメモリを有するコンピュータシステムを主構成とする。プロセッサは、メモリに記録されているプログラムを実行することにより、制御部1の機能を実現する。プログラムは、予めメモリに記録されていてもよいし、メモリカードのような非一時的記録媒体に記録されて提供されたり、電気通信回線を通して提供されたりしてもよい。
【0030】
制御部1は、第1スイッチ素子Q1及び第2スイッチ素子Q2を制御することで、双方向スイッチQ0を間接的に制御する機能を有している。具体的には、制御部1は、第1スイッチ素子Q1の制御端子(ゲート端子)に第1制御信号Sig1を出力することにより、第1スイッチ素子Q1の導通/非導通を切り替える。また、制御部1は、第2スイッチ素子Q2の制御端子(ゲート)に第2制御信号Sig2を出力することにより、第2スイッチ素子Q2の導通/非導通を切り替える。上述したように、第1スイッチ素子Q1及び第2スイッチ素子Q2の少なくとも一方が導通すれば、双方向スイッチQ0が導通状態に切り替わる。また、第1スイッチ素子Q1及び第2スイッチ素子Q2の両方が非導通状態であって、双方向スイッチQ0を流れる保持電流が零になれば、双方向スイッチQ0が非導通状態に切り替わる。
【0031】
制御部1は、ユーザの操作によるオン制御指示を受ける、又はあらかじめユーザにより設定された時刻になると、双方向スイッチQ0をオン状態に切り替える制御を実行する。これにより、電源11から負荷12へ電力が供給され、負荷12が駆動する。
【0032】
ここで、制御部1は、双方向スイッチQ0の両端間に印加される電圧(スイッチ間電圧)の大きさを監視することにより、スイッチ間電圧(間接的には、負荷12に印加される負荷電圧V1)のゼロクロスを監視している。具体的には、制御部1は、接続端子101-グランド(基準電位点)間電圧の大きさと基準値(例えば、12〔V〕)とを比較することにより、接続端子101,102のうち接続端子101の方が高電位となる際のスイッチ間電圧のゼロクロスを検出する。また、制御部1は、接続端子102-グランド間電圧の大きさと基準値とを比較することにより、接続端子101,102のうち接続端子102の方が高電位となる際のゼロクロスを検出する。なお、制御部1で検出されるゼロクロスのタイミングと、厳密な意味でのゼロクロスのタイミング(負荷電圧V1が0〔V〕となるタイミング)との間には、僅かなずれが生じ得る。
【0033】
そして、制御部1は、スイッチ間電圧(間接的には、負荷12に印加される負荷電圧V1)のゼロクロスを検出するごとに、第1スイッチ素子Q1をオン/オフさせている。つまり、本実施形態では、制御部1は、負荷12に印加される負荷電圧V1のゼロクロスに基づいて、第1スイッチ素子Q1を制御している。そして、本実施形態では、制御部1は、負荷12に印加される負荷電圧V1の半周期ごとに第1スイッチ素子Q1をオンさせている。
【0034】
ここで、制御部1は、第1スイッチ素子Q1がオン状態にある場合に、スイッチ間電圧のゼロクロスを検出すると、第1スイッチ素子Q1をオフ状態に切り替える前に、第2スイッチ素子Q2をオンさせている。つまり、本実施形態では、制御部1は、第1スイッチ素子Q1のオン期間において、第2スイッチ素子Q2をオンさせている。そして、第2スイッチ素子Q2は、自己保持型のスイッチであるため、第2スイッチ素子Q2を流れる保持電流、つまり負荷12に印加される負荷電圧V1が零になると、オフ状態に切り替わる。第2スイッチ素子Q2がオフ状態に切り替わるタイミングは、第1スイッチ素子Q1のオフ期間である。つまり、制御部1は、第2スイッチ素子Q2をオンするタイミングを調整することにより、第1スイッチ素子Q1のオフ期間において、第2スイッチ素子Q2をオフさせている。
【0035】
このように、制御部1は、電源11から負荷12に印加される負荷電圧V1のゼロクロスを検出したタイミングを基準として、第1スイッチ素子Q1及び第2スイッチ素子Q2の各々のオン/オフを制御する。そして、第1スイッチ素子Q1及び第2スイッチ素子Q2の各々のオン/オフに応じて、双方向スイッチQ0の導通/非導通が切り替わる。つまり、制御部1は、第1スイッチ素子Q1及び第2スイッチ素子Q2の各々のオン/オフを同期させることで、双方向スイッチQ0を制御している。
【0036】
(3)動作
以下、本実施形態の負荷制御回路10の動作について図2及び図3を用いて説明する。以下では、制御部1は、ユーザの操作によるオン制御指示を受けており、双方向スイッチQ0をオン状態とする制御を実行している、と仮定する。また、図3における「Q1」及び「Q2」は、それぞれ第1スイッチ素子Q1のオン/オフ、及び第2スイッチ素子Q2のオン/オフの状態を表している。
【0037】
まず、制御部1は、スイッチ間電圧の大きさを監視し続けている。そして、制御部1は、スイッチ間電圧(間接的には、負荷電圧V1)のゼロクロスを検出する(S1)。そして、制御部1は、ゼロクロスを検出した時点で第1スイッチ素子Q1がオフ状態であれば(S2:Yes)、第1制御信号Sig1を第1スイッチ素子Q1の制御端子に与えることで、第1スイッチ素子Q1をオン状態に切り替える(S3)。これにより、双方向スイッチQ0の制御端子T1に十分な大きさの制御電圧が印加され、双方向スイッチQ0が導通する。
【0038】
図3に示す例では、制御部1は、時刻t0においてスイッチ間電圧のゼロクロスを検出している。その後、制御部1は、時刻t0から第1時間が経過した時点である時刻t1において、第1スイッチ素子Q1をオン状態に切り替えている。第1時間は、一例として、スイッチ間電圧のゼロクロスを検出したタイミングと、スイッチ間電圧が実際にゼロクロスすると想定されるタイミングとの差分を考慮して設定される。
【0039】
その後、負荷電圧V1の半周期に相当する時間が経過すると、制御部1は、スイッチ間電圧のゼロクロスを再び検出する(S1)。そして、制御部1は、ゼロクロスを検出した時点で第1スイッチ素子Q1がオン状態であるため(S2:No)、第2制御信号Sig2を第2スイッチ素子Q2の制御端子に与えることで、第2スイッチ素子Q2をオン状態に切り替える(S4)。つまり、既に述べたように、制御部1は、第1スイッチ素子Q1のオン期間において、第2スイッチ素子Q2をオンさせている。
【0040】
また、制御部1は、第2スイッチ素子Q2をオン状態に切り替えた後に、第1制御信号Sig1を第1スイッチ素子Q1の制御端子に与えるのを止めることにより、第1スイッチ素子Q1をオフ状態に切り替える(S5)。その後、第2スイッチ素子Q2は、負荷電圧V1が実際にゼロクロスする、つまり第2スイッチ素子Q2を流れる保持電流が零になると、オフ状態に切り替わる(S6)。つまり、既に述べたように、制御部1は、第1スイッチ素子Q1のオフ期間において、第2スイッチ素子Q2をオフさせている。これにより、第1スイッチ素子Q1及び第2スイッチ素子Q2の両方がオフした状態となる。この状態で、双方向スイッチQ0を流れる保持電流が零になることで、双方向スイッチQ0が非導通状態に切り替わる。
【0041】
図3に示す例では、制御部1は、時刻t2においてスイッチ間電圧のゼロクロスを検出している。その後、制御部1は、時刻t2から第2時間が経過した時点である時刻t3において、第2スイッチ素子Q2をオン状態に切り替えている。また、制御部1は、時刻t2から第3時間(>第2時間)が経過した時点である時刻t4において、第1スイッチ素子Q2をオフ状態に切り替えている。第2時間及び第3時間は、一例として、いずれもスイッチ間電圧のゼロクロスを検出したタイミングと、スイッチ間電圧が実際にゼロクロスすると想定されるタイミングとの差分を考慮して設定される。その後、時刻t5において、第2スイッチ素子Q2を流れる保持電流が零になることにより、第2スイッチ素子Q2がオフ状態に切り替わっている。
【0042】
制御部1は、上記のステップS1~S6の処理を繰り返すことにより、双方向スイッチQ0を間欠的に導通させる。これにより、負荷12は、電源11から間欠的に電力を供給されることで、駆動する。一例として、負荷12が光源である場合、制御部1は、上記のステップS1~S6の処理を繰り返すことにより、光源を点灯させることになる。また、一例として、負荷12が換気扇である場合、制御部1は、上記のステップS1~S6の処理を繰り返すことにより、換気扇を駆動させることになる。
【0043】
以下、本実施形態の負荷制御回路10の利点を説明するに当たり、まず、第1比較例の負荷制御回路、及び第2比較例の制御回路について説明する。第1比較例の負荷制御回路は、第1スイッチ素子を備えておらず、第2スイッチ素子のオン/オフのみで双方向スイッチを制御する点で、本実施形態の負荷制御回路10と相違する。第1比較例の制御回路は、基本的に、ACモータ式の換気扇を負荷とする場合に用いられる。また、第2比較例の負荷制御回路は、第2スイッチ素子を備えておらず、第1スイッチ素子のオン/オフのみで双方向スイッチを制御する点で、本実施形態の負荷制御回路10と相違する。第2比較例の負荷制御回路は、基本的に、固体発光素子を有する光源、DCモータ式の換気扇、電子回路が搭載された換気扇、又は電気式シャッタ付きの換気扇を負荷とする場合に用いられる。
【0044】
第1比較例の負荷制御回路では、制御部は、第2スイッチ素子の制御端子に第2制御信号を与えることにより、第2スイッチ素子をオン状態に切り替える。第2スイッチ素子は、第2スイッチ素子を流れる保持電流が零になると、オフ状態に切り替わる。第1比較例の負荷制御回路では、第2スイッチ素子を流れる保持電流が零とならず、第2スイッチ素子がオフ状態に切り替わらずにオン状態を維持する場合が生じ得る。この場合、双方向スイッチもオン状態を維持するため、例えば負荷が光源であれば、光源を消灯させなければならないにも関わらず、光源が点灯状態を維持してしまう等の問題が生じ得る。また、第1比較例の負荷制御回路では、電源の出力電圧にノイズが重畳していると、第2スイッチ素子がオン/オフを繰り返すことで、双方向スイッチも導通/非導通を繰り返してしまい、負荷の動作が不安定になる場合が生じ得る。
【0045】
第2比較例の負荷制御回路では、制御部は、第1スイッチ素子の制御端子に第1制御信号を与えることにより、第1スイッチ素子をオン状態に切り替える。また、制御部は、第1スイッチ素子の制御端子に第1制御信号を与えるのを止めることにより、第1スイッチ素子をオフ状態に切り替える。第2比較例の負荷制御回路では、電圧駆動型の第1スイッチ素子を用いて双方向スイッチを制御するため、第1比較例の負荷制御回路で起こり得た上記の問題は生じにくい。ただし、第2比較例の負荷制御回路では、例えばACモータ式の換気扇等の誘導負荷を使用した場合に、以下のような問題が生じ得る。
【0046】
すなわち、第2比較例の負荷制御回路では、制御部は、スイッチ間電圧のゼロクロスを検出したタイミングに基づいて第1スイッチ素子をオフ状態に切り替えている。このため、第1スイッチ素子は、必ずしも負荷電圧が実際にゼロクロスするタイミングでオフ状態に切り替わるとは限らない。そして、負荷電圧が実際にゼロクロスする前後のタイミングで、つまり負荷に電流が流れている状態で第1スイッチ素子がオフ状態に切り替わると、負荷に流れる電流が急峻に変化し、負荷に含まれるインダクタンス成分にて逆起電圧が生じ得る(図5参照)。図5に示す例では、「Q10」は第2比較例の負荷制御回路における第1スイッチ素子のオン/オフの状態、「V10」は第2比較例の負荷制御回路において負荷に印加される負荷電圧の波形を表している。この逆起電圧の発生により、換気扇のモータの回転バランスが崩れ、うなり等の異音が生じ得る。
【0047】
上述のように、第1比較例の負荷制御回路では、使用可能な負荷がACモータ式の換気扇に制限され、固体発光素子を有する光源、又はDCモータ式の換気扇等を負荷として使用することが難しい。また、第2比較例の負荷制御回路では、使用可能な負荷が固体発光素子を有する光源、DCモータ式の換気扇等に制限され、ACモータ式の換気扇を負荷として使用することが難しい。つまり、第1比較例の負荷制御回路、及び第2比較例の負荷制御回路では、いずれも上記の問題が生じにくい負荷を選択する必要があり、使用可能な負荷の制限を受けやすい、という問題があった。
【0048】
一方、本実施形態の負荷制御回路10では、電圧駆動型の第1スイッチ素子Q1及び自己保持型の第2スイッチ素子Q2の各々のオン/オフを同期させて双方向スイッチQ0を制御することにより、上記の問題を解決している。すなわち、本実施形態では、制御部1が基本的に第1スイッチ素子Q1を用いて双方向スイッチQ0を制御することにより、上記の第1比較例の負荷制御回路で起こり得た問題を生じにくくしている。そして、本実施形態では、制御部1が、第1スイッチ素子Q1をオフ状態に切り替えるタイミングに同期して、第2スイッチ素子Q2をオン状態に切り替えることで、上記の第2比較例の負荷制御回路で起こり得た問題を生じにくくしている。
【0049】
具体的には、本実施形態では、制御部1は、第1スイッチ素子Q1をオフ状態に切り替える前に、第2スイッチ素子Q2をオン状態に切り替えている。つまり、本実施形態では、第1スイッチ素子Q1がオフ状態に切り替わるタイミングにおいて、第2スイッチ素子Q2がオン状態にある。このため、本実施形態では、負荷電圧V1が実際にゼロクロスする前後のタイミングで、つまり負荷12に電流が流れている状態で第1スイッチ素子Q1がオフ状態に切り替わっても、負荷12に流れる電流が急峻に変化しない。したがって、本実施形態では、負荷12に含まれるインダクタンス成分にて逆起電圧が生じにくい(図4参照)。図4に示す例では、「Q1」は第1スイッチ素子Q1のオン/オフの状態、「Q2」は第2スイッチ素子Q2のオン/オフの状態、「V1」は負荷電圧V1の波形を表している。
【0050】
上述のように、本実施形態では、第1比較例の負荷制御回路では使用することが難しい種類の負荷12を使用することが可能である。同様に、本実施形態では、第2比較例の負荷制御回路では使用することが難しい種類の負荷12を使用することが可能である。つまり、本実施形態では、使用可能な負荷12の制限を受けにくい、という利点がある。
【0051】
(4)変形例
上述の実施形態は、本開示の様々な実施形態の一つに過ぎない。上述の実施形態は、本開示の目的を達成できれば、設計等に応じて種々の変更が可能である。また、負荷制御回路10と同様の機能は、負荷制御方法、(コンピュータ)プログラム、又はプログラムを記録した非一時的記録媒体等で具現化されてもよい。
【0052】
一態様に係る負荷制御方法は、双方向スイッチQ0を、電圧駆動型の第1スイッチ素子Q1及び自己保持型の第2スイッチ素子Q2の各々のオン/オフを同期させて制御する。双方向スイッチQ0は、電源11と負荷12との間に電気的に接続されて電源11と負荷12との間の導通/非導通を切り替える。第1スイッチ素子Q1及び第2スイッチ素子Q2は、双方向スイッチQ0の制御端子T1に並列に電気的に接続される。
【0053】
一態様に係るプログラムは、1以上のプロセッサに、上記の負荷制御方法を実行させるためのプログラムである。
【0054】
以下、上述の実施形態の変形例を列挙する。以下に説明する変形例は、適宜組み合わせて適用可能である。
【0055】
本開示における負荷制御回路10は、例えば、制御部1等に、コンピュータシステムを含んでいる。コンピュータシステムは、ハードウェアとしてのプロセッサ及びメモリを主構成とする。コンピュータシステムのメモリに記録されたプログラムをプロセッサが実行することによって、本開示における負荷制御回路10としての機能が実現される。プログラムは、コンピュータシステムのメモリに予め記録されてもよく、電気通信回線を通じて提供されてもよく、コンピュータシステムで読み取り可能なメモリカード、光学ディスク、ハードディスクドライブ等の非一時的記録媒体に記録されて提供されてもよい。コンピュータシステムのプロセッサは、半導体集積回路(IC)又は大規模集積回路(LSI)を含む1ないし複数の電子回路で構成される。ここでいうIC又はLSI等の集積回路は、集積の度合いによって呼び方が異なっており、システムLSI、VLSI(Very Large Scale Integration)、又はULSI(Ultra Large Scale Integration)と呼ばれる集積回路を含む。さらに、LSIの製造後にプログラムされる、FPGA(Field-Programmable Gate Array)、又はLSI内部の接合関係の再構成若しくはLSI内部の回路区画の再構成が可能な論理デバイスについても、プロセッサとして採用することができる。複数の電子回路は、1つのチップに集約されていてもよいし、複数のチップに分散して設けられていてもよい。複数のチップは、1つの装置に集約されていてもよいし、複数の装置に分散して設けられていてもよい。ここでいうコンピュータシステムは、1以上のプロセッサ及び1以上のメモリを有するマイクロコントローラを含む。したがって、マイクロコントローラについても、半導体集積回路又は大規模集積回路を含む1ないし複数の電子回路で構成される。
【0056】
また、負荷制御回路10の少なくとも一部の機能が、1つの筐体内に集約されていることは負荷制御回路10に必須の構成ではなく、負荷制御回路10の構成要素は、複数の筐体に分散して設けられていてもよい。さらに、負荷制御回路10の少なくとも一部の機能、例えば、制御部1の機能がクラウド(クラウドコンピューティング)等によって実現されてもよい。
【0057】
上述の実施形態において、電源11は、単相100〔V〕、50〔Hz〕の商用電源であってもよい。また、電源11の電圧値は、100〔V〕に限らない。
【0058】
上述の実施形態において、双方向スイッチQ0は、双方向サイリスタに限らず、接続端子101と接続端子102との間に電気的に直列に接続された2つのMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)であってもよい。2つのMOSFETは、ソース端子同士が互いに接続される、つまり、いわゆる逆直列に接続されることにより、双方向の電流の通過/遮断を切り替える。また、双方向スイッチQ0は、例えばGaN(窒化ガリウム)等のワイドバンドギャップの半導体材料を用いたダブルゲート(デュアルゲート)構造の半導体素子であってもよい。
【0059】
上述の実施形態において、第1スイッチ素子Q1は、FETに限らず、例えばIGBT(Insulated Gate Bipolar Transistor:絶縁ゲートバイポーラトランジスタ)であってもよい。
【0060】
上述の実施形態において、制御部1は、1つの回路である必要はなく、2以上の回路で実現されてもよい。一例として、制御部1は、第1スイッチ素子Q1を制御する回路と、第2スイッチ素子Q2を制御する回路と、で構成されていてもよい。
【0061】
(まとめ)
以上述べたように、第1の態様に係る負荷制御回路(10)は、双方向スイッチ(Q0)と、電圧駆動型の第1スイッチ素子(Q1)と、自己保持型の第2スイッチ素子(Q2)と、制御部(1)と、を備える。双方向スイッチ(Q0)は、電源(11)と負荷(12)との間に電気的に接続されて電源(11)と負荷(12)との間の導通/非導通を切り替える。第1スイッチ素子(Q1)及び第2スイッチ素子(Q2)は、双方向スイッチ(Q0)の制御端子(T1)に並列に電気的に接続され、電源(11)から双方向スイッチ(Q0)へ駆動電力を供給するか否かを切り替える。制御部(1)は、第1スイッチ素子(Q1)及び第2スイッチ素子(Q2)の各々のオン/オフを同期させて、双方向スイッチ(Q0)を制御する。
【0062】
この態様によれば、使用可能な負荷(12)の制限を受けにくい、という利点がある。
【0063】
第2の態様に係る負荷制御回路(10)では、第1の態様において、第2スイッチ素子(Q2)は、サイリスタである。
【0064】
この態様によれば、負荷(12)に流れる負荷電流が零になったときに、第2スイッチ素子(Q2)をオフさせやすい、という利点がある。
【0065】
第3の態様に係る負荷制御回路(10)では、第1又は第2の態様において、第1スイッチ素子(Q1)は、電界効果トランジスタである。
【0066】
この態様によれば、第1スイッチ素子(Q1)の導通状態を維持させやすい、という利点がある。
【0067】
第4の態様に係る負荷制御回路(10)では、第1~第3のいずれかの態様において、制御部(1)は、第1スイッチ素子(Q1)のオン期間において、第2スイッチ素子(Q2)をオンさせる。
【0068】
この態様によれば、第1スイッチ素子(Q1)及び第2スイッチ素子(Q2)の両方がオフとなるデッドタイムが生じないので、デッドタイムに起因する負荷(12)への影響が生じにくい、という利点がある。
【0069】
第5の態様に係る負荷制御回路(10)では、第1~第4のいずれかの態様において、制御部(1)は、負荷(12)に印加される負荷電圧(V1)の半周期ごとに第1スイッチ素子(Q1)をオンさせる。
【0070】
この態様によれば、負荷電圧(V1)の1周期ごとに第1スイッチ素子(Q1)をオンさせる場合と比較して、双方向スイッチ(Q0)を制御する精度が向上しやすい、という利点がある。
【0071】
第6の態様に係る負荷制御回路(10)では、第1~第5のいずれかの態様において、制御部(1)は、第1スイッチ素子(Q1)のオフ期間において、第2スイッチ素子(Q2)をオフさせる。
【0072】
この態様によれば、負荷(12)に印加される負荷電圧(V1)が実際にゼロクロスするタイミングで第2スイッチ素子(Q2)をオフさせやすい、という利点がある。
【0073】
第7の態様に係る負荷制御回路(10)では、第1~第6のいずれかの態様において、制御部(1)は、負荷(12)に印加される負荷電圧(V1)のゼロクロスに基づいて、第1スイッチ素子(Q1)を制御する。
【0074】
この態様によれば、負荷電圧(V1)のゼロクロスに依らず第1スイッチ素子(Q1)をオンさせる場合と比較して、双方向スイッチ(Q0)を制御する精度が向上しやすい、という利点がある。
【0075】
第8の態様に係る負荷制御回路(10)では、第1~第7のいずれかの態様において、負荷(12)は、誘導負荷を含む。
【0076】
この態様によれば、誘導負荷に含まれるインダクタンス成分に起因する逆起電圧が発生しにくい、という利点がある。
【0077】
第9の態様に係る負荷制御回路(10)では、第1~第8のいずれかの態様において、負荷(12)は、固体発光素子を有する光源と、換気扇と、を含む。
【0078】
この態様によれば、1つの負荷制御回路(10)で固体発光素子を有する光源と換気扇との両方を使用することが可能である、という利点がある。
【0079】
第10の態様に係る負荷制御方法は、双方向スイッチ(Q0)を、電圧駆動型の第1スイッチ素子(Q1)及び自己保持型の第2スイッチ素子(Q2)の各々のオン/オフを同期させて制御する。双方向スイッチ(Q0)は、電源(11)と負荷(12)との間に電気的に接続されて電源(11)と負荷(12)との間の導通/非導通を切り替える。第1スイッチ素子(Q1)及び第2スイッチ素子(Q2)は、双方向スイッチ(Q0)の制御端子(T1)に並列に電気的に接続されて電源(11)から双方向スイッチ(Q0)へ駆動電力を供給するか否かを切り替える。
【0080】
この態様によれば、使用可能な負荷(12)の制限を受けにくい、という利点がある。
【0081】
第11の態様に係るプログラムは、1以上のプロセッサに、第10の態様に係る負荷制御方法を実行させるためのプログラムである。
【0082】
この態様によれば、使用可能な負荷(12)の制限を受けにくい、という利点がある。
【0083】
第2~第9の態様に係る構成については、負荷制御回路(10)に必須の構成ではなく、適宜省略可能である。
【符号の説明】
【0084】
1 制御部
10 負荷制御回路
11 電源
12 負荷
Q0 双方向スイッチ
Q1 第1スイッチ素子
Q2 第2スイッチ素子
T1 制御端子
V1 負荷電圧
図1
図2
図3
図4
図5